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Abstract: During the COVID-19 pandemic, it became evident that the effectiveness of applying
intervention measures is significantly influenced by societal acceptance, which, in turn, is affected by
the processes of opinion formation. This article explores one among the many possibilities of coupled
opinion–epidemic systems. The findings reveal either intricate periodic patterns or chaotic dynamics,
leading to substantial fluctuations in opinion distribution and, consequently, significant variations in
the total number of infections over time. Interestingly, the model exhibits a protective pattern.
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1. Introduction

Understanding the complex dynamics of opinion formation in a society is a challeng-
ing cross-disciplinary task where expertise and knowledge from many different fields
are required. Mathematical models of opinion dynamics can provide quantitative and
qualitative insights into the set of parameters and variables that shape and determine the
dynamics and structure of opinions. Thanks to pioneers like Serge Galam in modeling
social phenomena with methods borrowed and inspired by statistical physics, whole new
sub-fields of research like sociophysics have been established [1] and triggered subse-
quently work. Meanwhile, there have been a large variety of models designed like the
Galam Models [2], Voter model [3], Sznajd model [4], threshold models [5] and bounded
confidence models [6], to name just a few.

Mathematical models for the epidemic dynamics of infectious diseases have existed
for more than two hundred years, starting with the work of Bernoulli in 1766 on smallpox
inoculation [7] and continuing—after a long pause—with Ross and Hudson on Malaria at
the beginning of the last century [8].

However, until the COVID-19 pandemics, there was relative little interest among
the epidemiological modeling community to incorporate aspects of opinion dynamics into
epidemic models. Some notable exceptions are [9–16]. During the COVID-19 pandemics,
it became evident that the efficiency of the implementation of so-called Public Health and
Social Measures (PHSMs) depend crucially on the level of acceptance in a society and
is, therefore, impacted by opinion formation processes. Furthermore, in most countries
of the Western hemisphere, we have seen strong polarization dynamics within society
and deep digression on what is “the right thing to do” to fight the pandemic. These
processes shaped also the attitude toward COVID-19 vaccination and were causal for the
large number of deaths in autumn 2021 due to insufficient vaccine uptake in the elderly
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population in eastern European countries like Poland and Bulgaria (for major works on
coupled opinion–epidemic systems since 2008 see [9–31]).

In this article, we study one of the many possibilities of coupled opinion–epidemic
systems. The opinion dynamics we consider are a slight generalization of the so-called
q-voter model (a kind of nonlinear voter process which favors the most prevalent opinion).
The number of possible opinions is large and represents a continuum in our setting. For the
epidemic dynamics, we consider a simple SIS system. Opinions have a direct impact on the
likelihood of becoming infected (one possible interpretation could be to associate opinions
with the frequency of mask wearing) and, therefore, cause heterogeneity in the relative
share of infections among the different opinion carriers. In the other direction, an infection
increases the likelihood of changing an opinion (more precisely, the likelihood of an infected
individual to change their opinion is proportional to the the relative proportion of infected
of their opinion among all infected). It is easy to show that the coupled system has no
stationary solutions in the general case (Section 2.5) despite the fact that in the decoupled
system both—the opinion and the epidemic dynamics—converge to stable equilibria.

It is a widespread belief that pure opinion formation systems are unlikely to show
chaotic behavior [32], although there are examples of chaos even in simple deterministic
opinion models [33]. We observe for the system presented in this article either complex
periodic patterns or chaotic dynamics with large fluctuations in the distribution of the
opinions causing substantial variations over time in the total number of infected. It has
been known that differences in the perceived risk can have dramatic impact on epidemic
dynamics [9], and coupled opinion–epidemic systems ‘can exhibit dynamics that do not
occur when the two subsystems are isolated from one another’ [17]. For instance, previous
works presented the emergence of periodic dynamics in opinion–epidemic models in
which behavior dynamics induced an instability of the endemic equilibrium through a
supercritical Hopf bifurcation—an effect leading to large oscillations [15,16]. Furthermore,
a recent study presented chaotic behavior in a coupled model induced by delayed response
of behavior to epidemic variables [31]. Our opinion dynamics and the coupling to the
epidemic dynamics differs from the above-mentioned studies and does not involve delayed
response or periodic external triggers like seasonality to induce non-stationary dynamics.

2. Materials and Methods—Model Description

The examined dynamical system consists of two coupled dynamical systems: an
epidemiological system and an opinion formation system.

2.1. Epidemiological System

In the following, we consider infectious disease dynamics under the impact of opinions
that affect the likelihood of becoming infected in a closed population of size N. Opinions
are described by a one-dimensional continuous variable x ∈ [0, 1]. A zero value reflects the
point of view in opposition or polarization to the opinion with value 1. Values between
0 and 1 reflect non-extreme opinions. Each individual is required to have one opinion
x. Let S(t, x) and Z(t, x) denote the number of susceptible or infectious individuals with
opinion x at time t. A straightforward extension of the classical Kermack–McKendrick SIS
model [34] leads to the system

d
dt

S(t, x) = − β(x)
N

S(t, x)
∫ 1

0
Z(t, y) dy + γZ(t, x) , (1a)

d
dt

Z(t, x) =
β(x)

N
S(t, x)

∫ 1

0
Z(t, y) dy − γZ(t, x) . (1b)

Here, β(x) > 0 denotes an opinion-dependent transmission rate. As a prototypical example,
one may consider a linear dependence

β(x) = β0 + (β1 − β0)x , (1c)
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where β0 and β1 denote the transmission rates for the two extreme opinions x = 0 and
x = 1. However, it is advised that β0 ̸= β1 to observe dynamics diverging from standard
SIS model. The recovery rate γ > 0 is assumed to be independent of the opinion x.

2.2. Opinion Formation System

To describe the opinion dynamics, we employ a modification of the q-voter model [3].
The classical q-voter model (q > 1) for a population with just two mutually exclusive
opinions reads as

v′ = α[(1 − v)vq − vs.(1 − v)q] = αvs.(1 − v)
[
vq−1 − (1 − v)q−1

]
, (2)

where v denotes the fraction of individuals having one opinion and 1 − v denotes the
remaining individuals having the alternative opinion. A change of opinion occurs, if an
individuals ”meets” q individuals of the other opinion. Then, with rate α, the individuals
flips to the other opinion. It is required that α > 0, since individuals are attracted to the
opinion of others. It is obvious that the simple q-model allows for two opinion-polarized
equilibria v = 0 and v = 1 and a balanced equilibrium v = 1

2 . The two polarized equilibria
are asymptotically stable, whereas the balanced equilibrium is unstable. To see this, we
remark that v = 0, v = 1 and v = 1/2 are the roots of the right-hand side f (v) of the above
ODE. Computing the derivative at these roots, we observe, that f ′(0) = f ′(1)= −α < 0 and
f ′(1/2) = (q − 1) α ( 1

2 )q−1 > 0, showing the local instability or stability of the respective
equilibria.

Let U(t, x) = S(t, x) +Z(t, x) denote the total number of individuals having opinion x,
where x ∈ [0, 1] denotes a continuous range of opinions, e.g., ranging between complete
rejection of a non–pharmaceutical intervention (x = 0) to full agreement with this inter-
vention (x = 1). Then, N =

∫ 1
0 U(t, x) dx equates to the overall population. When q = 2

and there is a continuous spectrum of opinions x ∈ [0, 1], a generalization of the classical
q–voter model (2) reads

d
dt

U(t, x) = (aU(t, x)2 + ϵ)
∫ 1

0
U(t, y) k(x, y) dy − U(t, x)

∫ 1

0
(aU(t, y)2 + ϵ) k(y, x) dy . (3)

Here, the non–negative kernel k(x, y):[0, 1]2 → R+ denotes the confidence (i.e., trust) of
individuals of opinion x and y in each others judgment when interacted. With rate a > 0,
this interaction leads to a switch in opinion. Typically, we will assume that k(x, y) =
ρ(|x − y|) = ρ(r), depending only on the distance r = |x − y| of the two opinions x and y.
It seems natural to assume that ρ is decaying with r, i.e., the further apart the two opinions,
the less the trust in others judgment. This mechanism is referred to as Bounded Confidence
(BC) [6] in this work.

It is important to note that the probability of sampling of an individual with specific
opinion in the continuous x equals zero. Therefore, in the system, the interaction of
individuals should be interpreted as the attraction of an individual to a particular opinion
rather than “meeting” other individuals.

The individual can change their opinion according to q-individuals with rate a.
The variable ϵ > 0 denotes a background rate of opinion change independent of en-
counters with other individuals. The proportion of individuals who take action is defined
by parameters a and ϵ with the assumption 0 ≤ a + ϵ ≤ 1. The proportion of individuals
who do not take any action equals 1 − a − ϵ.

Some mathematical results for this model can be found in the appendix in Propositions A1
and A2.

2.3. Opinion–Epidemic Model

In this section, we will use z(t, x) and u(t, x) as a densities of variables Z(t, x) and
U(t, x), respectively (i.e., z(t, x) = Z(t,x)∫ 1

0 U(t,x)dx
and u(t, x) = U(t,x)∫ 1

0 U(t,x)dx
). To couple the
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opinion dynamics with the infection process, we assume that the rate of changing one’s
opinion x scales with the number of infected z(t, x) having this opinion. The rational
behind this assumption is the following: If an individual of opinion x observes a large
number of infected having the very same opinion x, the more likely it is that the individual
will change to another opinion y. Furthermore, conversely, if there are only a few infected
sharing one’s opinion, then it is less likely for the individual to change that opinion. Scaling
all populations with the total population N, incorporating the above idea into Equation (3)
and combining it with the the SIS-model (1), we arrive at

d
dt

z(t, x) = β(x) (u(t, x)− z(t, x))Z(t)− γz(t, x) , (4a)

Z(t) =
∫ 1

0
z(t, y) dy , (4b)

β(x) = β0 + (β1 − β0)x , (4c)

d
dt

u(t, x) =
1

Z(t)

(
(au(t, x)2 + ϵ)

∫ 1

0
z(t, y) u(t, y) ρ(|x − y|) dy (4d)

−u(t, x)z(t, x)
∫ 1

0
(au(t, y)2 + ϵ) ρ(|x − y|) dy

)
. (4e)

Here, Z(t) denotes the total number of infected.
A simple model for the interaction kernel ρ(r) is the so-called bounded confidence interval

ρ(|x − y|) =
{

1 for |x − y| ≤ τ

0 else .
, (4f)

i.e., if the difference between the two opinions x and y exceeds the bounded confidence
threshold τ, no interaction occurs. Some analytic results for the asymptotic dynamics of
the pure opinion dynamics are provided in Appendixes A and B.

2.4. Discretization of the Opinion Space

To simulate the coupled infection–opinion dynamics (4), we discretize the opinion
space [0, 1] by n discrete opinions x1 < · · · < xn. For simplicity, we assume xk = h(k − 1

2 )
for k = 1, . . . n and h = 1/n to be equidistantly spaced. Let zi(t) = z(t, xi) and ui(t) =
u(t, xi). Then, the opinion-discretized version of (4) reads as

z′i = βi (ui − zi)Z − γzi , (5a)

u′
i =

1
Z

(
(au2

i + ϵ)
n

∑
k=1

zk uk ρh(|i − k|)− uizi

n

∑
k=1

(au2
k + ϵ) ρh(|i − k|)

)
, (5b)

where

Z(t) =
n

∑
k=1

zk(t) , (5c)

βi = β0 + (β1 − β0)xi , (5d)

z′i =
d
dt

zi(t) , (5e)

u′
i =

d
dt

ui(t) (5f)

and ρh(d) = ρ(hd) denotes the scaled bounded confidence kernel.
The coupled 2n-dimensional ODE system (5a,b) can be solved by any standard ODE

solver, e.g., a classical Runge–Kutta method with adaptive step sizes. For the simulation
implementation details, please see Section 2.6.
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2.5. Some Analytic Results for a Simplified Setting

Consider the opinion-discretized system (5) in the simplified setting ρh ≡ 1 and ϵ = 0.
We will show in the following that such a system cannot have a stationary solution except
for the case when the likelihood of becoming infected does not depend on the opinion
(in that case the system is actually decoupled). Non-trivial equilibria for the infected
compartments zi are characterized by the equation

zi =
βiuiZ

βiZ + γ
.

Analogously, the equilibria for the opinion group ui have to satisfy

u2
i ∑ zkuk = uizi ∑

k
u2

k .

Inserting the above relation for zi, yields

∑
k

βku2
k

βkZ + γ
=

βi
βiZ + γ ∑

k
u2

k .

Hence, βi/(βiZ + γ) has to be a constant independent of i. This is only possible if βi = β is
a constant independent of i.

Assuming βi = β to be independent of i, we define A = βZ
βZ+γ and hence, zi = Aui.

Therefore,

Z = ∑
i

zi =
βZ

βZ + γ ∑ ui

and thanks to ∑i ui = 1, we arrive at 1 = β/(βZ + γ), or

Z = 1 − γ

β
.

Feasible solutions for Z < 1 can only exist if β > γ, i.e., if the classical epidemiological
threshold condition R0 = β

γ > 1 for the basic reproduction number R0 is satisfied. The
result is likely to hold for the general case (ρh ̸= 1 and ϵ > 0) and values of epsilon that are
not too large; however, to date, we have been unable to obtain conclusive analytic results
in this direction.

2.6. Simulation Setup
2.6.1. Software

We run simulations in Julia [35] version 1.9.4. To resolve systems numerically, we use
DynamicalSystems [36,37] and OrdinaryDiffEq [38]. For the postprocessing and analysis,
ChaosTools [37], StatsBase, and FFTW [39] packages are used.

2.6.2. Hardware

Computations are performed on a CRAY XC40 (Okeanos), which is part of the ICM
computing infrastructure. The system is composed of 1084 computing nodes. Each node
has 24 INTEL XEON E5-2690 V3 CPU cores with a two-way Hyper Threading (HT) with
2.6 GHz clock frequency.

2.6.3. Simulations

Simulations were conducted in a discretized opinion space x with space points n.
Simulations run for 30,000 time steps with resolution 1. To allow for the system to stabilize
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its dynamics, the initial 20,000 steps are discarded and only the last 10,000 steps are used
for further investigation.

The coupled 2n-dimensional ODE system (5a) is solved using Verner’s “Most Efficient”
Runge–Kutta method with order 6(5) [40].

To analyze the system and find parameter sets with chaotic dynamics, we run simu-
lations with parameter sampling in a grid search manner. We decided to alter values of
parameters n, ϵ, and τ in Equation (4). The parameters a, γ, β0, and β1 we kept constant.
This setup allowed us to vary and evaluate the influence of the number of discretization
space points n, the proportion of individuals who change their opinion in unstructured
manner ϵ, and the bounded confidence interval τ that controls the limits of mixing of a
particular opinion in the population. We found these parameters to be the most important
for the process. We set a to 0.6 to account for the fact that most people are conformist
and follow the majority opinion. To make the system over-critical, we set the limits of the
function β(x) (i.e., β0 and β1) to be above the γ value. This way, the classical epidemio-
logical threshold condition R0 = β

γ > 1 is satisfied. Values of β0 and β1 equal to 0.11 and
0.225, respectively, were chosen to ensure an increase in transmission with increasing x.
The initial opinion distribution was uniform u(t = 0, x) = 1.0. The distribution of initially
infected was uniform and equal to 0.01 (i.e., z(t = 0, x) = 0.01).

Fixed parameters and their values used in the grid search are compiled in Table 1.
Varied parameters and their range characteristics are compiled in Table 2.

Table 1. Fixed parameters and their values used in a grid search.

Parameter a γ β0 β1

Value 0.6 0.1 0.11 0.225

Table 2. Varied parameters and their ranges used in a grid search.

Parameter n ϵ τ

Initial values 4 0.0 0.15
Final value 10 1 0.4 1.05

Step size 1 0.01 0.1
1 20 is appended to the sequence in the end.

2.6.4. Analysis Methods

Since we observed either periodic and chaotic behavior, we prepared a set of analysis
methods that would permit an evaluation regardless of whether the system is periodic or
chaotic and provide an insight into dynamics heterogeneity. We used the following methods:

• autocorrelation;
• maximum Lyapunov exponent (MLE) [41,42];
• spectral Shannon; entropy [43–46];
• standard Shannon entropy [46];
• Poincaré maps;
• Fourier Transform.

Autocorrelation is a standard tool for detecting periodic signals and their frequencies. In
the setup, we compute the maximal value of autocorrelation of arbitrarily chosen lags
ranging from 150 to 300. Autocorrelation values should be close to 1.0 for the periodic
dynamics. Lyapunov exponents measure rates of separation of nearby trajectories in the
flow of a dynamical system. In the analysis, we use the maximum Lyapunov exponent
(MLE) to account for the maximal exponential separation. A positive MLE indicates chaotic
dynamics. Spectral Shannon entropy is a measure of the heterogeneity in a signal and is
computed on the basis of the square of the amplitudes of its Fourier transform. The values
are than normalized to 1 and the standard Shannon entropy is computed. The closer the
signal is to white noise, i.e., chaotic, the higher the entropy. Standard Shannon entropy is
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used as a measure of the heterogeneity in opinion dynamics. It is computed based on the
densities of opinions in each time step. Then, by obtaining the maximum, minimum, mean,
and range length of all entropies (i.e., difference of maximum and minimum), we gain an
insight into the diversity of opinions. A Poincaré map is a standard descriptive method
used to determine the periodicity in a system. In our work, we plot ui(t) vs. ui(t + 1) and
zi(t) vs. zi(t + 1) to visualize orbits. When a system is periodic, it has evident closed loops.
The Fast Fourier Transform (FFT) is a standard mathematical method for spectral analysis
of discrete signals. It is a tool for describing time series by the frequencies and amplitudes
of components.

3. Results and Discussion

In this section, we evaluate the coupled model dynamics according to their chaotic
or periodic nature. We performed 2870 simulations using grid search to investigate the
consistency, heterogeneity, variety, and quality of the results. We present the numerical
results along with their qualitative and quantitative analyses.

In Figure 1, we can see a visualization of the simulation in which the MLE and
autocorrelation indicate a chaotic regime. In the top two subplots, we can see visualizations
of the raw u and z data. The absence of clear recurrent patterns is a visual indicator for
chaotic behavior (in Figure 2, we see also that for the chosen parameter values, we have
positive Lyapunov exponents). This is also apparent for the three bottom subplots, which
show aggregate Z, entropy of z, and entropy of u. We can see that Z exhibits a deviation in
values within ∼20%. Entropy of u exhibit a greater range of fluctuations than entropy of z.
This might be due to the fact that u does not translate to the values of z as the nonuniform
β(x) function is used. Nevertheless, there is little noticeable order in the timelines.

In Figure 3, we can see a visualization of a simulation leading to a periodic regime.
In the top two subplots, we can see visualizations of the raw u and z data. A recurrent
pattern is readily observable in this example—specifically, u and z are oscillating in a
descending order. Even though the pattern seems simple, it exhibits complex dynamics,
observable in the plots of Z and both entropies. Similar to the first panel Figure 1, entropy
of u exhibits a greater range of values than entropy of z. However, contrary to the previous
panel, we can easily distinguish periodicity in each subplot.

In Figure 4, we present extended disordered Z dynamics from Figure 1. Notwith-
standing, it is evident that the dynamics of the system exhibit pseudo-periodic intervals
that are intermittently disrupted by chaotic regimes. While the root cause of this chaotic
behavior remains unexplored in this particular study, it serves as a potential hint for further
investigations into the underlying pathways leading to chaos.

Up until this point, particular examples of numerical patterns of chaotic and periodic
behavior have been presented. Simulations have had easily observable highly nontrivial
chaotic behavior and nontrivial periodic behavior. To give a comprehensive perspective on
the complexity of dynamics involved in the system, the assessment of disorder in simula-
tions encompassing a diverse array of parameters are illustrated in subsequent figures.

The heatmaps in Figures 2–6 present the variety of metrics described in Section 2.6.4.
The panel in Figure 2 consists of four heatmaps showing the values for Autocorellation,

MLE, Spectral Entropy, and Wavelet Entropy. From Figures 1 and 3, we know that u
displays greater entropy variation than z, therefore, we use it to compute autocorrelation
and entropy values. The missing tiles in the Autocorrelation heatmap represent the NaN
values that mark stationary solutions. The chaotic scenarios are easy to distinguish in
the Autocorrelation (low values), MLE (high values), and Spectral Entropy (high values)
heatmaps. We can see three nonuniform regions: two in the top and one in the cenere.
Overlap of all three is evident with some divergence on the perimeter of chaotic regimes.
Convergence of these three measures is a strong computational indicator of chaos in the
system. Maximum Wavelet Entropy is an outlier displaying a level of consistency less
aligned with the other measures. The chaotic regions in this instance are subtly and
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delicately outlined. To better visualize the fluctuations and correlation of Autocorrelation
and MLE, we include cross-section plots along the x and y axes in the Figure A1.

In Figure 5, there is a panel picture with four heatmaps with statistical properties of
entropy of u: minimum entropy, maximum entropy, range length of entropy (difference
of maximum and minimum value), and mean entropy. We can see that the larger the BC
threshold, the larger the oscillations in the opinion range. For high epsilon and low BC, we
have a very consistent and narrow opinion distribution. The highest oscillations in entropy
match with the highest MLE in Figure 2.

In Figure 6, there are two heatmaps: mean Z and mean opinion x. The large BC thresh-
old correlates with the low mean of infected and the low mean opinion. Inversely, the lower
the ϵ, the lower the mean of the number of infected. This suggests a rational response to
epidemics, wherein individuals prioritize self-protection, aligning their opinions with those
in favor of a protective regime (lower values of opinion x). Notably, when both mechanisms
are involved with the strongest influence (largest ϵ smallest τ), we can see the highest mean
infected, indicating the worst epidemic outcomes. Surprisingly, there is no visible influence
of the chaoticity mode on the mean epidemics results. It remains uncertain whether the
mode is irrelevant in general or if the chaotic fluctuations are too subtle to have a noticeable
impact on the epidemics.

Figure 1. Example of a chaotic timeline for the evolution of the dynamics with parameters n = 10,
ϵ = 0.25, and τ = 0.55, where MLE and autocorrelation values indicate chaotic behavior. The timeline
begins with 20,000+ time steps and finishes with 20,000 + 2000. We show heatmaps of opinion u(x, t),
infected z(x, t), sum of infected Z(t), and entropies of z(x, t) and u(x, t), respectively. Entropies of z
and u are computed with base 10. In each plot, there are fluctuations and irregularities in the data,
especially in u and entropy of u.
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Figure 2. Panel of heatmaps with measures of disorder of dynamics of system with n = 10. The results
are from the grid search simulations for ϵ and τ parameters that are on the x and y axis, respectively.
Maximum Autocorrelation (top left), MLE (bottom left), Maximum Spectral Entropy (top right), and
Maximum Wavelet Entropy (bottom right) are displayed. In each plot, there are large fluctuations in
values. The missing tiles in the Autocorrelation heatmap represent NaN values that mark stationary
solutions. The parameter spaces with chaotic simulations are easy to distinguish in the Autocor-
relation (low values), MLE (high values) and Spectral Entropy (high values) heatmaps. The low
Autocorrelation values, high MLE values, and high Spectral Entropy overlap. This is expected
behavior that increases confidence in the existence of chaoticity in these regions. Maximum Wavelet
Entropy is an outlier, less consistent with other measures.

Figure 7 Descriptive statistical analysis of three simulations: one chaotic and two peri-
odic. The chaotic mode simulation is presented in the top row. The middle and bottom rows
illustrate simulations with only the τ parameter changed (0.55 → 0.85) and with only the ϵ
parameter changed (0.25 → 0.31), respectively. In the two columns on the left-hand side,
we have Poincaré maps of z(x = 5) and u(x = 5). In the two columns on the right-hand
side, there are the Fast Fourier Transform results of z(x = 5) and u(x = 5). For the sake
of clear visualization, we present only absolute amplitudes and half of the frequencies (to
avoid a symmetric picture). The difference is evident in the panel plots. Poincaré maps
have closed smooth loops in the middle and bottom rows, contrary to the behavior in the
top row. The spectral analysis in the top row is highly noisy in comparison to those below
it. Both periodic and chaotic simulations show highly complex dynamics. Periodic regimes
demonstrate nontrivial dynamics even when there is a lack of any noise. We can clearly see
that using descriptive statistical methods, we can easily distinguish chaotic from periodic
modes and detect the evident noisiness of the chaotic regime.

All the simulations presented up to now had the number of discretization points n
set to 10. In Figure 8, we present heatmaps for the autocorrelation and MLE measures
according to various discretization resolution ranging from 4 to 20 points. The minimal
resolution required for the chaotic regime to occur is 5. The missing tiles in autocorrelation
heatmap correspond to NaN values that mark stationary solutions. We can see that the
number of confined parameter spaces with chaotic regimes varies between n values and
the size of the parameter space revealing chaotic dynamics increases with increasing n.
Most of the chaotic parameter regions have unstructured shapes and sizes. The pattern of
formation of these areas is noisy and unclear. The positive MLEs marking chaotic space
take up to ∼90% of the total space for n = 20.
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Figure 3. Example of a periodic timeline for the evolution of the dynamics with parameters n = 10,
ϵ = 0.25, and τ = 0.85 where MLE and autocorrelation values indicate periodic behavior. The timeline
begins with 20,000+ time steps and finishes with 20,000 + 200. We show heatmaps of opinion u(x, t),
infected z(x, t), sum of infected Z(t), and entropies of z(x, t) and u(x, t), respectively. Entropies of z
and u are computed with base 10. In each plot, there are fluctuations in the data, especially in u and
entropy of u. One can clearly distinguish periodic behavior in each plot.

Figure 4. Example of a chaotic timeline for the sum of infected Z(t) from Figure 1. A simulation with
parameters n = 10, ϵ = 0.25, and τ = 0.55 with extended time up to 20,000 + 5000 steps is displayed.

Discussion

The results show that a minimum of five spatial points is required to observe chaotic
behavior. The manifestation of chaotic dynamics is conditioned upon a sufficient number of
states and bounded confidence that facilitates the mixing of individuals with at least three
different opinions. This outcome aligns with expectations, as, when mixing only two states,
there is just one possible opinion transition route (to the opposite opinion). As a result, the
opinion formation dynamics are strictly limited and periodicity is enforced.

Subsequently, when the bounded confidence mechanism is deactivated (i.e., τ = 1.05),
chaotic behavior cases are still observed. This suggests that while bounded confidence
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may contribute to chaotic dynamics, it is not an obligatory factor for their occurrence. On
the contrary, all instances of chaotic dynamics emerge upon the presence of the ϵ > 0.
This underscores the essential role of opinion change independent of encounters as the
mandatory mechanism for chaotic dynamics to develop.

An intriguing aspect of the model is the protective behavior embedded within it. We
observe that the strong influence of independent opinion change and BC correlates with
worse epidemic outcomes. Interestingly, in scenarios where communication across the
population is widespread and uniform, and individuals follow the majority, the average
number of infected cases is the lowest. Although we provided numerical evidence for
chaotic dynamics only for systems with a finite number n > 4 of opinions (up to n = 20),
we see no reason why chaotic patterns should become absent for large n, which is to
say, a continuum of opinions—Figure 8 indicates that the opposite is true. A systematic
numerical investigation of the continuous opinion system is challenging, especially when
search through the parameter space is required (we observed runtimes of about 2 days for
n = 20).

Figure 5. Panel of heatmaps with measures of dispersion in the dynamics of opinion u(x, t) with
n = 10. The results are from the grid search simulations for ϵ and τ parameters that are on the x
and y axis, respectively. Minimum Entropy (top left), Maximum Entropy (bottom left), difference
in Maximum and Minimum Entropy (top right), and Mean Entropy (bottom right) are displayed.
In each plot, there are large fluctuations in values. We can see that the larger the oscillations in the
opinion range, the larger the BC threshold. For high epsilon and low BC, we have a very consistent
and narrow opinion distribution. The highest oscillations in entropy match with the highest MLE
values in Figure 2.

Figure 6. Panel of heatmaps with measures of expected values of the sum of infected Z(t) and
opinion u(x, t) with n = 10. The results are from the grid search simulations for ϵ and τ parameters
that are on the x and y axis, respectively. Mean Z (left) and average opinion (right) are displayed.
In each plot, there are large fluctuations in values. The higher the τ, the lower the mean number of
infected and mean opinion. The higher the Epsilon, the higher the mean number of infected and
mean opinion. When Epsilon is at its largest value and τ is at it smallest value (bottom right corner),
we can see the highest mean number of infected.
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Figure 7. Panel of descriptive statistical analysis plots of three simulations: one chaotic (top row)
and two periodic (middle and bottom row). The top row presents results from a simulation with
parameters n = 10, ϵ = 0.25, and τ = 0.55. The middle illustrates a simulation with only the τ

parameter changed (0.55 → 0.85). The bottom row of pictures illustrates a simulation with only the
ϵ1 parameter changed (0.25 → 0.31). In the first column, there is a Poincaré map of z(x = 5). In the
second column, there is a Poincaré map of u(x = 5). In the third column, there is a Fast Fourier
Transform of z(x = 5). In the fourth column, there is aFast Fourier Transform of u(x = 5). For the
sake of clear visualization, we present only absolute amplitudes and half of the frequencies (to avoid
a symmetric picture). The Poincaré maps have closed loops in the middle and bottom rows, which
differs to the behavior in the top row. The spectral analysis in the top row is highly noisy compares to
the analyses below it.
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Figure 8. Panel of heatmaps of Autocorrelation and MLE measures according to various discretization
resolutions. The first row consists of Autocorrelation heatmaps. The second row consists of MLE.
In the columns, we see results for resolutions ranging from n = 4 to n = 20. The missing tiles in the
Autocorrelation heatmaps correspond to NaN values that mark stationary solutions. We can see that
the number of confined parameter spaces with chaotic regimes varies between n values, and the size
of area of unordered dynamics increases with increasing n. Chaotic space (positive MLEs) takes up to
∼90% of the total space for n = 20.

4. Conclusions and Outlook

This study introduces a new coupled model for opinion and epidemic dynamics.
Despite the absence of factors like seasonal effects, delayed response, or contrarians, which
are known to trigger chaotic or complex dynamical pattern, our simulations and analyses
reveal compelling evidence for both chaotic and complex periodic behavior. This observa-
tion is unexpected given that the constituent of the decoupled system is deterministic and
exhibits only stationary dynamics and the coupling mechanism is quite simple (infected
individuals are just more likely to change their opinion than non-infected).

A closer examination of the chaotic timeline unveils pseudo-periodic intervals dis-
rupted by a noisy signal. This phenomenon might be a hint for a possible route to chaos
via intermittency. We did not find any evidence for period-doubling bifurcations.

One implication of chaotic behavior in opinion–epidemics coupled systems is the obvi-
ous difficulty in forecasting dynamics beyond a time horizon larger than the inverse of the
largest Lyapunov exponent [47]. There are several natural extensions of our system. On the
epidemic side, it would be interesting to look at SIRS dynamics. Obviously, many more
ways of coupling the opinion and the epidemic dynamics are possible, e.g., the opinion
could not only impact the likelihood of becoming infected but also the infectivity of an
individual. Finally, there are a large number of opinion models studying the impact of
heterogeneity of types of individuals in a society on opinion dynamics, like the contrari-
ans and conformists, and it would be interesting to see how such systems coupled with
epidemic dynamics behave.
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Appendix A

Proposition A1. Consider the q-voter model

d
dt

u(t, x) = uq(t, x)
∫

u(t, y) dy − u(t, x)
∫

uq(t, y) dy.

Let x̃ = argmax u(t = 0, x). Then x̃ = argmax u(t, x) for all times t ≥ 0.

Proof. Let the solution u in the point x̃ be defined as ũ(t) := u(t, x̃), and the solution at
an arbitrary point x∗ be defined as u∗(t) := u(t, x∗). We assume u∗(0) < ũ(0), so that
∆u(t) := ũ(t)− u∗(t) > 0, as well as (u∗(t) + ∆u(t))q = ũq(t), resulting in the equation
u∗q(t)− ũq(t) = −∑

q
k=1 u∗q−k(t)∆uk(t). It thus holds that

u∗′(t)− ũ′(t) = (u∗q(t)− ũq(t))
∫

u(t, y) dy − (u∗(t)− ũ(t))
∫

uq(t, y) dy

= −
q

∑
k=1

u∗q−k(t)∆uk(t)
∫

u(t, y)dy + ∆u(t)
∫

uq(t, y)dy

It holds true that u∗′(t)− ũ′(t) < 0 for q = 2, since after division by ∆u(t) ̸= 0, it holds that

2

∑
k=1

u∗2−k(t)∆uk−1(t) =
2

∑
k=1

u∗2−k(t)(u∗(t)− ũ(t))k−1 = ũ(t)
∫

u(t, y) dy >
∫

u2(t, y) dy.

So, it also holds that u∗′(t) < ũ′(t) for all q ≥ 2, and thus, u∗(t) < ũ(t) for all t ≥ 0.
For q ≥ 2, it can be shown by induction that it holds that

q

∑
k=1

u∗q−k(t)(u∗(t)− ũ(t))k−1 >
∫

uq(t) dy,

so that the statement holds for a general q ≥ 2-voter model as well.

https://doi.org/10.5281/zenodo.10624921
https://doi.org/10.5281/zenodo.10624921
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Proposition A2 (Stability of the equilibrium in the pure 2-voter model). Regarding the
system (3), if ϵ is sufficiently large, i.e., ϵ > a, the uniform equilibrium u(t, x) = 1 is stable.

Proof. We consider a perturbation ansatz u(t, x) = 1 + δeλtv(x), where
∫ 1

0 v(x) dx = 0 for
δ ≪ 1. If λ < 0, then, the uniform equilibrium u ≡ 1 is stable, otherwise not. Inserting the
ansatz into system (3), we obtain

d
dt

u(t, x) = a
[
(u2 +

ϵ

a
)
∫ 1

0
u dy − u

∫ 1

0
(u2 +

ϵ

a
) dy

]
= a

[(
1 +

ϵ

a
+ 2δeλtv(x) + δ2e2λtv2(x)

)(
1 + δeλt

∫ 1

0
v(y) dy

)
−
(

1 + δeλtv(x)
) ∫ 1

0
1 +

ϵ

a
+ 2δeλtv(y) + δ2e2λtv2(y) dy

]
.

Linearizing with respect to δ and using
∫

v dy = 0, we get

d
dt

u(t, x) = δ(a − ϵ)eλtvs. +O(δ2) ,

and thanks to d
dt u(t, x) = δλeλtv, we finally arrive at

λ = (a − ϵ) +O(δ) .

For ϵ sufficiently large, i.e., ϵ > a, we get λ < 0 and, therefore, the stability of the uniform
equilibrium u(t, x) = 1.

As one can see from the above derivation, this result also holds true for the generaliza-
tion to a q ≥ 2-voter model.

The above result shows the local stability of the equilibrium in the 2-voter model.
Proving global stability is a different issue, particularly for the integro–differential model.
The lack of knowledge of a suitable Lyapunov function is the main obstacle when trying
to analyze global stability. Therefore, this issue is still the subject of current research and
beyond the scope of this paper.

Appendix B

Figure A1. Cross sections along the Epsilon and τ axes of the Autocorrelation and MLE heatmaps
in Figure 2. Panel of four scatter plots: Maximum Autocorrelation along the τ axis (top left), MLE
along the τ axis (bottom left), Maximum Autocorrelation along the ϵ axis (top right), and Maximum
Autocorrelation along the ϵ axis (bottom right). We can see large fluctuations in each of the four
plots. The low Autocorrelation values correlate with high MLE values, as a comparison of the top
and bottom rows shows. This is expected behavior and increases our confidence in the existence of
chaoticity in these regions.
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