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Abstract: Diverse higher-order structures, foundational for supporting a network’s “meta-functions”,
play a vital role in structure, functionality, and the emergence of complex dynamics. Nevertheless,
the problem of dismantling them has been consistently overlooked. In this paper, we introduce the
concept of dismantling higher-order structures, with the objective of disrupting not only network
connectivity but also eradicating all higher-order structures in each branch, thereby ensuring thor-
ough functional paralysis. Given the diversity and unknown specifics of higher-order structures,
identifying and targeting them individually is not practical or even feasible. Fortunately, their close
association with k-cores arises from their internal high connectivity. Thus, we transform higher-order
structure measurement into measurements on k-cores with corresponding orders. Furthermore, we
propose the Belief Propagation-guided Higher-order Dismantling (BPHD) algorithm, minimizing
dismantling costs while achieving maximal disruption to connectivity and higher-order structures,
ultimately converting the network into a forest. BPHD exhibits the explosive vulnerability of network
higher-order structures, counterintuitively showcasing decreasing dismantling costs with increasing
structural complexity. Our findings offer a novel approach for dismantling malignant networks,
emphasizing the substantial challenges inherent in safeguarding against such malicious attacks.

Keywords: complex networks; higher-order structures; higher-order structure dismantling

1. Introduction

Given its profound implications in diverse dynamics and optimization problems [1–5],
the network dismantling [6,7] persists as a focal point in the realm of network science,
commanding substantial scholarly attention. For networks consisting of nodes connected
through edges, a prevailing assumption suggests that the structural connectivity of the
network stands as a prerequisite for its normal dynamics and functioning [7,8]. As a
result, disrupting this connectivity becomes a pivotal pursuit, with the aim of impairing
network functionality or destabilizing the intricate dynamics stemming from interconnec-
tivity. In particular, evaluating how network connectivity and functional states respond to
network dismantling or attack behaviors can be accomplished by monitoring the condition
of the giant connected component (GCC) [8]. Additionally, this monitoring facilitates the
assessment of the effectiveness and efficiency of dismantling strategies [9]. Let us refer to
this methodology as conventional dismantling.

However, rapidly accumulating research indicates that the paradigm of conventional
network dismantling is overly simplified, rendering it inadequate to explain certain com-
mon scenarios. For instance, complex functional behaviors can still emerge in many
networks with relatively small scales [10,11]. Conversely, even when a large network
is dismantled into smaller components, its functionality can still be maintained [12,13].
This is primarily because conventional dismantling often focuses on disrupting the net-
work’s overall connectivity. However, local clusters with high internal connectivity are
frequently only mildly affected, especially with certain dismantling methods based on
bridge edges [14], weak nodes [2], and communities [15,16], as well as reinsertion-based
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operations [17]. These methods aim to remove these local clusters as a whole to rapidly
reduce the size of the GCC, driven by cost considerations. These diverse local clusters often
serve as the structural foundation for higher-order interactions, playing a crucial role in
supporting local dynamics and the “meta-functions” [18,19]. Even when detached from
the GCC, their functionality may still be maintained.

Across the fields of biology [20], neuroscience [21], social systems [22], ecology [23],
and engineering [24], higher-order interactions are ubiquitous, referring to interactions
involving no fewer than three nodes [25,26]. These interactions cannot be decoupled into a
linear combination of pairwise interactions [27–29]. For instance, in brain networks, cliques
and cavities formed by brain regions serve as representative structures for local information
processing (such as memory and computation) and global information integration, enabling
the efficient operation of the brain in a distributed and parallel manner [30]. Clique topolo-
gies at the level of neurons also play a crucial role in behaviors such as movement and
sleep [31]. In protein–protein interaction networks, collaboration among multiple proteins
to fulfill specific functions is prevalent [32,33]. In ecological networks, communities formed
by multiple species through predation, dependence, or mutualistic relationships constitute
the fundamental building blocks of ecosystems [34,35]. In social systems, whether in social
relationships or communication, emergence in the form of modules or communities is
common [22,36,37]. In engineering and technological networks, the principle of modular
functional organization is widespread, with more complex tasks achieved through their
cooperative efforts [24]. These higher-order interactions are often modeled as hypergraphs
or simplicial complexes when closure properties are satisfied [19]. Conversely, in networks
lacking such higher-order interactions, such as cycle-free networks, complexity emergence
is challenging, even with a large scale [38–40].

Therefore, in network dismantling, merely focusing on connectivity is insufficient.
It is essential to simultaneously target the disruption of connectivity and the destruc-
tion of higher-order structures, prioritizing the dismantling of higher-order structures
for a more practical and thorough network dismantling. We refer to this as network
higher-order structure dismantling (NHSD). The NHSD represents a more generalized
dismantling problem, differing not only from conventional dismantling but also from k-core
dismantling [41], which is essentially based on k-core percolation (also known as bootstrap
percolation) [42,43]. The differences between NHSD and k-core dismantling primarily lie in
their assumptions and dismantling objectives. The assumptions of k-core dismantling stem
from percolation theory, assuming that a macroscopic feature of the system is primarily de-
termined by the giant component, and components disconnected from the giant component
are considered automatically deactivated. Therefore, the objective of k-core dismantling is
to dismantle higher-order k-cores within the giant component. However, in the context of
complex networks, given that networks often exhibit significant community characteristics,
their functionalities are distributed, and their design principles aim for modular functional
components. Even if some components detach from the giant component, they can still
function normally. NHSD addresses this complicated situation, aiming not only to disrupt
the connectivity of the giant component and the higher-order structures within it, but also
to eradicate higher-order structures in all other components.

In addition to thoroughly paralyzing the structure and functionality of networks, the NHSD
is closely linked to several studies, including blocking higher-order random walks [44], disrupt-
ing higher-order synchronization [45], hindering higher-order spreading [46], and obstructing
k-core percolation or k-clique percolation [47], among others.

To address the challenge of higher-order structure dismantling, this paper formalizes
this problem and introduces a methodology to address it. We discuss the mathematical
relationship between various higher-order structures and k-cores, proposing to utilize
the proportion of nodes in different k-cores as an indicator for the extent of disruption
in corresponding higher-order structures in the dismantling process. Subsequently, tak-
ing the scenario of edge dismantling as an example, we present the Belief Propagation-
guided Higher-order Dismantling (BPHD) algorithm, grounded in the belief propagation
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model [48,49]. This algorithm maximizes the dismantling of higher-order structures and
the GCC simultaneously, with minimal cost, and ensures that the survival quantity of
structures with higher orders is strictly lower than those with lower orders, not only in the
GCC but also in any arbitrary branch. Experimental results demonstrate the superiority
of our method over state-of-the-art benchmarks. Additionally, our algorithm exhibits
significant explosive vulnerability characteristics [17], implying systemic fragility in the
system’s higher-order interactions.

2. Network Higher-Order Structure Dismantling
2.1. Definition

Higher-order structures refer to the structures in a network that enable diverse higher-
order interactions to occur. These structures also exhibit remarkable diversity and may
include well-known entities such as k-cliques and k-cavities [30,50], a multitude of re-
laxed cliques and quasi-cliques [10,28,51,52], homogeneous subnetworks [53], functional
motifs [54,55], modules [56], and subgraphs with specific structures and functions [57,58],
among other categories. Figure 1 illustrates these diverse structures. For a node, its order is
defined as the order of the maximal higher-order structure it belongs to. For example, if a
node is part of a maximal clique that is a four-clique with five nodes, then its order is four.

Taking edge dismantling as an example, it represents a more general scenario than
node dismantling. The objective of the NHSD is to remove a minimum fraction qc of edges,
such that it maximally disrupts both the higher-order structures and connectivity of the
network. Its formal representation is given by the form:

qc = min


q ∈ (0, 1] : Sk-order(q) ≤ Hk, S(k−1)-order(q) ≤ Hk−1,

· · · ,
S2-order(q) ≤ H2 and SGCC ≤ C

 (1)

where Sk-order(q) denotes the proportion of nodes with an order k in the residual net-
work after removing edges with a fraction q. Note that this calculation includes nodes
regardless of whether they are part of the GCC or not. SGCC denotes the number of nodes
in the GCC obtained after removing edges with a fraction q. The constant sequences
Hk, Hk−1, . . . , H2 correspond successively to the dismantling targets for higher-order struc-
tures with orders k, k − 1, . . . , 2, while the constant C represents the dismantling target
for connectivity. In this context, we assume that structures with higher orders k are more
crucial for dynamics, and, therefore, they should be prioritized for disruption. This is mani-
fested by Hk, Hk−1, . . . , H2 being monotonically non-decreasing as the order k decreases.
In general, the choice of the connectivity goal C should ensure that all higher-order goals
{Sk-order(q) ≤ Hk} hold true.

2.2. Evaluation Metrics

To evaluate the effectiveness of higher-order structure dismantling, individually count-
ing all higher-order structures would be intricate, inefficient, and sometimes unfeasible.
For instance, certain functionalities might be realized by groups of nodes with unknown
precise structures or structures that deviate from typical higher-order formations. However,
regardless of the specific type, these structures inherently exhibit high local connectivity,
a crucial characteristic reflected by their respective k-core values.

Specifically, structures like k-cliques or homogeneous subnetworks with a degree k all
belong to the category of k-cores; a k-plex composed of m nodes corresponds to a (m − k)-
core; the smallest k-cavity corresponds to a 2k-core; a γ-quasi-clique composed of m nodes
corresponds to γ · (m − 1)-core; and so forth. Their relationships with k-cores are illustrated
in Figure 1. Additionally, motifs, modules, and specific functional subgraphs in a given
network typically exhibit identifiable structures that readily reveal their associations with
k-cores. In essence, the k-core can be regarded as a relaxed version of these higher-order
structures in the corresponding order: as k increases, the order of various higher-order
structures within k-cores also rises. In fact, it is the existence of these higher-order structures
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that gives rise to the emergence of k-cores in the network. Therefore, by measuring the
changes in the size of k-cores corresponding to various values of k, we can accurately assess
the extent to which higher-order structures have been dismantled.

Figure 1. Various higher-order structures and their relationships with corresponding k-cores. (a) A
3-clique, where a k-clique is a fully connected subgraph with k + 1 nodes. (b) A 3-plex, where a k-plex
is a relaxed clique composed of m nodes; the degree of any node is at least m − k. (c) The smallest
3-cavity, where each node has a degree of 6. (d) A 3/4-quasi-clique, where a γ-quasi-clique is a relaxed
clique, and all nodes in it have a degree of at least γ · (m − 1), with m being the number of nodes,
and γ ∈ (0, 1]. (e) A homogeneous subnetwork, where all nodes have the same degree, the same
node girth, and the same node path-sum [53]. A k-clique, the smallest k/2-cavity, and homogeneous
subnetwork with nodes of degree k are all examples of a k-core; a k-plex is an m − k-core, and a
γ-quasi-clique is a γ · (m − 1)-core.

Therefore, a concise yet highly efficient approach is to count the node sizes of k-cores
for each order in all branches, offering a robust reflection of the algorithm’s effectiveness
in dismantling higher-order structures with various levels of complexity. Consequently,
Equation (1) can be transformed into

qc = min


q ∈ (0, 1] : Sk-core(q) ≤ Hk, S(k−1)-core(q) ≤ Hk−1,

· · · ,
S2-core(q) ≤ H2 and SGCC ≤ C

 (2)

where Sk-core(q) denotes the proportion of nodes within k-cores in the residual network
after removing edges with a fraction q. This kind of evaluation enables us to make a reliable
estimate of the quantity of higher-order structures and their response to the dismantling
algorithm without explicitly calculating the specific higher-order structures.

In extreme cases, we may require the dismantling of all higher-order structures with
k ≥ 2, i.e., Hk = Hk−1 = . . . = H2 = 0. For simplicity, Hk, Hk−1, . . . , H2 can be abbreviated
as H, and H = 0. In this case, Equation (2) can be written as

qc = min


q ∈ (0, 1] : Sk-core(q) = S(k−1)-core(q) =,

· · · ,
= S2-core(q) = H and SGCC ≤ C

 (3)

In this paper, we focus on the dismantling of all higher-order structures, setting H = 0
and C = 0.01N, where N represents the network size.

3. Belief Propagation-Guided Higher-Order Dismantling

Here, we propose a solution, the Belief Propagation-guided Higher-order Dismantling
(BPHD) algorithm, to address the NHSD problem in the context of edge removal. The inspi-
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ration for the BPHD algorithm comes from the BPD algorithm [49]. In scenarios involving
node attacks on the GCC of the network, BPD has demonstrated the capability to induce a
catastrophic collapse of the GCC in the late stages of the attack. This can be attributed to
the intrinsic nature of BPD as an algorithm for constructing a minimum feedback vertex set,
which aims to find the smallest set of nodes that includes at least one node from each cycle
in the network [48]. Consequently, when nodes selected by BPD are removed from the
network, the network transforms into a forest, leading to an explosively disruptive impact
on its scale. Here, “forest” refers to a network consisting solely of disconnected tree-like
components. This aligns precisely with the objectives of higher-order dismantling. On the
other hand, the outstanding performance of BPD has also been demonstrated through the
replica-symmetric mean field theory of the spin-glass model [48].

We generalize the BPD algorithm to the edge dismantling scenario, resulting in the
BPHD algorithm. In contrast to node dismantling, where each iteration involves remov-
ing all edges adjacent to the target node, edge dismantling, by independently removing
one edge at a time, demonstrates greater generality, lower cost, feasibility, and broader
applicability. Let the marginal probability p0

i , similar to the case of nodes [49], denote the
probability that edge i should be prioritized for removal in each iteration. It is determined
by the following expression:

p0
i =

1

1 + ex
[

1 + ∑k∈∂i
(1−p0

k→i)
p0

k→i+pk
k→i

]
∏j∈∂i

[
p0

j→i + pj
j→i

] , (4)

where x is an adjustable reweighting parameter and ∂i is the set of neighboring edges of
edge i; i.e., those edges sharing a node with i. p0

j→i and pj
j→i represent the probability that

edge j is suitable for removal after the removal of edge i and the probability that edge j is
suitable to be the root edge of a tree component in the absence of edge i, respectively. As-
suming edge i is removed, the two conditional probabilities are determined self-consistently
through the following two belief propagation (BP) equations:

p0
i→j =

1
zi→j

, (5)

pi
i→j =

ex ∏k∈∂i\j

[
p0

k→i + pk
k→i

]
zi→j

, (6)

where ∂i\j is the edge subset obtained by removing edge j from set ∂i and zi→j is a
normalization constant determined by

zi→j = 1 + ex ∏
k∈∂i\j

[
p0

k→i + pk
k→i

]
×

1 + ∑
l∈∂i\j

(
1 − p0

l→i
)

p0
l→i + pl

l→i

. (7)

Under the Bethe–Peierls approximation, we directly apply the BP equations to edges
through an edge-to-node mapping, which is directly reflected in the expressions of marginal
probability p0

i and the BP equations. In the original node dismantling scenario [49], nodes
involved in the most cycles were prioritized for removal, whereas, after the edge-to-node
mapping, edges involved in the most cycles are identified and prioritized for removal.
On the other hand, structures of higher order entail more nested cycle structures, thereby
being preferentially targeted for removal by the BPHD algorithm.

In each iteration, BPHD removes the edge with the highest marginal probability p0
i in

the current network. We employ the BPHD iteratively to remove edges until reaching the
connectivity dismantling target SGCC ≤ C. At this point, we assess whether the objective
of higher-order dismantling has also been met. If so, the dismantling process concludes;
otherwise, it continues until Equation (3) is satisfied. It is worth noting an exceptional
scenario where BPHD, despite iteratively disrupting all cycles in the network, fails to satisfy
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SGCC ≤ C. In this case, the network transforms into a forest, and our dismantling problem
degrades into the conventional dismantling. Here, the strategy involves selecting edges
that most rapidly reduce the size of the forest until SGCC ≤ C is achieved. The process
of dismantling higher-order structures with varying orders by BPHD in an illustrative
network is depicted in Figure 2. In terms of time complexity, owing to the efficiency of the
Belief Propagation model, the BPHD algorithm is O(MlnM), with M being the number of
edges in the network.

Figure 2. Schematic representation of the BPHD algorithm in the process of dismantling higher-
order structures. Here, cliques with varying orders are used to represent different higher-order
structures. Nodes of different colors indicate their membership in cliques of different orders in the
original network, and shadows of different colors represent the current k-cores with various orders.
Dashed edges depict the edges removed by BPHD in the current stage. In Stage 1, a 4-clique is
dismantled into a 3-clique, resulting in the disappearance of a 4-core. In Stage 2, two 3-cliques are
dismantled, leading to the loss of two 3-cores. In Stage 3, all 2-cliques and cycles are dismantled,
ultimately yielding a forest.

4. Results

To evaluate the performance of BPHD, we conducted experiments on six networks, en-
compassing two classic model networks, Erdős–Rényi (ER) networks [59] and Barabási–Albert
(BA) networks [60]. In a BA network with a given number of nodes N and model param-
eter m, this indicates that each new node connected to m existing nodes and all nodes
in the network belong to the m-core. Furthermore, the presence of hub nodes facilitates
the straightforward construction of higher-order structures. Additionally, four diverse
empirical networks were considered: the protein–protein interaction network of yeast
(Yeast) [61], the scientific collaboration network (Collaboration) [62], the email network
(Email) [62], and the online social network (Social) [9]. The basic properties of these six
networks are outlined in the first three columns of Table 1.
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Table 1. The basic attributes of the six networks and the optimal and suboptimal dismantling costs
in connectivity dismantling. The first five columns provide the basic attributes about the networks,
including the network name, number of nodes (N), number of edges (M), average degree (⟨k⟩),
and the maximum order kmax of the k-core in the network. The last two columns list the optimal
and suboptimal dismantling costs in connectivity dismantling to achieve the dismantling target
C = 0.01N. The optimal results are indicated in bold.

Dismantling Cost

Network N M ⟨k⟩ kmax BPHD Suboptimal

ER 10,000 35,000 7.00 5 0.74 0.84
BA 10,000 49,985 10.00 5 0.82 0.88
Yeast 2375 11,693 9.85 40 0.79 0.84
Collaboration 5094 7515 2.95 7 0.51 0.75
Email 1134 5451 9.61 11 0.80 0.93
Social 2000 16,098 16.10 24 0.85 0.88

Although the NHSD problem is a novel problem, certain existing dismantling algo-
rithms can still serve as valuable benchmarks. Specifically, the connectivity dismantling
target SGCC ≤ C in Equation (3) aligns completely with the original objectives of Bridgeness
(BG) [63] and Edge Betweenness (EB) [64]. Furthermore, three node dismantling strategies
renowned for their outstanding performance, namely Collective Influence (CI) [2], Explo-
sive Immunization (EI) [4], and Generalized Network Dismantling (GND) [9], should also
be taken into consideration. These three algorithms, as opposed to computing scores for
each edge and removing one at a time, individually calculate scores for nodes and remove
all adjacent edges of the selected node each time. On the other hand, for the higher-order
dismantling target in Equation (3), we still consider BG and EB, as the removal of critical
edges identified by them can inflict severe damage on higher-order structures. Additionally,
we include a strategy with state-of-the-art performance in k-core dismantling through node
removal, Cycle-Tree-Guided-Attack (CTGA) [65]. The detailed definitions of these baseline
methods can be found in Section 6.

4.1. Connectivity Dismantling

To facilitate clearer visualization and discussion, we analyze the performance of BPHD
separately in connectivity dismantling and higher-order dismantling. Figure 3 demon-
strates that the proposed BPHD strategy outperforms baseline algorithms in conventional
dismantling, achieving the lowest-cost dismantling. The specific dismantling costs of BPHD
and suboptimal methods when reaching the dismantling goal defined in Equation (3) are
presented in the last two columns of Table 1. For an ER network with an average degree of
seven, BPHD only needs to remove a fraction of 0.74 of the edges, whereas the lowest-cost
algorithm among the baselines, the EI algorithm, requires the removal of 0.84. In the case
of a BA network with an average degree of 10, indicating higher density, BPHD requires
the removal of 0.82, while the suboptimal algorithm necessitates 0.88. Similarly, for the four
empirical networks, BPHD performs optimally in all cases. The most significant perfor-
mance improvement is observed in the Collaboration network, saving 32% of the removal
cost compared to the suboptimal algorithm. Additional results for C values of 0.03N and
0.06N can be found in Figures S1 and S2 in the Supplementary Materials, with consistent
conclusions. The results indicate that for various dismantling targets C, the BPHD algo-
rithm can also achieve a conventional dismantling task with lower costs compared to other
benchmarks in most cases; only in few cases is the dismantling cost of BPHD higher than
benchmarks. In general, the higher the network density, the higher the cost.
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Figure 3. Performance of BPHD in connectivity dismantling. Here, q and SGCC(q) represent the
edge removal proportion and the corresponding relative size of GCC in the network, respectively.
The dismantling objectives are set as C = 0.01N.

Additionally, the dismantling process of BPHD exhibits a distinctive explosive vul-
nerability pattern [17], where the early-stage GCC’s size remains nearly unchanged until
reaching a certain threshold, after which it rapidly decreases. This pattern is evident across
all networks except for the Collaboration network, contrasting with the continuous de-
cline observed in benchmark algorithms. The BPHD dismantling process demonstrates
a pronounced stealthiness, as the removal of crucial edges in the early stages does not
significantly disrupt connectivity but focuses more on dismantling higher-order structures,
as illustrated in Figure 2. As the network is dismantled into a tree-like structure in the
later stages, the GCC undergoes an irreversible collapse suddenly. This combination of
early-stage stealthiness and late-stage abruptness poses formidable challenges to network
security and robustness.

4.2. Higher-Order Structure Dismantling

Figures 4 and 5 showcase the results of higher-order dismantling achieved by BPHD,
where we exemplify the cases of 5-core, 4-core, 3-core, and 2-core. Consistent with
Equation (3), we utilized the relative size of k-cores at each order in all branches as a
signal for the variation in higher-order structures of corresponding order in dismantling.
Figure 4 compares BPHD with two distinguished edge dismantling strategies, BG and
EB. Specifically, colors ranging from dark to light correspond to orders from high to low,
and all higher-order structures are sequentially eradicated by BPHD, perfectly aligning
with the higher-order dismantling objective in Equation (3), in both synthetic and empirical
networks. In contrast, EB and BG do not exhibit such efficiency, as various higher-order
structures persist in the final stages of dismantling, indicating their inefficacy in higher-
order dismantling, especially in empirical networks. Moreover, for each order of higher-
order structure dismantling, BPHD incurs the lowest dismantling cost and demonstrates
a more pronounced advantage over baseline methods in empirical networks. Additional
results for other higher-order dismantling objectives can be found in Figures S3 to S6 in the
Supplementary Materials. Overall, even when facing different higher-order dismantling
objectives, BPHD can dismantle higher-order structures in the network faster than EB and
BG in most cases, only inferior to the baseline algorithms in a small number of cases. Finally,
we observe that empirical networks often require the removal of a higher proportion of
edges, with the costs for extinguishing higher-order structures at different orders being
closer and the discontinuity in size reduction being weaker in the later stages, indicating the
stronger robustness of empirical networks compared to synthetic networks. This implies
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that there might be robust mechanisms at play in empirical networks that are yet unknown
to us.

Figure 4. Performance comparison of BPHD with two classical algorithms in higher-order structure
dismantling. Here, q and Sk−core(q) denote the edge removal proportion and the corresponding
proportion of nodes with k− core value equal to k in all branches, respectively. Each color corresponds
to a specific algorithm, with shades from dark to light indicating the dismantling results for different
orders k. The dismantling objectives are set as C = 0.01N and H = 0.

Figure 5 illustrates the performance comparison between BPHD and CTGA. Both
BPHD and CTGA are based on the belief propagation model. However, the CTGA al-
gorithm requires setting a specific parameter K for specific-order K-core attack tasks to
achieve its optimal attack cost, whereas BPHD is parameter-free. Therefore, the k-core
dismantling results of CTGA for orders k =5, 4, 3, and 2 in Figure 5 correspond to the cases
where K is set to 5, 4, 3, and 2, respectively. In all instances, the BPHD algorithm achieves
its optimal attacks against various orders of higher-order structures with a single execution,
a remarkable advantage compared to the CTGA algorithm. The detailed dismantling costs
for BPHD and CTGA across different orders of k-core are presented in Table 2.

We observe that BPHD outperforms CTGA in the dismantling of k-cores at various
orders, demonstrating lower dismantling costs, except for the Yeast and Collaboration
networks. This implies that the edges identified by the NPHD algorithm are genuinely im-
portant, contributing to the integrity of higher-order structures at various orders. Moreover,
in terms of dismantling patterns, BPHD exhibits a more pronounced explosive vulnera-
bility, especially at lower orders. Some of the differences between BPHD and CTGA can
be attributed to CTGA’s focus on node dismantling, removing all adjacent edges of the
target node in each iteration. However, comparing CTGA with the results of BG and EB in
Figure 5, CTGA’s advantages in higher-order dismantling are evident.

In contrast to conventional dismantling (such as BG and EB), higher-order struc-
tures become the most vulnerable in higher-order dismantling patterns, requiring the
least removal to be effectively dismantled. This is unlike benchmark algorithms where
higher-order structures persist until the later stages of dismantling, as evidenced in the
empirical networks in Figure 4. The observed higher-order vulnerability and the covert
nature of BPHD’s dismantling strategy underscore the need for increased attention to
the robustness of higher-order structures within a system. Additional results for other
higher-order dismantling objectives can be found in Figures S7–S10 in the Supplementary
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Materials. For different dismantling objectives with respect to different orders, BPHD
completes higher-order dismantling tasks with lower costs in most cases compared to
CTGA. Furthermore, Figure S11 in the Supplementary Materials illustrates two types of
dismantling results on a synthetic network with significant community features, where it
can be observed that the performance of BPHD remains competitive. For the connectivity
dismantling, it can be observed that BPHD does not exhibit superiority, as conventional
dismantling algorithms are tailored for such community structures, effectively considering
community characteristics and selectively removing inter-community edges. Conversely,
for the higher-order dismantling, BPHD demonstrates significant advantages over BG and
EB, comparable to the performance of CTGA.

Figure 5. Performance comparison of BPHD with the CTGA algorithm in higher-order structure
dismantling. Here, q and Sk−core(q) denote the edge removal proportion and the corresponding
proportion of nodes with k− core value equal to k in all branches, respectively. Each color corresponds
to a specific algorithm, with shades from dark to light indicating the dismantling results for different
orders k. The dismantling objectives are set as C = 0.01N and H = 0.

Table 2. The dismantling costs of EBPD and CTGA for higher-order structure dismantling at different
orders. Specifically, each fraction represents the proportion of edges that need to be removed in
the corresponding k-core dismantling to achieve the dismantling targets C = 0.01N and H = 0.
The optimal results in each column are indicated in bold.

Dismantling Cost

2-Core 3-Core 4-Core 5-Core

Network BPHD CTGA BPHD CTGA BPHD CTGA BPHD CTGA
ER 0.75 0.83 0.49 0.58 0.26 0.30 0.02 0.03
BA 0.82 0.76 0.64 0.70 0.44 0.51 0.25 0.29
Yeast 0.84 0.91 0.82 0.81 0.77 0.71 0.67 0.63
Collaboration 0.78 0.66 0.39 0.35 0.25 0.15 0.13 0.06
Email 0.82 0.90 0.70 0.78 0.53 0.66 0.47 0.51
Social 0.89 0.96 0.88 0.91 0.85 0.86 0.75 0.80

5. Conclusions and Discussion

The higher-order structures within networks play a crucial role in maintaining net-
work architecture, functionality, and giving rise to diverse complex dynamics, garnering
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attention across various domains. However, their vulnerability and dismantling problems,
closely tied to the former, have not received sufficient consideration. In this paper, we
introduce the network higher-order structure dismantling problem, building upon con-
nectivity dismantling and specific k-core dismantling, and underscore the importance of
completely disrupting all higher-order structures within all branches of a network. Given
the diversity and, in many cases, the unknown specifics of higher-order structures, monitor-
ing the response of each individual structure to dismantling algorithms is often inefficient
and, in some instances, unfeasible. Fortunately, the strong internal connectivity of most
higher-order structures establishes a close association with the corresponding k-cores. We
demonstrate this tight relationship, thereby simplifying the problem of evaluating the
efficiency of higher-order dismantling algorithms by monitoring the changes in the k-core
values of all nodes. Consequently, we devise a universal framework for higher-order
structure dismantling.

Furthermore, we propose an efficient algorithm for higher-order structure dismantling,
BPHD, based on belief propagation. Compared to baseline methods, BPHD achieves mini-
mal edge removal cost, maximizing connectivity dismantling and ensuring the complete
eradication of all higher-order structures of order two and above. It ultimately transforms
the network into a forest, eliminating the possibility of sustaining any complex dynamics
or functionality.

BPHD exposes an extraordinary fragility of the network core in higher-order structure
attacks. It achieves highly efficient dismantling of the highest-order structures with minimal
cost, and, remarkably, higher-order structures collapse earlier as their order increases.
Additionally, both diverse higher-order structures and connectivity can be explosively
dismantled, manifesting as an early-stage, imperceptible process, followed by a rapid and
irrecoverable collapse in the later stages. This suggests that both the core and periphery
of the network exhibit explosive vulnerability, posing significant challenges for network
maintenance and defense against malicious attacks.

Theoretical and practical implications of the network higher-order structure disman-
tling problem are vast, and this will be the focal point of our future endeavors. This
approach finds applications in modeling and phase transitions in higher-order percola-
tion [66], interrupting disease propagation on simplicial complex networks [46], minimizing
costs in viral marketing, communication disruption in drone swarms [67], as well as the
thorough dismantling of criminal networks and terrorist organizations [68].

6. Methods

Bridgeness (BG): Bridgeness [63] is a local index used to measure the significance of
an edge in maintaining the global connectivity of a network. For edge e(u, v) , its ability to
connect the large clusters in the network is defined as

Be(u,v) =

√
SuSv

Se(u,v)
, (8)

where Su, Sv and Se(u,v) are the sizes of the largest clusters containing node u, node v, and
edge e(u, v), respectively.

Edge Betweenness (EB): Edge Betweenness [64] is a centrality measure used to identify
the edges that are most important for maintaining the global connectivity of a network.
According to the idea that the more shortest paths between pairs of nodes pass through an
edge e(u, v), the more important the edge e(u, v) is, the centrality of edge e(u, v) is defined as

EB(u, v) = ∑
s ̸=t∈V

δst(u, v)
δst

, (9)

where δst is the number of all shortest paths between node s and node t, and δst(u, v) is
the number of all shortest paths between node s and node t that pass through edge e(u, v).
A larger EB score means greater importance of the edge.
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Collective Influence (CI): The CI algorithm [2] identifies the smallest set of influencers
by solving the node-based optimal percolation problem. Given the parameter ℓ, the value
of CIℓ(u) of node u in the network is defined as follows:

CIℓ(u) = (ku − 1) ∑
v∈∂Ball(u,ℓ)

(kv − 1), (10)

where ku is the degree of node u and ∂Ball(u, ℓ) denotes the set of nodes in the network
whose shortest path length to u is ℓ. Here, we set ℓ to be 3.

Explosive Immunization (EI): The EI algorithm [4] is a method used to interrupt the
spread of infection in a network. It combines the explosive percolation (EP) paradigm with
the idea of maintaining a fragmented distribution of clusters. This algorithm heuristically
utilizes two node scores, σ

(1)
u and σ

(2)
u , to estimate a node’s ability to interrupt infection

propagation at two phases, which are defined as follows:

σ
(1)
u = k(eff)

u + ∑
C⊂Nu

(
√
|C| − 1). (11)

The first term k(eff)
u is the effective degree of node u, which is determined self-

consistently from the original degree ku:

k(eff)
u = ku − Lu − Mu

({
k(eff)

v

})
, (12)

where Lu and Mu are the number of leaf and hub nodes in the vicinity of u, respectively.
During the iteration, nodes with effective degree k(eff)

v ≥ K are regarded as hub nodes for a
suitably chosen constant K. Here, we set K to be 6. The second term is determined by the
size |C| of cluster C in the set Nu of all clusters linked to u.

As the percolation process proceeds, some harmful nodes identified by σ
(1)
u become

harmless. To distinguish the influence of nodes more accurately, the EI algorithm uses σ
(2)
u

to evaluate the influence of nodes in Phase 2.

σ
(2)
u =


∞ if G(q) ̸⊂ Nu,
|Nu| else, if arg minu|Nu| is unique,
|Nu|+ ϵ|C2| else.

(13)

Here, G(q) is the largest cluster as qN nodes are removed, |Nu| is the number of
clusters in the neighborhood of u, C2 is the second-largest cluster in Nu, and ϵ is a small
positive number (its value is not important provided ϵ ≪ 1

N ). See the original article [4] for
more details about the EI algorithm.

Generalized Network Dismantling (GND): The GND algorithm [9] is a method
designed to fragment the network into subcritical network components with a minimal
removal cost. It is based on the spectral properties of the node-weighted Laplacian operator
Lw , and thereby transforms the generalized network dismantling problem into an integer
programming problem as shown below.

min
x={x1,x2,...,xn}

1
4

x⊤Lwx, (14)

subject to
1⊤x = 0,

xi ∈ {+1,−1}, i ∈ {1, 2, . . . , n}.
(15)

We assume that the network G(V, E) is divided into two parts: M ⊆ V and M̄ = V\M.
The elements of x represent whether a node i belongs to the set M or not: xi = +1 if node
i belongs to the set M; otherwise, xi = −1. GND follows the standard relaxation from
the integer constraint xi ∈ {+1,−1} to xi ∈ R. The solution to this relaxed constrained



Entropy 2024, 26, 248 13 of 15

minimization problem is given by the second-smallest eigenvector of the node-weighted
Laplacian λ2x(2) = Lwx(2). For each step, GND removes all of the nodes i whose corre-
sponding value in the second-smallest eigenvector is nonnegative (x(2)i ≥ 0) and has a

neighbor j with a negative entry (x(2)j < 0). Ultimately, the network will fragment into
two subnetworks M and M̄. It achieves high performance by combining the approxima-
tion spectrum of the Laplace operator with a fine-tuning mechanism associated with the
weighted vertex cover problem.

Cycle-Tree-Guided-Attack (CTGA) The CTGA algorithm [65], based on the tree-
packing model [48], extends the original model to the k-core attack problem by allowing
different tree components to be adjacent to each other and permitting additional edges
within each tree component. The algorithm iteratively determines the removal probability
of nodes using a coarse-grained vertex state represented in groups of four and removes
nodes one by one starting with those having the highest removal probability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e26030248/s1, Reference [69] is cited in the supplementary mate-
rials.
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