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Abstract: This paper concentrates on the finite-time H∞ control problem for a type of stochastic
discrete-time Markovian jump systems, characterized by time-delay and partly unknown transition
probabilities. Initially, a stochastic finite-time (SFT) H∞ state feedback controller and an SFT H∞

observer-based state feedback controller are constructed to realize the closed-loop control of systems.
Then, based on the Lyapunov–Krasovskii functional (LKF) method, some sufficient conditions are
established to guarantee that closed-loop systems (CLSs) satisfy SFT boundedness and SFT H∞

boundedness. Furthermore, the controller gains are obtained with the use of the linear matrix in-
equality (LMI) approach. In the end, numerical examples reveal the reasonableness and effectiveness
of the proposed designing schemes.

Keywords: Markovian jump systems; discrete-time systems; finite-time control; H∞ control; partly
unknown transition probabilities

1. Introduction

The structure or parameters of various practical systems often undergoes changes
due to environmental mutations, component failures, and other factors, resulting in a
decrease in system performance and potential instability [1]. How to ensure the stability
of mutation systems has been one of the hot topics for scholars. Markovian jump systems
(MJSs), a type of hybrid systems consisting of several subsystems, can be used to model
dynamical systems with structural mutations and have been extensively researched in both
the practical and theoretical domains [2,3]. An adaptive neural network-based control
approach was devised in [4] to address the problem of fault-tolerant control for nonlinear
MJSs. In [5], the asynchronous filtering problem of MJSs affected by time-varying and
infinite distributed delays was studied by using the homogeneous polynomial method.
For stochastic T-S fuzzy singular MJSs, the robust H∞ sliding mode control problem was
studied in [6,7]. The authors of [8] studied the fault-detection filter design problem of
uncertain singular MJSs by means of the LKF and convex polyhedron techniques. In
addition, for the achievements regarding the stability and stabilization of MJSs, readers
may see [9,10] and references therein.

It should be emphasized that there is a qualification in references [4–10], that is, the
transition probability (TP) information of MJSs must be exactly and completely known.
However, due to the limitations of measurement costs and measuring instruments, this
condition is difficult to meet in the actual system modeling. As a result, it is essential and
significant to investigate MJSs with partly unknown TPs [11]. For networked MJSs with
partly unknown TPs, the event-triggered dynamic output feedback control problem and
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sliding mode control problem were solved in [12,13], respectively. For a type of singular
MJSs with partly unknown TPs, the H∞ filtering problem was studied in [14,15]. The
authors of [16] achieved the event-triggered guaranteed cost control for time-delay MJSs
with partly unknown TPs, and some sufficient conditions were established to guarantee the
presence of guaranteed cost controllers. In [17], a state feedback controller was constructed
to ensure that MJSs with partly unknown TPs were stochastic stable. A sliding mode
controller based on an adaptive neural network was proposed in [18], and the reliable
control problem of uncertain MJSs with partially unknown TPs was studied.

Notably, most of the above research findings mainly concentrate on the asymptotic
behavior of systems in an infinite-time interval, namely, as in the Lyapunov stability theory.
However, in many practical systems, such as vehicle emergency braking systems [19],
aircraft-tracking systems [20], and ship-maneuvering systems [21], it is required that the
systems respond ideally to work in a finite time interval. To realize this practical need,
in 1961, Dorato proposed finite-time stability [22]. Since finite-time stability has a better
transient performance, a faster response speed, and a higher tracking accuracy, it has
been applied to MJSs [23–26], T-S fuzzy systems [27–29], nonlinear pulse systems [30,31],
mean-field systems [32–34], and so on.

In addition to requiring better transient performance, modern industries increasingly
emphasize the anti-interference performance of control systems. Both external distur-
bances and imprecise modeling can adversely affect the performance of control systems.
To weaken the effect of external disturbances, H∞ control has emerged. Recently, many
scholars have carried out plenty of research on finite-time H∞ control [35–41]. Specifically,
ref. [35] introduced a new switching dynamic event-triggering mechanism, and discussed
the finite-time H∞ control problem for switching fuzzy systems. In [36], the finite-time
H∞ control problem of nonlinear pulse switching systems was studied to guarantee that
the CLS was bounded. On the other hand, due to the constraints of measurement tech-
nology and measurement costs, the system state information is frequently challenging to
measure directly. In tackling this challenge, many meaningful results of finite-time H∞
observer-based controller designing schemes have been successfully attained; see [37–41]
and references therein.

At present, the study of continuous-time MJSs has obtained rich results. With the
popularization of digital controllers and the development of computer science and tech-
nology, the research on discrete-time systems has attracted much attention. Discrete-time
MJSs provide a framework for modeling and analyzing a variety of complex systems in the
real world [42]. Through the discrete description of the system, it is easier to analyze the
dynamic behavior, stability, and convergence of the system [43]. This kind of modeling and
analysis is essential for understanding and predicting the behavior of systems [44], and is
widely used in control systems.

Inspired by the preceding analysis, this article presents the designing schemes of a
stochastic finite-time H∞ state feedback controller and a stochastic finite-time H∞ observer-
based state feedback controller for a discrete-time MJS. Different from [17,38], the MJS
considered in this paper is influenced by a time delay and stochastic white noise, which is
more in line with the actual demand, but also increases the difficulty of the article derivation.
Compared with the existing literature, the primary contributions of this study include
the following:

(I) In this paper, the state feedback control strategy and the observer-based state
feedback control strategy are adopted. The concepts of SFT H∞ state feedback stabilization
and SFT H∞ observer-based state feedback stabilization for time-delay MJSs are defined
simultaneously for the first time. The results of [17,38,44] are extended to time-delay MJSs
with partially unknown TPs.

(II) By constructing a delay-dependent LKF, several sufficient conditions are given to
ensure that the CLS is SFT H∞-bounded under two control strategies.

The article is structured as follows: Section 2 presents an introduction to the system
along with some preliminary knowledge. In Section 3, a state feedback controller is de-
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signed, and some sufficient conditions for the MJS to be SFT H∞ state feedback stabilization
are obtained through the LKF and LMI methods. Similar to Section 3, in Section 4 we
design an observer-based state feedback controller and verify that the MJS is SFT H∞
observer-based state feedback stabilization. In Section 5, the feasibility and effectiveness of
this work are validated through two simulation examples. Section 6 summarizes the entire
article and provides an outlook on future research directions.

Notation: A−1 and AT represent the matrix inverse and transpose of matrix A, re-
spectively. The expression for a real positive definite matrix A is denoted as A > 0.
diag{P1, P2, · · · , Pn} is the block diagonal matrix with P1, P2, · · · , Pn on the diagonal. We
denote In×n as the identity matrix with n × n dimensions. N+ is the set of positive integers
and R is the real number set. Rm and Rm×n are the m-dimensional Euclidean space with
2-norm ∥ · ∥ and the vector space of all m × n matrices with entries in R, respectively.
E{σ} represents the mathematical expectation of σ. The symbol ∗ implies the symmetric
hidden matrix entries. This paper presupposes that every specified matrix possesses the
necessary dimensions. For ease of understanding, the acronyms in this paper and their
corresponding meanings are shown in Table 1.

Table 1. The acronyms used in this article and their meanings.

Acronyms Meaning of Acronyms

MJS Markovian jump system

SFT Stochastic finite-time

LKF Lyapunov–Krasovskii functional

CLS Closed-loop system

LMI Linear matrix inequality

TP Transition probability

2. System Description and Preliminary Knowledge

Consider an MJS with a time delay, as outlined below:

x(k + 1) = A1(mk)x(k) + Ad1(mk)x(k − τ) + B1(mk)u(k) + C1(mk)v(k)

+ [A2(mk)x(k) + Ad2(mk)x(k − τ) + B2(mk)u(k) + C2(mk)v(k)]ω(k),

y(k) = D(mk)x(k) + G(mk)u(k),

z(k) = D1(mk)x(k) + Dd1(mk)x(k − τ) + G1(mk)u(k) + G2(mk)v(k), k ∈ {0, 1, 2, · · · , T̂},

x(n) = ψ(n), n ∈ {−τ,−τ + 1, · · · , 0},

(1)

where x(k) ∈ Rn is the system state, y(k) ∈ Rp is the measured output, z(k) ∈ Rr is
the control output, and u(k) ∈ Rq is the control input. ψ(n), n ∈ {−τ,−τ + 1, · · · , 0}
are the initial conditions. τ is a positive integer that signifies the fixed time delay. The
sequence ω(k) denotes one-dimensional white noises on the complete probability space
(Ω,F ,P), and satisfies E{ω(k)} = 0 and E{ω(k)ω(s)} = δks, where δks is the Kronecker
delta. v(k) ∈ Rl stands for the external disturbance, which satisfies the following:

T̂

∑
k=0

vT(k)v(k) ≤ h, h ≥ 0. (2)

A1(mk), A2(mk), Ad1(mk), Ad2(mk), B1(mk), B2(mk), C1(mk), C2(mk), D(mk), D1(mk),
Dd1(mk), G(mk), G1(mk), and G2(mk) are coefficient matrices with appropriate dimensions.
These matrices depend upon the Markovian jump process {mk, k ≥ 0}, which is a discrete-
time, discrete-state Markovian chain taking values in a finite state space S = {1, 2, · · · , N}
with transition probabilities πij, where πij = Pr{mk+1 = j|mk = i}, i, j ∈ S, denotes
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the transition probability from mode i at time k to mode j at time k + 1, and satisfies
∑N

j=1 πij = 1, πij ≥ 0 (i ∈ S). When mk = i, i ∈ S, the system parameter matrices
are expressed by A1i, A2i, Ad1i, Ad2i, B1i, B2i, and so on. In addition, ω(k) and mk are
independent of each other.

In this paper, it is presumed that the information in the TP matrix is partially available.
In this situation, the TP matrix Π for an MJS with N modes may be represented by:

Π =


π̂11 π12 · · · π1N
π̂21 π22 · · · π̂2N

... · · · . . .
...

π̂N1 πN2 · · · πNN

, (3)

where π̂ij is the unknown TP, for all i ∈ S, and the set S is defined as S = Si
k ∪ Si

uk, where:

Si
k = {j : πij is known}, Si

uk = {j : πij is unknown}. (4)

Moreover, when Si
k ̸= ∅, then it can be described as:

Si
k = {ζ1, ζ2, · · · , ζpi}, pi ∈ {1, 2, · · · , N − 2}, (5)

where ζg ∈ N+, g ∈ {1, 2, · · · , pi} denotes the g-th known element in the i-th row of the
TP matrix Π. Similarly, when Si

uk ̸= ∅, it can be expressed as follows:

Si
uk = {ζu1, ζu2, · · · , ζuqi}, qi ∈ {2, · · · , N}, (6)

where ζug ∈ N+, g ∈ {1, 2, · · · , qi} is the g-th unknown element in the i-th row of the TP
matrix Π.

Remark 1. Since ∑N
j=1 πij = 1, there are at least two unknown elements in (3), and if there are

unknown elements in a certain row, their quantity is at least two.

Lemma 1. (Schur’s complement [38]) The LMI

S =

[
S11 ST

12
S12 S22

]
< 0

is equivalent to S11 − ST
12S−1

22 S12 < 0, where S22 < 0.

Definition 1. (SFT stability)
The MJS (1) with v(k) = 0 is said to be SFT-stable with respect to (ρ1, ρ2, Ri, T̂), if:

sup
k0∈{−τ,··· ,0}

E{xT(k0)Rix(k0)} ≤ ρ1 ⇒ E{xT(k)Rix(k)} < ρ2, ∀k ∈ {0, 1, 2, · · · , T̂} (7)

holds for matrix Ri > 0, i ∈ S, and given scalars 0 < ρ1 < ρ2.

Remark 2. Definition 1 means that if the initial state is bounded, then the state trajectory of the
system does not exceed a predetermined boundary in a finite time interval under certain conditions,
which is different from asymptotic stability. An asymptotically stable system may not be finite-time
stable, if its state trajectory exceeds the given upper bound in a finite-time interval, and vice versa.

Definition 2. (SFT boundedness)
The MJS (1) is said to be SFT-bounded with respect to (ρ1, ρ2, Ri, T̂, h) if the system state

x(k) and the external disturbance v(k) satisfy (7) and (2), respectively.
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3. Finite-Time H∞ State Feedback Control
3.1. State Feedback Controller

We design the following state feedback controller for MJS (1):

u(k) = K(mk)x(k), (8)

where K(mk) is the state feedback controller gain to be designed and K(mk) is denoted by
Ki when mk = i, i ∈ S. Then, the resulting CLS can be described as follows:

x(k + 1) = Ā1ix(k) + Ad1ix(k − τ) + C1iv(k)

+ [Ā2ix(k) + Ad2ix(k − τ) + C2iv(k)]ω(k),

z(k) = D̄1ix(k) + Dd1ix(k − τ) + G2iv(k),

(9)

where Ā1i = A1i + B1iKi, Ā2i = A2i + B2iKi, D̄1i = D1i + G1iKi.

Definition 3. (SFT H∞ boundedness)
The CLS (9) is said to be SFT H∞-bounded with respect to (ρ1, ρ2, Ri, T̂, h, γ) if the subsequent

two conditions hold:

(a)The CLS (9) satisfies SFT boundedness with respect to (ρ1, ρ2, Ri, T̂, h);
(b)Under the zero initial condition, for any external disturbance v(k) satisfying (2), the control

output z(k) satisfies

E{
T̂

∑
k=0

zT(k)z(k)} < γ2E{
T̂

∑
k=0

vT(k)v(k)}, (10)

where Ri > 0, i ∈ S, γ > 0, 0 < ρ1 < ρ2.

Definition 4. (SFT H∞ state feedback stabilization)
The MJS (1) is said to be SFT H∞ state feedback stabilization with respect to (ρ1, ρ2, Ri, T̂, h, γ)

if there exists a state feedback controller (8) such that the CLS (9) satisfies SFT H∞ boundedness.
Moreover, the controller (8) is called the SFT H∞ state feedback controller.

3.2. Main Results

This section will present some sufficient conditions for the existence of a state feedback
controller (8) for system (1).

Theorem 1. The CLS (9) with partly unknown TPs is SFT H∞-bounded with respect to (ρ1, ρ2, Ri,
T̂, h, γ) if there exist the scalars α > 1 and γ > 0 and matrices M > 0 and Pi > 0 for all i ∈ S,
satisfying the following:

ΘT
1i − αPi + M + D̄T

1iD̄1i ΘT
2i + D̄T

1iDd1i ΘT
3i + D̄T

1iG2i

∗ ΘT
4i − M + DT

d1iDd1i ΘT
5i + DT

d1iG2i

∗ ∗ ΘT
6i − γ2 I + GT

2iG2i

 < 0, (11)

αT̂ρ1

[
sup
i∈S

{λmax(P̄i)}+ sup
i∈S

{λmax(M̄i)}τ

]
+ γ2αT̂h < inf

i∈S
{λmin(P̄i)}ρ2, (12)

where ΘT
1i = ĀT

1iΨi Ā1i + ĀT
2iΨi Ā2i, ΘT

2i = ĀT
1iΨi Ad1i + ĀT

2iΨi Ad2i,
ΘT

3i = ĀT
1iΨiC1i + ĀT

2iΨiC2i, ΘT
4i = AT

d1iΨi Ad1i + AT
d2iΨi Ad2i,

ΘT
5i = AT

d1iΨiC1i + AT
d2iΨiC2i, ΘT

6i = CT
1iΨiC1i + CT

2iΨiC2i,

Ψi = ∑j∈Si
k

πijPj + (1 − πi
k)(∑j∈Si

uk
Pj), P̄i = R− 1

2
i PiR

− 1
2

i , M̄i = R− 1
2

i MR− 1
2

i .
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Proof. For the CLS (9), we consider the following LKF:

V(x(k), mk = i) = xT(k)Pix(k) +
k−1

∑
l=k−τ

xT(l)Mx(l). (13)

Then, we compute the following:

E{∆V(x(k), mk = i)} =E{V(x(k + 1), mk+1 = j)} −E{V(x(k), mk = i)}

= ∑
j∈S

πijxT(k + 1)Pjx(k + 1) +
k

∑
l=k+1−τ

xT(l)Mx(l)

− xT(k)Pix(k)−
k−1

∑
l=k−τ

xT(l)Mx(l)

=xT(k + 1) ∑
j∈S

πijPjx(k + 1) + xT(k)[M − Pi]x(k)− xT(k − τ)Mx(k − τ).

(14)

Since the TP matrix Π contains partly accessible information, not all the probabilities
πij (j ∈ S) are known. Thus, we denote πi

k = ∑j∈Si
k

πij. π̂ij are the unknown TPs of Π.

Moreover, from ∑N
j=1 πij = 1, it is obvious that ∑j∈Si

uk
π̂ij = 1 − πi

k ≥ 0. Supposing that

πi
k < 1, we can obtain the following:

∑
j∈S

πijPj = ∑
j∈Si

k

πijPj + ∑
j∈Si

uk

π̂ijPj

= ∑
j∈Si

k

πijPj + (1 − πi
k) ∑

j∈Si
uk

π̂ij

(1 − πi
k)

Pj

≤ ∑
j∈Si

k

πijPj + (1 − πi
k)( ∑

j∈Si
uk

Pj) = Ψi.

(15)

By (15), we can rewrite (14) as follows:

E{∆V(x(k), mk = i)} ≤ xT(k + 1)Ψix(k + 1) + xT(k)[M − Pi]x(k)− xT(k − τ)Mx(k − τ)

=

 x(k)
x(k − τ)

v(k)

T


ΘT
1i − Pi + M ΘT

2i ΘT
3i

∗ ΘT
4i − M ΘT

5i

∗ ∗ ΘT
6i


 x(k)

x(k − τ)
v(k)

.
(16)

From (16) and (11), we have the following:

E{∆V(x(k), mk = i)} <(α − 1)E{xT(k)Pix(k)}+ γ2E{vT(k)v(k)} −E{zT(k)z(k)}
<(α − 1)E{xT(k)Pix(k)}+ γ2E{vT(k)v(k)}
≤(α − 1)E{V(x(k), mk = i)}+ γ2E{vT(k)v(k)}.

Thus, we can obtain the following:

E{V(x(k + 1), mk+1 = j)} < αE{V(x(k), mk = i)}+ γ2E{vT(k)v(k)}. (17)

Observing that α > 1, from (17) we obtain the following:

E{V(x(k), mk = i)} <αkE{V(x(0), m0)}+ γ2
k−1

∑
l=0

αk−1−lE{vT(l)v(l)}

<αT̂E{V(x(0), m0)}+ γ2αT̂h.

(18)
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Letting P̄i = R− 1
2

i PiR
− 1

2
i , M̄i = R− 1

2
i MR− 1

2
i . According to (7), we have the following:

E{V(x(0), m0)} ≤ sup
i∈S

{λmax(P̄i)}E{xT(0)Rix(0)}+ sup
i∈S

{λmax(M̄i)}E{
−1

∑
l=−τ

xT(l)Rix(l)}

≤
[

sup
i∈S

{λmax(P̄i)}+ sup
i∈S

{λmax(M̄i)}τ

]
ρ1,

(19)

and
E{V(x(k), mk = i)} ≥ E{xT(k)Pix(k)} = E{xT(k)R

1
2
i P̄iR

1
2
i x(k)}

≥ inf
i∈S

{λmin(P̄i)}E{xT(k)Rix(k)}.
(20)

Combining with (18)–(20), it can be inferred that:

E{xT(k)Rix(k)} <
αT̂ρ1

[
supi∈S{λmax(P̄i)}+ supi∈S{λmax(M̄i)}τ

]
+ γ2αT̂h

infi∈S{λmin(P̄i)}
. (21)

Together with (12) and (21), it is clear that E{xT(k)Rix(k)} < ρ2, k ∈ {0, 1, 2, · · · , T̂}.
This implies that the CLS (9) satisfies SFT boundedness. Next, we demonstrate that the H∞
condition (10) holds under the zero initial condition. From (13), we can obtain the following:

E{V(x(k + 1), mk+1 = j)} < αE{V(x(k), mk = i)} −E{zT(k)z(k)}+ γ2E{vT(k)v(k)}. (22)

Then, we have the following:

E{V(x(k), mk = i)} <αkE{V(x(0), m0)} −
k−1

∑
l=0

αk−1−lE{zT(l)z(l)}

+γ2E{
k−1

∑
l=0

αk−1−lvT(l)v(l)}.

(23)

Assuming a zero initial condition and recognizing that V(x(k), mk = i) ≥ 0 for all
k ∈ {0, 1, 2, · · · , T̂}, we have the following:

k−1

∑
l=0

αk−1−lE{zT(l)z(l)} < γ2E{
k−1

∑
l=0

αk−1−lvT(l)v(l)}. (24)

Noting that α > 1, from (24) we obtain the following:

E{
T̂

∑
k=0

zT(k)z(k)} < γ2E{
T̂

∑
k=0

vT(k)v(k)}. (25)

Therefore the closed-loop MJS (9) is SFT H∞-bounded.

Remark 3. It is important to note that Theorem 1 is preliminary, and since it does not provide a
way to choose Ki, one can check (11), (12) on the closed-loop matrices, but this requires that Ki has
already been chosen. The problem is solved in Theorem 2.

Theorem 2. Consider the state feedback controller (8); if there exist scalars α > 1, γ > 0, ρ2 > 0,
σ1 > 0, ξ1 > 0, ξ2 > 0 and matrices J > 0, Xi > 0, and Yi, for all i ∈ S, satisfying the following

conditions:
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

−αXi 0 ΩT
Ā1i

ΩT
Ā2i

D̄T
1i Xi

∗ −γ2 I ΩT
C1i

ΩT
C2i

GT
2i 0

∗ ∗ −X + ΩAd1i JΩT
Ad1i

0 0 0
∗ ∗ ∗ −X + ΩAd2i JΩT

Ad2i
0 0

∗ ∗ ∗ ∗ −I + Dd1i JDT
d1i 0

∗ ∗ ∗ ∗ ∗ −J


< 0, (26)

σ1R−1
i < Xi < R−1

i , (27)

ξ1R−1
i < J < ξ2R−1

i , (28) −α−T̂ρ2 + γ2h
√

ρ1
√

τρ1
∗ −σ1 0
∗ ∗ −ξ1

 < 0, (29)

where ΩT
Ā1i

= [
√

πiζ1 (A1iXi + B1iYi)
T √

πiζ2 (A1iXi + B1iYi)
T · · · √πiζpi

(A1iXi + B1iYi)
T√

1 − πi
k(A1iXi + B1iYi)

T
√

1 − πi
k(A1iXi + B1iYi)

T · · ·
√

1 − πi
k(A1iXi + B1iYi)

T ],

ΩT
Ā2i

= [
√

πiζ1 (A2iXi + B2iYi)
T √

πiζ2 (A2iXi + B2iYi)
T · · · √πiζpi

(A2iXi + B2iYi)
T√

1 − πi
k(A2iXi + B2iYi)

T
√

1 − πi
k(A2iXi + B2iYi)

T · · ·
√

1 − πi
k(A2iXi + B2iYi)

T ],

ΩT
Ad1i

= [
√

πiζ1 AT
d1i

√
πiζ2 AT

d1i · · · √πiζpi
AT

d1i

√
1 − πi

k AT
d1i

√
1 − πi

k AT
d1i · · ·

√
1 − πi

k AT
d1i],

ΩT
Ad2i

= [
√

πiζ1 AT
d2i

√
πiζ2 AT

d2i · · · √πiζpi
AT

d2i

√
1 − πi

k AT
d2i

√
1 − πi

k AT
d2i · · ·

√
1 − πi

k AT
d2i],

ΩT
C1i

= [
√

πiζ1 CT
1i
√

πiζ2 CT
1i · · · √πiζpi

CT
1i

√
1 − πi

kCT
1i

√
1 − πi

kCT
1i · · ·

√
1 − πi

kCT
1i],

ΩT
C2i

= [
√

πiζ1 CT
2i
√

πiζ2 CT
2i · · · √πiζpi

CT
2i

√
1 − πi

kCT
2i

√
1 − πi

kCT
2i · · ·

√
1 − πi

kCT
2i],

X = diag{Xζ1 , Xζ2 , · · · , Xζpi
, Xζu1 , Xζu2 , · · · , Xζuqi

}, D̄1i = D1iXi + G1iYi,

then the CLS (9) with the partly unknown TPs is SFT H∞-bounded with respect to (ρ1,ρ2,Ri,T̂,γ, h),
i.e., MJS (1) is SFT H∞ state feedback stabilization, and the controller gain Ki = YiX−1

i .

Proof. First, we demonstrate the equivalence between condition (26) and condition (11).
According to Lemma 1, (26) is equivalent to the following:

−αXi + Xi J−1Xi 0 0 ΩT
Ā1i

ΩT
Ā2i

D̄T
1i

∗ −J−1 0 ΩT
Ad1i

ΩT
Ad2i

DT
d1i

∗ ∗ −γ2 I ΩT
C1i

ΩT
C2i

GT
2i

∗ ∗ ∗ −X 0 0
∗ ∗ ∗ ∗ −X 0
∗ ∗ ∗ ∗ ∗ −I


< 0. (30)

Letting Xi = P−1
i , J = M−1, X = P−1, Ki = YiX−1

i . Pre- and post-multiplying (30) by
diag{X−1

i , I, I, I, I, I}, we can observe that (30) is equivalent to (11) by using Lemma 1.
On the other hand, from Lemma 1, (29) can be expressed as the following inequality:

αT̂ρ1(σ
−1
1 + ξ−1

1 τ) + γ2αT̂h < ρ2. (31)

We note that P̄i = R− 1
2

i PiR
− 1

2
i and M̄i = R− 1

2
i MR− 1

2
i ; combined with conditions (27)

and (28), we can obtain that:

sup
i∈S

{λmax(P̄i)} < σ−1
1 , inf

i∈S
{λmin(P̄i)} > 1, sup

i∈S
{λmax(M̄i)} < ξ−1

1 .

Therefore, it is easy to observe that (12) holds. This completes the proof.
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Remark 4. Theorem 2 generalizes the results of [17] to a time-delay MJS, and gives sufficient
conditions for MJS (1) to be SFT H∞ state feedback stabilization.

Remark 5. It can be seen from Theorem 2 that the controller gain Ki depends on Xi and Yi, that in
turn depend on the system matrices of mode i. It is necessary to consider the dynamic characteristics
of the system in different modes and the transition probabilities between modes to ensure the stability
and the controller in each mode.

4. Finite-Time H∞ Observer-Based State Feedback Control
4.1. Observer-Based State Feedback Controller

In the presence of a system state that is not fully measurable, the following observer-
based state feedback controller is designed:

x̂(k + 1) = A1(mk)x̂(k) + Ad1(mk)x̂(k − τ) + B1(mk)u(k) + H(mk)[y(k)− ŷ(k)],

ŷ(k) = D(mk)x̂(k) + G(mk)u(k),

u(k) = K̂(mk)x̂(k),

x̂(n) = ψ(n), n ∈ {−τ,−τ + 1, · · · , 0},

(32)

where x̂(k) is the estimated state and ŷ(k) is the estimated output, and K̂(mk) and H(mk)
denote the state feedback gain and observer gain to be determined, respectively. The
estimated state error is defined as e(k) = x(k)− x̂(k), and ηT(k) = [ xT(k) eT(k) ]. For
mk = i (i ∈ S), the CLS is represented by the following:

η(k + 1) = Â1iη(k) + Âd1iη(k − τ) + Ĉ1iv(k)

+ [Â2iη(k) + Âd2iη(k − τ) + Ĉ2iv(k)]ω(k),

z(k) = D̂1iη(k) + D̂d1iη(k − τ) + G2iv(k),

(33)

where Â1i =

[
A1i + B1iK̂i −B1iK̂i

0 A1i − HiDi

]
, Âd1i =

[
Ad1i 0

0 Ad1i

]
, Ĉ1i =

[
C1i
C1i

]
,

Â2i =

[
A2i + B2iK̂i −B2iK̂i
A2i + B2iK̂i −B2iK̂i

]
, Âd2i =

[
Ad2i 0
Ad2i 0

]
, Ĉ2i =

[
C2i
C2i

]
,

D̂1i =
[

D1i + G1iK̂i −G1iK̂i
]
, D̂d1i =

[
Dd1i 0

]
.

Definition 5. (SFT H∞ boundedness)
The CLS (33) is said to be SFT H∞-bounded with respect to (ρ1, ρ2, R̂i, T̂, h, γ) if the following

two conditions hold:

(a) The MJS (33) satisfies SFT boundedness with respect to (ρ1, ρ2, R̂i, T̂, h);
(b) Under the zero initial condition, for the external disturbance v(k) satisfying condition (2), the

control output z(k) satisfies the following:

E{
T̂

∑
k=0

zT(k)z(k)} < γ2E{
T̂

∑
k=0

vT(k)v(k)}, (34)

where R̂i > 0, i ∈ S, 0 < ρ1 < ρ2, γ > 0.

Definition 6. (SFT H∞ observer-based state feedback stabilization)
The MJS (1) is said to be SFT H∞ observer-based state feedback stabilization with respect

to (ρ1, ρ2, R̂i, T̂, h, γ) if there exists an observer-based state feedback controller (32) such that the
CLS (33) satisfies SFT H∞ boundedness, and the controller (32) is called the SFT H∞ observer-based
state feedback controller.
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4.2. Main Results

Theorem 3. The CLS (33) with the partly unknown TPs is SFT H∞-bounded with respect to
(ρ1, ρ2, R̂i, T̂, γ, h) if there exist the scalars β > 1 and γ > 0, matrix M̂ > 0, and positive-definite
matrices P̂i for all i ∈ S, satisfying the following conditions: −βP̂i + M̂ + ΓT

1i + D̂T
1iD̂1i ΓT

2i + D̂T
1iD̂d1i ΓT

3i + D̂T
1iG2i

∗ ΓT
4i − M̂ + D̂T

d1iD̂d1i ΓT
5i + D̂T

d1iG2i

∗ ∗ ΓT
6i − γ2 + GT

2iG2i

 < 0, (35)

βT̂ρ1

[
sup
i∈S

{λmax(P̃i)}+ sup
i∈S

{λmax(M̃i)}τ

]
+ γ2βT̂h < inf

i∈S
{λmin(P̃i)}ρ2, (36)

where P̂i = diag{Pi, Pi}, M̂ = diag{M, M}, P̃i = R̂− 1
2

i P̂i R̂
− 1

2
i , M̃i = R̂− 1

2
i M̂R̂− 1

2
i ,

ΓT
1i = ÂT

1iΨ̂i Â1i + ÂT
2iΨ̂i Â2i, ΓT

2i = ÂT
1iΨ̂i Âd1i + ÂT

2iΨ̂i Âd2i, ΓT
3i = ÂT

1iΨ̂iĈ1i + ÂT
2iΨ̂iĈ2i,

ΓT
4i = ÂT

d1iΨ̂i Âd1i + ÂT
d2iΨ̂i Âd2i, ΓT

5i = ÂT
d1iΨ̂iĈ1i + ÂT

d2iΨ̂iĈ2i, ΓT
6i = ĈT

1iΨ̂iĈ1i + ĈT
2iΨ̂iĈ2i,

Ψ̂i = ∑j∈Si
k

πij P̂j + (1 − πi
k)(∑j∈Si

uk
P̂j).

Proof. The proof procedure is similar to Theorem 1, and thus will not be reiterated.

From the above discussion, system (33) is SFT H∞-bounded. Then, the following
theorem will develop the observer-based state feedback controller for system (33).

Theorem 4. The CLS (33) with the partly unknown TPs is SFT H∞-bounded with respect to
(ρ1, ρ2, R̂i, T̂, γ, h) if there exist the scalars β > 1, γ > 0, ρ2 > 0, σ2 > 0, ϱ1 > 0, ϱ2 > 0,
matrix J > 0, positive-definite matrices Xi, nonsingular matrices Zi, and matrices Yi and Fi for all
i ∈ S, satisfying the following conditions:

−βX̂i 0 ΞT
Ã1i

ΞT
Ã2i

D̃T
1i X̂i

∗ −γ2 I ΞT
Ĉ1i

ΞT
Ĉ2i

GT
2i 0

∗ ∗ −X̂ + ΞÂd1i
ĴΞT

Âd1i
0 0 0

∗ ∗ ∗ −X̂ + ΞÂd2i
ĴΞT

Âd2i
0 0

∗ ∗ ∗ ∗ −I + D̂d1i ĴD̂T
d1i 0

∗ ∗ ∗ ∗ ∗ − Ĵ


< 0, (37)

DiXi = ZiDi, (38)

σ2R̂−1
i < X̂i < R̂−1

i , (39)

ϱ1R̂−1
i < Ĵ < ϱ2R̂−1

i , (40) −β−T̂ρ2 + γ2h
√

ρ1
√

τρ1
∗ −σ2 0
∗ ∗ −ϱ1

 < 0, (41)

where ΞT
Ã1i

= [
√

πiζ1 ÃT
1i
√

πiζ2 ÃT
1i · · · √πiζpi

ÃT
1i

√
1 − πi

k ÃT
1i

√
1 − πi

k ÃT
1i · · ·

√
1 − πi

k ÃT
1i],

ΞT
Ã2i

= [
√

πiζ1 ÃT
2i
√

πiζ2 ÃT
2i · · · √πiζpi

ÃT
2i

√
1 − πi

k ÃT
2i

√
1 − πi

k ÃT
2i · · ·

√
1 − πi

k ÃT
2i],

Ã1i =

[
A1iXi + B1iYi −B1iYi

0 A1iXi − FiDi

]
, Ã2i =

[
A2iXi + B2iYi −B2iYi
A2iXi + B2iYi −B2iYi

]
,

ΞT
Âd1i

= [
√

πiζ1 ÂT
d1i

√
πiζ2 ÂT

d1i · · · √πiζpi
ÂT

d1i

√
1 − πi

k ÂT
d1i

√
1 − πi

k ÂT
d1i · · ·

√
1 − πi

k ÂT
d1i],

ΞT
Âd2i

= [
√

πiζ1 ÂT
d2i

√
πiζ2 ÂT

d2i · · · √πiζpi
ÂT

d2i

√
1 − πi

k ÂT
d2i

√
1 − πi

k ÂT
d2i · · ·

√
1 − πi

k ÂT
d2i],

ΞT
Ĉ1i

= [
√

πiζ1 ĈT
1i
√

πiζ2 ĈT
1i · · · √πiζpi

ĈT
1i

√
1 − πi

kĈT
1i

√
1 − πi

kĈT
1i · · ·

√
1 − πi

kĈT
1i],

ΞT
Ĉ2i

= [
√

πiζ1 ĈT
2i
√

πiζ2 ĈT
2i · · · √πiζpi

ĈT
2i

√
1 − πi

kĈT
2i

√
1 − πi

kĈT
2i · · ·

√
1 − πi

kĈT
2i],
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D̃1i = [ D1iXi + G1iYi − G1iYi ], X̂i = diag{Xi, Xi}, Ĵ = diag{J, J}, R̂i = diag{Ri, Ri},
X̂ = diag{X̂ζ1 , X̂ζ2 , · · · , X̂ζpi

, X̂ζu1 , X̂ζu2 , · · · , X̂ζuqi
}.

Then, MJS (1) is called SFT H∞ observer-based state feedback stabilization, and the controller
gain K̂i as well as the observer gain Hi are represented as follows:

K̂i = YiX−1
i , Hi = FiZ−1

i . (42)

Proof. Defining R̂i = diag{Ri, Ri}, P̂i = diag{Pi, Pi}, Xi = P−1
i , X̂ = P̂−1, M̂ = diag{M, M},

M−1 = J, K̂i = YiX−1
i , Hi = FiZ−1

i , and taking into account condition (38), (35) will be

obtained from (37) via Lemma 1. In addition, we denote P̃i = R̂− 1
2

i P̂iR̂
− 1

2
i , M̃i = R̂− 1

2
i M̂R̂− 1

2
i .

According to the proof of Theorem 2, it is obvious that condition (36) will be guaranteed
by (39) to (41).

Remark 6. Theorems 3 and 4 extend the results of [38,44] to MJSs with partly unknown TPs.

Remark 7. Addressing condition (38) through the application of the LMI toolbox is a challenging
task. As a solution, constraint (38) can be approximated by the following inequality:

[DiXi − ZiDi]
T [DiXi − ZiDi] < ϖI, (43)

where ϖ represents an exceedingly small positive scalar. According to Lemma 1, the above inequality
can be formulated as follows: [

−ϖI [DiXi − ZiDi]
T

∗ −I

]
< 0. (44)

Remark 8. We can note that conditions (26), (29), (37), and (41) are not strict LMIs; however, once
we fix the parameters α and β, the conditions can be turned into LMI-based feasibility problems.
Therefore, the feasibility of the conditions stated in Theorems 2 and 4 can be turned into the following
feasibility problems with the fixed parameters α and β, respectively:

min (ρ2 + γ2)

s.t. LMIs (26), (27), (28) and (29),
(45)

min (ρ2 + γ2)

s.t. LMIs (37), (39), (40), (41) and (44).
(46)

5. Numerical Examples

In this section, we present two examples to validate the effectiveness and practicality
of the proposed method. The first example is used to show the effectiveness of the state
feedback controller (8) design approach developed in Theorem 2 for MJSs (1) with partly
unknown transition probabilities.

Example 1. Consider MJS (1) with three modes, and the coefficient matrices are given as follows:

Mode 1 (i = 1):

A11 =

[
0.1 0
0 0.1

]
, Ad11 =

[
0.8 0
−0.2 0.1

]
, B11 =

[
1

−0.1

]
, C11 =

[
0.1
0.1

]
, A21 =[

−0.1 0
0 −0.1

]
, Ad21 =

[
−0.1 1

0 0.1

]
, B21 =

[
−0.1
0.3

]
, C21 =

[
0.1
0.1

]
, D11 =

[
−0.2 1

]
,

Dd11 =
[
−0.1 0

]
, D1 =

[
1 1

]
, G1 = 1, G11 = −1, G21 = 0.1.

Mode 2 (i = 2):

A12 =

[
1 0

0.3 1

]
, Ad12 =

[
0 0.1

0.1 −0.1

]
, B12 =

[
0.1
−0.1

]
, C12 =

[
0.1
0.1

]
, A22 =
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[
0.1 0
0 0.1

]
, Ad22 =

[
−0.1 1

0 0.1

]
, B22 =

[
−0.1
0.1

]
, C22 =

[
0.1
0.1

]
, D12 =

[
1 0.1

]
,

Dd12 =
[

0.1 0.1
]
, D2 =

[
2 1

]
, G2 = 1, G12 = −1, G22 = 0.2.

Mode 3 (i = 3):

A13 =

[
−1 0.1
0 0.1

]
, Ad13 =

[
−0.1 0.1

0 0.1

]
, B13 =

[
1.1
−0.1

]
, C13 =

[
0.1
0.1

]
, A23 =[

0.3 0
0 0.1

]
, Ad23 =

[
0.2 1
0 0.1

]
, B23 =

[
−0.1
0.4

]
, C23 =

[
0.1
0.1

]
, D13 =

[
0.1 1

]
,

Dd13 =
[
−0.1 0.1

]
, D3 =

[
1 3

]
, G3 = 1, G13 = −1, G23 = 0.1.

The partly unknown TP matrix Π with three modes is given as follows:

Π =

 π̂11 0.2 π̂13
π̂21 π̂22 0.8
0.1 π̂32 π̂33

,

where π̂ij(i, j = 1, 2, 3) is the unknown element. One possible mode evolution is given in
Figure 1.

Figure 1. Markovian switching process of MJS (1) and CLS (9).

According to Remark 8, the minimum value of ρ2 + γ2 relies on the parameter α. We
can obtain the feasible solution of (45) when 1.01 ≤ α ≤ 2.01. Figures 2 and 3 show the
optimal values of ρ2, γ2 and ρ2 + γ2 with different α values. We can see that the optimal
values ρ2 = 2.6437, γ2 = 7.5107, and γ2 + ρ2 = 10.1544 when α = 1.02.



Entropy 2024, 26, 292 13 of 20

Figure 2. The values of ρ2 and γ2 with different α values.

Figure 3. The values of γ2 + ρ2 with different α values.

Next, letting τ = 3, h = 3, T̂ = 30, ρ1 = 0.1, and Ri = I2×2 (i = 1, 2, 3), and solving
LMIs (26) to (29), we obtain σ1 = 0.1888, ξ1 = 0.3535, and ξ2 = 21.5646, and the gains of
the state feedback controller (8) are as follows:

K1 =
[
−0.1176 0.2082

]
, K2 =

[
0.9916 0.1625

]
, K3 =

[
0.4783 0.3299

]
.

Then, we set the initial value x(0) =
[

0 0
]T for MJS (1) and CLS (9), and the external

disturbance signal v(k) = 0.4sink, which satisfies ∑T̂
k=0 vT(k)v(k) ≤ h = 3.

Figure 4 shows the trajectories of xT(k)Rix(k) (50 curves) and E{xT(k)Rix(k)} of the
open-loop system (1) (u(k) = 0). It can be seen that the trajectory of E{xT(k)Rix(k)}
exceeds the upper bound ρ2, despite E{xT(0)Rix(0)} = 0 < ρ1 = 0.1. This implies that the
open-loop system (1) is not finite-time bound.
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Figure 5 shows the trajectories of the system state x(k) for closed-loop system (9)
and the control input u(k) of MJS (1). The trajectories of xT(k)Rix(k) (50 curves) and
E{xT(k)Rix(k)} of closed-loop system (9) are illustrated in Figure 6. From Figure 6, it is
seen that when E{xT(0)Rix(0)} = 0 < ρ1 = 0.1, E{xT(k)Rix(k)} < ρ2 = 2.6437, which
means that the CLS (9) is SFT H∞-bounded, that is to say, MJS (1) is SFT H∞ state feedback
stabilization. Therefore, it is proven that the state feedback controller (8) designed in this
paper is effective.

Figure 4. The trajectories of xT(k)Rix(k) and E{xT(k)Rix(k)} for open-loop system (1) (u(k) = 0).

Figure 5. The trajectories of system state x(k) for CLS (9) and control input u(k) (8).
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Figure 6. The trajectories of xT(k)Rix(k) and E{xT(k)Rix(k)} for MJS (1) and CLS (9).

Next, the second example focuses on the effectiveness of the observer-based state
feedback controller (32) designed in Theorem 4 for MJS (1) with partly unknown transi-
tion probabilities.

Example 2. The parameters of MJS (1) with three modes and partly unknown TPs are given
as follows:

Mode 1 (i = 1):

A11 =

[
0.1 0
0 −0.1

]
, Ad11 =

[
0.1 0
0 0.1

]
, B11 =

[
1

−0.1

]
, C11 =

[
0

0.1

]
, A21 =[

−0.1 0
0 −0.2

]
, Ad21 =

[
0.1 0
0 0.1

]
, B21 =

[
−0.1
0.1

]
, C21 =

[
0.1
0.1

]
, D11 =

[
0.5 0.1

]
,

Dd11 =
[

0 0.5
]
, D1 =

[
1 1

]
, G1 = 1, G11 = 0.9, G21 = −0.1.

Mode 2 (i = 2):

A12 =

[
0.1 0.1
0.1 0.2

]
, Ad12 =

[
0.2 0
0 0.2

]
, B12 =

[
0.1
0.1

]
, C12 =

[
0.1
0.1

]
, A22 =

[
0.1 0
0 0.1

]
,

Ad22 =

[
0.1 0
0.2 −0.1

]
, B22 =

[
0.1
0.1

]
, C22 =

[
0.1
0.1

]
, D12 =

[
1 0.1

]
, Dd12 =

[
0.3 0.1

]
,

D2 =
[

2 1
]
, G2 = 1, G12 = 1, G22 = 0.1.

Mode 3 (i = 3):

A13 =

[
0.1 0
−0.2 0.1

]
, Ad13 =

[
−0.2 0.2
0.1 0.2

]
, B13 =

[
0.1
−0.1

]
, C13 =

[
0.1
0.1

]
, A23 =[

−0.2 0
0 −0.2

]
, Ad23 =

[
0 0.2

0.1 0.1

]
, B23 =

[
1

0.1

]
, C23 =

[
0.1
0.1

]
, D13 =

[
0.1 −0.2

]
,

Dd13 =
[

0.2 0
]
, D3 =

[
1 1

]
, G3 = 2, G13 = 2, G23 = 0.1.

Then, letting ϖ = 10−10, R̂i = I4×4 (i = 1, 2, 3), the partly unknown TP matrix Π and
the remaining parameters have identical values to those in Example 1. Similar to Example 1,
we can obtain the feasible solution of (46) when 1.01 ≤ β ≤ 2.04. The relationships between
β and γ2 and ρ2, and between β and γ2 + ρ2 are shown in Figures 7 and 8, respectively.
From Figures 7 and 8, we can see that the optimal values are ρ2 = 28.5424 and γ2 = 92.5307
with β = 1.03.
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Figure 7. The optimal values of ρ2 and γ2 with different β values.

Figure 8. The values of γ2 + ρ2 with different β values.

Then, we compare the results of Theorem 4 with Theorem 2 in [44]. The optimal values
of ρ2 (i.e., τ in [44]) and γ obtained from the two works are shown in Table 2.

Table 2. The optimal values of γ, ρ2, and γ2 + ρ2.

Method Theorem 4 in This Paper Theorem 2 in Reference [44]

γ 9.6193 105.9526

ρ2 28.5424 150.4146

γ2 + ρ2 121.0731 11,376.368

From Table 2, it appears that the optimal values of γ, ρ2, and γ2 + ρ2 obtained in this
paper are smaller than those of [44], which indicates that the results of this paper are better.
In addition, ref. [44] assumed that the transition probabilities were completely known,
which means that the results of [44] are special cases of this paper.
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In addition, by solving LMIs (37), (39), (40), (41) ,and (44), we have σ2 = 0.1779,
ϱ1 = 0.9901, and ϱ2 = 5.2268, and the gains of observer-based state feedback controller (32)
are as follows:

K̂1 =
[
−0.2337 −0.0433

]
, K̂2 =

[
−0.4995 −0.0534

]
, K̂3 =

[
0.0599 0.0414

]
,

H1 =

[
−0.0501
0.0500

]
, H2 =

[
−0.0541
−0.0623

]
, H3 =

[
0.0429
0.0527

]
.

Next, we set the initial value x(0) = x̂(0) =
[

0 0
]T for systems (1) and (33),

respectively. The external disturbance signal v(k) is the same as in Example 1. The
Markovian switching process of MJS (1) and CLS (33) is shown in Figure 9. Figure 10 shows
the trajectories of xT(k)Rix(k) (50 curves) and E{xT(k)Rix(k)} of open-loop system (1)
(u(k) = 0), which implies that open-loop system (1) is not finite time-bound.

Figure 9. Markovian switching process of MJS (1) and CLS (33).

Figure 10. The trajectories of xT(k)Rix(k) and E{xT(k)Rix(k)} for open-loop system (1) (u(k) = 0).



Entropy 2024, 26, 292 18 of 20

The trajectories of system state η(k) for CLS (33) and the curve of the control input
u(k) of (32) are illustrated in Figure 11. Moreover, Figure 12 shows the trajectories of
ηT(k)R̂iη(k) (50 curves) and E{ηT(k)R̂iη(k)} of closed-loop system (33). From Figure 12, it
can be observed that CLS (33) is SFT H∞-bounded, i.e., MJS (1) is SFT H∞ observer-based
state feedback stabilization. Furthermore, by comparing Figures 10 and 12, it can be proven
that observer-based state feedback controller (32) is effective.

Figure 11. The trajectories of system state η(k) for CLS (33) and control input u(k) (32).

Figure 12. The trajectories of ηT(k)R̂iη(k) and E{ηT(k)R̂iη(k)} for CLS (33).

6. Conclusions

Based on existing results, the design schemes of a stochastic finite-time H∞ state
feedback controller and a stochastic finite-time H∞ observer-based state feedback controller
for MJSs with a time delay and partly unknown TPs were studied in this paper. A state
feedback controller and an observer-based state feedback controller were designed and
some sufficient conditions for the CLSs to satisfy SFT H∞ boundedness were presented
via LKF technology. Then, the controller gains were obtained by using the LMI method.
Lastly, two examples were provided to verify the validity of the proposed design schemes.
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In the following work, the finite-time guaranteed cost control and event-triggered control
of discrete-time MJSs will be studied on the basis of this paper.
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