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Abstract: The knowledge of the causal mechanisms underlying one single system may not be suffi-
cient to answer certain questions. One can gain additional insights from comparing and contrasting
the causal mechanisms underlying multiple systems and uncovering consistent and distinct causal
relationships. For example, discovering common molecular mechanisms among different diseases
can lead to drug repurposing. The problem of comparing causal mechanisms among multiple systems
is non-trivial, since the causal mechanisms are usually unknown and need to be estimated from
data. If we estimate the causal mechanisms from data generated from different systems and directly
compare them (the naive method), the result can be sub-optimal. This is especially true if the data
generated by the different systems differ substantially with respect to their sample sizes. In this case,
the quality of the estimated causal mechanisms for the different systems will differ, which can in
turn affect the accuracy of the estimated similarities and differences among the systems via the naive
method. To mitigate this problem, we introduced the bootstrap estimation and the equal sample size
resampling estimation method for estimating the difference between causal networks. Both of these
methods use resampling to assess the confidence of the estimation. We compared these methods
with the naive method in a set of systematically simulated experimental conditions with a variety of
network structures and sample sizes, and using different performance metrics. We also evaluated
these methods on various real-world biomedical datasets covering a wide range of data designs.

Keywords: causal Bayesian network; causal discovery; uncertainty; resampling

1. Introduction

In biomedical sciences, sometimes the researchers are interested not only in the causal
mechanisms underlying one system but also in how the causal mechanisms may be con-
sistent or distinct among several systems. This comparative information can improve
the understanding of the individual systems in question and can indicate effective in-
terventions. For example, consistent molecular pathways underlying distinct cancers of
different organs or between cancer and other diseases can be an indication for repurposing
existing effective therapeutics [1,2]. On the other hand, the increasing knowledge of the
differences between the neural mechanisms of the healthy population vs. the population
with Parkinson’s disease has led to improved treatment strategies using deep brain stim-
ulation [3–5]. Moreover, with the rapid developments in measurement technology, the
collection of multi-modular, high volume, and/or high-intensity longitudinal data has
become more economical in many health domains. Deriving and comparing individualized
causal mechanisms could inform precision and personalized medicine [6–8].

The discovery and comparison of causal mechanisms can be and is often achieved
through conducting randomized experiments and analyzing experimental data. However,
experiments are often costly, time-consuming, sometimes unethical, or even outright
impossible, especially in the biomedical domain. In contrast, observational data are often
more abundant and cost-effective to collect. Various methods, generally referred to as
computational causal discovery methods, have been developed for estimating the structure
of causal networks based on the statistical properties of observational data. These methods
can be entirely data-driven. They use observational data, experimental data, or a mixture of
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both as inputs. A variety of prior knowledge regarding the domain can also be incorporated.
The correctness of these methods has been proven under broad assumptions [9,10]. In
the past ten years, there has been an accelerated growth in the application of these methods
to biological and medical data for knowledge discovery, which has achieved promising
results [11–15].

However, using computational causal discovery methods for the comparison of causal
networks is more complicated than simply applying the causal discovery method to each
dataset, respectively, and comparing the resulting networks (we refer to this procedure as
the naive method). This is because, in general, the quality of the causal network discovery
depends on various factors, and the naive method does not capture the confidence of the
estimation.

The current study aims to answer the following questions: What are some methods for
comparing causal networks estimated from different datasets? What are their comparative
performances under different conditions? What sample sizes are sufficient to support causal
network comparison? What are the factors influencing the performance of causal network
comparison? Finally, do these factors interact with one another? We systematically explore
these questions with analytical experiments on simulated data and various real-world
data. We introduce and examine three network comparison methods and characterize their
performance under various sample sizes, network structure characteristics, and effect sizes
over a comprehensive collection of performance metrics.

The organization of the paper is as follows. In Section 2, we review the key concepts
in computational causal discovery. We then formulate the causal network comparison
problem, define the scope of the current study, and review relevant prior literature. In
Section 3, we describe three methods for causal network comparison, provide an illustrative
example showcasing their application, and introduce metrics for evaluating these methods.
In Sections 5 and 6, we evaluate the network comparison methods on simulated and real-
world data, respectively. We present the design of the analytical experiments, analyze
the results, and discuss their implications. In Section 7, key findings from the analytical
experiements are summarized. Lastly, in Section 8 we discuss the contributions and
limitations of the current work. We also point to several directions for future work.

2. Background, Problem Formulation, and Scope

We first briefly introduce computational causal discovery. Then, we present the general
problem formulation for comparing a pair of causal Bayesian networks. We then describe
the scope of the current paper, which is the comparison of causal structures.

2.1. Computational Causal Discovery

Computational causal discovery solves the general problem of discovering qualitative
and quantitative causal relationships from data. Qualitative causal relationships describe
the existence or absence of cause–effect relationships, i.e., the causal structure among
variables; e.g., whether the over-expression of gene X causes cancer or not. The problem
of discovering qualitative relationships is often referred to as causal structure discovery.
On the other hand, quantitative causal relationships describe the magnitude of impact a
cause has on its effect, e.g., how much cardiovascular risk will be reduced if the dose of
a medication is increased. The problem of discovering quantitative causal relationships
is often referred to as causal inference or causal effect estimation. In general, the causal
effect estimation will be biased if the causal structure between the relevant variables is not
correctly specified [9]. In the current study, we focus on the comparison between causal
structures.

We have only introduced the essential concepts of causal structure discovery for
brevity in this section. We refer the reader to the following sources for a more in-depth
introduction to the topic [9,10,16,17].
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2.1.1. Definitions

Herein, we introduce the definitions for causality, a Bayesian network, and a causal
Bayesian network. The first two definitions give rise to the latter, which represents a
system’s causal mechanisms.

We use the definition for causality associated with manipulation or experimentation.
The do(·) notation in Definition 1 refers to a manipulation or experimentation that fixes the
values of random variable X to a single value x.

Definition 1. Causation [9]. Let do(X = xi) denote a manipulation, where the value of X is set to
xi. If ∃xi, xj, such that p(Y|do(X = xi)) ̸= p(Y|do(X = xj)), then X is a cause of Y.

We use a definition for a Bayesian network [18] with modified notation, which is
suitable for later discussions of network difference.

Definition 2. Bayesian network. Let V be a set of variables and p be a joint probability distribution
over V. Let E be the set of edges of a directed acyclic graph (DAG), where all vertices of the DAG
correspond one-to-one to members of V. ∀X ∈ V, X is conditionally independent of all non-
descendants of X, given the parents of X (i.e., the Markov condition holds). The triplet ⟨V, E, p⟩
defines a Bayesian network.

Taking the above two definitions together, a causal Bayesian network is a Bayesian
network with causally relevant edge semantics. In a causal Bayesian network, the parents of
variable X are the direct causes of X, the children of X are direct effects of X, the non-parent
ancestors of X are indirect causes of X, and the non-children descendants of X are indirect
effects of X.

Definition 3. Causal Bayesian Network [9,10]. A causal Bayesian network ⟨V, E, p⟩ is the
Bayesian network ⟨V, E, p⟩ with the additional semantics that, if there is an edge X → Y in E, then
X directly causes Y, ∀X, Y ∈ V.

2.1.2. The Causal Structure Discovery Problem

We formulate the causal structure discovery problem as follows. Let G⟨V, E, p⟩ denote
a causal Bayesian network over a set of variable V with the joint distribution p. We introduce
E, an equivalent representation of the edge set E for notational convenience. E represents the
relationship between a pair of variables X and Y ∈ V with E : {(X, Y)|X, Y ∈ V} → {0, 1},
where value 1 indicates the presence of a direct causal link X → Y, and value 0 indicates
the absence of such a relationship. In other words, E is the adjacency matrix representing
the structure of G. Let D be a dataset generated from G with the sample size N.

The causal discovery problem is to estimate G from D. Let Ĝ be the causal Bayesian
network inferred from D; the estimated network is similarly defined as Ĝ⟨V, Ê, p̂⟩, except
for Ê : {(X, Y)|X, Y ∈ V} → [0, 1]. We allow the value assigned to X → Y to range between
zero and one, to account for uncertainty or variability in the estimation when applicable.
We expand on this point in Section 3.

2.1.3. Methods for Causal Structure Discovery

In general, causal relationships can not be discovered from observational data with-
out assumptions [9,19]. Many methods, (including arguably the three most studied and
applied methods, the PC (Peter-Clark), FCI (Fast Causal Inference) [10], and GES (Greedy
Equivalence Search) [20]) assume faithfulness. The faithfulness assumption establishes
a one-to-one correspondence between the structure of the data generation process (i.e.,
the causal structure) and the statistical properties of the data, thus making causal discovery
from observational data possible. Several more recent methods have sought to discover
causal structure under weaker versions of faithfulness or specific types of faithfulness
violation [21–24].
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Causal structure discovery methods for causal structure discovery from data are
generally categorized into two broad categories: the constraint-based methods and the
score-based methods. The constraint-based methods search for the causal structure un-
derlying the data, based on statistical constraints imposed by conditional independence
relationships estimated from data. Examples of constraint-based methods include the PC
algorithm and the FCI algorithm [10]. The score-based methods instead search for the
causal structure underlying the data by maximizing likelihood-based scores. An example
of a score-based algorithm is the GES algorithm [20,25]. Additionally, there are hybrid
methods that utilize ideas and techniques from both constraint-based and score-based
methods, such as the MMHC (Max-Min Hill-Climbing) [26] and GFCI [27].

2.2. The Causal Network Comparison Problem

The causal network comparison problem deals with the general issue of comparing
causal Bayesian networks, given data generated from them. This problem is the focus of
the current study. Below, we discuss the general mathematical formulation of this problem,
the specific aspects of the problem that the current study addresses, and relevant prior
literature.

2.2.1. General Definition

We formulate the general problem of causal network comparison as inferring the
difference between an ordered pair of true networks (Gi, Gj) given the inferred network
(Ĝi, Ĝj) derived from the pair of datasets (Di, Dj) using method M.

2.2.2. Differences between Networks

A pair of networks Gi, Gj can be compared in many ways. Different metrics are needed
to quantify the similarities and differences between networks, depending on the study goal.
Performance measures for network comparison can be categorized as performance mea-
sures for causal structure comparison and for causal effect comparison. Metrics for causal
structure comparison quantify the differences between two causal structures (qualitative
causal relationships, such as if the edge X → Y is in Gi and Gj), without taking into account
the specific functional form or parameterization of the causal relationships embedded in
the joint distribution p. Contrastingly, the performance measurements for causal effect
comparison capture the quantitative difference in causal effect; namely, if the estimated
effect of manipulating X on Y differs in Gi vs. Gj. The estimated effect is not only related to
the structure but also the functional form or parameterization of the networks.

In the current study, we investigate causal structure comparison exclusively; specifi-
cally, we define the difference in causal structure between the pair of network (Gi, Gj) as
the set of edges in Gi but not in Gj. For notational convenience and the ease of describing
the metrics for quantifying causal structure comparison, we represent the edge difference
as follows:

[Ei − Ej]((X, Y)) =

{
1 if Ei((X, Y))− Ej((X, Y)) = 1
0 Otherwise

(1)

∀(X, Y) ∈ V.
X → Y is in Gi but not Gj. Ei((X, Y))− Ej((X, Y)) = 0 indicates X → Y is either in

both Gi and Gj, in neither Gi nor Gj, or not in Gi but in Gj. This definition enables us to
view the problem of estimating structural differences between pairs of networks as a binary
classification problem and to use the performance measurements for binary classification
to estimate the performance for this task; further discussion can be found in Section 4.

In addition to evaluating network differences as defined in (1), i.e., the differences
in the estimated directed acyclic graph (referred to as orientation discovery performance
below), we also evaluated the difference in the presence and absence of the edges and
disregarded the directionality of the edge (i.e., comparisons were made based on the
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skeleton of the causal Bayesian network, referred to as skeleton discovery performance
below):

[Ei − Ej](⟨X, Y⟩) =
{

1 if Ei(⟨X, Y⟩)− Ej(⟨X, Y⟩) = 1
0 Otherwise

(2)

In other words, Ei(⟨X, Y⟩) − Ej(⟨X, Y⟩) = 1 indicates that an edge, regardless of direc-
tionality, exists between X and Y in Gi but not in Gj. Note that the difference between
Equations (1) and (2) is that the former is defined for an ordered pair (X, Y), but the latter
is defined for an unordered pair ⟨X, Y⟩; in other words, Ei(⟨X, Y⟩) = Ei(⟨Y, X⟩).

2.2.3. Relevant Prior Literature

The causal network comparison problem as defined here (i.e., the comparison of two
networks inferred from data) bears similarity to the problem of evaluating the quality
of causal discovery, where the inferred network is compared to the true network. The
difference between the inferred network and the true network is regularly evaluated in
studies aiming to assess the performance of causal structure discovery methods given sim-
ulated data, or when the data generation function is known [28,29]. Despite the similarity
on the surface, comparing two networks inferred from data is more challenging, since
both networks in question were estimated and may have different degrees of uncertainty
associated with them.

The comparison of two inferred causal networks belongs to the more general problem
of comparing a pair of inferred statistics. On a high level, this comparison is done by
assessing the overlap between the confidence intervals of the estimates. Closed-form
formulas or approximations for confidence intervals exist for some estimates of interest,
such as the mean [30], variance [31], and correlation coefficients [32,33]. However, to
the best of our knowledge, a closed-form formula for the confidence interval for causal
structure discovery has not been established.

Estimating confidence interval for causal discovery is related to prior work on control-
ling the false discovery rate for causal discovery, since the control of the false discovery
rate requires assigning uncertainty or confidence to the discovery edges. Several methods
tackling this problem combine and bound p-values from conditional independence tests
associated with a particular discovered edge, and then apply a false discovery rate control
method over the bounded p-values for all discovered edges [34–36]. These methods, due
to the need to combine p-values for bounds, are specific for the PC algorithm variant in
question and may not be straight-forward to generalize to other methods. Other methods
for estimating the false discovery rate circumvent the bounding p-values by employing
permutation [35,37] or resampling [35]. In principle, permutation and resampling meth-
ods do not depend on the discovery methods applied and/or the knowledge of the joint
distribution. The resampling methods are directly related to the goal of the current study,
except we are not only interested in bootstrap frequency for the discovered edges (which
relates to false discovery rate), but also the pair of nodes for which no edge was identified
between them (relates to false negatives). The resampling was first proposed for assessing
confidence intervals for causal discovery in [38,39], and was empirically demonstrated
to adequate estimate confidence for causal discovery in simulated datasets using vari-
ous causal discovery algorithms [38–42]. Therefore, we resort to resampling to estimate
the confidence of causal discovery and to support the comparison between the inferred
networks.

Other relevant works come from the applied literature. Many studies in the biomedi-
cal literature compare networks derived from data collected from different populations.
Take studies using fMRI (functional magnetic resonance imaging) data, for example; many
studies compare the networks derived from fMRI data, collected from individuals affected
by a given disease, with controls [43–46]. Except for [44], all of these studies derive connec-
tivity networks. The connectivity networks capture associations rather than causation and
compare connectivity network results in conclusions regarding differences in univariate
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statistical association rather than mechanistic differences. In addition, all studies are either
based on fMRI data of the same sample size for each individual or do not mention potential
sample size differences. For fMRI data, especially for resting state data (examined in all four
studies), it is relatively easy to enforce equal sample size for network discovery. However,
this is not generally true for data from other domains of medicine. In the current study,
the differential confidence of estimation due to sample size difference is one of the critical
challenges we tackled.

3. Methods for Estimating the Structural Differences between Pairs of Networks

In this section, we design and introduce three methods for estimating the structural
differences between pairs of causal Bayesian networks and illustrate their differences with
a simple example.

3.1. Naive Method

Given a pair of datasets (Di, Dj) generated by (Gi, Gj), obtain (Ĝi
naive, Ĝj

naive
) by

applying the causal discovery algorithm of choice M to Di and Dj, respectively. The

oriented edge difference between Gi and Gj, i.e. Ei − Ej, is estimated by Êi
naive − Êj

naive :
((X, Y)) → {0, 1}, where:

[
Êi

naive − Êj
naive

]
((X, Y)) =

{
1 if Êi

naive
((X, Y))− Êj

naive
((X, Y)) = 1

0 Otherwise
(3)

In other words, Êi
naive

((X, Y))− Êj
naive

((X, Y)) = 1 indicates that the naive method es-
timates the existence of the edge X → Y, in Gi but not in Gj. The estimated skeleton

or unoriented edge difference [Êi
naive − Êj

naive
](⟨X, Y⟩) is defined similarly and is, thus,

omitted.
The naive method is simple and easy to implement. However, as is the same for any

statistical procedure, sample sizes of Di and Dj impact the estimation of Gi and Gj. More
importantly for our problem, if there is a sufficient difference in the sample sizes of Di and
Dj, the quality for estimating Ei and Ej will be different, i.e., how well Êi approximates Ei

vs. how well Êj approximates Ej, which will further impact how well Êi − Êj approximates
Ei − Ej. In the following sections, we introduce the bootstrap estimation and the equal
sample size resampling estimation, with the goal of mitigating this problem.

3.2. Bootstrap Estimation

Bootstrap is often used to assess the variability in an estimation. In the causal discovery
literature, the frequency of discovering an edge in bootstrap samples has been shown to
be a good indicator for the presence of the edge in the true network [42]. Therefore, we
propose to estimate the network difference by incorporating the confidence of estimating
individual networks using bootstrap. Specifically, we apply the causal discovery algorithm
of choice to bootstrap samples of Di and Dj respectively, and obtain for each edge the
bootstrap percentage (the number of times an edge is discovered in a bootstrap sample
over the total number of bootstrap runs) Êi

BS and Êj
BS. Here, ÊBS returns a value in [0, 1].

The edge difference for (Gi, Gj) is estimated by Êi
BS − Êj

BS : (X, Y) → [−1, 1], where[
Êi

BS − Êj
BS
]
((X, Y)) = Êi

BS
((X, Y))− Êj

BS
((X, Y)), ∀X, Y ∈ V (4)

Heuristically, the larger the Ei
BS − Êj

BS for a given edge, the more likely it is to be present
in Gi but not in Gj.
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3.3. Equal Sample Size Resampling Estimation

Equal sample size resampling estimation is, in principle, similar to the bootstrap
estimation. The difference is that, instead of obtaining the bootstrap probability estimation
from both Di and Dj, we obtain the bootstrap probability estimation from the dataset with
the smaller sample size and obtain the equal sample size resampling estimation from the
dataset with the larger sample size. The equal sample size resampling down-samples the
dataset with the larger sample size without replacement, to create subsamples of the same
size as the dataset with the smaller sample size. The causal discovery algorithm of choice
is applied to the equal sample size resampling samples and bootstrap samples of the two
datasets, respectively. The edge difference for (Gi, Gj) is estimated by Êi

RSBS − Êj
RSBS :

(X, Y) → [−1, 1], where

[
Êi

RSBS − Êj
RSBS

]
((X, Y)) =

{
Êi

RS
((X, Y))− Êj

BS
((X, Y)) if sample size of Di is larger

Êi
BS
((X, Y))− Êj

RS
((X, Y)) if sample size of Dj is larger

(5)

Heuristically, the larger the Êi
RSBS − Êj

RSBS for a given edge, the more likely it is to be
present in Gi but not in Gj.

The advantage of equal sample size resampling over bootstrap resampling are with
respect to edges that are present in both Gi and Gj, but there is enough statistical power to
identify the edge for one but not the other due to the sample size difference.

3.4. Example

In this section, we show a simple example to illustrate the three methods for estimating
network differences and highlight their advantages and disadvantages. We illustrate the
network difference in the skeleton difference, but it can be easily extended to orientation
difference.

The true causal structure for a pair of networks (G1, G2) is shown in Figure 1. The
two networks and their associated data generation functions are identical, except for the
edge between D and E. The true edge difference E1 − E2 only contains one edge, which
is D—E. We generated D1 with 1000 samples from G1, and D2 with 200 samples from G2.
We applied the PC algorithm with the three methods for estimating network difference
E1 − E2, and obtained the results, as can be seen in Table 1.

A B

C

D

E

A B

C

D

E

Figure 1. A pair of networks ⟨Gi, Gj⟩ and their associated data generation functions.
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Table 1. Causal structure discovery results using the three different methods on the network pair
(G1, G2) in Figure 1. Sample size for D1 is 1000, sample size for D2 is 200. Edges with zero value
for Ê1 or Ê2 for all methods are omitted. GS indicates the gold standard, i.e. if the edge is different
between G1 and G2 in terms of the causal skeleton.

GS Naïve BS RSBS
Edge E1 − E2 Ê1 Ê2 Ê1 − Ê2 Ê1 Ê2 Ê1 − Ê2 Ê1 Ê2 Ê1 − Ê2

D—E 1 1 0 1 0.94 0 0.94 0.42 0 0.42
A—C 0 1 0 1 0.86 0.1 0.76 0.16 0.1 0.06
B—C 0 1 1 0 1 1 0 1 1 0
C—D 0 1 1 0 1 1 0 1 1 0
A—D 0 0 0 0 0.04 0.02 0.02 0.04 0.02 0.02
B—E 0 0 0 0 0.24 0 0.24 0.04 0 0.04

The naive method estimated G1 perfectly, but missed the A—C edge for G2. As a
result, it assigned a value of one to D—E and A—C for the estimated network difference
Ê1

naive − Ê2
naive.

The bootstrap method identified A—C 86 and 10 percent of the time out of all the
bootstrap runs, when estimating E1 and E2, respectively. As a result, it assigned the value
0.76 to the A—C edge for Ê1

BS − Ê2
BS. Notice that, due to bootstrap’s ability to assess

variability over multiple bootstrap samples, the Ê1
BS − Ê2

BS for the true different edge
D—E is higher than that of A—C, which is desirable. However, the bootstrap method also
assigned relatively small but positive estimates to two edges, A—D and B—E, which are
not in E1 − E2.

The equal sample size resampling method subsampled D1 with the same sample size
as D2 to obtain Ê1

RS, resulting in less confidence, as represented by a value of 0.16 for the
A—C edge. The Ê1

RSBS − Ê2
RSBS for A—C estimated by the equal sample size resampling

is 0.06, a much smaller number compared to the other two methods, and the estimated
value is fairly close to other edges that are not in E1 − E2, which is desirable. However,
the Ê1

RSBS − Ê2
RSBS for the true different edge D—E is 0.42, a value smaller than those

generated by the naive method and the bootstrap method.
To summarize, both the bootstrap and equal sample size resampling methods incorpo-

rate estimations of variability, which allowed for distinction between the true different edge
D—E and the edges that are not different for (G1, G2), most notably A—C. As a result, in
this example, there exist thresholds (e.g., > 0.76 for bootstrap and > 0.06 for equal sample
size resampling) where both the bootstrap method and the equal sample size resampling
method can result in perfect discovery performance for E1 − E2. Comparing bootstrap with
equal sample size resampling, the bootstrap tends to result in larger Ê1 − Ê2 for all edges
in this example, where the sample size of D1 is much larger than D2. Depending on the
characteristics of G1 and G2 (e.g., structure, effect size of edges, and how many edges are
different) and the sample size, the bootstrap and equal sample size resampling methods
can have different comparative advantages. We systematically explore this in Section 5.

4. Performance Measures

As defined in Section 2, the ground truth for the (Gi, Gj) edge difference is defined
by Ei − Ej : (X, Y) → {0, 1}. This formulation enables us to treat the estimation of edge
difference as a binary classification problem. Positives are edges where Ei − Ej takes a
value of one, i.e., edges that are in Gi but not Gj. Negatives are edges where Ei − Ej takes a
value of zero, i.e., edges that are in both Gi and Gj, edges that are in neither Gi nor Gj, or
edges that are in Gj but not Gi. Note that the edge differences for (Gi, Gj) and (Gj, Gi) are
distinct.

We use standard metrics for binary classification to evaluate the performance for
estimating network difference. The naive method (Equation (3)) outputs a binary decision.
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We compute AUCROC (area under the receiver operating characteristic curve), AUPR (area
under the precision recall curve), and cross entropy for all three estimation methods. For the
naive methods, we directly compute metrics for evaluation, including sensitivity, specificity,
PPV (positive predictive value), NPV (negative predictive value), F1 score, and accuracy.
For the bootstrap estimation (Equation (4)) and equal sample size resampling estimation
(Equation (5)) we thresholded/binarized the heuristic score so the binary classification
metrics can be computed. The threshold is obtained by optimizing the F1 score. We will
focus on comparing AUCROC, AUPR, and cross entropy in the main body of the paper,
but we report the other metrics in the supporting information.

In binary classification, it is often reasonable to let each observation contribute to the
performance equally, but, in a network, edges can play different roles, and the discovery
of edges can depend on other edges. Here, to keep the our discussion clear, we used the
standard performance measurements for binary classification where each observation is
weighted equally. But, depending on the goal of the study, it might be beneficial to treat
individual edges differently, e.g., to focus on a subgraph of interest.

In general, the stronger the direct causal relationship among two variables in the true
network, the easier it is to identify the relationship. Recall the example shown in Figure 1
and Table 1: edge A—C is difficult to discover at a smaller sample size when compared
to B—C, due to the weaker edge strength. The strength of the direct causal relationship is
often referred to as the effect size. To examine the influence of effect size on the performance
for identifying network differences, we correlated edge effect sizes with the heuristic scores
from the bootstrap and equal sample size resampling. The effect size for edge X → Y is

defined as f 2
XY =

R2
Pa(Y)−R2

(Pa(Y)\X)

1−R2
Pa(Y)

, where Pa(Y) denotes the set that contains all parents

of Y in Gi. f 2
XY is interpreted as the additional information in X regarding Y, given other

parents of Y [47].

5. Experiments with Simulated Data

To systematically investigate the factors influencing the quality of network difference
inference, we generated pairs of causal Bayesian networks (Gi, Gj) with different edge
densities, different edge strengths (effect sizes), and different numbers of edges differences
between the pair. We also simulated datasets of different sizes from the simulated networks,
to assess the effect of the sample size. We then applied the three edge difference discovery
methods to the simulated datasets, to investigate how the above factors influence the
performance.

5.1. Simulation Procedure

Let Nv denote the number of variables, Ne denote the number of edges, and Nd
denote the number of different edges between the pair of networks (Gi, Gj). We generate
the graphs, such that, Nd = 2|{(X, Y)|Ei − Ej = 1}| = 2|{(X, Y)|Ej − Ei = 1}|, where
{(X, Y)|Ei − Ej = 1} denote the set of edges that are in Gi but not in Gj. In other words, we
simulate the number of edges that are in Gi but not Gj to be equal to the number of edges
that are in Gj but not Gi; that is, Nd

2 for each.
To generate a pair of causal Bayesian networks (G1, G2), we first generated G1 by

generating a random directed acyclic graph (DAG) with Nv nodes and Ne edges. Then, the
DAG is parameterized as a multivariate standard Gaussian distribution, as follows:

Vi =

{
N (0, 1) if Pa(Vi) = ∅
ΣVp∈Pa(Vi)

βpVp + N(0, σnoise) if Pa(Vi) ̸= ∅
(6)

Pa(Vi) represents the set containing the parents of Vi, as specified in the DAG. βp, the
coefficient of each parent of Vi, is the multiplication of a uniform random variable and a
Bernoulli random variable, as follows: βp = b × u, where P(b = 1) = 0.6, P(b = −1) = 0.4,
and u ∼ U(0.1, 0.35). This procedure resulted both positive and negative relationships in
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the data generation process and a range of effect sizes (for the distribution of the effect
sizes, see the Supporting Information). The effect sizes explored in the current study are
mainly small ( f 2 ∈ [0.02, 0.15)) to median ( f 2 ∈ [0.15, 0.35)) effect sizes [47,48]. σnoise is
computed for each Vi, such that the marginal variance of Vi is one. A marginal variance of
one is not always achievable (i.e., in some cases, the variance of Vi exceeds one before σnoise
is added); in these cases, a new DAG is generated and new parameterization is attempted.

We generate G2 by randomly deleting Nd
2 edges from G1, and randomly adding Nd

2
edges to G1, resulting in Nd different edges between G1 and G2. The edge coefficients that
are common between G1 and G2 have the same coefficients. The edges that were present in
G2 but not in G1 are generated using βp = b × u, where P(b = 1) = 0.6, P(b = −1) = 0.4,
and u ∼ U(0.1, 0.35). The corresponding σnoise terms are recomputed as well, to ensure the
marginal distribution of all variables are standard Gaussian for G2.

After the parameterized causal Bayesian networks are generated, we simulated
datasets of different sample sizes from them.

We explored the following parameters for the simulated causal Bayesian networks:
(1) number of nodes: Nv = 100, (2) number of edges: Ne = {1.5 × Nv, 2 × Nv, 2.5 × Nv},
and (3) number of different edges between pairs of networks Nd = {⌈0.05 × Ne⌉, ⌈0.1 ×
Ne⌉, ⌈0.2 × Ne⌉, ⌈0.5 × Ne⌉, 1 × Ne}. For each parameter combination, we generated 50
random pairs of DAGs and parameterized causal Bayesian networks. We simulated pairs
of datasets from each pair of causal Bayesian networks, where the number of samples of
datasets simulated from G1 are N1 = {500, 1000, 2000, 5000}. For each sample size of N1,
we compared the estimated network to datasets simulated from G2, with sample sizes of
N2 = {0.1× N1, 0.2× N1, 0.5× N1, 1× N1}. This resulted in 1× 3× 5× 50× 4× 4 = 12, 000
pairs of datasets, where we estimated the difference between (G1, G2). For each pair of
(Gi, Gj), we estimated both E1 − E2 and E2 − E1. Note that for our setting, data sampled
from G1 was always larger or equal to that from G2.

5.2. Performance of Different Methods for Estimating Network Difference

We determined the best method for estimating the difference between two networks by
comparing the performances of the three methods for each evaluated outcome, the causal
discovery algorithm applied, and different performance measures under each simulation
condition. There are a total number of 240 simulation conditions, given the combinations of
the number of edges, the number of different edges between the networks, and the number
of samples for each network (|Nv| × |Ne| × |Nd| × |N1| × |N2| = 240). There are 50 dataset
pairs for each simulation condition for estimations of variance in performance.

Table 2 summarizes the percent of times a network difference estimation method was
deemed the best over all the applicable simulation conditions. It is worth noting that the
bootstrap method resulted in the best performance over almost all simulation conditions
(>90%) for almost all evaluated outcomes, algorithms, and performance measures. The
only exception was when assessing the additional oriented edge in the network estimated
from a smaller dataset, compared to the network estimated from a larger dataset, using the
PC algorithm for the AUCROC (underlined in Table 2). In this situation, the equal sample
size resampling method was the best over almost all simulation conditions.

In the following sections, we explore the influence of different factors and their inter-
actions on estimating network differences further.
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Table 2. Summary of relative performance for estimating network difference using the three esti-
mation methods. The table summarizes the percentage of times a network difference estimation
methods resulted in the best performance compared to the other two; if a methods’ performance was
not statistically distinguishable from that of the best one (defined as being within one standard devia-
tion), it was also marked as the best. The determination of the best method was conducted for each
simulation condition, evaluated outcome, and performance measure. For the naive method and the
bootstrap (BS) method, the percentages reported in the table were computed based on 240 simulation
conditions (|Nv| × |Ne| × |Nd| × |N1| × |N2| = 240). For the equal sample size resampling (RSBS)
method, the percentages reported in the table were computed based on 180 simulation conditions,
since this method was not applicable when N1 = N2. With respect to the evaluated outcome, we
assessed both the performance of skeleton discovery and orientation discovery. Ei − Ej refers to edges
in Gi but not in Gj, based on Di and Dj. In our experiments, the sample size of D1 was always larger
or equal to that of D2. We present the results for E1 − E2 and E2 − E1 separately. It is worth noting
that, the bootstrap method resulted in the best performance over almost all simulation conditions for
almost all evaluated outcomes, algorithms, and performance measures. The only exception is when
assessing the additional oriented edge in the network estimated from a smaller dataset as compared
to the network estimated from a larger dataset using the PC algorithm for the AUCROC (underlined).

Estimation
Method Evaluated Outcome Discovery

Algorithm AUCROC AUPR Cross
Entropy

Naïve

E1 − E2

Skeleton FGES 5% 3% 0%
PC 8% 1% 0%

Orientation FGES 0% 8% 0%
PC 5% 1% 0%

E2 − E1

Skeleton FGES 5% 10% 0%
PC 7% 5% 0%

Orientation FGES 0% 10% 0%
PC 3% 5% 0%

BS

E1 − E2

Skeleton FGES 100% 98% 97%
PC 100% 94% 93%

Orientation FGES 100% 100% 98%
PC 100% 100% 100%

E2 − E1

Skeleton FGES 100% 100% 100%
PC 99% 100% 99%

Orientation FGES 100% 100% 100%
PC 74% 100% 99%

RSBS

E1 − E2

Skeleton FGES 8% 59% 56%
PC 52% 82% 79%

Orientation FGES 21% 63% 78%
PC 3% 1% 0%

E2 − E1

Skeleton FGES 100% 58% 39%
PC 100% 100% 100%

Orientation FGES 100% 100% 100%
PC 100% 78% 74%

5.3. Effect of Sample Size on Inferring Network Difference

Increasing the sample size in one sample while holding the sample size for the other
sample resulted in performance improvement for identifying different edges between the
pairs of networks. The trend of increased performance with increasing sample size was
observed for AUCROC, AUPR, and cross entropy for all combinations of the number of
edges, the number of different edges in the data generating graphs, and the causal discovery
algorithms applied. Figure 2 illustrates this for one simulation set-up, where the pair of
graphs ⟨G1, G2⟩ both have 100 vertices, 200 edges, and 40 different edges (i.e., Nv = 100,
Ne = 200, Nd = 40). For a fixed sample size of D1 (i.e., data sampled from G1, corresponds
to one subplot in Figure 2, sample size labeled on top of the gray bar), all performance
measurements improved as the sample size for D2 (i.e., data sampled from G2, corresponds
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to the x-axis of each subplot in Figure 2, tick label representing N2
N1

) increased. The influence
of sample size on the performance for the bootstrap and equal sample size resampling
methods was more pronounced than for the naive method.
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Ê2
naive

Ê2
BS

E1 − E2 ∼ Ê1
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Ê1
RS

Ê2
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naive

E1 − E2 ∼ Ê1
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Figure 2. Performance measurements for identifying orientation difference for E1 − E2 using FGES
(Fast Greedy Equivalence Search), where Nv = 100, Ne = 200, Nd = 40. Columns are sample sizes
for D1, x-axis represents ratio of sample size for D2 vs. D1. We denote the performance for inferring
network differences E1 − E2 using the naive, bootstrap, and equal sample size resampling methods
with different shades of purple. We also denote the performances of estimating E1 using the naive,
bootstrap, and equal sample size resampling with different shades of pink, and estimating E2 using
the naive and bootstrap methods with different shades of green. Note that the resampling method is
not applicable when the sample sizes of D1 and D2 are the same.

It is worth noting that the sample size of the smaller sample (i.e., D2) has more impact
on the performance, whereas the total sample size of the two samples is less critical. For
example, in Figure 2, N1 = 500 and N2 = 250 have better performances than N1 = 1000 and
N2 = 100 for AUPR mean (standard deviation) (0.37 (0.11) vs. 0.20 (0.08) and 0.25 (0.08)
vs. 0.04 (0.17) for bootstrap and equal sample size resampling, respectively) and for cross
entropy (0.08 (0.04) vs. 0.15 (0.09) and 0.08 (0.03) vs. 0.17 (0.08) for bootstrap and equal
sample size resampling, respectively). Also, under certain conditions, when the sample
size of the smaller sample is constant, increasing the sample size of the large sample has a
relatively small impact on performance. For example, in Figure 2b, comparing N2 = 100
and N1 = 500 vs. N1 = 1000, doubling the sample size of D1 results in marginal to
no improvement on AUPR (0.18 (0.08) vs.0.20 (0.08) and 0.09 (0.04) vs. 0.10 (0.04) for
bootstrap and equal sample size resampling, respectively) and cross entropy (0.15 (0.09) vs.
0.15 (0.09) and 0.21 (0.10) vs. 0.17 (0.08) for bootstrap and equal sample size resampling,
respectively).
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Furthermore, given the difference in sample sizes for the two data samples, the
performance for identifying E1 − E2 is different compared to that for E2 − E1. Specifically,
comparing Figure 3a,b, for a fixed sample size ratio r2 = |D2|

|D1|
< 1, the AUCROC for E1 − E2

is higher than that of E2 − E1, for the naive and bootstrap methods. The advantage for
E1 − E2 diminishes as r2 = N2

N1
increases. For the equal sample size resampling method,

the AUCROC for E1 − E2 is generally lower than that of E2 − E1, except for the smaller
D1 sample size with lower r2. This is likely due to the fact that the equal sample size
resampling method on D1 reduces the identification of true positive edges in E1, which
decreases the AUCROC for E1 − E2.
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Ê2
BS

E2 − E1 ∼ Ê2
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BS − Ê1
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Figure 3. AUCROC for identifying orientation difference for E1 − E2 vs. E2 − E1 using FGES, where
Nv = 100, Ne = 200, Nd = 40. Columns are sample sizes for D1, and the x-axis represents the ratio of
sample size for D2 vs. D1.

5.4. Effect of Causal Discovery Algorithms on Inferring Network Difference

We observed that the PC algorithms resulted in a better performance, compared
to FGES, for inferring network differences for most of the simulation set-ups and the
performance measures we examined. Among the 2640 combinations of simulation settings
(240 for naive and bootstrap, 180 for equal sample size resampling), outcomes evaluated
(skeleton and orientation for E1 − E2 and E2 − E1, four combinations), and estimation
methods (naive, bootstrap, and equal sample size resampling) examined, the PC algorithm
performed better or equal to FGES in 98%, 84%, and 92% of the combinations for AUC,
AUPR, and cross entropy, respectively. FGES performed better or equal to the PC in 51%,
51%, and 59% of the combinations for AUC, AUPR, and cross entropy, respectively.

With respect to the interaction between the estimation methods and causal discovery
algorithms, as indicated in Table 2, bootstrap is predominantly the best method for esti-
mating network differences for both PC and FGES, except for when assessing the E2 − E1
orientation performance. This indicates that there is an interaction between the causal
discovery algorithm, the methods for estimating network difference, and the evaluated
outcome. Figure 4 compares FGES and PC for a specific simulation setting to highlight the
interaction effect.
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Ê1
RS

Ê2
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Figure 4. AUCROC for identifying orientation differences for E1 − E2 vs. E2 − E1 using FGES vs. PC,
where Nv = 100, Ne = 200, Nd = 40. Columns are sample sizes for D1, and the x-axis represents the
ratio of sample sizes for D2 vs. D1.

5.5. Effect of Network Structure on Inferring Network Difference

In our analysis, we found the influence of network structure (i.e., the number of nodes and
edges in G1 and G2 and the number of different edges between G1 and G2) to have minimal
influence both on the numerical values of average AUCROC values and the relative advantage
of the three methods for inferring network differences. Bootstrap estimation is predominantly
the best method for inferring network difference for all variations of network structures. It
demonstrated AUCROC values that were better than or statistically indistinguishable from the
other estimation methods in >90% of the combinations of all pairs of sample sizes for D1 and
D2, causal discovery algorithms, and evaluated outcomes. The mean AUCROC values across
the different network structures were similar. As expected, the variability of the estimation
decreased as the number of different edges increased.

For predicting E1 − E2, the bootstrap method generally assigns a higher score than
that of the equal sample size resampling for estimating E1 − E2. On the other hand, for
predicting E2 − E1, the equal sample size resampling gives a higher score than that of the
bootstrap method. This is because the two methods differ in how E1 was estimated. The
bootstrap method estimates E1 with a larger sample size, compared to the equal sample
size resampling method. This also explains the better AUCROC observed for E2 − E1 with
the equal sample size resampling method using the PC algorithm (Figure 5b).
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naive

E1 − E2 ∼ Ê1
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Figure 5. AUCROC for identifying orientation differences for E1 − E2 vs. E2 − E1 in different network
structures using the PC algorithm, where Nv = 100, Ne = 200. Columns are sample sizes for D1,
the x-axis represents the ratio of sample size for D2 vs. D1. Rows are the number of different edges
between G1 and G2.
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5.6. Effect of Effect Size on Inferring Network Difference

We examined the relationship between an edge’s effect size and its likelihood to be
identified as different between the two graphs. Effect size refers to the strength of the
relationship between pairs of variables (see Section 4 for definition). We used the predicted
score for edge difference to represent the likelihood. The predicted score computed for the
bootstrap and equal sample size resampling methods is specified in Equations (4) and (5).
We observe that, given fixed sample sizes (e.g., individual subplots in Figure 6), edges with
higher effect sizes receive higher predicted scores for edge difference, for both the bootstrap
method and the equal sample size resampling method. As expected, when the sample
sizes for D1 and D2 increased, the predicted scores for bootstrap and equal sample size
resampling also increased.
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Figure 6. Effect of effect size on inferring network difference for orientation performance, where
Nv = 100, Ne = 200, Nd = 40, with PC algorithm. Each column represents a sample size for D1,
each row represents an r2 representing the sample size of D2 over D1. The x axis for each subplots
represents the effect size, and the y axis represents the predicted score if there is an edge difference
between the two graphs.

6. Experiments with Real Data

To examine if the patterns observed from systematically simulated multivariate Gaus-
sian data extend to that of the real world data, we selected six datasets from different
domains of biology and medicine and applied the three methods for inferring network
difference.

6.1. Experiment Design and Datasets

One challenge we faced is that the true causal Bayesian networks underlying the real
world datasets are unknown. Therefore, we used the following strategy to generate G1 and
G2: for each real world dataset D0, we randomly selected two sets of variables of size Np.
We permuted the two sets of variables to generate the datasets Df

1 and Df
2, respectively. The

superscript f indicates that Df
1 and Df

2 have the full sample size of the original dataset D0.
In theory, in the large sample, the operation of permuting a variable results in elimination
of any edges connected to it. We then applied the causal discovery algorithm to Df

1 and Df
2,

to obtain a pair of causal graphs, which we considered to be G1 and G2.
To evaluate the performances of the three methods for network difference inference,

we applied the methods, given a subsample of Df
1 and subsamples of Df

2. We explored the
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following combinations for the experiments on real world data: (1) six real world datasets:
as shown in Table 3, the real world datasets cover common experimental designs (clinical
trials and cohort studies) and data modules (clinical data, biomarkers, electronic health
record data, and high-throughput gene expression data) commonly seen in biomedical
studies, containing a variety of sample sizes and numbers of variables. More information
about these datasets and how to obtain them are included in the appendix. (2) Np: Np =
{2, 6}. For each Np, 10 random repeats were conducted, resulting in 10 different pairs of
G1 and G2. Note that the edge differences between each pair of graphs were generally not
equal in number, as it depended on the connectivity of the variables that were permuted.
(3) Sample sizes: for each G1 and G2 pair, we examined a subsample of Df

1, which consisted
of 60% of the observations from Df

1. This sample size was referred to as N1. For D2, we
examined the following sample sizes: N2 = {⌈0.1 × N1⌉, ⌈0.2 × N1⌉, ⌈0.5 × N1⌉, 1 × N1},
similar to the simulated studies.

Table 3. Descriptions of the real world datasets.

Name # Obs # Var Description Citation

Accordbs 10,251 70 Baseline data from the ACCORD clinical trial [49]
Sprintbs 9361 27 Baseline data from the SPRINT clinical trial [50]
NHANES 20,044 65 Lab data from the NHANES3 cohort study [51]

FVT2DM 79,486 33 EHR data from a type 2 diabetes cohort from
Fairview hospital [52]

P3TLH 2621 1948 Single cell gene expression data from
Hepatocytes from patient P3TLH [53]

Ind4 3982 1462 Single cell gene expression data from breast
epithelial cells from individual 4 [54]

6.2. Causal Structure Discovery and Network Comparison

We used the FGES algorithm for all the real world datasets, since the PC algorithm
did not terminate for the datasets with larger number of variables in a reasonable amount
of time (up to 96 hrs per network for one combination of experimental parameters was
allowed, due to the time constraint on the Minnesota Supercomputing Institute. It is worth
noting, however, that parallelization can be implemented at the level of the resampling
iterations for the bootstrap and equal sample-size resampling methods. We did not explore
this in the current set of experiments). We examined the same performance measurements
for the three methods for network difference inference as the simulated experiments.

Performances on the real world data are shown in Figures 7 and 8. Notably, for the two
single cell datasets (Ind4 and P3TLH), the performances were generally worse compared to
the other datasets, except for the AUCROC inferring E1 − E2 using the bootstrap method.
This is likely due to the small sample to variable ratio for the single cell data.
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Ê1
BS

Ê1
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Figure 7. AUCROC for identifying (a) E1 − E2 and (b) E2 − E1 for the six real world datasets. Columns
correspond to datasets, rows represent Np, and the x-axis represents the ratio of sample sizes for D2

vs. D1.
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Figure 8. AUPR for identifying (a) E1 − E2 and (b) E2 − E1 for the six real world datasets. Columns
correspond to datasets, rows represent Np, the x-axis represents the ratio of sample sizes for D2

vs. D1.
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The performances for the real-world data were somewhat different from what was
observed for the simulated data. Comparing the estimation methods, the bootstrap method
continued to perform the best when estimating E1 − E2 with respect to AUCROC for all
real world datasets. Contrarily, for estimating E2 − E1, the equal sample size resampling
method outperformed the bootstrap method for all datasets, in terms of AUCROC. For
AUPR when estimating E1 − E2, bootstrap was most frequently considered to be the best
method, whereas, for AUPR when estimating E2 − E1, the equal sample size resampling
method had similar performance to the bootstrap method and outperformed bootstrap for
several dataset and sample size combinations.

It is interesting to note that, when estimating E1 − E2, we observed that, for most
datasets, as the sample size for D2 increased, the AUCROC for the bootstrap estimation for
edge difference decreased, despite the increase in performance for estimating E2. Upon fur-
ther examination of the results, we discovered that this was due to the bootstrap estimation
for E2 tending to assign a higher score to edges as the sample size of D2 increased. This,
in turn, resulted in the assignment of lower scores for positives when evaluating E1 − E2.
We did not observe this in the simulated datasets. It is likely due to the difference in the
distributions of the real world data vs. the simulated data.

7. Key Findings and Recommendations

• The sample size of the smaller datasets impacted the performance more compared
to the total sample sizes from both datasets. When planning data collection with the
goal of identifying different causal relationships between two populations, aim for
maximizing the minimal sample size.

• The naive method is not recommended for inferring network differences due to its
suboptimal performance for AUCROC, AUPR, and cross entropy in most of our
simulated and real-world data experiments.

• With the default parameterizations, the PC algorithm outperforms the FGES algo-
rithms in most simulated experimental conditions. The PC algorithm is therefore
recommended over the FGES for inferring network differences for data distributions
similar to our simulation experiments.

• In both our simulated and real-world data experiments, we observed that the relative
effectiveness of the bootstrap vs. the equal sample size resampling methods depended
on other factors (e.g., the causal discovery algorithm applied and if E1 − E2 or E2 − E1
was estimated).

• The real-world data experiments displayed different behaviors compared to the sim-
ulated data experiments, potentially due to their more complex data distributions.
The choice of method for estimating network differences for a specific pair of datasets
should be informed by simulation experiments that approximate the datasets in ques-
tion.

8. Discussion and Future Work

The contributions of the current work are as follows: (1) we provided the mathematical
formulation for the problem of estimating causal Bayesian network difference. (2) We
introduced three methods for inferring the structural difference between pairs of causal
Bayesian networks. (3) Finally, we evaluated the performances of the three methods with
systematically designed simulations and a wide range of real-world biomedical data.

Given the results, we recommend against using the naive method for inferring network
structural differences, especially when the two datasets in question differ substantially
in sample size. This recommendation is both due to the inferior performance of the
naive method and its inability to capture the uncertainty or confidence of the inference.
In both the simulated and real-world data experiments, we observed that the bootstrap
method outperformed the equal sample size resampling method for inferring E1 − E2
when D1 has larger sample sizes. In the simulated experiments, the bootstrap method
outperformed the equal sample size resampling method for inferring E2 − E1 in some
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conditions. However, in the real-world data experiments, the equal sample size resampling
method outperformed the bootstrap method for inferring E2 − E1 in all conditions. The
real-world data experiments displayed different behaviors compared to the simulated
data experiments, potentially due to their more complex data distributions. The choice of
method for estimating network differences for a specific pair of datasets should be informed
by simulation experiments that approximate the datasets in question.

The simulation portion of this work provided a flexible and expandable framework
for evaluating methods for inferring causal Bayesian network differences. We focused
our attention on multivariate Gaussian distributions generated by sets of linear equations
(structural equation models) constrained by the causal structure, but other data distribu-
tions and data generation protocols can be readily incorporated. Similarly, any causal
discovery methods can be used as the base method for causal structure discovery in place
of FGES and PC. Further, we focused on performance measurements that characterized
the quality of global structural discovery. Additional performance measurements can be
added to evaluate other aspects of network differences. For example, if one is interested
in the structural difference around a specific variable or a specific set of variables, instead
of using the metrics computed over the entire causal Bayesian network as in the current
study, the metrics can be computed on the subgraph of interest. Another task that might
be of interest to practitioners is to estimate the differences in the causal effect between
a pair of variables in different causal Bayesian networks. This is a more involved task,
since the estimated causal effect depends on the estimated causal structure, and error can
occur in both estimation steps. On the high level, estimating causal effect difference can be
achieved by adding an additional step of effect estimation following the causal structure
discovery to generate the estimated causal effect differences, and using metrics to evaluate
the similarity of continuous quantities (with one example being the structural intervention
distance proposed in Ref. [29]) to assess the alignment of the true vs. estimated causal effect
difference.

It is also worth noting that, although our simulated data experiments were designed
to evaluate the performance of the three methods for network difference inference, they
can be easily repurposed for sample size estimation when the researchers are planning data
collection with the goal of contrasting the causal mechanisms under distinct conditions.
To estimate the proper (e.g., minimally acceptable) sample sizes for the two datasets, the
researchers can parameterize the two causal Bayesian networks given prior domain knowl-
edge (e.g., edge density, strength of edges, and the expected structural difference between
the networks), generate datasets with different sample sizes, and apply the network dif-
ference inference methods of their choice to evaluate the performance. The sample sizes
can be determined by picking a threshold on one or more performance metrics (e.g., the
sample sizes that resulted in AUCROC ≥ 0.8).

In conclusion, this study serves as an important first step for the development of more
comprehensive causal Bayesian network difference inference methods.
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