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Abstract: The problem of state estimation based on bearing-only sensors is increasingly important
while existing research on distributed filtering solutions is rather limited. Therefore, this paper
proposed the novel distributed cubature information filtering (DCIF) method for addressing the state
estimation challenge in bearing-only sensor networks. Firstly, the system model of the bearing-only
sensor network was constructed, and the observability of the system was analyzed. The sensor
nodes are paired to measure relative angle information. Subsequently, the coordinated consistency
theory is employed to achieve a unified state estimation of the maneuvering target. The DCIF
method enhances the observability of the system, addressing the issues of large accuracy errors
and divergence in traditional nonlinear filtering algorithms. Building upon the theoretical proof
of consistency convergence in DCIF, four simulation experiments were conducted for comparison.
These experiments validate the effectiveness and superiority of the DCIF method in bearing-only
sensor networks.

Keywords: bearing-only sensor network; state estimation; DCIF algorithm; cooperative consistency
theory

1. Introduction

With the development of target tracking and locating technology based on various
sensors, the research on state estimation methods as one of the core technologies is becoming
more and more important; it can be divided into active sensors and passive sensors. The
passive state estimation method mainly refers to the target tracking and positioning through
the perception of the target electromagnetic or infrared signal by the sensor, including
the signal radiated by the target and the signal reflected from the environment. This
measurement technique does not require the sensor to actively emit electromagnetic or
infrared signals but only needs to passively receive signals from the environment [1].
Compared with the observation mode of the active sensor, the most significant difference
is that the information obtained by the passive sensor is limited and incomplete, which
cannot satisfy the accuracy of target positioning. The bearing-only sensor is one of the most
typical and widely used passive sensors.

The target information obtained by a single bearing-only sensor is limited and in-
complete, which cannot satisfy the accuracy of target tracking. Therefore, in the practical
application of bearing-only sensors, according to different information fusion processing
methods, the configurations of sensors can be further divided into centralized, distributed
and hybrid [2]. The traditional bearing-only sensor networks are mostly centralized pro-
cessing. This method fully utilizes the information of all sensors and it can obtain higher
accuracy. However, this method imposes a large computational burden on the central
processing unit, and the system has low fault tolerance, resulting in poor adaptability
in complex environments. The hybrid type also has the disadvantages of a centralized
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structure. Nowadays, distributed system structures with stronger advantages have been
widely researched and applied. This configuration firstly processes the data of the sensor
network locally and then fuses these local estimations non-centrally to obtain the global
state estimation. It disperses the computational burden of the central node, enables parallel
processing of data, and enhances the reliability and fault tolerance of the system while
ensuring filtering accuracy [3].

Bearing-only sensors acquire target information by passively receiving azimuth and
elevation angles from the target. They offer a long working range, strong concealment, and
high adaptability to the working environment [4]. The use of bearing-only sensors reduces
electromagnetic radiation, efficiently utilizes existing signal sources, and minimizes spec-
trum and energy requirements [5]. Its non-emitting characteristics improve electromagnetic
compatibility and help reduce electromagnetic interference to other systems. On this basis,
the multi-sensor system can obtain more accurate target status information and stronger
stability through data fusion.

Especially in the coordinated detection of stealth maneuvering targets with excellent
penetration capabilities, the blinding effect of stealth aircraft on active sensors such as
radars and lasers can enable them to have superior penetration and confrontation capabil-
ities [6]. Bearing-only sensors relying on pure angle measurement are the main solution
in the current anti-stealth technology field because they only need to use the infrared or
electromagnetic signals radiated by the stealth aircraft itself for detection [7]. The devel-
opment of stealthy maneuvering targets has disrupted the existing balance of military
confrontations. The imminent advancement of anti-stealth technology is crucial. Relevant
academic research and engineering applications have been highly valued by the relevant
departments of various countries in the world, and they are all competing to develop this
cooperative state estimation technology based on a bearing-only sensor network.

In terms of academic research, the state estimation problem of nonlinear systems is
solved by a variety of filter designs, mainly the Kalman Filter (KF) [8], Extended Kalman
Filter (EKF) [9,10], Unscented Kalman Filter (UKF) [11,12], and Cubature Kalman Filter
(CKF) [13,14]. These traditional methods all use the idea of KF to represent the system
state and uncertainty with state vectors and covariance matrices. They are suitable for
linear systems or approximately linear systems, with inevitable performance limitations for
highly nonlinear systems that may require more computing resources, especially in high-
dimensional state spaces. To improve the shortcomings of traditional filters, the Cubature
Information Filter (CIF) was proposed by Chandra [15]. The CIF uses the Fisher information
matrix (FIM) and information vector to represent system status and uncertainty [16]. Its
nonlinear state estimation is better and easier to handle because it does not require a
linearization process but directly operates on the information matrix (IM). Since then, CIF
has gained significant traction in addressing estimation challenges posed by nonlinear
systems [17]. On this basis, with the development of sensor network technology and
information fusion technology, centralized CIF (CCIF) [18] and distributed CIF (DCIF) [19]
algorithms have been further studied.

In engineering applications, CIF with better effects is applied to locate targets [20]. CIF
is also widely used in the location of passive sensor networks in the fields of aviation [21],
spaceflight [22] and navigation [23]. A distributed algorithm leveraging IMM was proposed
by [24] to enhance the reliability of target tracking. The challenge of distributed network
target tracking is tackled in [25] by employing the square-root CIF.

Through investigation and summarization, it has been observed that the CIF method
is less commonly applied in the field of maneuvering targets compared to the KF and its
improved versions. Moreover, research on efficient and stable DCIF in sensor networks
is limited, especially in bearing-only sensor networks. It is necessary to consider how to
design a locally applicable CIF that is suitable for observation constraints and to distribute it
in a global manner to achieve DCIF. This paper focuses on the bearing-only sensor network
and the distributed collaborative state estimation method, which is still a novel problem
that urgently needs to be studied. The objective of this paper is to introduce a distributed
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state estimation technique designed for bearing-only sensor networks. This method aims
to effectively and reliably track and locate maneuvering targets in a stable and efficient
manner. The main innovative contributions are as follows.

1. To construct the positioning model based on a bearing-only sensor network and
analyze the observability of the system;

2. Based on observability analysis, the local CIF for a pair of bearing-only sensors is
proposed and verified through simulation experiments;

3. By designing the consistency protocol of the global network, the local CIF is extended
to the entire bearing-only sensor network. The consistency of system convergence
is proven, and simulation experiments are conducted to verify the effectiveness and
superiority of the DCIF.

The remainder is organized as follows: Section 2 constructs a system model for
target tracking through the angle of arrival (AOA) via a bearing-only sensor network, and
performs the systematic observability analysis. In Section 3, the local CIF based on bearing-
only sensor node pairs is proposed, and then the CIF is extended to the entire bearing-only
sensor network through the collaborative consistency theory, and the DCIF algorithm
suitable for distributed system network is obtained and proved. Section 4 substantiates the
effectiveness and superiority of the DCIF method via four simulation experiments. Finally,
the research content and future work directions of this paper are summarized.

Notation: This paper employs bold letters to signify vectors or matrices. Define
γi ∈ (−π, π]. E(·) denotes expectation.

2. System Model

The system model comprises three components. The initial component encompasses
the measurement model of the bearing-only sensor pair within the local network. The
second component entails the co-location model of the global bearing-only sensor network.
The last one is the motion model describing the maneuvering target state.

2.1. Local Measurement Model of Bearing-Only Sensor Pair

In the process of cooperative detection for the target by the bearing-only sensor
network model. Each sensor is capable of independently measuring both the azimuth
and elevation angles with respect to the target, as shown in Figure 1. The positions of
the bearing-only sensor pairs are Si(xi(k), yi(k), zi(k)) and Sj

(
xj(k), yj(k), zj(k)

)
, which

measure the same target T. The elevation angle and azimuth angle measured by Si are θi
and φi. Similarly, the two angles measured by Sj are θj and φj.

The target is X(t) = [xt(k), yt(k), zt(k), ẋt(k), ẏt(k), żt(k), ẍt(k), ÿt(k), z̈t(k)]
T, where

x(t), y(t), z(t) are the coordinates of the target along the three axes, respectively. ẋ(t), ẏ(t),
and ż(t) represent the velocity of the target along the three axes, respectively. ẍ(t), ÿ(t),
z̈(t) represent the accelerations of the target along the three axes, respectively.

In three-dimensional space, the vectors of the bearing-only sensor node pair and the
target are

−→
OSi = (xi, yi, zi)

T,
−→
OSj = (xj, yj, zj)

T and
−−→
OST = (xt, yt, zt)

T. By utilizing the
AOA measurement method [26], it is possible to derive the spatial coordinates of the target.

xt = xi +
(yj − yi) cos φj cos φi − (xj − xi) sin φj cos φi

sin(φi − φj)

yt = yi +
(yj − yi) cos φj sin φi − (xj − xi) sin φj sin φi

sin(φi − φj)

zt = zi +
(yj − yi) cos φj sin θi − (xj − xi) sin φj sin θi

cos θi sin(φi − φj)

(1)

when θi = θj and φi = φj, the target line of sight of the sensor node pair coincides, the
system of equations has no solution.
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Figure 1. The system model.

Assumption 1. The triangular geometric relationship between the bearing-only sensor node pair
and the target satisfies the requirement of state estimation.

In the observation model of the bearing-only sensor network, two sensors and the
target form a triangular geometric relationship for state estimation, as shown in Figure 1.
In the formed triangle, 

Ri =
sin γj

sin γij
Rij

Rj =
sin γi

sin γij
Rij

γij = π − (γi + γj)

(2)

where Ri represents the distance between Si and T. Rj represents the distance between
Sj and T. Rij represents the distance between Si and Sj. γij represents the angle between
the two bearing-only sensors and the target line of sight, which is called the line of sight
separation (LOSS) angle. γi is the angle between Si and T.γj is the angle between Sj and T.

The partial derivative of the Ri for the ith bearing-only sensor node.

δRi = δ

(
sin γj

sin γij
Rij

)
=

sin γj

sin γij
δRij +

Rij cos γj

sin γij
δγj −

Rij cos γij sin γj

sin2γij
δγij

=
1

sin γij
{sin γjδRij − Rij sin γj cot(γi + γj)δγi + Rij[cos γj − sin γj cot(γi + γj)]δγj}

(3)

According to the analysis results, the estimation error of the ith bearing-only sensor
for the distance is related to δRij, δγi and δγij. When the LOSS angle γij = π/2, the
distance estimation error is the smallest. When the LOSS angle reaches 0 or π, the distance
estimation error reaches ∞ . At this time, the bearing-only sensors are in a straight line,
the observation model degenerates into a single-sensor detection problem, the target
observability is reduced, and the distance estimation cannot be achieved.

Therefore, in order to ensure that the bearing-only sensor can complete the estimation
of the state information of the target, the triangular geometric relationship between the
bearing-only sensor pair and the target must be satisfied. When the LOSS angle is closer to
γij = π/2, the distance estimation effect is better.



Entropy 2024, 26, 236 5 of 18

2.2. Distributed Bearing-Only Sensor Network Model

On the basis of analyzing the observation constraints of bearing-only sensors. The
structure of the bearing-only sensor network is represented by an undirected connected
graph G(N, R). R denotes the set of connections between bearing-only sensors. N is the
set of bearing-only sensors. An edge (i, j) ∈ R indicates that Sj can receive information
from Si. Further, for each bearing-only sensor i ∈ N, if sensor j is included in its neighbors,
Ni = {j|(j, i) ∈ R}. In other cases, Ni\{j} [27].

Assumption 2. It is assumed that in the bearing-only sensor network model, each bearing-only
sensor contains at least one neighbor sensor, and these two bearing-only sensors constitute a pair of
the observation model. Therefore, the number of bearing-only sensors in the network should satisfy
N = {1, 2, · · ·, N(N ≥ 2)}.

Sn(xn(k), yn(k), zn(k)), (n ∈ N, N ≥ 2) are the positions of bearing-only sensors. They
measure the same target source, and the estimated information of the target can be shared
among adjacent bearing-only sensors; two bearing-only sensors constitute a pair [28].
According to the communication conditions within the bearing-only sensor network, Nn
bearing-only sensors can form m groups of bearing-only sensor pairs. Each pair of filtered
results requires the help of consistency theory to ensure converging to the same estimation
value. M is the set of bearing-only sensor pairs that satisfy the measurement requirements,
it is expressed as

i1, i2, · · ·, im(m ≤ N!
2(N − 2)!

) ∈ M N ≥ 2 (4)

Each pair of bearing-only sensors will obtain local measurement information. The state
observation of the system is Z(k) =

[
θi(k), φi(k), θj(k), φj(k)

]T, where θi, θj and φi, φj
represent the elevation and azimuth angles of the target measured by the two sensor
nodes, respectively.

The observation equation of the system is

Z(k) = h(Xk) + v(k) (5)

According to the spatial position relationship in Figure 1, h(Xk) can be obtained

hi
θ(k) = arctan

{
yt(k)− ySi(k)
xt(k)− xSi(k)

}

hi
φ(k) = arctan

 [zt(k)− zSi(k)]√
[xt(k)− xSi(k)]

2 + [yt(k)− ySi(k)]
2


hj

θ(k) = arctan

{
yt(k)− ySj(k)
xt(k)− xSj(k)

}

hj
φ(k) = arctan


[
zt(k)− zSj(k)

]√[
xt(k)− xSj(k)

]2
+
[
yt(k)− ySj(k)

]2


(6)

vi
k =

[
vi

θ(k), vi
φ(k), vj

θ(k), vj
φ(k)

]T
(7)

where, vi
θ(k) and vi

φ(k) represent the measurement errors of Si in the the elevation and

azimuth, respectively. vj
θ(k) and vj

φ(k) represent the measurement errors of Sj in the
elevation and azimuth, respectively.

How to fuse this local information into a unified global information in a bearing-only
sensor network is a distributed information fusion problem. This paper completes this part
of the work by designing a weighted average consistency protocol.
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The term
(

Yi
k|k, Li

k|k

)
i∈I

is defined as an information pair. When ℓ approaches ∞ and

each information pair tends towards a uniform value, it is considered to have achieved
weighted average consensus. (

Ŷ∗
k , L∗

k
)
= lim

ℓ→∞

(
Ŷi

k,ℓ, Li
k,ℓ

)
(8)

where, (Ŷi
k, Li

k)i∈I represent information pairs accessible at node i during the lth iteration
and meet the condition: 

Ŷi
k,ℓ+1 = ∑

j∈Ii

πijŶ j
k,ℓ

Li
k,ℓ+1 = ∑

j∈Ii

πijLj
k,ℓ

(9)

where πij ≥ 0, ∑
j∈Ii

πij = 1 and the initial values are Ŷi
k,0 = Ŷi

k, Li
k,0 = Li

k, then the

information pairs reach the weighted average consistency. The bearing-only sensor network
can get a uniform estimation result.

The type of sensors under investigation in this paper is passive bearing-only sensors,
which have broad applicability. Passive radars and infrared sensors are examples of
bearing-only sensors. In this study, we have chosen to focus on bearing-only sensors, rather
than specific types for two main reasons. Firstly, the constructed system model is highly
correlated with the angular measurement mechanism of the sensors. If different types of
bearing-only sensors are used, only different angular measurement errors need to be set,
which will not affect the research results of the system. Secondly, describing the research
object as bearing-only sensors can provide technical references for a wider range of related
applications, making the model and distributed methods constructed in this paper more
universally applicable. It is important to highlight that this universality assumption holds
true under the condition of a homogeneous bearing-only sensor network.

2.3. Motion Model of the Maneuvering Target

Establishing a reasonable dynamic model of maneuvering targets significantly influ-
ences the accuracy of state estimation. The maneuvering target addressed in this paper
primarily refers to aircraft utilizing solid fuel as their propellant. These aircraft have
simple structures, eliminating the need for complex fuel supply systems and liquid fuel
handling equipment, making them easy to load. However, the combustion process of such
maneuverable targets is challenging to control, making mid-course thrust adjustments
difficult [29]. Therefore, the use of the Singer motion model provides a vivid description of
their dynamics.

The Singer model of the maneuvering target is a stationary random process, which
can reliably describe the maneuver characteristics of the target. The model represents the
target acceleration as a zero-mean random process with exponential autocorrelation, and
the exponential decay form of the time correlation function is expressed as

Rµ(δ) = E[a(t)a(t + δ)] = σ2e−µ|δ|, µ ≥ 0 (10)

where σ and µ are undetermined parameters that determine the maneuvering character-
istics of the target within [t, t + δ]. σ2 is the variance of the acceleration. µ represents the
frequency, defined as the reciprocal of the maneuvering time constant. The probability
distribution of acceleration is as follows.

• There is a probability P0 that the target moves without acceleration;
• There is a probability Pmax that the target moves with the maximum acceleration amax,

and also the probability Pmax of moving with the minimum acceleration −amax;
• The target maneuvering acceleration approximately obeys a uniform distribution in

the [−amax, amax].
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Calculate the variance of the available acceleration as

σ2 =
a2

max
3

(1 + 4Pmax − P0) (11)

where P0, Pmax, amax and µ are all parameters of the prior design [29].
Then the equation of motion in continuous time is

X̂(t) = AX(t) + Bω(t) (12)

where ω(t) is white Gaussian noise with zero mean.

A = diag

0 1 0
0 0 1
0 0 −µ

 ,

0 1 0
0 0 1
0 0 µ

 ,

0 1 0
0 0 1
0 0 µ

 (13)

B = diag
([

0 0 1
]T ,
[
0 0 1

]T ,
[
0 0 1

]T
)

(14)

After the continuous time system is discretized with the sampling period T, according
to the optimal filtering theory, it is transformed into the equation of state in discrete time.

Xk = f (Xk−1) + wk−1 = Φk|k−1 Xk−1 + wk−1 (15)

where Φk|k−1 is the state transition matrix.

Φk|k−1 = diag(F, F, F) (16)

F =

1 T
(
µT − 1 + e−αT)/µ2

0 1
(
1 − eµT)/µ

0 0 −eµT

 (17)

The variance is Qk−1.

Qk−1 = diag(Q, Q, Q) (18)

Q is a symmetric matrix, where

Q = 2µσ2

 q11 q12 q13
q21 q22 q23
q31 q32 q33

 (19)

where, 

q11 =
(
2µ3T3 − 6µ2T2 + 6µT + 3 − 12µTe−µT − 3e−2µT)/(6µ5)

q12 = q21 =
(
µ2T2 − 2µT + 1 − 2(1 − µT)e−µT + e−2µT)/(2µ4)

q22 =
(
2µT − 3 + 4e−µT − e−2µT)/(2µ3)

q13 = q31 =
(
1 − 2µTe−µT − e−2µT)/(2µ3)

q23 = q32 =
(
1 − 2e−µT + e−2µT)/(2µ2)

q33 =
(
1 − e−2µT)/(2µ)

(20)

Combining the above models, the system model can be obtained.{
Xk = f (Xk−1) + wk−1

Zi
k = hi(Xk) + vi

k,
i ∈ Mi (21)

Assumption 3. T is the sampling period, it is assumed that the measurement period of all the
bearing-only sensors is the same, and the measured data are aligned in space and time.
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3. The Proposed Algorithms

The proposed DCIF method is used to perform filtering iterations at each node pair.
Only the locally measured information of the bearing-only sensor pairs is needed, and
the final convergent and unified information with the help of the cooperative consistency
theory can be obtained. The proposed DCIF method offers several advantages in terms of
robustness, accuracy, scalability, and adaptability. By leveraging volumetric information
and facilitating collaboration among networked sensors, this method addresses some of
the limitations of traditional approaches and provides a more comprehensive framework
for target tracking in a bearing-only sensor network.

3.1. CIF Based on Bearing-Only Sensor Pair

The bearing-only sensor network and the Singer-type maneuvering target studied in
this paper are often applied in denial environments with complex interference conditions.
Considering constraints on real-time performance and computational capability, the CIF is
well-suited to address this problem. However, how to design the CIF suitable for the system
model in this study is essential to ensure that the measurement model of CIF satisfies the
constraints of pairwise observations.

CIF is a state estimation algorithm for nonlinear systems. It combines the information
matrix concept of Kalman filtering with the characteristics of Gaussian integration, aiming
to better preserve the characteristics of the uncertainty distribution and thus handle state
estimation problems in nonlinear systems more effectively [16].

CIF estimates and updates the state by manipulating the information matrix. The
FIM reflects the uncertainty and precision associated with the state estimation problem.
At the beginning of CIF, the next state is predicted based on the motion model. The
prediction process involves the transformation of Cubature Points (CPs) and the calculation
of weights [19]. When new measurement data are available, CIF calculates the value of
CPs on the observation function, as well as the information covariance matrix between
the estimated state and the measurement. Then, the measurement update of the state is
performed by associating the transformation and weight of the CPs with the measurement.

For each pair of bearing-only sensor nodes s, the CIF algorithm comprises two stages:
the update time stage and the update measurement stage.

3.1.1. The Update Time Stage

Let m = 2n CPs denoted as Xs,i
k−1|k−1 ∈ Rn, Xs,i

k−1|k−1 is generated by estimated value

X̂s
k−1|k−1 and the square root matrix Ss

k−1|k−1, where Ss
k−1|k−1 is the square of the matrix

Ls
k−1|k−1.

Xs,i
k−1|k−1 = Ss

k−1|k−1 · ξi + X̂s
k−1|k−1 (i ∈ Mi) (22)

ξi =

{√
nei, i ∈ [1, n]

−
√

nei−n, i ∈ [n + 1, m]
(23)

ei represents an n-dimensional unit vector where its i-th element is equal to 1.

Ls
k−1|k−1 = E

[(
Xs

k−1 − X̂s
k−1

)(
Xs

k−1 − X̂s
k−1

)T
]

(24)

Each CP Xs,i
k−1|k−1 is mapped to the following point through p(·).

X∗s,i
k|k−1 = p

(
Xs,i

k−1|k−1

)
∈ Rn (i ∈ Mi) (25)

Therefore, the predicted state X̂s
k|k−1, predicted IM Ls

k|k−1, and predicted information

state Ŷs
k|k−1 are
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X̂s

k|k−1 = 1
m

m
∑

i=1
X∗s,i

k|k−1

Ls
k|k−1 =

[
1
m

m
∑

i=1
X∗s,i

k|k−1

(
X∗s,i

k|k−1

)T
− X̂s

k|k−1

(
X̂s

k|k−1

)T
+ θk−1

]−1

Ŷs
k|k−1 = Ls

k|k−1X̂k|k−1

(26)

3.1.2. The Update Measurement Stage

Firstly, generate a new set of CPs Xs,i
k|k−1 ∈ Rn based on the predicted state X̂s

k|k−1 and

Ss
k−1|k−1, satisfies Ss

k−1|k−1

(
Ss

k−1|k−1

)T
=
(

Ls
k|k−1

)−1
.

Xs,i
k|k−1 = Ss

k|k−1ξi + X̂s
k|k−1 (i ∈ Mi) (27)

Subsequently, propagate the CPs using the measurement function hs(Xk).

Zs,i
k|k−1 = hs

(
Xs,i

k|k−1

)
(i ∈ Mi) (28)

Thus, the predicted values Ẑs,i
k|k−1 is:

Ẑs,i
k|k−1 =

1
m

m

∑
i=1

Zs,i
k|k−1 (29)

The information state distribution is
k and the corresponding IM Is

k are
is
k = Ls

k|k−1Ps
xz,k|k−1

(
Rs

k
)−1
[

Vs
k +

(
Ps

xz,k|k−1

)T
Ls

k|k−1X̂s
k|k−1

]
Is

k = Ls
k|k−1Ps

xz,k|k−1

(
Rs

k
)−1
(

Ps
xz,k|k−1

)−1
Ls

k|k−1

(30)

Ps
xz,k|k−1 =

1
m

∞

∑
i=1

Xs,i
k|k−1

(
Zs,i

k|k−1

)T
− X̂s

k|k−1

(
Ẑs

k|k−1

)T
(31)

Vs
k = Zs

k − Ẑs
k|k−1 (32)

Finally, Ŷs
k|k, Ls

k|k, and X̂s
k|k can be obtained.

Ŷs
k|k = Ls

k|k−1 + is
k

Ls
k|k = Ls

k|k−1 + Is
k

X̂s
k|k =

(
Lk|k

)−1
Ŷs

k|k

(33)

3.2. DCIF in Bearing-Only Sensor Network

Distributed filtering methods represent all bearing-only sensors as nodes, and infor-
mation transfer among nodes is depicted by a topology graph. In the distributed network,
each bearing-only sensor node shares state estimation with its neighbors, and the local
estimates are unified. Eventually, all the local estimates converge to a consistent result.
The proposed DCIF method is based on the cooperative consistency theory. The process of
weighted average ensures the coherence of state estimations across all sensor nodes and
finally obtains the unified result.

The communication conditions satisfied are that the information exchanges are only
carried out among the adjacent nodes, and the local information is solely dependent on the
received information. The flowchart of the DCIF method is shown in Figure 2.
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Figure 2. The flowchart of the DCIF method.

The specific steps for DCIF to achieve consistent state estimation are as follows.

1. Calculate the initial information pairs (Ys
k,0, Ls

k,0) of each node pair s ∈ Ms;
Ŷs

k,0 = Ŷs
k|k−1 + Ls

k|k−1Ps
xz,k|k−1

(
Rs

k
)−1
[

Vs
k +

(
Ps

xz,k|k−1

)T
Ls

k|k−1X̂s
k|k−1

]
L̂s

k,0 = Ls
k|k−1 + Ls

k|k−1Ps
xz,k|k−1

(
Rs

k
)−1
(

Ps
xz,k|k−1

)T
Ls

k|k−1

(34)

2. For l = 0, 1, · · ·, L − 1, the following steps for running the protocol for weighted
average consistency;

• Broadcast message (Ys
k,l , Ls

k,l) to neighbor j ∈ Ms;

• Receive information (Yk,l , Lj
k,l) from all neighbors j ∈ Ms;

• The received information is fused according to Equations (8) and (9).

3. Update state information estimation and information matrix estimation;Ŷs
k|k = Ŷs

k,L, Ls
k|k = Ls

k,L

X̂s
k|k =

(
Ls

k|k

)−1
Ŷs

k|k
(35)

4. Finally, the information state vector estimate at step k + 1 is calculated and obtained.



Entropy 2024, 26, 236 11 of 18


X̂s

k+1|k =
1
m

m
∑

i=1
X∗s,i

k+1|k

Ls
k+1|k =

[
1
m

m
∑

i=1
X∗s,i

k+1|k

(
X∗s,i

k+1|k

)T
− X̂s

k+1|k

(
X̂s

k+1|k

)T
+ θk

]−1

Ŷs
k+1|k = Ls

k+1|kX̂s
k+1|k

(36)

The weighted average consistency protocol assigns weights to each observation based
on factors such as the reliability of measurements from bearing-only sensors, the consistency
of observations between pairs of sensors, and the estimated uncertainty associated with
each observation. Observations deemed more reliable and consistent could receive higher
weights, while those considered outliers are treated as such. Outliers are removed to prevent
them from unduly influencing the estimation process. Each observation is multiplied by its
respective weight, and the weighted observations are then summed to generate a fused
estimate of the state. This fusion process ensures that observations are integrated in a
consistent and robust manner, taking into account their respective uncertainties and levels
of reliability.

The proposed DCIF is based on the weighted average consistency protocol, allowing
the state estimation of the system to converge to a unified result within a controllable
finite time.

Assumption 4. During the convergence process of DCIF, if the initial prediction estimate
{

X̂s
1|0

}M

s=1
exhibits consistency, that is

Ls
1|0 = E

[(
X − X̂s

1|0

)(
X − X̂s

1|0

)T
]

(37)

For each k > 1, s ∈ M, Ls
k|k−1 ≤

{
E
[(

Xk − X̂s
k|k−1

)(
Xk − X̂s

k|k−1

)T
]}−1

and Ls
k|k ≤{

E
[(

Xk − X̂s
k|k−1

)(
Xk − X̂s

k|k

)T
]}−1

, the DCIF method maintains consistency.

Proof of Assumption 4.

Theorem 1. X̂ is an estimate vector of X. P is the corresponding covariance of the error. If

E
[
(X − X̂)(X − X̂)

T] ≤ P, then the pair (X̂, P) exhibits consistency [24].
Let the covariance between the prior estimate error of bearing-only sensor node pair s

and the actual prior error be
X̂s

k|k−1 ≜ Xk − X̂s
k|k−1

P̂s
k|k−1 ≜ E

[
X̂s

k|k−1

(
X̂s

k|k−1

)T
] (38)

Define the covariance between X̂s
k and P̂s

k|k as
X̂s

k ≜ Xk − X̂s
k|k

P̂s
k|k ≜ E

[
X̂s

k

(
X̂s

k

)T
] (39)

The cross-covariance matrix can be approximated as

Ps
xz,k|k−1 = E

[(
Xk − Xs

k|k−1

)(
Zk − Ẑs

k|k−1

)T
]
≈
(

Ls
k|k−1

)−1
(Hs

k)
T (40)
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where, Hs
k ≜ ∂hs(X)/ ∂X|X=X̂s

k|k−1
. Then there is H̃s

k as

H̃s
k =

(
Ps

xz,k|k−1

)T
Ls

k|k−1 (41)

Similarly, there is

Ps
Xk−1,Xk|k−1

= E
[(

Xk−1 − X̂s
k−1|k−1

)(
Xk − X̂s

k|k−1

)T
]
= Ps

k−1|k−1
(
Fs

k−1
)T (42)

where, Fs
k−1 ≜ ∂f(X)/ ∂X|X=X̂s

k−1|k−1
.

Therefore, define the pseudosystem matrix as

F̃s
k−1 ≜

(
Ps

k−1|k−1

)T
Ls

k−1|k−1 (43)

where, Ls
k−1|k−1 =

(
Ps

k−1|k−1

)−1
. PXk−1,Xk|k−1

is

Ps
Xk−1,Xk|k−1

=
1
m

m

∑
i=1

(
Xs,i

k−1|k−1 − X̂s
k−1|k−1

)(
X∗s,i

k|k−1 − X̂s
k|k−1

)T
(44)

Hence, the nonlinear bearing-only-only sensor network can be linearized into the following
model within a discrete-time system.{

Xk = αs
k−1F̃k−1Xk−1 + Wk−1

Xs
k = βs

kHs
kXk + Vs

k
(s ∈ M) (45)

where, the unknown auxiliary matrices αs
k = diag

(
αs

k,1, · · · , αs
k,n

)
, βs

k = diag
(

βs
k,v, · · · , βs

k,r

)
are used to compensate for approximation errors during the linearization process. There-
fore, by rearranging the equations, the following equation could be obtained.P̃s

k|k =
(

In − Ws
kβs

kH̃s
k

)
P̃s

k|k−1

[(
In − Ws

kfis
kH̃s

k

)
P̃s

k|k−1

]T
+ Ws

kRs
k
(
Ws

kRs
K
)T

Ps
k|k =

(
In − Ws

kfis
kH̃s

k

)
P̃s

k|k−1

[(
In − Ws

kfis
kH̃s

k

)
P̃s

k|k−1

]T
+ Ws

kRs
k
(
Ws

kRs
k
)T

(46)

where Ws
k is the gain. Ps

k|k =
(

Ls
k|k

)−1
.

Assuming that at each time step k, there is

Ls
k|k−1 ≤

{
E
[(

Xk − X̂s
k|k−1

)(
Xk − X̂s

k|k−1

)T
]}−1

(∀s ∈ M) (47)

{
E
[(

Xk − X̂s
k,0

)(
Xk − X̂s

k,0

)T
]}−1

≥ Ls
k,0 =

(
Ps

k,0

)−1
(48)

where X̂s
k,0 =

(
Ls

k,0

)−1
Ŷs

k,0, Ps
k|k−1 =

(
Ls

k|k−1

)−1
.

The interaction covariance maintains consistency, that is{
E
[(

Xk − X̂s
k,l+1

)(
Xk − X̂s

k,l+1

)T
]}−1

≤ Ls
k,l+1 (l = 0, 1, · · · , L − 1) (49)

Hence, it can also be concluded that{
E
[(

Xk − X̂s
k,L

)(
Xk − X̂s

k,L

)T
]}−1

≥ Ls
k,L (50)
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Theorem 2. If the function ψ(·) is monotonically non-decreasing, and two positive semi-definite
matrices L1 and L2 satisfy the condition L1 ≤ L2, then 0 ≤ ψ(L1) ≤ ψ(L2) [24].

From Theorem 2, it can be deduced that

Ls
k+1|k = ψ

(
Ls

k|k

)
≤ ψ

{
E
[(

Xk − X̂s
k|k

)(
Xk − X̂s

k|k

)T
]}−1

=

{
E
[(

Xk+1 − X̂s
k+1|k

)(
Xk+1 − X̂s

k+1|k

)T
]}−1

(51)

Proof complete.

4. Experiment and Result

To demonstrate the effectiveness of the DCIF, four experiments are conducted. The
initial parameters of the bearing-only sensor network are shown in Table 1. The measure-
ment errors are σθi = σφi = 0.01 rad. The target performs a uniform linear motion within
0∼25 s. Then the target performs a uniform acceleration linear motion within 25∼50 s, The
acceleration of the target is ax = 10 m/s2, ay = 5 m/s2, az = 0. At last, The target performs
a uniform linear motion within 50∼100 s. Take the maneuvering frequency as µ = 0.05,
the maximum acceleration as amax = 10 m/s2, the maximum acceleration probability as
Pmax = 0.25, and the probability that the acceleration is equal to zero as P0 = 0.75. The
sampling period T = 1 s, it is assumed that the measurement periods of the nodes are the
same, and the data are aligned in space and time [30].

Table 1. Initial simulation experiment parameters.

x (m) y (m) z (m) vx (m/s) vy (m/s) vz (m/s)

Target 6.00 × 104 4.00 × 104 5.00 × 103 2.50 × 102 2.00 × 102 1.00 × 101

sensor1 2.50 × 103 3.00 × 103 4.00 × 103 3.00 × 102 2.50 × 102 5.00 × 100

sensor2 4.00 × 103 7.00 × 103 3.00 × 103 2.50 × 102 2.50 × 102 5.00 × 100

sensor3 1.00 × 104 1.00 × 103 1.00 × 103 2.00 × 102 3.00 × 102 1.00 × 101

In each simulation experiment, to mitigate the impact of initial parameters on the
analysis results, the initial parameters of both the target and the bearing-only sensors are
kept consistent [31]. To compare and analyze the effectiveness of the DCIF, the following
simulation experiments are set up:

(1) A single bearing-only sensor is employed to track the target. The scenario is set to
validate the observability conclusion analyzed in this paper.

(2) A pair of bearing-only sensors is employed to track the target. This scenario
is indispensable regardless of the choice of state estimation method in the bearing-only
sensor network.

(3) The proposed DCIF based on a bearing-only sensor network is employed to
estimate the state of the maneuvering target.

To compare and analyze the superiority of the DCIF, the following simulation experi-
ment is set up:

(4) The distributed unscented Kalman filtering (DUKF) method based on a bearing-
only sensor network is employed to estimate the state of the target for comparison.

RMSE is commonly employed as a metric to measure filtering performance. Superior
filtering performance minimizes the RMSE. The RMSEs of the spatial position and the
motion parameters are utilized to assess the proximity of the estimation to the true state.

The RMSEs comparison of target position estimation are shown in Figure 3.
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Figure 3. Comparison of RMSEs results of estimated spatial positions.

Within the set simulation time, the spatial position of the maneuvering target is
estimated. The convergence speed and final error of the four methods are ranked from
high to low as DCIF (1.38 × 103 m) > DUKF (1.52 × 103 m) > The estimation of the
bearing-only sensor pair (1.75 × 103 m) > The estimation of the single bearing-only sensor
(2.92 × 103 m). The method of using a single bearing-only sensor to estimate the target
has a large error and cannot satisfy the expected results. The DCIF can better estimate the
spatial position of the maneuvering target than other methods, which have the highest
effectiveness and superiority.

The RMSEs comparison of target speed estimation are shown in Figure 4.

Figure 4. Comparison of RMSEs results for estimated speed parameters.

The convergence speed and final error of the four methods for estimating maneuvering
target speed parameters are arranged from high to low as DCIF (4.62 ×101 m/s) > DUKF
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(5.06 ×101 m/s) > the estimation of the bearing-only sensor pair (61.5 ×101 m/s) > the
estimation of the single bearing-only sensor (7.68 ×101 m/s).

The RMSEs comparison of target acceleration estimation are shown in Figure 5.

Figure 5. Comparison of RMSEs results for estimated acceleration parameters.

The convergence acceleration and final error of the four methods for estimating maneu-
vering target acceleration parameters are also arranged from high to low as DCIF (5.72 m/s2)
> DUKF (6.15 m/s2) > the estimation of the bearing-only sensor pair (7.48 m/s2) > the
estimation of the single bearing-only sensor (7.98 m/s2). The proposed DCIF method can
better approximate the real acceleration of the maneuvering target as time goes on. More
importantly, it can capture the sudden change of acceleration, which is significantly reflected
in 10∼30 s and 40∼60 s, the system can faster respond to the strong maneuvering stage of
target acceleration.

The results and analysis of the comparative simulation experiments are summarized
as follows:

1. Firstly, when using a single bearing-only sensor for state estimation, due to the
unobservability of the system state, it is challenging to obtain the desired results. The
simulation results of the first method can intuitively demonstrate that the system has
difficulty converging within the simulation time.

2. The results of observing a pair of bearing-only sensors that satisfy measurement
constraints show a significant improvement, as seen in the simulation results of the
second method. However, for maximum enhancement of observability and estimation
accuracy, the bearing-only sensor network is a better solution. The comparison of
state estimation methods in bearing-only sensor networks is evident in the third set
with the DUKF method and the fourth set with the DCIF method.

3. DUKF transfers nonlinear functions using the rules of unscented transformation,
while DCIF employs the rules of cubature transformation. Unscented transformation
is a nonlinear function transformation method based on sample selection. It selects
a set of samples known as sigma points (SPs). Then, the nonlinear function is calcu-
lated on these SPs to generate new mean and covariance information through linear
combination [32]. For some nonlinear functions, a large number of sigma points may
be required to accurately approximate them, increasing computational complexity.
In DCIF, the Gaussian integral is used to approximate the nonlinear function to ob-
tain more accurate state estimation. Gaussian integration generates a set of CPs that
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are transformed by the covariance matrix to approximate the expectation value and
covariance of the nonlinear function. DCIF does not require sample selection, and
therefore, can better handle high-dimensional state spaces and highly nonlinear situa-
tions. DCIF generally performs better in bearing-only sensor networks and provides
more accurate approximations of nonlinear functions.

5. Discussion

In the new mode of modern anti-stealth warfare, achieving effective detection is a
prerequisite for gaining military advantages in conflict. Therefore, in the study of state
estimation for stealthy maneuvering targets, designing superior and reliable filtering
methods based on bearing-only sensor networks is an urgent and primary challenge. An
early focus of our related work was on researching and experimenting with various filters
but consistently failed to meet the expected estimation results. Subsequently, considering
the impact of system uncertainty from the perspective of FIM, the novel DCIF method was
introduced. This method deeply aligns with the observation constraints and distributed
structure characteristics of the bearing-only sensor networks. Moreover, this paper not
only rigorously proves the convergence consistency of the system through theoretical
analysis, but also conducts comparative simulation experiments to validate the effectiveness
and superiority of the novel DCIF. Considering that there are insufficient experimental
conditions to support real comparative experiments, we have set up simulation experiments
to indirectly validate our research results. In future work, we will further delve into the
research on state estimation problems from two perspectives. On one hand, we will
consider the impact of the target motion model in the Markov random jump system. On
the other hand, we will address the time delay effects of bearing-only sensor networks in
the filtering process.

6. Conclusions

This paper focuses on a novel sensor network model with two key characteristics: the
distributed architecture and the bearing-only detection mode. The proposed DCIF tailored
for this model is designed, combining CIF and the theory of coordinated consistency to
estimate the state of spatial position and dynamic parameters. The CIF algorithm that
satisfies the constraints of observation conditions acts on the local estimation of bearing-
only sensor node pairs. Subsequently, DCIF is extended based on the weighted average
consistency protocol to achieve global estimation for the bearing-only sensor network.
The proposed DCIF method is rigorously theoretically proven, and its effectiveness and
superiority for solving the target state estimation problem in bearing-only sensor networks
are verified through comparative simulation experiments.
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Abbreviations
The following abbreviations are used in this manuscript:

DCIF Distributed Cubature Information Filter
AOA Angle of Arrival
FIM Fisher Information Matrix
IM information matrix
KF Kalman Filter
EKF Extended Kalman Filter
DUKF Distributed Unscented Kalman Filter
CKF Cubature Kalman Filter
CP Cubature Point
LOSS Line of Sight Separation
RMSE Root mean square error
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