
Citation: Bruno, R.; Vaccaro, U.

Entropic Bounds on the Average

Length of Codes with a Space. Entropy

2024, 26, 283. https://doi.org/

10.3390/e26040283

Academic Editors: Igal Sason

and Boris Ryabko

Received: 13 November 2023

Revised: 15 March 2024

Accepted: 23 March 2024

Published: 26 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Entropic Bounds on the Average Length of Codes with a Space
Roberto Bruno † and Ugo Vaccaro *,†

Department of Computer Science, University of Salerno, 84084 Fisciano, Italy; rbruno@unisa.it
* Correspondence: uvaccaro@unisa.it
† These authors contributed equally to this work.

Abstract: We consider the problem of constructing prefix-free codes in which a designated symbol,
a space, can only appear at the end of codewords. We provide a linear-time algorithm to construct
almost-optimal codes with this property, meaning that their average length differs from the minimum
possible by at most one. We obtain our results by uncovering a relation between our class of codes and
the class of one-to-one codes. Additionally, we derive upper and lower bounds to the average length
of optimal prefix-free codes with a space in terms of the source entropy.

Keywords: codes; entropy; average length; prefix-free codes; one-to-one codes

1. Introduction

Modern natural languages achieve the unique parsability of written texts by inserting
a special character (i.e., a space) between words [1] (See [2] for a few exceptions to this rule).
Classical Information Theory, instead, studies codes that achieve the unique parsability of
texts by imposing diverse combinatorial properties on the codeword set: e.g., the prefix
property, unique decipherability, etc. [3]. With respect to the efficiency of such codes (usually
measured via the average number of code symbols per source symbol), it is well known that
the Shannon entropy of the information source constitutes a fundamental lower bound for
it. On the other hand, if one drops the property of the unique parsability of code messages
into individual codewords, and simply requires that different source symbols be encoded
with different codewords, one can obtain codes (known as one-to-one codes) with efficiency
below the source Shannon entropy (although not too much below; see, e.g., [4,5]).

Jaynes [6] took the approach of directly studying source codes in which a designated
character of the code alphabet is exclusively used as a word delimiter. More precisely, Jaynes
studied the possible decrease of the noiseless channel capacity (see [7], p. 8) associated with
any code that uses a designated symbol as an end-of-codeword mark, as compared with
the noiseless channel capacity of an unconstrained code. Quite interestingly, Jaynes proved
that the decrease of the noiseless channel capacity of codes with an end-of-codeword mark
becomes negligible, as the maximum codeword length increases.

In this paper, we study the problem of constructing prefix-free codes where a specific
symbol (referred to as a ‘space’) can only be positioned at the end of codewords. We refer
to this kind of prefix code as prefix codes ending with a space. We develop a linear-time
algorithm that constructs ‘almost’-optimal codes with this characteristic, in the sense that
the average length of the constructed codes is at most one unit longer than the shortest
possible average length of any prefix-free code in which the space can appear only at the
end of codewords. We prove this result by highlighting a connection between our type of
codes and the well-known class of one-to-one codes. We also provide upper and lower
limits of the average length of optimal prefix codes ending with a space, expressed in terms
of the source entropy and the cardinality of the code alphabet.

The paper is structured as follows. In Section 2, we illustrate the relationships between
prefix codes ending with a space and one-to-one codes. Specifically, we prove that, from
one-to-one codes, one can easily construct prefix codes ending with a space, and we give

Entropy 2024, 26, 283. https://doi.org/10.3390/e26040283 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26040283
https://doi.org/10.3390/e26040283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-6039-2075
https://orcid.org/0000-0003-4085-7300
https://doi.org/10.3390/e26040283
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26040283?type=check_update&version=1

Entropy 2024, 26, 283 2 of 16

an upper bound on the average length of the constructed codes. Successively, we show
that, if we remove all the spaces from the codewords of prefix codes ending with a space,
one obtains a one-to-one code. This result allows us to prove that the average length of
our prefix codes ending with a space differs from the minimum possible by at most one.
In Sections 3 and 4, we derive upper and lower bounds on the average length of optimal
prefix codes ending with a space in terms of the source entropy and the cardinality of the
code alphabet.

2. Relations between One-to-One Codes and Prefix Codes Ending with a Space

Let S = {s1, . . . , sn} be the set of source symbols, p = (p1, . . . , pn) be a probability
distribution on the set S (that is, pi is the probability of source symbol si), and {0, . . . , k − 1}
be the code alphabet. We denote by {0, . . . , k − 1}+ the set of all non-empty sequences on
the code alphabet {0, . . . , k − 1}, k ≥ 2, and by {0, . . . , k − 1}+⊔ the set of all non-empty
k-ary sequences that ends with the special symbol ⊔, i.e., the space symbol.

A prefix-free code ending with a space is a one-to-one mapping:

C : S 7−→ {0, . . . , k − 1}+ ∪ {0, . . . , k − 1}+⊔

in which no codeword C(s) is a prefix of another codeword C(s′), for any s, s′ ∈ S, s ̸= s′.
A k-ary one-to-one code (see [4,5,8–11] and the references therein quoted) is a bijective

mapping D : S 7−→ {0, . . . , k − 1}+ from S to the set of all non-empty sequences over the
alphabet {0, . . . , k − 1}, k ≥ 2.

The average length of an arbitrary code for the set of source symbols S = {s1, . . . , sn},
with probabilities p = (p1, . . . , pn), is ∑n

i=1 piℓi, where ℓi is the number of alphabet symbols
in the codeword associated with the source symbol si.

Without loss of generality, we assume that probability distribution p = (p1, . . . , pn) is
ordered, that is p1 ≥ . . . ≥ pn. Under this assumption, it is apparent that the best one-to-one
code proceeds by assigning the shortest codeword (e.g., in the binary case, codeword 0) to
the highest probability source symbol s1, the next shortest codeword 1 to the source symbol
s2, the codeword 00 to s3, the codeword 01 to s4, and so on.

An equivalent approach for constructing an optimal one-to-one code, which we will
use later, proceeds as follows: Let us consider the first n non-empty k-ary strings according
to the radix order [12] (that is, the k-ary strings are ordered by length and, for equal lengths,
ordered according to the lexicographic order). We assign the strings to the symbols s1, . . . , sn
in S by increasing the string length and, for equal lengths, by inverse order according to
the lexicographic order. For example, in the binary case, we assign the codeword 1 to the
highest probability source symbol s1, the codeword 0 to the source symbol s2, the codeword
11 to s3, the codeword 10 to s4, and so on. Therefore, one can see that, in the general case of
a k-ary code alphabet, k ≥ 2, an optimal one-to-one code of minimal average length assigns
a codeword of length ℓi to the i-th symbol si ∈ S, where ℓi is given by:

ℓi = ⌊logk((k − 1) i + 1)⌋. (1)

Moreover, the codewords of an optimal k-ary one-to-one code can be represented as the
nodes of a k-ary tree of maximum depth h = ⌈logk(n − ⌈n/k⌉)⌉, where, for each node v,
the k-ary string (codeword) associated with v is obtained by concatenating all the labels in
the path from the root of the tree to v.

It is evident that, if we apply the above encoding to a sequence of source symbols,
the obtained binary sequence is not uniquely parsable in terms of individual codewords.
Let us see how one can recover unique parsability by appending a space ⊔ to judiciously
chosen codewords of an optimal one-to-one code. To gain insight, let us consider the
following example. Let S = {s1, s2, s3, s4, s5, s6, s7, s8, s9, s10} be the set of source symbols,
and and let us assume that the code alphabet is {0, 1}. Under the standing hypothesis that
p1 ≥ . . . ≥ p10, one has that the best prefix-free code C one can obtain by the procedure of
appending a space ⊔ to codewords of the optimal one-to-one code for S is the following:

Entropy 2024, 26, 283 3 of 16

C(s1) = 1⊔
C(s2) = 0⊔
C(s3) = 11

C(s4) = 10

C(s5) = 01⊔
C(s6) = 00⊔
C(s7) = 011

C(s8) = 010

C(s9) = 001

C(s10) = 000.

Observe that we started from the codewords of the optimal one-to-one code constructed
according to the second procedure previously described. Moreover, note that the codewords
associated with symbols s1, s2, s5, and s6 necessitate the space character ⊔ at their end;
otherwise, the unique parsability of some encoded sequences of source symbols would not
be guaranteed. On the other hand, the codewords associated with symbols s3, s4, s7, s8, s9,
and s10 do not necessitate the space character ⊔. Indeed, the codeword set

{1⊔, 0⊔, 11, 10, 01⊔, 00⊔, 011, 010, 001, 000}

satisfies the prefix-free condition (i.e., no codeword is a prefix of any other); therefore, it
guarantees the unique parsability of any coded message in terms of individual codewords.

The idea of the above example can be generalized, as shown in the following lemma.

Lemma 1. Let S = {s1, . . . , sn} be the set of source symbols and p = (p1, . . . , pn), p1 ≥ . . . ≥
pn > 0, be a probability distribution on S. Let {0, . . . , k − 1} be the k ≥ 2-ary code alphabet. We
can construct a prefix-free code C : S 7−→ {0, . . . , k − 1}+ ∪ {0, . . . , k − 1}+⊔, in O(n), such
that its average length L(C) satisfies

L(C) = L+ +

kh−1−1
k−1 −1

∑
i=1

pi +

kh−1
k−1 −1

∑
i= kh+kh−1−2

k−1 −⌈n/k⌉

pi (2)

≤ L+ +
⌈n/k⌉−1

∑
i=1

pi, (3)

where L+ is the average length of an optimal one-to-one code D : S 7−→ {0, . . . , k − 1}+ and
h = ⌈logk(n − ⌈n/k⌉)⌉.

Proof. Under the standing hypothesis that the probabilities of the source symbols are
ordered from the largest to the smallest, we show how to construct a prefix-free code—by
appending the special character ⊔ to the end of (some) codewords of an optimal one-to-one
code for S—having the average length upper bounded by (2).

Among the class of all the prefix-free codes that one can obtain by appending the
character ⊔ to the end of (some) codewords of an optimal one-to-one code for S, we aim to
construct the one with the minimum average length. Therefore, we have to ensure that, in
the k-ary tree representation of the code, the following basic condition holds: For any pair
of nodes vi and vj, i < j, associated with the symbols si and sj, the depth of the node vj is
not smaller than the depth of the node vi. In fact, if it were otherwise, the average length of
the code could be improved.

Therefore, by recalling that h = ⌈logk(n − ⌈n/k⌉)⌉ is the height of the k-ary tree
associated with an optimal one-to-one code, we have that the prefix-free code of the
minimum average length that one can obtain by appending the special character ⊔ to the

Entropy 2024, 26, 283 4 of 16

end of (some) codewords of an optimal one-to-one code for S assigns a codeword of length
ℓi to the i-th symbol si ∈ S, where ℓi is given by:

ℓi =

⌊logk((k − 1) i + 1)⌋+ 1, if i ≤ kh−1−1

k−1 − 1,

⌊logk((k − 1) i + 1)⌋+ 1, if i ≥ kh+kh−1−2
k−1 − ⌈n/k⌉

and i ≤ kh−1
k−1 − 1,

⌊logk((k − 1) i + 1)⌋, otherwise.

(4)

We stress that the obtained prefix-free code is not necessarily a prefix-free code C : S 7−→
{0, . . . , k − 1}+ ∪ {0, . . . , k − 1}+⊔ of minimum average length. Now, we justify the expres-
sion (4). First, since the probabilities p1, . . . , pn are ordered in non-increasing fashion, the
codeword lengths ℓi of the code are ordered in non-decreasing fashion, that is ℓ1 ≤ . . . ≤ ℓn.
Therefore, in the k-ary tree representation of the code, it holds the desired basic condition:
For any pair of nodes vi and vj, i < j, associated with the symbols si and sj, the depth of
the node vi is smaller than or equal to the depth of the node vj.

Furthermore, we need to append the space character only to the k-ary strings that are
the prefix of some others. Therefore, let us consider the first n non-empty k-ary strings
according to the radix order [12], in which, we recall, the k-ary strings are ordered by
length and, for equal lengths, ordered according to the lexicographic order. We have that
the number of strings that are a prefix of some others is exactly ⌈ n

k ⌉ − 1. One obtains
this number by seeing the strings as corresponding to nodes in a k-ary tree with labels
0, . . . , k − 1 on the edges. The number of strings that are a prefix of some others (among the
n strings) is exactly equal to the number of internal nodes (except the root) in such a tree.
This number of internal nodes is equal to ⌈N−1

k ⌉ − 1, where N is the total number of nodes
that, in our case, is equal to N = n + 1 (i.e., N counts also the root of the tree).

Moreover, starting from the optimal one-to-one code constructed according to our
second method, that is by assigning k-ary strings to the symbols by increasing length and,
for equal lengths, by inverse order according to the lexicographic order, one can verify that
the ⌈ n

k ⌉ − 1 internal nodes are associated with the codewords of the symbols si, for i that

goes from 1 to kh−1−1
k−1 − 1, and from kh+kh−1−2

k−1 − ⌈n/k⌉ to kh

k−1 − 2.
In fact, since the height of the k-ary tree is h = ⌈logk(n − ⌈n/k⌉)⌉ and since all the

levels of the tree, except the last two, are full, we need to append the space to all symbols
from 1 to kh−1−1

k−1 − 1. While on the second-to-last level, we have to append the space
only to the remaining internal nodes associated with the symbols si, where i goes from
kh+kh−1−2

k−1 − ⌈n/k⌉ to kh−1
k−1 − 1. Those remaining nodes are exactly, among all the nodes in

the second-to-last level, the ones associated with the symbols that have smaller probabilities.
Thus, we obtain (4).

Summarizing, we can construct a prefix-free code C : S 7−→ {0, . . . , k − 1}+ ∪
{0, . . . , k − 1}+⊔, in O(n) time, with lengths defined as in (4), starting from an optimal
one-to-one code. Thus:

L(C) =
n

∑
i=1

piℓi

=
n

∑
i=1

pi⌊logk((k − 1) i + 1)⌋+
kh−1−1

k−1 −1

∑
i=1

pi +

kh−1
k−1 −1

∑
i= kh+kh−1−2

k−1 −⌈n/k⌉

pi

=L+ +

kh−1−1
k−1 −1

∑
i=1

pi +

kh−1
k−1 −1

∑
i= kh+kh−1−2

k−1 −⌈n/k⌉

pi

≤L+ +
⌈n/k⌉−1

∑
i=1

pi (since we are adding ⌈n/k⌉ − 1 pi’s, and the pi’s are ordered).

Entropy 2024, 26, 283 5 of 16

Note that, from Lemma 1, we obtain that the average length of any optimal (i.e., of
minimum average length) prefix-free code ending with a space is upper bounded by
the Formula (2). Furthermore, we have an upper bound on the average length of the
optimal prefix-free codes ending with a space in terms of the average length of optimal
one-to-one codes.

We can also derive a lower bound on the average length of optimal prefix-free codes
ending with a space in terms of the average length of optimal one-to-one codes. For such a
purpose, we need two intermediate results. We first recall that, given a k-ary code C, its
codewords can be represented as nodes in a k-ary tree with labels 0, . . . , k − 1 on the edges.
Indeed, for each node v, the k-ary string (codeword) associated with v can be obtained by
concatenating all the labels in the path from the root of the tree to v. We also recall that,
in prefix-free codes, the codewords correspond to the node leaves of the associated tree,
while in one-to-one codes, the codewords may correspond also to the internal nodes of the
associated tree.

Lemma 2. Let S = {s1, . . . , sn} be the set of source symbols, and let p = (p1, . . . , pn), p1 ≥
. . . ≥ pn > 0, be a probability distribution on S. There exists an optimal prefix-free code ending
with a space C : S 7−→ {0, . . . , k − 1}+ ∪ {0, . . . , k − 1}+⊔ such that the following property
holds: For any internal node v (except the root) of the tree representation of C, if we denote by w the
k-ary string associated with the node v, then the string w⊔ belongs to the codeword set of C.

Proof. Let C be an arbitrary optimal prefix-free code ending with a space. Let us assume
that, in the tree representation of C, there exists an internal node v whose associated string
w is such that w⊔ does not belong to the codeword set of C. Since v is an internal node, there
is at least a leaf x, which is a descendant of v, whose associated string is the codeword of
some symbol sj. We modify the encoding, by assigning the codeword w⊔ to the symbol
sj. The new encoding is still prefix-free, and its average length can only decrease since the
length of the newly assigned codeword to sj cannot be greater than the previous one. We
can repeat the argument for all internal nodes that do not satisfy the property stated in the
lemma to complete the proof.

Lemma 3. Let C : S 7−→ {0, . . . , k − 1}+ ∪ {0, . . . , k − 1}+⊔ be an arbitrary prefix-free code,
then the code D : S 7−→ {0, . . . , k − 1}+ one obtains from C by removing the space ⊔ from each
codeword of C is a one-to-one code.

Proof. The proof is straightforward. Since C is prefix-free, it holds that, for any pair
si, sj ∈ S, with si ̸= sj, the codeword C(si) is not a prefix of C(sj) and vice versa. Therefore,
since D is obtained from C by removing the space, we have four cases:

1. C(si) = D(si) and C(sj) = D(sj): then D(si) ̸= D(sj) since C(si) ̸= C(sj);
2. C(si) = D(si)⊔ and C(sj) = D(sj)⊔: then D(si) ̸= D(sj) since C(si) is not a prefix of

C(sj) and vice versa;
3. C(si) = D(si)⊔ and C(sj) = D(sj): then D(si) ̸= D(sj) since C(sj) is not a prefix of

C(si);
4. C(si) = D(si) and C(sj) = D(sj)⊔: then D(si) ̸= D(sj) since C(si) is not a prefix of

C(sj).

Therefore, for any pair si, sj ∈ S, with si ̸= sj, D(si) ̸= D(sj), and D is a one-to-one
code.

We can now derive a lower bound on the average length of optimal prefix-free codes
with space in terms of the average length of optimal one-to-one codes.

Entropy 2024, 26, 283 6 of 16

Lemma 4. Let S = {s1, . . . , sn} be the set of source symbols, and let p = (p1, . . . , pn), p1 ≥
. . . ≥ pn > 0, be a probability distribution on S, then the average of an optimal prefix-free code
C : S 7−→ {0, . . . , k − 1}+ ∪ {0, . . . , k − 1}+⊔ satisfies

L(C) ≥ L+ +
⌈n/k⌉−1

∑
i=1

pn−i+1, (5)

where L+ is the average length of an optimal k-ary one-to-one code on S.

Proof. From Lemma 2, we know that there exists an optimal prefix-free code C with a
space in which exactly ⌈ n

k ⌉ − 1 codewords contain the space character at the end. Let
A ⊂ {1, . . . , n} be the set of indices associated with the symbols whose codeword contains
the space. Moreover, from Lemma 3, we know that the code D obtained by removing the
space from C is a one-to-one code. Putting it all together, we obtain that

L(D) = L(C)− ∑
i∈A

pi. (6)

From (6), we have that

L(C) = L(D) + ∑
i∈A

pi

≥ L+ + ∑
i∈A

pi (since D is a one-to-one code)

≥ L+ +
⌈n/k⌉−1

∑
i=1

pn−i+1 (since A contains ⌈ n
k ⌉ − 1 elements).

We notice that the difference between the expression (2) and the lower bound (5) is,
because of (3), less than

⌈n/k⌉−1

∑
i=1

pi −
⌈n/k⌉−1

∑
i=1

pn−i+1 < 1; (7)

therefore, the prefix-free codes ending with a space that we construct in Lemma 1 have an
average length that differs from the minimum possible by at most one. Moreover, since both
the upper bound (3) and the lower bound (5) are easily computable, we can determine the
average length of an optimal prefix-free code C : S 7−→ {0, . . . , k − 1}+ ∪ {0, . . . , k − 1}+⊔
with a tolerance at most of one. One can also see that the left-hand side of (7) is, often,
much smaller than one.

In the following sections, we will focus on providing upper and lower bounds on the
average length L+ of k-ary optimal one-to-one codes in terms of the k-ary Shannon entropy
Hk(p) = −∑n

i=1 pi logk pi of the source distribution p. Because of Lemmas 1 and 4, this
will give us the corresponding upper and lower bounds on the average length of optimal
prefix-free codes ending with a space.

3. Lower Bounds on the Average Length

In this section, we provide lower bounds on the average length of the optimal one-
to-one code and, subsequently, thanks to Lemma 4, on the average length of the optimal
prefix-free code with a space. For technical reasons, it will be convenient to consider
one-to-one codes that make use of the empty word ϵ, that is one-to-one mappings Dϵ :
S 7−→ {0, 1, . . . , k − 1}+ ∪ {ϵ}. It is easy to see (cf. (1)) that the optimal one-to-one code
that makes use of the empty word assigns to the i-th symbol si ∈ S a codeword of length ℓi
given by:

ℓi = ⌊logk((k − 1)i)⌋. (8)

Entropy 2024, 26, 283 7 of 16

where k is the cardinality of the code alphabet.
Thus, by denoting by L+ the average length of the optimal one-to-one code that does

not make use of the empty word and with Lϵ the average length of the optimal one-to-one
code that does use it, we obtain the following relation:

L+ = Lϵ +
⌊logk⌈

n−1
k ⌉⌋

∑
i=1

p ki−1
k−1

. (9)

Our first result is a generalization of the lower bound to the average length of the
optimal one-to-one codes presented in [5], from the binary case to the general case of k-ary
alphabets, k ≥ 2. Our proof technique differs from that of [5] since we are dealing with a
set of source symbols of bounded cardinality (in [5], the authors considered the case of a
numerable set of source symbols).

Lemma 5. Let S = {s1, . . . , sn} be the set of source symbols and p = (p1, . . . , pn) be a probability
distribution on S, with p1 ≥ . . . ≥ pn. The average length Lϵ of the optimal one-to-one code
D : {s1, . . . , sn} → {0, . . . , k − 1}+ ∪ {ϵ} satisfies

Lϵ >Hk(p)− (Hk(p) + logk(k − 1)) logk

(
1 +

1
Hk(p) + logk(k − 1)

)
− logk(Hk(p) + logk(k − 1) + 1),

where Hk(p) = −∑n
i=1 pi logk pi.

Proof. The proof is an adaptation of Alon et al.’s proof [4] from the binary case to the
k ≥ 2-ary case.

We recall that the optimal one-to-one code (i.e., whose average length achieves the
minimum Lϵ) has codeword lengths ℓi given by:

ℓi = ⌊logk((k − 1)i)⌋. (10)

For each j ∈ {0, . . . , ⌊logk n⌋}, let us define the quantities qj as

qj =

kj+1−1
k−1

∑
i= kj−1

k−1 +1

pi.

It holds that ∑
⌊logk n⌋
j=0 qj = 1. Let Y be a random variable that takes values in {0, . . . , ⌊logk n⌋}

according to the probability distribution q = (q0, . . . , q⌊logk n⌋), that is

∀j ∈ {0, . . . , ⌊logk n⌋} Pr{Y = j} = qj.

From (10), we have

Lϵ =
n

∑
i=1

⌊logk((k − 1)i)⌋pi

=
⌊logk n⌋

∑
j=0

kj+1−1
k−1

∑
i= kj−1

k−1 +1

⌊logk((k − 1)i)⌋pi

=
⌊logk n⌋

∑
j=0

jqj = E[Y]. (11)

Entropy 2024, 26, 283 8 of 16

By applying the entropy grouping rule ([3], Ex. 2.27) to the distribution p, we obtain

H2(p) = H2(q) +
⌊logk n⌋

∑
j=0

qj H2

(p kj−1
k−1 +1

qj
, . . . ,

p kj+1−1
k−1

qj

)

≤ H2(q) +
⌊logk n⌋

∑
j=0

qj log2 kj (since H2

(p
kj−1
k−1 +1

qj
, . . . ,

p
kj+1−1

k−1
qj

)
≤ log2 kj)

= H2(q) +
⌊logk n⌋

∑
j=0

jqj log2 k

= H2(q) +E[Y] log2 k. (12)

We now derive an upper bound to H2(Y) = H2(q) in terms of the expected value E[Y].
To this end, let us consider an auxiliary random variable Y′ with the same distribution

of Y, but with values ranging from 1 to ⌊logk(n)⌋+ 1 (instead of from 0 to ⌊logk(n)⌋). It is
easy to verify that µ = E[Y′] = E[Y] + 1.

Let α be a positive number, whose value will be chosen later. We obtain that

Hk(Y)− αµ =
⌊logk(n)⌋+1

∑
i=1

qi−1 logk
1

qi−1
− α

⌊logk(n)⌋+1

∑
j=1

jqj−1

=
⌊logk(n)⌋+1

∑
i=1

qi−1 logk
1

qi−1
+

⌊logk(n)⌋+1

∑
j=1

(−αj)qj−1

=
⌊logk(n)⌋+1

∑
i=1

qi−1 logk
1

qi−1
+

⌊logk(n)⌋+1

∑
j=1

qj−1 logk(k
−αj)

=
⌊logk(n)⌋+1

∑
i=1

qi−1 logk
k−αi

qi−1

≤ logk

⌊logk(n)⌋+1

∑
i=1

k−αi (by Jensen’s inequality)

= logk

[(
1
kα

)(
1 − k−α(⌊logk(n)⌋+1

1 − k−α

)]

≤ logk

(
1 − k−α(logk(n)+1)

kα − 1

)

= logk

(
1 − (kn)−α

kα − 1

)
.

By substituting logk
µ

µ−1 with α in the obtained inequality

Hk(Y) ≤ αµ + logk

(
1 − (kn)−α

kα − 1

)
,

we obtain

Hk(Y) ≤ µ logk
µ

µ − 1
+ logk(µ − 1) + logk

(
1 −

(
1

kn

)logk
µ

µ−1
)

. (13)

Since
(

1
kn

)logk
µ

µ−1 is decreasing in µ, and because µ = E[Y] + 1 > 1, we obtain:

Hk(Y) < E[Y] logk

(
1 +

1
E[Y]

)
+ logk(E[Y] + 1). (14)

Entropy 2024, 26, 283 9 of 16

By applying (14) to (12) and since Hk(Y) =
H2(Y)
log2 k , we obtain

H2(p) <E[Y] log2 k +E[Y] log2

(
1 +

1
E[Y]

)
+ log2(E[Y] + 1). (15)

From (11), we have that Lϵ = E[Y]; moreover, from the inequality (28) of Lemma 7
(proven in the next Section 4), we know that

Lϵ ≤ Hk(p) + logk(k − 1). (16)

Hence, since the function f (z) = z logk

(
1 + 1

z

)
is increasing in z, we can apply (16) to

upper-bound the term

E[Y] log2

(
1 +

1
E[Y]

)
,

to obtain the following inequality:

H2(p) <Lϵ log2 k + (Hk(p) + logk(k − 1)) log2

(
1 +

1
Hk(p) + logk(k − 1)

)
+ log2(Hk(p) + logk(k − 1) + 1).

(17)

Rewriting (17), we finally obtain

Lϵ >Hk(p)− (Hk(p) + logk(k − 1)) logk

(
1 +

1
Hk(p) + logk(k − 1)

)
− logk(Hk(p) + logk(k − 1) + 1),

and that concludes our proof.

By bringing into play the size of the largest mass in addition to the entropy, Lemma 5
can be improved, as shown in the following result.

Lemma 6. Let S = {s1, . . . , sn} be the set of source symbols and p = (p1, . . . , pn), p1 ≥
. . . ≥ pn, be a probability distribution on S. The average length Lϵ of the optimal one-to-one code
D : {s1, . . . , sn} → {0, . . . , k − 1}+ ∪ {ϵ} has the following lower bounds:

1. If 0 < p1 ≤ 0.5,

Lϵ ≥Hk(p)− (Hk(p)− p1 logk
1
p1

+ (1 − p1) logk(k − 1))

logk

(
1 +

1
Hk(p)− p1 logk

1
p1

+ (1 − p1) logk(k − 1)

)

− logk(Hk(p)− p1 logk
1
p1

+ (1 − p1) logk(k − 1) + 1)

− logk

1 −
(

1
kn

)logk

(
1+ 1

1−p1

), (18)

2. if 0.5 < p1 ≤ 1

Lϵ ≥Hk(p)− (Hk(p)−Hk(p1) + (1 − p1)(1 + logk(k − 1)))

logk

(
1 +

1
Hk(p)−Hk(p1) + (1 − p1)(1 + logk(k − 1))

)
− logk(Hk(p)−Hk(p1) + (1 − p1)(1 + logk(k − 1)) + 1)

Entropy 2024, 26, 283 10 of 16

− logk

1 −
(

1
kn

)logk

(
1+ 1

1−p1

), (19)

where Hk(p1) = −p1 logk p1 − (1 − p1) logk(1 − p1).

Proof. The proof is the same as the proof of Lemma 5. However, we change two steps in
the demonstration.

First, since

(
1

kn

)logk
µ

µ−1
=

(
1

kn

)logk
E[Y]+1
E[Y]

=

(
1

kn

)logk

(
1+ 1

E[Y]

)

is decreasing in µ and E[Y] = Lϵ = 0p1 + 1p2 + · · · ≥ 1 − p1, we have

logk

(
1 −

(
1

kn

)logk
µ

µ−1
)

≤ logk

1 −
(

1
kn

)logk

(
1+ 1

1−p1

). (20)

Hence, by applying (20) to the right-hand side of (13), we obtain

Hk(Y) ≤ E[Y] logk

(
1 +

1
E[Y]

)
+ logk(E[Y] + 1) + logk

1 −
(

1
kn

)logk

(
1+ 1

1−p1

). (21)

Now, by applying (21) (instead of (14)) to (12) and since Hk(Y) =
H2(Y)
log2 k , we obtain

H2(p) ≤E[Y] log2 k +E[Y] log2

(
1 +

1
E[Y]

)
+ log2(E[Y] + 1)

+ log2

1 −
(

1
kn

)logk

(
1+ 1

1−p1

). (22)

Here, instead of applying the upper bound:

Lϵ ≤ Hk(p) + logk(k − 1)

of Lemma 7 to the right-hand side of (22), we apply the improved version:

Lϵ ≤
{

Hk(p)− p1 logk
1
p1

+ (1 − p1) logk(k − 1) if 0 < p1 ≤ 0.5,

Hk(p)−Hk(p1) + (1 − p1) logk 2(k − 1) if 0.5 < p1 ≤ 1,

proven in Lemma 8 of the Section 4. Then, we simply need to rewrite the inequality,
concluding the proof.

Thanks to Lemma 4 and the Formula (9), the above lower bounds on Lϵ can be
applied to derive our main results for prefix-free codes with a space, as shown in the
following theorems.

Theorem 1. The average length of an optimal prefix-free code with space C : S 7−→ {0, . . . , k −
1}+ ∪ {0, . . . , k − 1}+⊔ satisfies

L(C) >Hk(p)− (Hk(p) + logk(k − 1)) logk

(
1 +

1
Hk(p) + logk(k − 1)

)

− logk(Hk(p) + logk(k − 1) + 1) +
⌈ n

k ⌉−1

∑
i=1

pn−i+1 +
⌊logk⌈

n−1
k ⌉⌋

∑
i=1

p ki−1
k−1

. (23)

Entropy 2024, 26, 283 11 of 16

Proof. From Lemma 4 and the Formula (9), we have

L(C)≥Lϵ +
⌈ n

k ⌉−1

∑
i=1

pn−i+1 +
⌊logk⌈

n−1
k ⌉⌋

∑
i=1

p ki−1
k−1

. (24)

By applying the lower bound (10) of Lemma 5 to (24), we obtain (23).

Analogously, by exploiting (the possible) knowledge of the maximum source symbol
probability value, we have the following result.

Theorem 2. The average length of the optimal prefix-free code with space C : S 7−→ {0, . . . , k −
1}+ ∪ {0, . . . , k − 1}+⊔ has the following lower bounds:

1. If 0 < p1 ≤ 0.5:

L(C) ≥Hk(p)− (Hk(p)− p1 logk
1
p1

+ (1 − p1) logk(k − 1))

logk

(
1 +

1
Hk(p)− p1 logk

1
p1

+ (1 − p1) logk(k − 1)

)

− logk(Hk(p)− p1 logk
1
p1

+ (1 − p1) logk(k − 1) + 1)

− logk

1 −
(

1
kn

)logk

(
1+ 1

1−p1

)+
⌈ n

k ⌉−1

∑
i=1

pn−i+1 +
⌊logk⌈

n−1
k ⌉⌋

∑
i=1

p ki−1
k−1

. (25)

2. If 0.5 < p1 ≤ 1:

L(C) ≥Hk(p)− (Hk(p)−Hk(p1) + (1 − p1)(1 + logk(k − 1)))

logk

(
1 +

1
Hk(p)−Hk(p1) + (1 − p1)(1 + logk(k − 1))

)
− logk(Hk(p)−Hk(p1) + (1 − p1)(1 + logk(k − 1)) + 1)

− logk

1 −
(

1
kn

)logk

(
1+ 1

1−p1

)+
⌈ n

k ⌉−1

∑
i=1

pn−i+1 +
⌊logk⌈

n−1
k ⌉⌋

∑
i=1

p ki−1
k−1

. (26)

Proof. From Lemma 4 and the Formula (9), we have

L(C)≥Lϵ +
⌈ n

k ⌉−1

∑
i=1

pn−i+1 +
⌊logk⌈

n−1
k ⌉⌋

∑
i=1

p ki−1
k−1

. (27)

By applying the lower bounds (18) and (19) of Lemma 6 to (27), we obtain (25) or (26)
according to the value of the maximum source symbol probability.

4. Upper Bounds on the Average Length

In this section, we will first derive upper bounds on the average length of optimal one-
to-one codes. Successively, we will provide corresponding upper bounds on the average
length of optimal prefix-free codes ending with a space.

We start by extending the result obtained in [13] from the binary case to the k-ary case,
k ≥ 2.

Lemma 7. Let S = {s1, . . . , sn} be the set of source symbols and p = (p1, . . . , pn), p1 ≥
. . . ≥ pn, be a probability distribution on S. The average length Lϵ of the optimal one-to-one code
D : {s1, . . . , sn} → {0, . . . , k − 1}+ ∪ {ϵ} satisfies

Entropy 2024, 26, 283 12 of 16

Lϵ ≤ Hk(p) + logk(k − 1). (28)

Proof. Under the standing hypothesis that p1 ≥ . . . ≥ pn, it holds that

∀i = 1, . . . , n pi ≤
1
i

. (29)

We recall that the length of the i-th codeword of the optimal one-to-one code D is equal to

ℓi = ⌊logk((k − 1)i)⌋. (30)

Therefore, from (29), we can upper bound each length ℓi as

ℓi = ⌊logk((k − 1)i)⌋ ≤ logk((k − 1)i) ≤ logk(k − 1) + logk
1
pi

. (31)

Hence, by applying (31) to the average length of D, we obtain

Lϵ =
n

∑
i=1

piℓi ≤
n

∑
i=1

pi

(
logk(k − 1) + logk

1
pi

)
= Hk(p) + logk(k − 1). (32)

This concludes our proof.

By exploiting the knowledge of the maximum probability value of p, we generalize
the upper bound in [5] from k = 2 to arbitrary k ≥ 2.

Lemma 8. Let S = {s1, . . . , sn} be the set of source symbols and p = (p1, . . . , pn), p1 ≥
. . . ≥ pn, be a probability distribution on S. The average length Lϵ of the optimal one-to-one code
D : {s1, . . . , sn} → {0, . . . , k − 1}+ ∪ {ϵ} satisfies

Lϵ ≤
{

Hk(p)− p1 logk
1
p1

+ (1 − p1) logk(k − 1) if 0 < p1 ≤ 0.5,

Hk(p)−Hk(p1) + (1 − p1) logk 2(k − 1) if 0.5 < p1 ≤ 1.
(33)

Proof. Let us prove first that the length of an optimal one-to-one code satisfies the inequality:

Lϵ ≤
n

∑
i=2

pi logk(i(k − 1))− 0.5 ∑
j≥2: kj−1

k−1 ≤n

p kj−1
k−1

. (34)

Indeed, by recalling that ℓ1 = ⌊logk(k − 1)⌋ = 0, we can write Lϵ as follows:

Lϵ =
n

∑
i=2

pi⌊logk(i(k − 1))⌋

= ∑
j≥1: kj−1

k−1 +1≤n

min(kj+1−1
k−1 −1,n)

∑
i= kj−1

k−1 +1

pi⌊logk(i(k − 1))⌋+ ∑
j≥2: kj−1

k−1 ≤n

p kj−1
k−1

⌊
logk

(
kj − 1
k − 1

(k − 1)
)⌋

= ∑
j≥1: kj−1

k−1 +1≤n

min(kj+1−1
k−1 −1,n)

∑
i= kj−1

k−1 +1

pi⌊logk(i(k − 1))⌋+ ∑
j≥2: kj−1

k−1 ≤n

p kj−1
k−1

logk(k
j − 1)

− ∑
j≥2: kj−1

k−1 ≤n

p kj−1
k−1

(logk(k
j − 1)− ⌊logk(k

j − 1)⌋)

≤
n

∑
i=2

pi logk(i(k − 1))− ∑
j≥2: kj−1

k−1 ≤n

p kj−1
k−1

(logk(k
j − 1)− ⌊logk(k

j − 1)⌋),

Entropy 2024, 26, 283 13 of 16

where the last inequality holds since

∑
j≥1: kj−1

k−1 +1≤n

min(kj+1−1
k−1 −1,n)

∑
i= kj−1

k−1 +1

pi⌊logk(i(k − 1))⌋ ≤ ∑
j≥1: kj−1

k−1 +1≤n

min(kj+1−1
k−1 −1,n)

∑
i= kj−1

k−1 +1

pi logk(i(k − 1)).

We note that the function f (j) = logk(k
j − 1)− ⌊logk(k

j − 1)⌋ is increasing in j. Therefore,
it reaches the minimum at j = 2, where it takes the value

logk(k
2 − 1)− ⌊logk(k

2 − 1)⌋ = 1 + logk

(
1 − 1

k2

)
> 0.5,

for any k ≥ 2. Thus, (34) holds as we claimed.

Let us now show that

Lϵ ≤ Hk(p)− p1 logk
1
p1

+ (1 − p1) logk(k − 1)− 0.5 ∑
j≥2: kj−1

k−1 ≤n

p kj−1
k−1

. (35)

Since the distribution p is ordered in a non-increasing fashion, from (29) and (34), we have

Lϵ ≤
n

∑
i=2

pi logk(i(k − 1))− 0.5 ∑
j≥2: kj−1

k−1 ≤n

p kj−1
k−1

≤
n

∑
i=2

pi logk
1
pi
(k − 1)− 0.5 ∑

j≥2: kj−1
k−1 ≤n

p kj−1
k−1

(since i ≤ 1
pi

)

= Hk(p)− p1 logk
1
p1

+ (1 − p1) logk(k − 1)− 0.5 ∑
j≥2: kj−1

k−1 ≤n

p kj−1
k−1

.

Therefore, (35) holds.
To conclude the proof, it remains to prove that

Lϵ ≤ Hk(p)−Hk(p1) + (1 − p1)(logk 2(k − 1))− 0.5 ∑
j≥2: kj−1

k−1 ≤n

p kj−1
k−1

. (36)

By observing that for any i ≥ 2, it holds that

pi ≤
2(1 − p1)

i
, (37)

we obtain:

Lϵ ≤
n

∑
i=2

pi logk(i(k − 1))− 0.5 ∑
j≥2: kj−1

k−1 ≤n

p kj−1
k−1

≤
n

∑
i=2

pi logk

(
2(1 − p1)

pi
(k − 1)

)
− 0.5 ∑

j≥2: kj−1
k−1 ≤n

p kj−1
k−1

(since from (37), we have i ≤ 2(1−p1)
pi

)

= Hk(p)− p1 logk
1
p1

+ (logk 2 + logk(1 − p1) + logk(k − 1))(1 − p1)− 0.5 ∑
j≥2: kj−1

k−1 ≤n

p kj−1
k−1

= Hk(p)−Hk(p1) + (1 − p1)(logk 2(k − 1))− 0.5 ∑
j≥2: kj−1

k−1 ≤n

p kj−1
k−1

.

Therefore, (36) holds as well.

Entropy 2024, 26, 283 14 of 16

From (35) and (36), since
∑

j≥2: kj−1
k−1 ≤n

p kj−1
k−1

≥ 0,

we obtain
Lϵ ≤ Hk(p)− p1 logk

1
p1

+ (1 − p1) logk(k − 1),

and
Lϵ ≤ Hk(p)−Hk(p1) + (1 − p1)(logk 2(k − 1)).

Now, it is easy to verify that p1 logk
1
p1

≥ Hk(p1) + (1− p1) logk 2 for 0 < p1 ≤ 0.5, proving
the Lemma.

Thanks to the result of Lemma 1 and to the Formula (9), the upper bounds obtained
above can be used to derive our upper bounds on the average length of optimal prefix-free
codes with space, as shown in the following theorems.

Theorem 3. The average length of an optimal prefix-free code with space C : {s1, . . . , sn} →
{0, . . . , k − 1}+ ∪ {0, . . . , k − 1}+⊔ satisfies

L(C) ≤Hk(p) + logk(k − 1) +
⌊logk⌈

n−1
k ⌉⌋

∑
i=1

p ki−1
k−1

+

kh−1−1
k−1 −1

∑
i=1

pi +

kh−1
k−1 −1

∑
i= kh+kh−1−2

k−1 −⌈n/k⌉

pi (38)

≤Hk(p) + logk(k − 1) +
⌊logk⌈

n−1
k ⌉⌋

∑
i=1

p ki−1
k−1

+
⌈ n

k ⌉−1

∑
i=1

pi, (39)

where h = ⌈logk(n − ⌈n/k⌉)⌉.

Proof. From Lemma 1 and the Formula (9), we have

L(C) ≤Lϵ +
⌊logk⌈

n−1
k ⌉⌋

∑
i=1

p ki−1
k−1

+

kh−1−1
k−1 −1

∑
i=1

pi +

kh−1
k−1 −1

∑
i= kh+kh−1−2

k−1 −⌈n/k⌉

pi. (40)

By applying the upper bound (28) on Lϵ of Lemma 7 to (40), we obtain (38).

Theorem 4. The average length of an optimal prefix-free code with space C : {s1, . . . , sn} →
{0, . . . , k − 1}+ ∪ {0, . . . , k − 1}+⊔ satisfies

L(C) ≤

Hk(p)− p1 logk
1
p1

+ (1 − p1) logk(k − 1)

+∑
⌈ n

k ⌉−1
i=1 pi + ∑

⌊logk⌈
n−1

k ⌉⌋
i=1 p ki−1

k−1
if 0 < p1 ≤ 0.5,

Hk(p)−Hk(p1) + (1 − p1) logk 2(k − 1)

+∑
⌈ n

k ⌉−1
i=1 pi + ∑

⌊logk⌈
n−1

k ⌉⌋
i=1 p ki−1

k−1
if 0.5 < p1 ≤ 1.

(41)

Entropy 2024, 26, 283 15 of 16

Proof. From Lemma 1 and the Formula (9) and by recalling that h = ⌈logk(n − ⌈n/k⌉)⌉,
we have

L(C) ≤Lϵ +
⌊logk⌈

n−1
k ⌉⌋

∑
i=1

p ki−1
k−1

+

kh−1−1
k−1 −1

∑
i=1

pi +

kh−1
k−1 −1

∑
i= kh+kh−1−2

k−1 −⌈n/k⌉

pi

≤Lϵ +
⌈ n

k ⌉−1

∑
i=1

pi +
⌊logk⌈

n−1
k ⌉⌋

∑
i=1

p ki−1
k−1

. (42)

We apply the upper bound (33) on Lϵ of Lemma 8 to (42). That gives us (41).

Remark 1. One can estimate how much the average length of optimal prefix-free codes ending with
a space differs from the minimum average length of unrestricted optimal prefix-free codes on the
alphabet {0, 1, . . . , k − 1,⊔}, that is optimal prefix-free codes in which the special symbol ⊔ is not
constrained to appear at the end of the codewords, only.

Let S = {s1, . . . , sn} be the set of source symbols and p = (p1, . . . , pn) be a probability
distribution on S. Let us denote by C⊔ : {s1, . . . , sn} → {0, . . . , k − 1}+ ∪ {0, . . . , k − 1}+⊔ an
optimal prefix-free code ending with a space for S and by C : {s1, . . . , sn} → {0, . . . , k − 1,⊔}+
an optimal prefix-free code without the restriction of where the space can occur. Clearly, L(C⊔) <
Hk(p) + 1, since the more constrained optimal code C′ : {s1, . . . , sn} → {0, . . . , k − 1}+ has an
average length less than Hk(p) + 1. Therefore,

L(C⊔)− L(C) <Hk(p) + 1 − L(C)

≤Hk(p) + 1 − Hk+1(p) (since L(C) ≥ Hk+1(p))

=Hk(p)
(

1 − 1
logk(k + 1)

)
+ 1.

Since limk→∞ logk(k + 1) = 1, we have that, as the cardinality of the code alphabet increases, the
constraint that the space can appear only at the end of codewords becomes less and less influential.

5. Concluding Remarks

In this paper, we have introduced the class of prefix-free codes where a specific symbol
(referred to as a “space") can only appear at the end of codewords. We have proposed a
linear-time algorithm to construct “almost"-optimal codes with this characteristic, and we
have shown that their average length is at most one unit longer than the minimum average
length of any prefix-free code in which the space can appear only at the end of codewords.
We have proven this result by highlighting a connection between our type of codes and the
well-known class of one-to-one codes. We have also provided upper and lower limits of
the average length of optimal prefix-free codes ending with a space, expressed in terms of
the source entropy and the cardinality of the code alphabet.

We leave open the problem of providing an efficient algorithm to construct optimal
prefix-free codes ending with a space. It seems that there is no easy way to modify the
classical Huffman greedy algorithm to solve our problem. It is possible that the more
powerful dynamic programming approach could be useful to provide an optimal solution
to the problem, as done in [14] for optimal binary codes ending with ones. This will be the
subject of future investigations.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Entropy 2024, 26, 283 16 of 16

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors would like to thank the referees and the Guest Editor I. Sason for
their corrections and useful suggestions.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Daniels, P.T.; Bright, W. (Eds.) The World’s Writing Systems; Oxford University Press: Oxford, UK, 1996.
2. Wikipedia: Writing Systems without Word Boundaries. Available online: https://en.wikipedia.org/wiki/Category:Writing_

systems_without_word_boundaries (accessed on 25 March 2024).
3. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2006.
4. Alon, N.; Orlitsky, A. A lower bound on the expected length of one-to-one codes. IEEE Trans. Inf. Theory 1994, 40, 1670–1672.

[CrossRef]
5. Blundo, C.; De Prisco, R. New bounds on the expected length of one-to-one codes. IEEE Trans. Inf. Theory 1996, 42, 246–250.

[CrossRef]
6. Jaynes, E. Note on unique decipherability. Ire Trans. Inf. Theory 1959, 5, 98–102. [CrossRef]
7. Shannon, C.E. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949.
8. Courtade, T.; Verdú, S. Cumulant generating function of codeword lengths in optimal lossless compression. IEEE Int. Symp. Inf.

Theory 2014, 2494–2498.
9. Kontoyiannis, I.; Verdú, S. Optimal lossless data compression: Non-asymptotics and asymptotics. IEEE Trans. Inf. Theory 2014, 60,

777–795. [CrossRef]
10. Kosut, O.; Sankar, L. Asymptotics and non-asymptotics for universal Fixed-to-Variable source coding. IEEE Trans. Inf. Theory

2017, 63, 3757–3772. [CrossRef]
11. Szpankowski, W.; Verdu, S. Minimum expected length of Fixed-to-Variable lossless compression without prefix constraints. IEEE

Trans. Inf. Theory 2011, 57, 4017–4025. [CrossRef]
12. Knuth, D. The Art of Computer Programming, Volume 3, 2nd ed.; Sorting and Searching; Addison Wesley Longman Publishing Co.,

Inc.: Boston, MA, USA, 1998.
13. Wyner, A. An upper bound on the entropy series. Inf. Control 1972, 20, 176–181. [CrossRef]
14. Chan, S.-L.; Golin, M.J. A dynamic programming algorithm for constructing optimal 1-ended binary prefix-free codes. IEEE Trans.

Inf. Theory 2000, 46, 1637–1644. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://en.wikipedia.org/wiki/Category:Writing_systems_without_word_boundaries
https://en.wikipedia.org/wiki/Category:Writing_systems_without_word_boundaries
http://doi.org/10.1109/18.333891
http://dx.doi.org/10.1109/18.481795
http://dx.doi.org/10.1109/TIT.1959.1057500
http://dx.doi.org/10.1109/TIT.2013.2291007
http://dx.doi.org/10.1109/TIT.2017.2686881
http://dx.doi.org/10.1109/TIT.2011.2145590
http://dx.doi.org/10.1016/S0019-9958(72)90365-8
http://dx.doi.org/10.1109/18.850708

	Introduction
	Relations between One-to-One Codes and Prefix Codes Ending with a Space
	Lower Bounds on the Average Length
	Upper Bounds on the Average Length
	Concluding Remarks
	References

