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Abstract: For a family of stochastic differential equations driven by additive Gaussian noise, we study
the asymptotic behaviors of its corresponding Euler–Maruyama scheme by deriving its convergence
rate in terms of relative entropy. Our results for the convergence rate in terms of relative entropy
complement the conventional ones in the strong and weak sense and induce some other properties of
the Euler–Maruyama scheme. For example, the convergence in terms of the total variation distance
can be implied by Pinsker’s inequality directly. Moreover, when the drift is β(0 < β < 1)-Hölder
continuous in the spatial variable, the convergence rate in terms of the weighted variation distance
is also established. Both of these convergence results do not seem to be directly obtained from any
other convergence results of the Euler–Maruyama scheme. The main tool this paper relies on is the
Girsanov transform.

Keywords: relative entropy; Euler–Maruyama scheme; Girsanov’s transform; Hölder continuity;
weighted variation distance

1. Introduction

Consider the following d-dimensional stochastic differential equation (SDE)

dXt = b(Xt)dt + σ(Xt)dWt, t ≥ 0, X0 = x ∈ Rd, (1)

where b : Rd → Rd, σ : Rd → Rd ⊗Rm, and (Wt)t≥0 is m-dimensional Brownian motion
on some complete filtration probability space (Ω, F , (Ft)t≥0,P).

Usually, it can be proved that (1) has strong well-posedness under reasonable con-
ditions, whereas the explicit representation of (1) is unknown. Instead, one may develop
various numerical schemes to approximate (1); see [1] and references therein for more
introductions. When the coefficients are regular, strong/weak convergence of numerical
schemes for SDEs have been investigated considerably; see, for instance, monographs [1].

One of the most popular numerical schemes for SDEs is the Euler–Maruyama (EM)
scheme, the introduction of which can be found in [1] and references therein. The Euler–
Maruyama scheme is a numerical method commonly used for approximating the solutions
of SDEs. SDEs are differential equations that involve both deterministic and stochastic (ran-
dom) components. They are applied in various fields, including physics, finance, biology,
and more. The Euler–Maruyama method is particularly useful for solving SDEs because it
is a simple and computationally efficient approach. It is an extension of the Euler method,
which is used for solving ordinary differential equations. The Euler–Maruyama method is
adapted to handle the stochastic part of the equations. Besides its fundamental tools for the
numerical solutions of SDEs, researchers also pay much attention to its convergence rate
for SDEs. There are some related works in the literature.

For strong convergence of the EM scheme for SDEs, there are some basic results under
irregular coefficients. Yan (2002) [2] uses Meyer–Tanaka’s formula and estimates local times
to derive a strong convergence rate for EM schemes to one-dimensional SDEs, for which
the drift is Lipschitz continuous and the diffusion is Hölder continuous. Gyöngy and
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Rásonyi (2011) [3] adopt a Yamada–Watanabe approximation approach to derive strong
convergence for EM schemes of one-dimensional SDEs with Hölder-continuous diffusions,
but the drifts cannot be Lipschitz continuous. Halidias and Kloeden (2008) [4] established
strong convergence for an EM scheme of SDEs with monotone drift, which may be dis-
continuous. Leobacher and Szölgyenyi (2016) and Müller-Gronbach and Yaroslavtseva
(2020) [5,6] investigated strong convergence of the EM scheme for one-dimensional SDEs
with piecewise Lipschitz-continuous drifts.

Moreover, there are also some other authors who use some transformation tools to get
strong convergence of an EM scheme for more complex cases. Leobacher and Szölgyenyi
(2017) [7] studied an EM scheme for the multi-dimensional case, which was extended by
Leobacher and Szölgyenyi (2018) [8] to the multi-dimensional and degenerate case. The
proofs are based on a transformation that changes the piecewise Lipschitz-continuous drifts
into globally Lipschitz-continuous ones. Besides the transformation mentioned above, the
Zvonkin transform is an alternative tool to deal with the convergence for an EM scheme
of SDEs with irregular coefficients. Bao, Huang and Yuan (2019) and Pamen and Taguchi
(2017) [9,10] studied SDEs with Hölder- or Hölder–Dini-continuous drifts. Bao, Huang and
Zhang (2022) [11] focused on the integrability condition; see the references in [9–11] for
more results.

For weak convergence, one can refer to [12,13], wherein the drift satisfies the integrable
condition and the main tool is the Girsanov transform.

We should remark that all of the references mentioned above study weak or strong
convergence of the EM scheme. As far as we know, there are no results on the convergence
in the sense of relative entropy.

In this paper, we further characterize the asymptotic behaviors of an EM scheme for
SDEs by studying the convergence rate in terms of the so-called relative entropy. Our main
results show that the distribution of the EM iteration of SDEs driven by additive Gaussian
noise converges to that of real stochastic process of SDEs in terms of relative entropy. And
hence, we can get the asymptotic behaviors of its corresponding EM scheme.

Indeed, while relative entropy is commonly perceived as a measure of the dissimilarity
between two probability distributions, it falls short of being considered a metric. This
is primarily attributed to its asymmetry concerning the order of its parameters and its
inability to satisfy the triangle inequality. Despite not meeting the criteria of a metric,
relative entropy maintains strong connections with various other metrics. Some notable
relationships include: total variation distance, Fisher information divergence, Wasserstein
distance and so on; see, e.g., [14] and references therein. These relationships highlight the
versatility of relative entropy and its role in connecting with various other measures of
dissimilarity and divergence between probability distributions. While it may not possess all
the properties of a metric, its specific characteristics make it a valuable tool in information
theory and related fields.

Relative entropy’s broad utilization across a spectrum of disciplines, spanning proba-
bility theory, statistics, statistical physics, machine learning, neural science, and informa-
tion theory, can be attributed to its possession of numerous advantageous properties; see,
e.g., [15] and references therein. These qualities make it a versatile and valuable tool in
diverse applications and fields of study. In addition to conventional convergence analysis
in both the strong and weak senses for EM schemes, the relative entropy convergence in
our findings could unveil previously unexplored facets of SDEs. These discoveries hold
the potential to reveal new properties of SDEs in uncharted research territories, presenting
exciting prospects for further exploration and investigation.

As an example of the direct corollary of our main results, the convergence in total
variation of an EM scheme can be implied by the well-known Pinsker’s inequality. Pinsker’s
inequality states that the relative entropy between two probability measures provides an
upper bound for their total variation distance.

Moreover, when the drift of SDE (4) is β(0 < β < 1)-Hölder-continuous in the spatial
variable, the convergence rate for the weighted variation distance will also be induced.



Entropy 2024, 26, 232 3 of 11

The paper is organized as follows: In Section 2, we review some related concepts and
definitions of this paper. In Section 3, we state our assumptions and introduce the main
results. In Section 4, we induce the proofs of all results. And conclusions and discussions
are provided in Section 5.

2. Preliminaries

In this section, we first state some definitions and some related concepts for the main
results of this paper.

2.1. Euler–Maruyama Scheme

The Euler–Maruyama scheme is a numerical method commonly used for approxi-
mating solutions to SDEs. SDEs involve both deterministic and stochastic components,
making their solutions more challenging than those of ordinary differential equations.
The basic idea is similar to the traditional Euler method for ordinary differential equa-
tions but adapted to handle the stochastic terms. The Euler–Maruyama scheme is one of
the simplest time-discrete approximations of Itô’s process, and it is sometimes called the
Euler–Maruyama aprproximation or Euler approximation.

We consider an Itô’s process satisfying the stochastic differential Equation (1):

dXt = b(Xt)dt + σ(Xt)dWt, t ≥ 0, X0 = x ∈ Rd,

on time interval [0, T] with initial value x.
For a given discretization 0 = τ0 < τ1 < · · · < τN = T of the time interval [0, T], a

discrete EM scheme satisfies the following iterative scheme:

Yn+1 = Yn + b(Yn)(τn+1 − τn) + σ(Yn)(Wτn+1 − Wτn), (2)

for n = 0, 1, 2, · · · , N − 1 with initial value Y0 = X0. We shall also write ∆n = τn+1 − τn for
the nth time increment and call δ = maxn ∆n the maximum time step.

In this paper, we shall consider equidistant discretizaiton times τn = nδ with δ = T/N
for some integer N large enough so that δ ∈ (0, 1). When the diffusion coefficient is
identically zero—that is, when σ = 0—the stochastic iterative scheme reduces to the
deterministic Euler scheme for the ordinary differential equation dXt = b(Xt)dt. The main
difference is that we need to generate the random increments ∆Wn = Wτn+1 − Wτn for
n = 0, 1, · · · , N − 1 of the Wiener process W = {Wt, t ≥ 0}. From the properties of Wiener
processes, we know that these increments are independent Gaussian random variables with
mean E(∆Wn) = 0 and variance E((∆Wn)2) = ∆n. We can use a sequence of independent
Gausssian pseudo-random numbers generated by one of the random number generators
for the increments of the Wiener process.

The recursive structure of the discrete EM scheme, which evaluates approximate
values for the Itô’s process at the discretization instants only, is the key to its successful
implementation for numerical approximation of SDEs. For a given time discretizaiton, the
discrete EM scheme determines values of the approximation process at the discretization
times only. We also need the continuous EM scheme, i.e.,

dXδ
t = b(Xδ

tδ
)dt + σ(Xδ

tδ
)dWt, t ≥ 0, Xδ

0 = x ∈ Rd,

where tδ := ⌊t/δ⌋δ, and ⌊t/δ⌋ is the integer part of t/δ. More details and introductions can
be found in [1] and references therein.

2.2. Relative Entropy

Kullback and Leibler (1951) [16] firstly introduced the definition of relative entropy,
which is also called Kullback–Leibler divergence (K-L divergence for short). The definition
of relative entropy is as bellow.
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Definition 1 (Relative entropy). Recall that the relative entropy of two probability measures ν
and µ on Rd is defined as

Ent(ν|µ) =
{ ∫

Rd log( dν
dµ )dν, ν ≪ µ;

∞, otherwise,

where dν
dµ is the Radon–Nikodym derivative of ν with respect to µ.

Relative entropy is a concept from information theory and probability theory that
measures how one probability distribution diverges from another one. Roughly speaking,
the relative entropy between two probability measures is a measure of the “distance” or
difference measuring how “close” these two probability distributions are. In Chapter 4 of
reference [17], the authors provide lots of properties of relative entropy (K-L divergence),
establish the relationship between relative entropy, cross entropy and conventional dif-
ferential entropy and give some examples of relative entropy calculations: for instance,
exponential distributions, normal distributions and Poisson distributions.

2.3. Total Variation and Weighted Variation Distance

Definition 2 (Total variation). For two probability measures γ, γ̃ on Rd, the total variation
distance is formulated as

∥γ − γ̃∥var = sup
∥ f ∥∞≤1

|γ( f )− γ̃( f )|.

Definition 3 (Pinsker’s inequality).

∥γ − γ̃∥2
var ≤ 2Ent(γ|γ̃). (3)

Remark 1. In view of (3), the convergence of the total variation distance can be implied by Pinsker’s
inequality directly under the relative entropy convergence.

Definition 4 (Weighted variation distance). For any k > 1, the weighted variation distance for
two probability measures γ, γ̃ on Rd is formulated as

∥γ − γ̃∥k,var = sup
| f |<1+|·|k

|γ( f )− γ̃( f )|.

Remark 2. The convergence of the weighted total variation distance cannot be implied by the
relative entropy convergence, so we need to further investigate it.

2.4. Stochastic Differential Equation Description

Definition 5 (Stochastic differential equations with additive noise). In this paper, we consider
the following SDE

dXt = b(Xt)dt + dWt, t ≥ 0, X0 = x ∈ Rd, (4)

where b : Rd → Rd, and (Wt)t≥0 is d-dimensional Brownian motion on some complete filtration
probability space (Ω, F , (Ft)t≥0,P).

Remark 3. For any δ ∈ (0, 1), the continuous Euler–Maruyama (EM) method for (4) is defined as

dXδ
t = b(Xδ

tδ
)dt + dWt, t ≥ 0, Xδ

0 = x ∈ Rd, (5)

with tδ := ⌊t/δ⌋δ, where ⌊t/δ⌋ is the integer part of t/δ.



Entropy 2024, 26, 232 5 of 11

3. Assumptions and Main Results
3.1. Assumptions

Throughout the paper, we impose the following assumptions on the drift term b of the
SDE (4).

(A) There exists a constant β ∈ (0, 1] and K > 0 such that

|b(x)− b(y)| ≤ K|x − y|β, x, y ∈ Rd (6)

Remark 4. By Zvonkin’s transform introduced in [18], under assumption (A), (4) has a unique
strong solution (Xt)t≥0 (see, for instance, [19]).

3.2. Main Results

Let Lξ denote the distribution of a random variable ξ. The main result is the following
theorem.

Theorem 1. Assume the dirft term of the SDE (4) satisfies assumption (A). Then there exists
constants CT,x,d such that

Ent(LXδ
t
|LXt) ≤ KCT,x,dtδβ, t ∈ [0, T]. (7)

Consequently, we have
lim
δ→0

Ent(LXδ
t
|LXt) = 0.

Remark 5. Theorem 1 gives the convergence rate of an EM scheme in the sense of relative entropy
for SDEs (4) with additive noise, so its asymptocic behaviors can be established. The main tool of the
proof relies on the Girsanov transform. The details of the proof can be found in Section 4.

Corollary 1. When assumption (A) is satisfied, we have

∥LXδ
t
−LXt∥var ≤

√
2KCT,x,dtδ

β
2 , t ∈ [0, T].

Remark 6. Corollary 1 is the convergence of an EM scheme for the total variance distance. This
can be implied by Pinker’s inequality (3) directly.

Theorem 2. If assumption (A) holds for some 0 < β < 1 , then for any k ≥ 1 there exists a
constant ck,T,x,d such that

∥LXδ
t
( f )−LXt( f )∥k,var = sup

| f |<1+|·|k
|LXδ

t
( f )−LXt( f )| ≤ ck,T,x,d

√
tδ

β
2 , t ∈ [0, T].

Remark 7. Theorem 2 is the convergence of an EM scheme for the weighted total variance distance.
This convergence is not the direct application of the convergence in the relative entropy sense for the
EM scheme of Theorem 1. And the details of the proof can be found in Section 4.

4. Proofs
4.1. Proof of Theorem 1

Before finishing the proof of Theorem 1, we prepare some auxiliary lemmas. The first
lemma below plays a crucial role in the proof of Theorem 1.

Lemma 1. Assume (A). Then for any k ≥ 1, there exists a constant CT,d,k > 0 such that

E sup
t∈[0,T]

|Xδ
t |k +E sup

t∈[0,T]
|Xt|k ≤ CT,d,k(1 + |x|k), t ∈ [0, T]. (8)
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Proof. Without loss of generality, we only prove the inequality for Xδ
t since it is similar for

Xt.
For any n ≥ 1, let ζn := inf{t ≥ 0, |Xδ

t | ≥ n}. Firstly, we have

|Xδ
t∧ζn

|k ≤ 2k−1
∣∣∣∣∫ t∧ζn

0
b(Xδ

sδ
)ds

∣∣∣∣k + 2k−1|Wt∧ζn |
k, t ∈ [0, T]. (9)

By (A), it is easy to see that

|b(x)| ≤ |b(x)− b(0)|+ |b(0)| ≤ K|x|β + |b(0)| ≤ K(1 + |x|) + |b(0)|, x ∈ Rd. (10)

Combining this with (9), we can find a constant c0 > 0 such that

E sup
t∈[0,r]

|Xδ
t∧ζn

|k ≤ c0TE
∫ r

0
(1 + sup

t∈[0,s]
|Xδ

t∧ζn
|k)ds + 2k−1E sup

t∈[0,r]
|Wt∧ζn |

k, r ∈ [0, T]. (11)

By the Burkerholder–Davis–Gundy inequality, there exists a constant c1 > 0 such that

E sup
t∈[0,r]

|Wt∧ζn |
k ≤ c1(dr)

k
2 , r ∈ [0, T].

Putting this into (11) and applying Gronwall’s inequality, we find a constant CT > 0
such that

E sup
t∈[0,T]

|Xδ
t∧ζn

|k ≤ CT,d,k(1 + |x|k).

Note that

P(ζn < T) ≤ P(|Xδ
T∧ζn

| ≥ n) ≤
E supt∈[0,T] |Xδ

t∧ζn
|k

nk ≤
CT,d,k(1 + |x|k)

nk .

This yields that P-a.s. limn→∞ ζn = ∞, which, combined with Fatou’s lemma, yields that

E sup
t∈[0,T]

|Xδ
t |k ≤ lim inf

n→∞
E sup

t∈[0,T]
|Xδ

t∧ζn
|k ≤ CT,d,k(1 + |x|k).

So we complete the proof.

Lemma 2. Under (A), there exists a constant CT,x,d > 0 such that

sup
t∈[0,T]

E|Xδ
t − Xδ

tδ
|4 ≤ CT,x,dδ. (12)

Proof. Note that

Xδ
t − Xδ

tδ
=

∫ t

tδ

b(Xδ
sδ
)ds + Wt − Wtδ

This together with (10), Lemma 1 and the fact E|Wt − Wtδ
|4 = (d2 + 2d)(t − tδ)

2 ≤ (d2 +
2d)δ2 implies that

E|Xδ
t − Xδ

tδ
|4 ≤ 8δ3

∫ t

tδ

E|b(Xδ
sδ
)|4ds + 8(d2 + 2d)δ2

≤ 8δ3C0

∫ t

tδ

E(1 + sup
t∈[0,T]

|Xδ
t |4)ds + 8(d2 + 2d)δ2

≤ CT,x,dδ2.

Therefore, the proof is completed.
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Lemma 3. Assume (A). Then there exist constants κ1(T), κ2(T, x, d) > 0 such that

E exp

{
κ1(T) sup

t∈[0,r]
|Xt|2

}
≤ κ2(T, x, d), r ∈ [0, T].

Proof. By Itô’s formula, we can find a constant c0 > 0 such that

|Xt|2 ≤ |x|2 +
∫ t

0
⟨b(Xs), 2Xs⟩ds +

∫ t

0
⟨2Xs, dWs⟩+ dt

≤ |x|2 + (c0 + d)t + c0

∫ t

0
|Xs|2ds +

∫ t

0
⟨2Xs, dWs⟩.

Gronwall’s inequality yields that

sup
t∈[0,r]

|Xt|2 ≤ ec0r

[
|x|2 + (c0 + d)r + sup

t∈[0,r]

∫ t

0
⟨2Xs, dWs⟩

]
, r ∈ [0, T]. (13)

Note that for any ε > 0,

E exp

{
ε sup

t∈[0,r]

∫ t

0
⟨2Xs, dWs⟩

}
≤ eE exp

{
ε
∫ r

0
⟨2Xs, dWs⟩

}

≤ e
{
Ee8ε2 ∫ r

0 |Xs |2ds
} 1

2 (14)

≤ e
{
Ee8ε2r sups∈[0,r] |Xs |2

} 1
2
, r ∈ [0, T].

Taking ε = 1
8T e−c0T , we have εe−c0T = 8Tε2. Combining this with (13) and (14), we derive

E exp

{
εe−c0T sup

t∈[0,T]
|Xt|2

}
≤ exp{ε[|x|2 + (c0 + d)T]}E exp

{
ε sup

t∈[0,T]

∫ t

0
⟨2Xs, dWs⟩

}

≤ exp{ε[|x|2 + (c0 + d)T]}e
{
Ee8ε2T sups∈[0,T] |Xs |2

} 1
2
.

By a stopping time technique, we may and do assume that

E exp

{
εe−c0T sup

t∈[0,T]
|Xt|2

}
< ∞.

Then we get

E exp

{
1

8T
e−2c0T sup

t∈[0,T]
|Xt|2

}
≤ exp

{
2 +

1
4T

e−c0T [|x|2 + (c0 + d)T]
}

.

Letting κ1(T) = 1
8T e−2c0T and κ2(T, x, d) = exp

{
2 + 1

4T e−c0T [|x|2 + (c0 + d)T]
}

, we com-
plete the proof.

Proof of Theorem 1. For any n ≥ 1, let τn := inf{t ≥ 0, |Xt| ∨ |Xδ
t | ≥ n}. By Lemma 1, it

holds that P-a.s. limn→∞ τn = ∞. Recall that

dXt = b(Xt)dt + dWt, t ∈ [0, T]. (15)
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Let

Wδ
t = Wt −

∫ t

0
[b(Xsδ

)− b(Xs)]ds, t ∈ [0, T]. (16)

Then (15) can be rewritten as

dXt = b(Xtδ
)dt + dWδ

t , t ∈ [0, T].

Set

Rt = exp
{∫ t

0
⟨[b(Xsδ

)− b(Xs)], dWs⟩ −
1
2

∫ t

0
|b(Xsδ

)− b(Xs)|2ds
}

, t ∈ [0, T].

Fix t0 ∈ (0, T]. By (A) and Girsanov’s theorem, we conclude that {Rt∧τn}t∈[0,t0]
is a

martingale and Wδ
t is d-dimensional Brownian motion up to t0 ∧ τn under probability

measure Qn = Rt0∧τnP. This together with (A) and Lemma 2 implies that

EQn
∫ t0∧τn

0
|b(Xsδ

)− b(Xs)|2ds

= E
∫ t0∧τn

0
|b(Xδ

sδ
)− b(Xδ

s )|2ds (17)

≤ E
∫ t0

0
K2|Xδ

sδ
− Xδ

s |2βds

≤
∫ t0

0
K2{E|Xδ

sδ
− Xδ

s |2}βds ≤ K2CT,x,dt0δβ.

From this and (16), we derive that

E[Rt0∧τn log Rt0∧τn ] = EQn
[log Rt0∧τn ]

= EQn
∫ t0∧τn

0
⟨[b(Xsδ

)− b(Xs)], dWs⟩ −
1
2
EQn

∫ t0∧τn

0
|b(Xsδ

)− b(Xs)|2ds

= EQn
∫ t0∧τn

0
⟨[b(Xsδ

)− b(Xs)], dWδ
s ⟩+

1
2
EQn

∫ t0∧τn

0
|b(Xsδ

)− b(Xs)|2ds

=
1
2
EQn

∫ t0∧τn

0
|b(Xsδ

)− b(Xs)|2ds

≤ 1
2

K2CT,x,dt0δβ.

This combined with the convergence theorem of martingales implies that {Rt}t∈[0,t0]
is a

martingale, and it follows from Fatou’s lemma that

E[Rt0 log Rt0 ] ≤ lim
n→∞

E[Rt0∧τn log Rt0∧τn ] ≤
1
2

K2CT,x,dt0δβ.

Applying Girsanov’s theorem again, we conclude that {Rt}t∈[0,t0]
is a martingale and Wδ

t is
d-dimensional Brownian motion up to t0 under probability measure Q = Rt0P, and hence,
the distribution of {Xt}t∈[0,t0]

under Q is equal to that of {Xδ
t }t∈[0,t0]

under P. As a result, it
holds that

E f (Xδ
t0
) = EQ f (Xt0) = E[Rt0 f (Xt0)], | f | ≤ 1 + | · |k, k ≥ 1. (18)

By Young’s inequality, we derive that

Ent(LXδ
t0
|LXt0

) ≤ CT,x,dδβ, t ∈ [0, T]. (19)

The proof is completed.
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4.2. Proof of Corollary 1

Corollary 1 is the direct result of Theorem 1 and Pinsker’s inequality (3).

4.3. Proof of Theorem 2

Proof. Firstly, we have

E[Rt0 − 1]2 = E[R2
t0
]− 1

= E
{

exp
{

2
∫ t0

0
⟨[b(Xsδ

)− b(Xs)], dWs⟩ − 4
∫ t0

0
|b(Xsδ

)− b(Xs)|2ds
}

× exp
{

3
∫ t0

0
|b(Xsδ

)− b(Xs)|2ds
}}

− 1

≤
{
E exp

{
6
∫ t0

0
|b(Xsδ

)− b(Xs)|2ds
}} 1

2
− 1

≤ E exp
{

6
∫ t0

0
|b(Xsδ

)− b(Xs)|2ds
}
− 1

≤ E
[

exp
{

6
∫ t0

0
|b(Xsδ

)− b(Xs)|2ds
}

6
∫ t0

0
|b(Xsδ

)− b(Xs)|2ds
]

≤ 6
{
E exp

{
12

∫ t0

0
|b(Xsδ

)− b(Xs)|2ds
}} 1

2
[
E
(∫ t0

0
|b(Xsδ

)− b(Xs)|2ds
)2

] 1
2

≤ 6

{
E exp

{
48K2t0 sup

s∈[0,t0]

|Xs|2βds

}} 1
2
[
E
(∫ t0

0
|b(Xsδ

)− b(Xs)|2ds
)2

] 1
2

By Lemma 3 and for β < 1, we derive

6

{
E exp

{
48K2t0 sup

s∈[0,t0]

|Xs|2βds

}} 1
2

< C(T, x, d)

for some constant C(T, x, d) > 0. Moreover, Hölder’s inequality and Lemma 2 imply that

[
E
(∫ t0

0
|b(Xsδ

)− b(Xs)|2ds
)2

] 1
2

≤
√

t0

[∫ t0

0
E|b(Xsδ

)− b(Xs)|4ds
] 1

2
≤ c1t0δβ.

So we conclude that
E[Rt0 − 1]2 ≤ ct0δβ

for some constant c > 0. From this together with (18) and Lemma 1, we derive

∥LXδ
t
( f )−LXt( f )∥k,var

= sup
| f |<1+|·|k

|LXδ
t
( f )−LXt( f )|

= sup
| f |<1+|·|k

|E[(Rt − 1) f (Xt)]|

≤ [E(Rt − 1)2]
1
2 [E(1 + |Xt|k)2]

1
2

≤ ck,T,x,d
√

tδ
β
2 .

The proof is completed.
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5. Conclusions and Discussion

In this paper, we studied the convergence rate of the relative entropy for a Euler–
Maruyama scheme of stochastic differential equations driven by additive Gaussian noise,
and we obtained its asymptotic behaviors. Our results for the convergence rate in terms
of relative entropy complement the conventional ones in the strong and weak sense and
induce some other properties of the Euler–Maruyama scheme. The convergence in terms of
total variation distance can be implied by Pinsker’s inequality directly. And the convergence
rate in terms of the weighted variation distance is also established.

Finally, we discuss some more complicated processes.
(1) SDEs with multiplicative noise: The SDE becomes

dXt = b(Xt)dt + σ(Xt)dWt, X0 = x (20)

The EM scheme satisfies

dXδ
t = b(Xδ

tδ
)dt + σ(Xδ

tδ
)dWt, Xδ

0 = x. (21)

When σ is invertible, we can still rewrite (20) as

dXt = b(Xtδ
)dt + σ(Xt)dW̃t (22)

with
dW̃t = dWt − σ−1(Xt)(b(Xtδ

)− b(Xt))dt.

Different from the additive noise case, (21) and (22) solve different SDEs and, hence, the
Girsanov transform is unavailable. We need to develop new approaches to deal with the
multiplicative noise case.

(2) Geometric Brownian motion (GBM): In reference [20], the authors investigated
time-averaging and nonergodicity for GBM in the presence of drift and with resetting.
Although GBM in the presence of drift has explicit representation and follows log-normal
distribution, it solves an SDE with linear and multiplicative noise:

dXt = µXtdt + σXtdWt.

The difficulty appearing in the multiplicative noise case will still exist.
(3) Anomalous-diffusion processes: In reference [21], the authors studied the noner-

godicity, non-Gaussianity and aging of scaled fractional Brownian motion. We believe that
our present method for estimating the relative entropy between EM scheme and the true
solution is also available in SDEs driven by additive fractional Brownian motion since the
Girsanov transform can also be used, and the Girsanov transform is relatively simple for
the case of H < 1

2 .
We will leave these processes mentioned above for a future study.
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