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Abstract: This paper shows that the empirical distribution of cross-sectional analyst coverage in
China’s stock markets follows an exponential law in a given month from 2011 to 2020. The findings
hold in both the emerging (Shanghai) and the developed market (Hong Kong). Moreover, the unique
distribution parameter (i.e., mean) is directly related to the amount of market-wide information. Av-
erage analyst coverage exhibits a significant negative predictive power for stock-market uncertainty,
highlighting the role of security analysts in diminishing the total uncertainty. The exponential law
can be derived from the maximum entropy principle (MEP). When analysts, who are constrained
by average ability in generating information (i.e., the first-order moment), strive to maximize the
amount of market-wide information, this objective yields the exponential distribution. Contrary to the
conventional wisdom that security analysts specialize in the generation of firm-specific information,
empirical findings suggest that analysts primarily produce market-wide information for 25 coun-
tries. Nevertheless, it remains unclear why cross-sectional analyst coverage reflects market-wide
information, this paper provides an entropy-based explanation.
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1. Introduction

Sell-side analysts are among the most influential information producers in financial
markets, playing a crucial role for both investors and managers. Numerous empirical
studies have documented the impact of analyst attention (i.e., coverage) on investors’
decisions (e.g., [1–3]), as well as on corporate activities such as investment and financing,
innovation (e.g., R&D), acquisition, and earnings management (e.g., [4–7]).

However, contrary to the conventional wisdom that security analysts specialize in
collecting and disseminating firm-specific information, empirical findings indicate that
analysts predominantly generate market-wide information for 25 countries [8,9]. It remains
unclear why analyst reports reflect market-wide information rather than firm-specific
information. To deeply understand the underlying mechanism, we examine the empirical
distribution of cross-sectional analyst coverage.

This paper illustrates that the empirical distribution of analyst coverage for China’s
listed companies maintains an exponential structure in a given month from 2011 to 2020.
Our findings are consistent in both the Shanghai and Hong Kong stock markets. Since
the system information of exponential distribution can be fully characterized by the mean
value, we expect that aggregate analyst coverage can help reduce total uncertainty for
both investors and managers. This paper provides evidence that aggregate (or average)
analyst coverage, denoted by λ−1, exhibits a strong negative predictive power for stock-
market uncertainty.

Given that cross-sectional analyst coverage is exponentially distributed, a natural
question is how the exponential structure occurs. Motivated by [10], who draw on the
maximum entropy principle (MEP) to interpret the asymmetric Laplace-shaped distribution
of Tobin’ Q, we utilize the MEP to derive the exponential distribution of analyst coverage.
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The central idea is that when analysts, who are constrained by limited average ability
in producing information (i.e., the first-order moment), aim to maximize the amount of
market-wide information, this objective can yield an exponential distribution. To the best
of our knowledge, it has not been documented in the previous literature that cross-sectional
analyst coverage follows an exponential law. Our study is the first to provide an explanation
for why analyst coverage predominantly incorporates market-wide information.

Our findings have some important implications. Firstly, sell-side analysts primarily
generate market-wide information. Secondly, almost all relevant studies claim that coverage
proxies should be used in logarithmic form to mitigate the influence of outliers; however,
our results suggest that the exponential structure would be distorted when logarithmic
transformation is performed. Thirdly, because more than half of the firms have similar
coverage, future research should be especially cautious when using coverage proxies in
cross-sectional and particularly in portfolio analyses.

The rest of this paper is organized as follows. Section 2 reports the empirical distri-
bution of cross-sectional analyst coverage in Chinese stock markets. Section 3 provides a
potential mechanism for the exponential law. In Section 4, we make concluding discussions.

2. Exponentially Distributed Cross-Sectional Analyst Coverage

Assuming a random variable X is exponentially distributed, it can be written as,

Exp [λ] : f [x] = λe−λx (1)

where x > 0, λ > 0, f [x] is the probability density function (PDF) with E[X] =
√
D[X] =

λ−1. Empirically, it is better to work with the complementary cumulative distribution
function, i.e., CCDF: P[X > x] = e−λx. The parameter λ can be obtained by the slope of the
straight line on a semi-log scale: log (CCDF) vs. x.

We examine the empirical distribution of cross-sectional analyst coverage in China’s
stock markets. The sample consists of all common stocks listed on the Shanghai Stock
Exchange (SSE), the Shenzhen S tock Exchange (SZSE), and the Hong Kong Stock Exchange
(HK) from January 2011 to January 2020. The data are all from the Wind database. Ta-
ble 1 presents the descriptive statistics of the monthly coverage data (i.e., x) for the three
stock markets.

Table 1. Descriptive statistics of monthly coverage data.

Mean S.D. Min Max Med. Skew. Kurt. No.

xSSE 5.44 6.24 1 49 3 1.95 6.93 108,282
xSZSE 5.19 5.64 1 49 3 1.98 7.34 165,678
xHK 4.30 4.99 1 47 2 2.09 8.62 88,794

2.1. Evidence from the Shanghai, Shenzhen, and Hong Kong Stock Markets

The monthly results are shown in Figure 1. Two things are evident. First, the CCDFs
show the highly skewed structure of cross-sectional analyst coverage. We observe that the
percentage of firms with coverage below 10 is about 80%, i.e., a very high proportion of firms
are covered by a small number of analysts, while certain firms have substantial coverage.
Second, and most importantly, the empirical distributions are well fitted by Exp [λ] on
both linear (CCDF vs. x) and semi-log (log CCDF vs. x) scales, where exponential fits are
denoted as blue and red lines, respectively.

One might be intrigued by the goodness of fit; we thus present the regression R2 in
each semi-log subplot. On average, the R2 is as high as 98% for the period 2011–2020.
Notably, we do not exclude any coverage data based on any firm characteristics, which
ensures that our findings provide a clean and complete picture of attention allocation
structure of sell-side analysts.

Furthermore, as shown in Figure 2, a consistent exponential pattern of cross-sectional
analyst coverage is evident for the Hong Kong stock market (HK), indicating that our
findings are consistent in both emerging and developed stock markets.
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This paper argues that using coverage proxy to measure the amount of firm-specific
information poses a serious inference problem. It is impossible that the amounts of in-
formation for firms with zero-coverage are exactly equal. After excluding firms with no
coverage, 80% of firms have almost the same small amount of analyst coverage. In any
case, one cannot state that the majority of firms with approximate levels of coverage have
similar firm-specific information environments.

Figure 1. Exponential fits of complementary cumulative distribution functions (CCDFs) of cross-
sectional analyst coverage (x) on the linear (blue) and semi-log (red) scales for each month from 2011
to 2020 in the Shanghai stock market (SSE).

By comparing the fitting results of the Shanghai (SSE) and the Hong Kong (HK) stock
markets, it is observed that the HK data conform well to the exponential law, while the
SSE data deviate from a linear relationship when expressed in log-linear form, especial as
shown in Figure A1. It is an important question whether an exponential is the proper fit for
the emerging markets such as the SSE. To address this concern, we further supplement the
investigation with additional data from the Shenzhen stock market (SZSE). The monthly
results for the SZSE are presented in Figure 3, showing a similar exponential pattern to
that observed in the SSE. Figure 4 demonstrates that for large samples, exponential fitting
performs better on both linear and log-linear scales in the SSE (a), SZSE (b), and HK (c) stock
markets. The empirical distributions of coverage data deviate slightly from the exponential
law in the long run. In other words, the deviation can, to some extent, be treated as a
short-term phenomenon.

The goodness of fit is high for the period 2011–2020, reaching 0.98, 0.99, and 0.99,
respectively. However, a closer inspection in the performance of exponential fitting reveals
that the results for the SSE and SZSE stock markets do not follow a simple exponential law.
There is a change in the gradient midway along the abscissa visible in all the graphs. Hence,
we will conduct a detailed and in-depth evaluation of curve fitting in the next section.
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Figure 2. Exponential fits of complementary cumulative distribution functions (CCDFs) of cross-
sectional analyst coverage (x) on the linear (blue) and semi-log (red) scales for each month from 2011
to 2020 in the Hong Kong stock market (HK).

2.2. Difference in Exponential Fitting between SSE, SZSE, and HK

In order to clearly observe the change in the gradient at the middle position of the
abscissa, we divided the bins more densely when calculating CCDFs, increasing the number
of bins from 20 to 50. Figure 5 assesses the exponential fits for cross-sectional analyst
coverage (x) of the SSE (a), SZSE (b) and HK (c) stock markets in two scaling regimes,
denoted as λ1 and λ2. For the SSE and SZSE, even over the long term, the deviations in
the fitted values of the two regimes are significant. Subplot c shows that the deviation is
relatively small in the HK stock market.

Furthermore, we conduct statistical tests on this difference between SSE, SZSE, and
HK. Panel A and B of Table 2 show the comparison results. The monthly fitted parameters,
namely λ, λ1, λ2, and λ, are displayed in the first four columns. The last four columns
illustrate the deviations between these scaling regimes. On average, we conclude that there
are statistically significant breakpoints in the exponential fitting for the SSE and SZSE, while
the cross-sectional analyst coverage for the HK market exhibits a simple scaling similar to
an exponential law.
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Figure 3. Exponential fits of complementary cumulative distribution functions (CCDFs) of cross-
sectional analyst coverage (x) on the linear (blue) and semi-log (red) scales for each month from 2011
to 2020 in the Shenzhen stock market (SZSE).

Figure 4. Exponential fits of complementary cumulative distribution functions (CCDFs) of cross-
sectional analyst coverage (x) on the linear (blue) and log-linear (red) scales during the period
2011–2020 in the SSE (a.1 & a.2), SZSE (b.1 & b.2), and HK (c.1 & c.2) stock markets.
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Figure 5. Exponential fits of CCDFs in two scaling regimes (denoted as λ1 and λ2) for cross-sectional
analyst coverage (x) of the SSE (a), SZSE (b), and HK (c) stock markets during the period 2011–2020.

The higher the costs of gathering information, the greater the potential resource
constraints faced by security analysts. The relatively larger λ1 for firms with less coverage
may imply that analysts need to spend more time and effort in studying and covering
these companies, which are smaller in size and more prone to earning manipulation
(e.g., [4,7]). Intuitively, this could be attributed to the lower market visibility of these
companies or the relatively limited availability of relevant market-wide information about
them. Deviation of exponential fitting across distinct scaling regimes is observed in the
SSE and SZSE stock markets but not in the HK market, indicating a significant difference
between SSE, SZSE, and HK. More importantly, can the difference in curve-fit bias serve
as one of the distinguishing factors between emerging and developed stock markets?
To effectively address this question, future research should provide richer comparative
evidence across countries.

Table 2. The difference in monthly fitted parameters between SSE, SZSE and HK.

λ λ1 λ2 λ (λ − λ1) (λ − λ2) (λ1 − λ2) (λ − λ)

Panel A. Monthly exponential fitting for SSE and SZSE
xSSE 0.1876 0.1484 0.2530 0.2007 0.04 *** −0.07 *** −0.10 *** −0.01 ***
NW t [8.75] [−6.56] [−7.54] [−3.84]
xSZSE 0.2061 0.1680 0.2712 0.2196 0.04 *** −0.07 *** −0.10 *** −0.01 ***
NW t [11.6] [−7.55] [−8.83] [−4.46]

Panel B. Monthly exponential fitting for HK
xHK 0.2549 0.2041 0.3149 0.2595 0.05 −0.06 −0.11 −0.00
NW t [1.58] [−1.33] [−1.44] [−0.69]

Note: λ = (λ1 + λ2)/2. The sample period is from 2011 to 2020. The Newey–West (NW) t-statistics in brackets
are adjusted for autocorrelation and heteroskedasticity [11]. *** indicates statistical significance at the 1% level.

2.3. Predicting Stock-Market Uncertainty
2.3.1. Distribution Changes during the Period 2011–2020

Before demonstrating the negative predictive power of time-varying market infor-
mation flows measured by λ−1 on total uncertainty, it is necessary to illustrate how the
statistical properties of the distribution evolved during the period. Figure 6 shows the fitted
values of parameter λ (a) and sample mean µ (b) for cross-sectional analyst coverage of the
Shanghai stock market (SSE) from 2011 to 2020. Additionally, as illustrated in Figure A1 in
the Appendix A, it is observed that the empirical distribution maintains a stable exponential
pattern for each year.

An interesting fact is that the total amount of market information provided by sell-side
analysts decreased significantly in 2015, as seen in Figure 6, and the maximum coverage
number was the lowest during the sample period (see Figure A1). As we all know, the
Chinese stock market experienced two crash crises in 2015 and early 2016.
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Figure 6. Fitted values of parameter λ (a) and sample mean µ (b) for cross-sectional analyst coverage
of the Shanghai stock market (SSE) for each year from 2011 to 2020.

Given the finding that sell-side analysts mainly generate market-wide information
(see [8,9]), we go one step further and directly examine whether aggregate analyst coverage
is related to stock-market uncertainty. In this paper, aggregate analyst coverage is denoted
by the inverse of parameter λ, since λ−1 fully characterizes the mean value of cross-
sectional analyst coverage. The finding has many implications, and the most critical
one is that aggregate analyst coverage exhibits a negative predictive power for stock-
market uncertainty. If analysts have no advantage over insiders in generating firm-specific
information, focusing on providing market-wide information becomes an inevitable choice.
Next, we test the hypothesis that aggregate analyst coverage (denoted by λ−1) can help
reduce the expected total uncertainty.

2.3.2. Predictive Regression Results

We examine the forecasting power of aggregate analyst coverage denoted by λ−1 for
stock-market uncertainty based on the following time-series predictive regression,

U j
t,t+h = α + δλ−1

t + Controls + εt,t+h (2)

where U j
t,t+h is the stock-market uncertainty over the prediction horizon h, where h = 1, 6

and 12 months, and j denotes two uncertainty proxies, which are market-level cash-
flow volatility (i.e., CFV) and investor search volume (i.e., Search). λ−1

t is the inverse
of the parameter of exponentially distributed analyst coverage in month t, which captures
continuous-varying marker information flows. We also control for a linear time trend and
lagged stock-market uncertainty up to five lags.

Our analysis in Table 3 is motivated by [12], who theoretically show that the expected
amount of information generated equals the expected reduction in uncertainty. The idea is
consistent with the foundational work in information theory [13]. Concretely, we construct
two proxies for stock-market uncertainty that are closely related to managers and investors,
respectively. One is market-level cash flow volatility, i.e., CFVt (e.g., [14,15]), which directly
measures the uncertainty of operating management. The other is investor search volume
denoted as Searcht. This is because theories of rational information acquisition predict
that investors’ information-search demand increases in the uncertainty about asset payoffs
(e.g., [16–18]).

Table 3 suggests that an increase in aggregate analyst coverage is associated with
an expected decrease in manager uncertainty (Panel A) and investor uncertainty (B),
respectively. The results remain robust after controlling for a linear time trend and lagged
stock-market uncertainty up to five lags in models (2), (4), and (6). In summary, we
conclude that aggregate analyst coverage can alleviate total uncertainty for both investors
and managers. Moreover, a higher aggregate analyst coverage also precedes lower market-
wide cash holdings and the absolute magnitude of unexpected earnings, as well as greater
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capital expenditures and long-term debt. For more comprehensive and detailed evidence,
see [20,21].

Table 3. Diminishing the expected stock-market uncertainty.

Panel A. Predicting future manager uncertainty proxied by cash-flow volatility CFVt,t+h
(1) (2) (3) (4) (5) (6)

CFVt,t+1 CFVt,t+1 CFVt,t+6 CFVt,t+6 CFVt,t+12 CFVt,t+12
λ−1

t −1.38 *** −0.16 ** −1.42 *** −0.52 *** −1.42 *** −0.61 ***
[−8.29] [−2.27] [−8.68] [−3.57] [−9.47] [−5.25]

Trend No Yes No Yes No Yes
Lagged CFV No Yes No Yes No Yes

N 108 108 102 102 96 96
adj.R2 0.31 0.86 0.42 0.82 0.50 0.86
ADF.prob 1 × 10−3 1 × 10−3 5 × 10−3 1 × 10−3 2 × 10−3 5 × 10−3

Panel B. Predicting future investor uncertainty proxied by information demand Searcht,t+h
Searcht,t+1 Searcht,t+1 Searcht,t+6 Searcht,t+6 Searcht,t+12 Searcht,t+12

λ−1
t −0.40 *** −0.34 *** −0.39 *** −0.20 *** −0.34 *** −0.26 ***

[−4.65] [−4.04] [−9.22] [−7.16] [−8.87] [−6.22]
Trend No Yes No Yes No Yes
Lagged Search No Yes No Yes No Yes

N 108 108 102 102 96 96
adj.R2 0.22 0.58 0.40 0.65 0.42 0.71
ADF.prob 1 × 10−3 1 × 10−3 1 × 10−2 5 × 10−3 1 × 10−2 1 × 10−2

Note: This table reports time-series predictive regressions of expected stock-market uncertainty on aggregate
analyst coverage denoted as λ−1

t . The dependent variables are the future market-level cash-flow volatility, i.e.,
CFVt,t+h (Panel A) and investor search volume, i.e., Searcht,t+h (Panel B), which measure the manager and
investor uncertainty, respectively. Controls in models (2), (4), and (6) include a linear time trend and lagged
market-uncertainty up to five lags. To address concerns about spurious regression, we utilize the ADF tests. The
sample period is 2011−2020. The t-statistics in brackets are adjusted for heteroskedasticity [19]. ** and *** indicate
significance at the 5% and 1% level, respectively.

3. MEP Generates the Exponential Distribution

Finally, this paper attempts to provide a potential generation mechanism for the
exponentially distributed analyst coverage. Motivated by [10], who draw on the maximum
entropy principle (MEP) to interpret the asymmetric Laplace distribution of Tobin’ Q. In
what follows we utilize the MEP to derive the exponential law. The idea of MEP is that
in making inferences on the basis of partial information, we must use the probability
distribution that achieves maximum entropy [22].

The concept of maximum-entropy optimization has been advocated in economic
analysis (see [23,24]). In an economic context, examples of constraints that we impose
include budget constraints, non-negativity of prices, average corporate profit rate (e.g., [10]),
and behavioral constraints (e.g., limited attention in this paper).

Suppose that our only knowledge of analysts coverage distribution is the mean value
(i.e., limited average-ability in producing information). Mathematically, the maximum
entropy problem subject to the first-order moment constraint is as follows,

max
{ f [x]≥0|x∈R+}

h( f [x]) = −
∫

x
f [x]log f [x]dx s.t.

∫
x

f [x]dx = 1, E[X] =
∫

x
x f [x]dx = µx (3)

The Lagrangian associated with this programming problem is,

J( f [x]) = −
∫

x
f [x]log f [x]dx + λ1(

∫
x

f [x]dx − 1) + λ2(
∫

x
x f [x]dx − µx) (4)

Taking the first-order condition and solving for f [x] yields,

f ∗[x; λ] = λe−λx, E[X] = λ−1 (5)
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The solution is an exponential distribution, which is fully described by the unique
parameter λ. The first-order moment constraint condition is natural due to the fact that
analysts have limited average capability in providing information. This entropy maximiza-
tion property is perhaps the main reason why we encounter exponential distributions so
frequently in mathematics and physics. One might ask what entropy, i.e., h( f [x]), means in
our case. In the Shannon theory, this answer is clear. The average amount of information
is given by the information entropy, i.e., h( f [x]), as Shannon pointed out [13]. Because
analyst coverage can be viewed as a standard information source, maximizing the objective
function is equivalent to maximizing the amount of market-wide information. Similarly,
supposing we do not have any knowledge about distribution, the solution of maximum-
entropy optimization is the Uniform distribution. In this case, when each firm has the same
coverage (no firm-specific information), the amount of market-wide information attains the
maximum value. In both cases, sell-side analysts generate market-wide information, not
firm-specific information.

4. Conclusions and Discussion

Contrary to the conventional wisdom that sell-side analysts specialize in collecting and
disseminating firm-specific information, it is found that analysts predominantly generate
market-wide information for 25 countries (see [8,9]). However, it is still unclear why
analyst coverage reflects market-wide information rather than firm-specific information. To
understand the underling reasons, we examine the empirical distribution of cross-sectional
analyst coverage.

This paper shows the following key findings: (i) the empirical frequency distribution of
cross-sectional analyst coverage follows an exponential law, observed in both the Shanghai
and Hong Kong stock markets; (ii) an increase in aggregate analyst coverage is associated
with an expected decrease in total uncertainty; (iii) when analysts, who are constrained by
limited average ability in producing information (i.e., the first-order moment), strive to
maximize the amount of market-wide information, this objective yields the exponential
distribution.

In summary, our findings offer two main insights. First, sell-side analysts in China’s
stock markets predominantly contribute to market-wide information, illuminating their
role in mitigating total uncertainty. Second, future research should be extra cautious when
using coverage proxies in cross-sectional and portfolio analyses due to potential inference
issues. Strictly speaking, it is advisable to carefully re-evaluate previous cross-sectional
findings, if feasible.
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Appendix A. The Yearly Results for the Shanghai Stock Market (SSE)

Figure A1. Exponential fits of complementary cumulative distribution functions (CCDFs) of cross-
sectional analyst coverage (x) on the linear (blue) and semi-log (red) scales for each year from 2011 to
2020 in the Shanghai stock market (SSE).
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