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Abstract: Machine learning (ML) methods are increasingly being applied to analyze biological signals.
For example, ML methods have been successfully applied to the human electroencephalogram
(EEG) to classify neural signals as pathological or non-pathological and to predict working memory
performance in healthy and psychiatric patients. ML approaches can quickly process large volumes
of data to reveal patterns that may be missed by humans. This study investigated the accuracy of
ML methods at classifying the brain’s electrical activity to cognitive events, i.e., event-related brain
potentials (ERPs). ERPs are extracted from the ongoing EEG and represent electrical potentials in
response to specific events. ERPs were evoked during a visual Go/NoGo task. The Go/NoGo task
requires a button press on Go trials and response withholding on NoGo trials. NoGo trials elicit neural
activity associated with inhibitory control processes. We compared the accuracy of six ML algorithms
at classifying the ERPs associated with each trial type. The raw electrical signals were fed to all ML
algorithms to build predictive models. The same raw data were then truncated in length and fitted to
multiple dynamic state space models of order nx using a continuous-time subspace-based system
identification algorithm. The 4nx numerator and denominator parameters of the transfer function of
the state space model were then used as substitutes for the data. Dimensionality reduction simplifies
classification, reduces noise, and may ultimately improve the predictive power of ML models. Our
findings revealed that all ML methods correctly classified the electrical signal associated with each
trial type with a high degree of accuracy, and accuracy remained high after parameterization was
applied. We discuss the models and the usefulness of the parameterization.

Keywords: machine learning; binary classification; EEG signal; state space modeling; biological signal;
event-related brain potentials

1. Introduction

There is an increasing interest in the application of machine learning (ML) methods
to analyze biological signals, including signals from the human body [1,2] and electrical
signals from the brain, i.e., the electroencephalogram (EEG) and event-related brain po-
tentials (ERPs) [3–5]. ML methods have been successfully applied to EEG recordings to
automate the detection of seizures and improve diagnostic accuracy [6] and to classify
emotional states [7,8]. ML methods have also been successfully applied to ERPs to im-
prove the diagnostic accuracy and prognosis of attention-deficit hyperactivity disorder
(ADHD) [9]. ERPs are extracted from the ongoing EEG and represent the sum of electrical
potentials that are time-locked to a cognitive event and are generated by populations of
neurons that fire within milliseconds after the event. The temporal resolution of ERPs is
unparalleled by other brain imaging procedures and they are considered the gold standard
for observing neural activity over time. In [10], the authors present a comprehensive review

Entropy 2024, 26, 220. https://doi.org/10.3390/e26030220 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26030220
https://doi.org/10.3390/e26030220
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-3839-459X
https://orcid.org/0000-0003-4966-4265
https://orcid.org/0009-0003-3666-479X
https://doi.org/10.3390/e26030220
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26030220?type=check_update&version=2


Entropy 2024, 26, 220 2 of 20

of the major techniques used for EEG signal processing and feature extraction as they relate
to decoding and classification of EEG signals. Other techniques that have been used to cap-
italize on the information in ERPs are averaging of the temporal waveforms (i.e., averaged
ERPs), time–frequency representation, and phase dynamics. Indeed, in a recent study [11],
the three techniques were applied in combination with a neural network-based ML model
to better exploit the neural dynamic behavior in the ERP elicited during a visual oddball
task. The oddball paradigm requires a response to a target stimulus that is presented
infrequently (e.g., on 20% of trials) within a series of standard stimuli. The infrequent target
stimulus elicits a P3 ERP component. The P3 ERP is a positive-going wave that occurs
250–500 ms after stimulus onset, with maximum amplitude over parietal electrode sites,
and reflects updating of the memory trace [12]. Results showed that the three-feature model
classified the averaged ERP signal to the rare target and the frequent standard stimulus
with an accuracy level of 86.9%.

ML methods have also been applied to classify neural activity elicited during a
Go/NoGo task. The Go/NoGo task is widely used in cognitive neuroscience to assess
frontal-lobe inhibitory control processes associated with response inhibition and, more
generally, with executive function (EF) [13]. Executive function refers to a set of abilities
that work together to regulate thought and action. The Go/NoGo task requires a button
press on Go trials and response withholding on NoGo trials. The underlying neural marker
associated with frontal-lobe inhibitory control processes is the N2 ERP. The N2 ERP is
a negative-going wave in the 200–350 ms post-stimulus time window, with maximum
amplitude over frontal-central electrode sites. NoGo trials, which require greater inhibitory
control, elicit greater N2 ERP amplitude than Go trials, which require less inhibition [14–16].
Indeed, studies of healthy adults reveal that the amplitude of the N2 ERP is larger in
participants who accurately withhold a response on NoGo trials relative to those who
do not withhold a response [17]. One study [18] applied ML methods to identify neural
processes of response selection and response inhibition engaged during the Go and NoGo
conditions. Results revealed an accuracy rate of 92%, estimated by 5-fold cross-validation.
Another study investigated the influence of self-reported personality traits of impulsivity
and compulsivity on performance based on the ERP. Regression tree analyses did not reveal
a relationship between self-reported measures and behavior or the Go/NoGo ERPs [19].

While ML methods have made meaningful contributions to EEG classification, short-
comings related to EEG data make classification difficult for ML algorithms [20]. For ex-
ample, ML algorithms have to deal with signals that are rich in noise. Additionally, most
EEG studies involve a small number of study participants, usually between 10 and 20 [21],
permitting only small data sets for the learning phase of the process. There are two sit-
uations that can degrade the performance of ML algorithms: (1) not having a sufficient
number of study participants and (2) having a very large number of data points. The latter
may lead to “the curse of dimensionality.” For these reasons, it is sometimes difficult to
make accurate classifications of the neural signal, and several techniques must be tested to
determine which ones yield the best results. There are several techniques used to reduce
the dimensionality of EEG data: Linear Discriminant Analysis (LDA), Principal Compo-
nent Analysis (PCA), and Independent Component Analysis (ICA) [22]. Discrete Wavelet
Transform (DWT) is also often used for this purpose [23].

We propose a new approach, the use of a state space model as a dimensionality
reduction step, followed by a PCA step to extract the minimum number of significant
principal components (i.e., features) in an optimization approach, coupled with ML. To the
knowledge of the authors, such an approach has not been considered in the literature related
to ERP signals. Notably, state space analysis has been used [24] for estimating multivariate
autoregressive (MVAR) models of cortical connectivity from noisy scalp recorded EEG
signals for the purpose of modeling the spatial covariance structure of the noise in the EEG
signal. That study differs from what we are proposing in that our goal was to substitute
the data with parameters and test the accuracy of ML algorithms at classifying the ERP
signals. The rest of the paper is organized as follows: in Section 2, we discuss the study
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methodology and EEG data collection process. In Section 3, we discuss the data reduction
process and ML methodology. In Section 4, we present the state space methodology for
EEG data, while in Section 5 we present the state space analysis. In Section 6, we introduce
the system identification algorithm for impulse response data. In Section 7, we present
our results. Finally, in Section 8 we draw conclusions and make recommendations for
future work.

2. Study Methodology and EEG Recording

The ERP data reported in this article were collected as part of a larger study investigat-
ing neural and behavioral differences in a linguistically diverse student population [25].
Participants were recruited from the main campus of NSU and were invited to participate if
they were right-handed, had normal hearing, normal or corrected-to-normal vision, intact
color vision, met the language requirement, and did not report neurological or psychiatric
conditions that affect cognition.

2.1. Participant Information

A total of 268 participants were tested. Data from seven participants were excluded
from the analyses because these participants did not meet study criteria, and six participants
did not yield usable data. Thus, ERP data from 255 study participants were used in the
analyses. Participants were between 18 and 30 years of age (mean = 19.5, SD = 2.73) and
the male to female ratio was 55/206.

2.2. Visual Go/NoGo Task

The stimuli for the Go/NoGo task were red and green circles, presented on a com-
puter monitor against a black background, and subtending a visual angle of 2.9◦. Each
stimulus was presented for 80 ms. Each trial consisted of two stimuli separated by
1200 ms. For each trial, when a target circle was followed by another target circle (Go
trials), participants pressed a response button to the second circle. When the target circle
was followed by a nontarget circle (NoGo trials), participants withheld their response. Go
and NoGo trials occurred with equal frequency (36% each trial type). Trials that started
with a nontarget stimulus were not analyzed. The Go/NoGo task consisted of 200 trials,
divided into four blocks of 50 trials, with an intertrial interval (ITI) of 1800 ms. To increase
task difficulty, an auditory signal (300 ms at 1 kHz, 60 dB SPL tone burst) was sounded
if the participant did not respond within 600 ms after the second target stimulus was
presented. This time pressure was introduced after the first 100 trials. Participants focused
on a fixation point, responded as quickly as possible to the second target in the pair on
Go trials, and withheld responding on NoGo trials. The task began after participants read
the instructions on the computer monitor and practiced the task. After the second block
of trials, participants were trained on the task with the added time pressure (tone burst),
after which the remaining two blocks of trials were presented. Participants were instructed
to respond quickly to avoid the tone burst.

2.3. EEG Recording and Processing

The continuous EEG was recorded with a lycra cap fitted with 64 Ag/AgCl sintered
electrodes (i.e., 62 scalp electrodes and 2 bipolar electrodes for vertical and horizontal
eye movement recording) and amplified with a Neuvo amplifier (Compumedics U.S.A.
Inc., Charlotte, NC, USA). The EEG was sampled at 500 Hz, which exceeds the Nyquist
frequency [26]. Eye movement was recorded with electrodes placed above and below the
left eye and on the outer canthus of each eye. Reference electrodes were placed on the
right and left mastoid. Electrode impedance was maintained at <10 kΩ, and most were
under <5 kΩ. After recording, the EEG data were processed offline with Curry 8 software
(Compumedics U.S.A. Inc.). Offline, the EEG was re-referenced to the common average
reference and filtered (high-pass filter set to 0.10 Hz, slope = 0.2; low-pass filter set to 30 Hz,
slope = 6.0; 60 Hz notch filter, slope = 1.5). Eyeblinks exceeding ±75µV were corrected
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using the covariance method [27]. The covariance analysis is performed between the eye
artifact channel and each EEG channel. Linear transmission coefficients, similar to beta
weights, are computed. Based on the weights, a proportion of the voltage is subtracted
from each data point.

Stimulus locked trials (−140 to 800 ms) were then extracted from the ongoing EEG and
baseline (−140 to 0 ms) corrected. The noise statistic was applied to automatically reject
contaminated trials. Noise was computed over the baseline period and trials that exceeded
the average noise level were automatically rejected. Only trials with correct responses were
averaged together by trial type and exported for analysis. Thus, each participant generated
two averaged ERP waves, one Go and one NoGo.

3. Data Reduction and Machine Learning Methodology

Our goal was to employ different ML algorithms to show which ones achieve the
highest classification accuracy of the ERP signal as either corresponding to a Go or a NoGo
trial. To achieve this, we divided the data into two sets, both having 510 subjects (255 for
the Go trials and 255 for the NoGo trials) and 62 electrodes. One set of data contained
471 data points per electrode, i.e., the entire ERP signal, whereas the other set contained
only 250 data points per electrode, representing the most significant portion of the ERP
signal (see Figure 1). Due to the fact that the recorded data has a 3-dimensional (3D)
structure, we applied a data unfolding procedure described in [28] (see Figure 2).

Figure 1. Figure showing 250 data points selected from the ERP signal.

Let X denote the data matrix

X =


x1

11 x1
12 · · · x1

1T x2
11 x2

12 · · · x2
1T · · · xN

11 xN
12 · · · xN

1T
x1

21 x1
22 · · · x1

2T x2
21 x2

22 · · · x2
2T · · · xN

21 xN
22 · · · xN

2T
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

x1
P1 x1

P2 · · · x1
PT x2

P1 x2
P2 · · · x2

PT · · · xN
P1 xN

P2 · · · xN
PT

,

where T = {250, 471} indicates the two different numbers of data points used in the study,
N = 62 is the number of electrodes, and P = 510 is the number of subjects. For the data
set containing 471 data points, X would have dimensions 510 × 29,202, which is a fairly
large data set. On the other hand, with only 250 data points, X would have dimensions
510 × 15,500, which is a smaller data set, i.e., a 47% reduction. However, if we could fit
dynamic models to the data set with 250 data points per electrode, then we could use the
parameters of the models as a substitute for the data set. This could be a significant data
reduction step, provided there is no loss of accuracy in modeling the data. One such type
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of dynamic model comes from the class of subspace-based state space system identification
algorithms, collectively known as N4SID [29–32]. The idea would be to fit 62 state space
models to the data containing 250 points per electrode, thus obtaining a set of 62 parameter
triplets {A, B, C}, where A ∼ nx × nx, B ∼ nx × 1, and C ∼ 1 × nx, thus, totaling n2

x + 2nx
parameters per electrode, where nx is the system order. One could then convert the models
to a transfer function form, which is a more parsimonious representation, resulting in 2nx
parameters per electrode, i.e., nx numerator parameters and nx denominator parameters.
This could result in a data matrix of size 510 × 124nx. Preliminary analyses carried out
using data from the entire data set indicate that using an nx = 20 results in models with
great fidelity. That is, we would obtain a data matrix of size 510 × 2480, which is much
smaller than 510 × 29,202, by a 91.5% reduction factor. However, the parameters of the
transfer function model could result in being complex numbers, therefore, in the worst
case scenario, one has to split the parameters into their real and imaginary parts, thus
accounting for twice the number of parameters, i.e., 510 × 4960 or an 83% reduction. This
approach alleviates the curse of dimensionality, which is quite common in machine learning.
Comparison of the results would allow for the direct assessment of the effectiveness of
dimensionality reduction to EEG analyses.

Electrode N−1

Electrode N−1Electrode N−2

Electrode N−2 Electrode N−1

Electrode 2Electrode 1

Electrode NElectrode 1 Electrode 2

Electrode N−2Electrode 2 Electrode NElectrode 1

Electrode N

Subject P

t = 1,2,...,T t = 1,2,...,T t = 1,2,...,Tt = 1,2,...,T t = 1,2,...,T

t = 1,2,...,Tt = 1,2,...,T

t = 1,2,...,T t = 1,2,..,T

t = 1,2,...,T

t = 1,2,...,T

Subject 1

Subject 2

t = 1,2,...,T t = 1,2,...,T

t = 1,2,...,T t = 1,2,...,T

Figure 2. Figure showing the 3D structure of the data for the case when T = 250.

ML algorithms create a predictive model based on the provided data: classification
labels, training data, and test data. This is called supervised learning. The available data
are usually divided into training and test or validation data sets. The ML algorithms
use the training data set to build a predictive model, which is then validated with the
test data. Figure 3 shows the overall ML modeling process. One starts with the training
data, along with a set of class labels, i.e., {0, 1} for binary classification. This information
is fed to the ML algorithm, which in turn uses a K-fold cross-validation procedure to
obtain a predictive model. The test data, which are new to the model, are then used to
predict its class labels. Such models can be employed for classification, much like the
ones we use here for classifying the ERP signal into Go and NoGo trials (thus, a binary
classification problem).

As described above in Section 2, each of the 255 participants generated an averaged
Go and a NoGo ERP signal. Thus, 510 ERP signals were used in the analyses. Sampled at
500 Hz for 940 ms, (−140 to 800 ms) including a 140 ms pre-stimulus baseline (−140 to 0 ms),
each ERP signal consisted of 471 data points. The signal was collected from 62 electrodes
placed over the scalp of the study participants. Thus, a matrix containing 29,202 data points
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(62 electrodes × 471 data points) was obtained for each participant (see Figure 4). The
processed signal was subjected to state space modeling in order to establish parameters that
could replace the entire signal and reduce the dimensionality of the input data to the ML
classifier (see Figure 5). For each electrode, 40 parameters were calculated according to the
state space modeling methodology described in Section 6. Since each parameter is a complex
number containing real and imaginary parts, hence 62 electrodes × 40 parameters × 2 (real
and imaginary) equals 4960 data points after parameterization. For each data sample from a
participant, a reduction in dimensionality by 83% was obtained. These data were then used
to perform a PCA to assess the number of significant principal components as a function of
accuracy of the ML classifier. Six different ML algorithms were analyzed in terms of accuracy
versus the number of significant principal components.

Figure 3. (A) Supervised machine learning process. (B) Predictive supervised machine learning.

The ML algorithms used in the research are k-nearest neighbors (KNN), Naive Bayes
(NB), decision trees (DTs), linear discriminant analysis (LDA), support vector machines
(SVM), and random forest (RF). KNN is a simple and powerful supervised machine learning
algorithm that can be used for classification tasks. KNN is often used in cases where the
data are nonlinear or do not fit well into traditional parametric models. The NB classifier
is a probabilistic machine learning model based on Bayes’ theorem with an assumption
of independence among predictors. DTs are hierarchical structures used for classification
tasks. They consist of decision nodes that split the data based on features, and leaf nodes,
which represent the outcome. The algorithm selects the best feature to split the data at each
node, aiming to maximize purity. Once constructed, the tree is used to predict outcomes for
new data. Key features include interpretability and the ability to capture complex decision
boundaries. LDA is a statistical model used for topic modeling. It assumes documents
are composed of a mixture of topics, and each topic is characterized by a distribution of
words. LDA aims to identify these topics in a collection of documents. The SVM method
is a supervised learning method that analyzes given data and identifies patterns which
are used for classification and regression analysis [33]. The SVM method is based on the
concept of decision space, which is divided by building boundaries separating objects of
different class affiliation. In binary classification there are two classes, and a boundary
line is created to separate them. This method is widely used to analyze EEG signals of
epileptic seizure activity [34], sleep recordings of patients [35], and in the recognition of
emotional states [36]. RF builds multiple decision trees during training and outputs the
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mode for classification prediction of the individual trees. RF introduces randomness in the
tree-building process by using a subset of features at each split and bootstrapping sample.
This helps in reducing overfitting and improving generalization performance [37].

255 subjects
No Go trials

255 subjects
Go Trials Raw

Data

1

1

2

2

62

62

Go Trials

255 subjects
No Go trials

255 subjects

Reduction
Dimensionality

PCA

Classification

5−Fold

Cross Validation

Machine Learning

Algorithms

KNN, NB, DT, LDA, SVM, RF

471 data points per sensor 29,202 columns

Figure 4. Figure showing the raw data unfolding process.

255 subjects
No Go trials

255 subjects
Go Trials

255 subjects
Go Trials

255 subjects
No Go trials

Raw

Data

Modeling
Space 
State 

Parametric

Modeling

1

1

2

2

62

62

Go Trials

255 subjects
No Go trials

255 subjects

Data

Reduction

255 subjects
Go Trials

255 subjects
No Go trials

Reduction
Dimensionality

Classification

471 data points per sensor

4960 columns

29,202 columns

15,500 columns

PCA

KNN, NB, DT, LDA, SVM, RF

Machine Learning

Algorithms

Cross Validation

5−Fold

Figure 5. Figure showing the parametric data unfolding process.

PCA is a statistical technique used for dimensionality reduction and data visualiza-
tion. PCA aims to transform the original data set into a new coordinate system where the
variables (features) are uncorrelated, and the variance along each axis (principal compo-
nents) is maximized. This transformation is achieved by identifying the principal com-
ponents, which are linear combinations of the original variables [38]. Lastly, the 5-fold
cross-validation method is used to determine the average classification results. The k-fold
cross-validation process is shown in Figure 6, where k = 5. In each fold, different parts of
the data set are taken as the test and training sets. This approach ensures that the outcomes
remain unaffected by the selection of partitioning the data into training and test sets.
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Figure 6. K-fold cross-validation process with model evaluation.

4. State Space Modeling of EEG Data

In the context of EEG measurements, an impulse response is a signal change that
corresponds to a cerebral response to some stimuli. EEG data are therefore the result of
an impulse response experiment. Thus, EEG data can be modeled as a continuous-time
impulse response state space model of the form

ẋc(t) = Acxc(t) + Bcu(t) (1)

y(t) = Ccxc(t) + Dcu(t). (2)

The matrices of parameters are given by

Ac =


a11 a12 · · · a1,nx

a21 a22 · · · a2,nx
...

...
. . .

...
anx ,1 anx ,1 · · · anx ,nx

 (3)

Bc =


b1
b2
...

bnx

 (4)

Cc =
[

c1 c1 . . . cnx

]
(5)

Dc =
[

0
]

(6)

xc(t) =


x1(t)
x2(t)

...
xnx (t)

. (7)
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Note that the feedback matrix D = 0. Then, in the transfer function form of (1)–(2), the order
of the numerator polynomial is smaller than the order of the denominator polynomial.
In traditional state space analysis, we have an nx-order state space model with respective
states, inputs, and outputs at time t, given by xc(t) ∈ IRnx , u(t) ∈ IRnu , and y(t) ∈ IRny ,
and {nx, xc(0), Ac, Bc, Cc, Dc} are the unknown parameters of the system. Such a model
is known as a multi-input, multi-output (MIMO) state space model. When the input and
output dimensions are scalar values, the model is referred to as a single-input, single-output
(SISO) state space model [39], which is the case of interest in this study.

The problem we address here is the following: Given a sequence of impulse response
data {g(t)}N−1

t=0 , obtained from some experiment, determine the system order nx, initial
state vector x(0), and parameters matrices {Ac, Bc, Cc, Dc}. We can only identify the
parameters modulo an invertible similarity transformation matrix, T ∈ IRnx×nx . Therefore,
the identified model is not unique. However, the input/output properties of the model are
unique. That is, the Markov parameters

h(i) =

{
Cc Ai−1

c Bc, i > 0
Dc, i = 0

, (8)

the impulse response parameters

g(t) =

{
CceActBc, t ≥ 0+

Dc, t = 0−
, (9)

and transfer function coefficients

H(s) = Cc(sInx − Ac)
−1Bc (10)

=
βnx snx−1 + βnx−1snx−3 + · · ·+ β2s + β1

snx + αnx snx−1 + αnx−1snx−2 + · · ·+ α2s + α1
(11)

are unique, where Inx is an nx × nx identity matrix and s is the Laplace variable. The param-
eters {α1, α2, . . . , αnx , β1, β2, . . . , βnx} are the parameters of an observable canonical state
space model of the form

Aoc =



0 0 · · · 0 −α1
1 0 · · · 0 −α2
0 1 · · · 0 −α3
...

...
. . .

...
...

0 0 · · · 0 −αnx−1
0 0 · · · 1 −αnx



Boc =


β1
β2
...

βnx


Coc =

[
0 0 . . . 1

]
Doc =

[
0

]
.

Therefore, the minimum number of parameters needed to represent the state space system
(1)–(2) is 2nx, if the initial states are ignored. There is a similarity transformation matrix,
T ∈ IRnx×nx , such that Aoc = TAcT−1, Boc = TBc, and Coc = CcT−1. Note that y(t) = g(t)
when u(t) = δ(t), the Dirac delta function. To identify the continuous-time model, we use
the impulse response coefficients and apply Kung’s realization algorithm [29] to determine
{nx, xc(0), Ac, Bc, Cc} directly from the data. In Section 5, we will use this approach.
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5. Identification of {nx, Ac, Bc, Cc} via the Impulse Response Coefficients

One can identify the continuous-time model (1)–(2) using the measured impulse response
coefficients and Equation (9). This leads to a Hankel matrix decomposition of the form

G =


g(0) g(1) g(2) · · · g(j − 1)
g(1) g(2) g(3) · · · g(j)
g(2) g(3) g(4) · · · g(j + 1)

...
...

...
. . .

...
g(i − 1) g(i) g(i + 1) · · · g(N − 1)

.

Note that the Hankel matrix is characterized by having constant antidiagonals. The matrix
G needs to be factored into the product of the observability (Oc) and controllability (Cc)
matrices, two rank nx matrices. Such matrix decomposition is possible via the singular
value decomposition (SVD) [29–32]. That is,

G =


CcBc CceAc∆T Bc Cce2Ac∆T Bc · · · Cce(j−1)Ac∆T Bc

CceAc∆T Bc Cce2Ac∆T Bc Cce3Ac∆T Bc · · · CcejAc∆T Bc

Cce2Ac∆T Bc Cce3Ac∆T Bc Cce4Ac∆T Bc · · · Cce(j+1)Ac∆T Bc
...

...
...

. . .
...

Cce(i−1)Ac∆T Bc CceiAc∆T Bc Cce(i+1)Ac∆T Bc · · · Cce(N−1)Ac∆T Bc



=


Cc

CceAc∆T

Cce2Ac∆T

...
Cce(i−1)Ac∆T

 ·
[

Bc eAc∆T Bc e2Ac∆T Bc · · · e(j−1)Ac∆T Bc

]

=


Cc

Cc(eAc∆T)
Cc(eAc∆T)2

...
Cc(eAc∆T)i−1

 ·
[

Bc (eAc∆T)Bc (eAc∆T)2Bc · · · (eAc∆T)j−1Bc
]

=
[

U1 U2
][ S1 0nx×(j−nx)

0(i−nx)×nx 0(i−nx)×(j−nx)

][
VT

1
VT

2

]
= U1S1VT

1 ,

where U =
[

U1 U2
]

and V =
[

V1 V2
]

are orthogonal matrices, and

S1 =


s1

s2
. . .

snx


is a diagonal matrix of the nx most significant singular values of the continuous-time
system (1)–(2), thus nx is the best estimate of the system order. From the above matrix
decomposition we can compute the observability and controllability matrices, Oc and Cc,
respectively, from

Oc = U1S
1
2

Cc = S
1
2 VT

1 .
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Furthermore, we need to define two shifted observability matrices O1
c and O2

c as

O1
c =


Cc

Cc(eAc∆T)
Cc(eAc∆T)2

...
Cc(eAc∆T)i−2,



O2
c =


Cc(eAc∆T)
Cc(eAc∆T)2

...
Cc(eAc∆T)i−1

.

Likewise, we define the matrix exponential eA∆T as

eA∆T =
(
O1

c

)†
O2

c ,

where ∆T is the sampling interval.
We can now identify the parameters {nx, Ac, Bc, Cc} from

Ac =
loge

((
O1

c
)†O2

c

)
∆T

Bc = Cc(:, 1 : nu)

Cc = Oc(1 : ny, :)

nx = rank{G},

where loge(M) is the base e matrix logarithm of the matrix M [31].

6. System Identification of an EEG Signal

Here, we have taken EEG data from a single electrode and conducted a system
identification exercise on the data. Figure 7 shows the singular values versus system order
plot, showing a significant cut-off at around nx = 17. Also evident is the noise floor of
singular values for σx > 22. The fitting error was calculated as

f =

(
1
N

) N−1

∑
t=0

(g(t)− g f itted(t))2,

where g(t) is the observed impulse response (observed EEG data), g f itted(t) is the fitted
impulse response (fitted EEG data), and N = 250 is the number of observations. The fitting
error was f = 3.3271 × 10−7. Clearly, a state space model with nx = 20 performed very
well, as can be seen in Figure 8.

It is clear that the singular value plot cuts off between 17 < nx < 21. Several tests
showed that not all electrodes had the same system order properties as the example above.
Therefore, we set the system order to nx = 20 for all the models. We selected electrode 19 as
an example and fitted a state space model to it. The system order was between 17 and 21.
We chose n = 20 and the mean squared error (MSE) was in the order of 10−7. Not all
electrodes showed a constant system order throughout. However, the average system order
was about 20. For each electrode, we conducted an optimization of system order versus
MSE. We decided to take n = 20 as an average system order and either truncate or zero pad
the transfer function parameters accordingly. This was a result of the decaying behavior of
the parameters in the transfer function as the system order increased. So, we started with a
minimum system order of n = 17 and calculated the MSE. We then increased the system
order to n = 18 and calculated the new MSE. If the new MSE improved, we kept increasing
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the system order by one, thus trying to bound the MSE to a minimum. In essence, we
obtained the optimal system order for each electrode. Since we computed the transfer
function parameters, we either truncated the parameters to n = 20 or zero padded them in
cases where n < 20. The singular value plot versus system order is a common tool used in
state space modeling for determining the system order [29,30].

0 10 20 30 40 50
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Figure 7. Singular value plot.
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Figure 8. Observed versus fitted EEG plot.

7. Results

First, all six ML models (KNN, NB, DT, LDA, SVM, RF) were tested on the full data
set before applying state space modeling for dimensionality reduction. Matrices as large
as 510 × 29,202 data points were taken into account for each study participant. For each
ML algorithm, accuracy results are presented as a function of the number of principal
components required to achieve the given accuracy. The PCA method was used to calculate
the score matrix, and a given subset of principal components were used in a 5-fold cross-
validation analysis for each ML method. The results are presented in Table 1. The best
results for each ML model are marked in blue font for ease of readability.
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Table 1. Machine learning algorithm performance versus number of principal components for the
entire ERP signal, i.e., X ∼ 510 × 29,202.

PC (n) KNN NB DT LDA SVM RF

1 0.9627 0.8902 1.0000 0.6098 0.9725 1.0000

2 0.6647 0.8549 1.0000 0.6863 0.6392 1.0000

3 0.5627 0.8510 1.0000 0.6608 0.6294 1.0000

4 0.6078 0.8588 1.0000 0.6725 0.6196 1.0000

5 0.6412 0.8529 1.0000 0.7098 0.6588 1.0000

6 0.6118 0.8314 1.0000 0.7157 0.6529 1.0000

7 0.5980 0.8176 1.0000 0.7157 0.6863 1.0000

8 0.6196 0.8647 1.0000 0.7784 0.7137 1.0000

9 0.6157 0.8431 1.0000 0.7843 0.7000 1.0000

10 0.6255 0.8667 1.0000 0.8059 0.7216 1.0000

11 0.6196 0.8667 1.0000 0.8157 0.7588 1.0000

12 0.6157 0.8706 1.0000 0.8157 0.7431 1.0000

12 0.6333 0.8941 1.0000 0.8510 0.7882 1.0000

14 0.6078 0.8529 1.0000 0.8490 0.7765 1.0000

15 0.6196 0.8745 1.0000 0.8588 0.7961 1.0000

16 0.6549 0.9039 1.0000 0.9020 0.8333 1.0000

17 0.6176 0.9000 1.0000 0.8980 0.8431 1.0000

18 0.6471 0.9137 1.0000 0.8961 0.8333 1.0000

19 0.6196 0.9000 1.0000 0.9078 0.8451 1.0000

20 0.6176 0.9235 1.0000 0.9392 0.8549 1.0000

21 0.6078 0.8980 1.0000 0.9392 0.8627 1.0000

22 0.6275 0.9039 1.0000 0.9392 0.8627 1.0000

23 0.6176 0.8941 1.0000 0.9392 0.8745 1.0000

24 0.6176 0.8941 1.0000 0.9373 0.8706 1.0000

25 0.6137 0.8882 1.0000 0.9392 0.8725 1.0000

26 0.6373 0.8745 1.0000 0.9431 0.8765 1.0000

27 0.6294 0.8706 1.0000 0.9373 0.8686 1.0000

28 0.6059 0.8863 1.0000 0.9412 0.8941 1.0000

29 0.6412 0.8569 1.0000 0.9431 0.8686 1.0000

30 0.6294 0.8922 1.0000 0.9392 0.8588 1.0000

31 0.6078 0.8745 1.0000 0.9431 0.8745 1.0000

32 0.6059 0.8627 1.0000 0.9412 0.8882 1.0000

33 0.6020 0.8725 1.0000 0.9353 0.8882 1.0000

34 0.5941 0.8647 1.0000 0.9353 0.8706 1.0000

35 0.6098 0.8627 1.0000 0.9275 0.8824 1.0000

36 0.6039 0.8490 1.0000 0.9333 0.8863 1.0000
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Table 2 shows the best results for each of the ML algorithms from Table 1 with calcu-
lated metrics [40]:

ERR =
FP + FN

FP + FN + TP + TN
(12)

ACC =
TP + TN

FP + FN + TP + TN
= 1 − ERR (13)

SPE =
TN

FP + TN
(14)

SEN =
TP

FN + TP
(15)

PRE =
TP

FP + TP
(16)

F1 = 2 × PRE × SEN
PRE + SEN

, (17)

where ERR denotes the error, ACC denotes accuracy, SPE denotes specificity, SEN denotes
sensitivity, PRE denotes precision, and a measure of model performance is the F1 statistic.
Accuracy is a widely used metric for evaluating classification models, representing the
proportion of correctly classified samples among the total samples assessed. Precision,
on the other hand, calculates the ratio of accurately predicted positive cases to the sum of
all positively predicted cases, where TP represents the true positives and FP represents the
false positives, thus precision reveals the accuracy of positive predictions. Sensitivity, also
known as recall or true positive rate, determines the ratio of TP to the sum of false negatives
(FNs) and TPs, thus it highlights the model’s capability in correctly identifying actual
positive cases. Specificity can be described as the model’s ability to predict a true negative
(TN) of each category available. In the literature, it is also known as the true negative rate.
The F1 metric combines both precision and recall to provide a single score that balances the
trade-off between them. Thus, the F1 statistic uses the average measures of sensitivity and
precision to calculate the F-score statistic. It is calculated as the harmonic mean of precision
and recall. It is particularly useful when there is an imbalance between the classes in the
data set. The metrics {ACC, ERR, PRE, SEN, SPE, F1} were used as measures of fidelity
toward judging the performances of the different models. Note that all metrics are scalars
in the range [0,1], with higher values indicating a better model performance, except for the
error metric, ERR, in which a lower value indicates a better model performance since it is
1 − ACC. See Figure 9 for the confusion matrix as a function of TP, TN, FP, and FN.

Figure 9. Summary of confusion matrix terminologyfor binary classification.
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Table 2. Summary of machine learning algorithm performances for the entire ERP signal, i.e.,
X ∼ 510 × 29,202.

Metrics KNN NB DT LDA SVM RF

ACC 0.9627 0.9235 1.0000 0.9431 0.9725 1.0000

ERR 0.0373 0.0765 0.0000 0.0608 0.0275 0.0000

PRE 0.9629 0.9241 1.0000 0.9392 0.9726 1.0000

SEN 0.9627 0.9235 1.0000 0.9392 0.9725 1.0000

SPE 0.9627 0.9235 1.0000 0.9392 0.9725 1.0000

F1 0.9627 0.9235 1.0000 0.9392 0.9725 1.0000

After using the state space modeling procedure on the raw data matrix X of size
510 × 15,500, thus resulting in a reduced data matrix of size 510 × 4960, it was then fed to the
same six ML algorithms {KNN, NB, DT, LDA, SVM, RF} versus PCA and using 5-fold cross-
validation. Once again, accuracy results are presented as a function of the number of principal
components required to achieve the given accuracy. The results are presented in Table 3.

Table 3. Machine learning algorithm performance versus number of principal components for the
parametric data case, i.e., 510 × 4960 data points.

PC(n) KNN NB DT LDA SVM RF

1 0.9706 0.9333 1.0000 0.4902 0.9765 1.0000

2 0.7647 0.7843 1.0000 0.5784 0.7902 1.0000

3 0.5824 0.7549 1.0000 0.5941 0.6059 1.0000

4 0.5961 0.7431 1.0000 0.6020 0.6255 1.0000

5 0.5824 0.7549 1.0000 0.6098 0.6373 1.0000

6 0.5706 0.7529 1.0000 0.6235 0.6431 1.0000

7 0.6020 0.7451 1.0000 0.6255 0.6392 1.0000

8 0.5745 0.7471 1.0000 0.6176 0.6373 1.0000

9 0.5882 0.7412 1.0000 0.6196 0.6294 1.0000

10 0.5804 0.7078 1.0000 0.6020 0.6373 1.0000

11 0.5686 0.7196 1.0000 0.6353 0.6588 1.0000

12 0.5784 0.7059 1.0000 0.6333 0.6373 1.0000

12 0.5608 0.7000 1.0000 0.6294 0.6490 1.0000

14 0.5922 0.6784 1.0000 0.6196 0.6490 1.0000

15 0.6059 0.7059 1.0000 0.6235 0.6392 1.0000

16 0.5922 0.6804 1.0000 0.6176 0.6529 1.0000

17 0.5765 0.6667 1.0000 0.6275 0.6490 1.0000

18 0.5529 0.6804 1.0000 0.6255 0.6294 1.0000

19 0.5725 0.6529 1.0000 0.6235 0.6549 1.0000

20 0.5843 0.6745 1.0000 0.6255 0.6608 1.0000

21 0.5549 0.6588 1.0000 0.6333 0.6373 1.0000

22 0.5784 0.6196 1.0000 0.6353 0.6490 1.0000
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Table 3. Cont.

PC(n) KNN NB DT LDA SVM RF

23 0.5882 0.6294 1.0000 0.6353 0.6431 1.0000

24 0.6039 0.6549 1.0000 0.6569 0.6529 1.0000

25 0.5863 0.6451 1.0000 0.6608 0.6667 1.0000

26 0.5608 0.6431 1.0000 0.6667 0.6510 1.0000

27 0.5784 0.6333 1.0000 0.6647 0.6608 1.0000

28 0.5686 0.6471 1.0000 0.6725 0.6588 0.9980

29 0.5471 0.6412 1.0000 0.6706 0.6647 1.0000

30 0.5824 0.6255 1.0000 0.6647 0.6569 1.0000

31 0.5686 0.6275 1.0000 0.6647 0.6765 1.0000

32 0.5961 0.6294 1.0000 0.6745 0.6765 1.0000

33 0.5941 0.6353 1.0000 0.7078 0.6627 0.9961

34 0.6333 0.6451 1.0000 0.7157 0.6824 1.0000

35 0.5784 0.6471 1.0000 0.7235 0.6804 0.9980

36 0.6098 0.6451 1.0000 0.7216 0.6510 1.0000

Shown in Table 4 are the best results from Table 3 with calculated metrics: {ACC, ERR,
PRE, SEN, SPE, F1}.

Table 4. Summary of machine learning algorithm performances parametric data set, i.e., 510 × 4960
data points.

Metrics KNN NB DT LDA SVM RF

ACC 0.9706 0.9333 1.0000 0.7235 0.9765 1.0000

ERR 0.0294 0.0667 0.0000 0.2843 0.0235 0.0000

PRE 0.9706 0.9340 1.0000 0.7288 0.9772 1.0000

SEN 0.9706 0.9333 1.0000 0.7157 0.9765 1.0000

SPE 0.9706 0.9333 1.0000 0.7157 0.9765 1.0000

F1 0.9706 0.9333 1.0000 0.7116 0.9765 1.0000

We varied the neighboring parameter k and number of principal components as a
function of accuracy for the KNN models. The results are shown in Figure 10 for the full
data set and in Figure 11 for the reduced data set. As can be seen, only one neighbor
and one principal component were required for accuracies of 96% and 97%, respectively.
Based on the overall results, it can be concluded that ML algorithms showed similarly high
accuracy despite a much smaller number of input data after parameterization. Only in
the case of the LDA model, can a reduction in the effectiveness of the model be observed.
In the case of the remaining ML methods, there is not even a slight change in the results.
This means that the use of state space modeling does not affect the accuracy of ML models
and additionally allows for obtaining similar results to the case of using the full data set. It
should be emphasized that state space modeling reduced the dimensionality by 83%.
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Figure 10. KNN accuracy as a function of number of neighbors and number of significant principal
components for the full data set.

Figure 11. KNN accuracy as a function of number of neighbors and number of significant principal
components for the reduced data set.

8. Conclusions

We applied six different ML algorithms to analyze and classify EEG signals collected
from 62 scalp electrodes, and we used state space modeling to reduce dimensionality
before applying these algorithms. Our findings revealed that the algorithms yielded
high accuracy rates comparable to those obtained without application of the state space
modeling. The obtained results are important because the use of state space modeling for
this purpose has not been previously described in the literature and may spark new ideas
for the development of ML algorithms.

It is worth noting that, when working with large data sets, dimensionality reduction
is essential for signal classification, noise reduction, and may ultimately improve the
predictive power of ML models. Furthermore, it is important to weigh the trade-offs
between size of the data matrices and the number of parameters, where a parsimonious
model (i.e., a model with a minimum number of parameters) is always preferred.

The ML methods employed in this study successfully classified, with a high degree of
accuracy, Go and NoGo trials in a task in which Go and NoGo trials were equiprobable,
which made it more difficult to distinguish between the two trial types. Go trials are usually
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presented more often than NoGo trials, e.g., 80%/20%, respectively, which primes the
Go response. Once primed, greater control is required to stop or inhibit the Go response
during NoGo trials. We presented an equal number of Go and NoGo trials because when
an unequal number is presented, it cannot be determined whether the neural response
on NoGo trials is due to response inhibition or to the relative novelty of the less frequent
NoGo stimulus [15,16]. Thus, to avoid the influence of stimulus probability, we presented
Go and NoGo trials with equal frequency. Research shows that when Go and NoGo trials
occur with equal frequency, the neural response to the Go and NoGo trials is more similar,
which increases the difficulty of distinguishing between trial types [14,41]. Our findings
suggest that ML algorithms may be useful to classify neural electrical responses that may
otherwise be difficult to distinguish. For instance, in early or pre-clinical cases associated
with deficient inhibition, such as ADHD and Parkinson’s Disease, ML algorithms may assist
with early detection and diagnosis since research reveals smaller NoGo N2 ERP amplitude
in patients compared to controls [42,43]. In pre-clinical cases, ML algorithms may detect
small changes in the N2 ERP signal that may be missed by visual inspection alone.

Compared to existing methods, the use of state space modeling on preprocessed
data used in ML algorithms makes it possible to reduce the sizes of the input data. This
allows ML algorithms to run faster and to use a larger number of input variables to classify
data, even with a small number of samples. Reducing dimensionality also significantly
affects the running time of ML algorithms. This approach is important because a smaller
number of input parameters has a positive impact on the interpretability of the results and
the operation of ML algorithms that are susceptible to overfitting. Given the successful
application of state space modeling to ERP signals in the current study, future studies may
want to explore this data reduction approach in other biological signals.

Author Contributions: Conceptualization, J.A.R. and M.F.; Methodology, A.B., J.A.R. and M.F.;
Software, A.B. and J.A.R.; Validation, A.B. and J.A.R.; Formal analysis, A.B., J.A.R. and M.F.; Investinal
draft, A.B., J.A.R. and M.F.; Writing – review & editing, Anngation, A.B. and J.A.R.; Data curation,
M.F.; Writing, A.B., J.A.R. and M.F.; Visualization, A.B. and J.A.R. All authors have read and agreed
to the published version of the manuscript.

Funding: This project is based upon work funded by the National Science Foundation (No. BCS–
1632377) awarded to Mercedes Fernández.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and approved by the Institutional Review Board of Nova Southeastern
University (IRB approval # 2016-226-NSU, on 10 June 2016).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The dataset used in this study will be made available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zemouri, R.; Zerhouni, N.; Racoceanu, D. Deep learning in the biomedical applications: Recent and future status. Appl. Sci. 2019,

9, 1526. [CrossRef]
2. Li, Y.; Huang, C.; Ding, L.; Li, Z.; Pan, Y.; Gao, X. Deep learning in bioinformatics: Introduction, application, and perspective in

the big data era. Methods 2019, 166, 4–21. [CrossRef] [PubMed]
3. Subasi, A.; Ercelebi, E. Classification of EEG signals using neural network and logistic regression. Comput. Methods Programs

Biomed. 2005, 78, 87–99. [CrossRef]
4. Guo, L.; Rivero, D.; Seoane, J.A.; Pazos, A. Classification of EEG signals using relative wavelet energy and artificial neural

networks. In Proceedings of the First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, Shanghai China, 12–14
June 2009; ACM: New York, NY, USA, 2009; pp. 177–184.

5. Aldayel, M.; Ykhlef, M.; Al-Nafjan, A. Recognition of consumer preference by analysis and classification EEG signals. Front.
Hum. Neurosci. 2021, 14, 604639. [CrossRef]

6. Abbasi, B.; Goldenholz, D.M. Machine learning applications in epilepsy. Epilepsia 2019, 60, 2037–2047. [CrossRef] [PubMed]
7. Jang, K.I.; Kim, S.; Chae, J.H.; Lee, C. Machine learning-based classification using electroencephalographic multi-paradigms

between drug-naïve patients with depression and healthy controls. J. Affect. Disord. 2023, 338, 270–277. [CrossRef]

http://doi.org/10.3390/app9081526
http://dx.doi.org/10.1016/j.ymeth.2019.04.008
http://www.ncbi.nlm.nih.gov/pubmed/31022451
http://dx.doi.org/10.1016/j.cmpb.2004.10.009
http://dx.doi.org/10.3389/fnhum.2020.604639
http://dx.doi.org/10.1111/epi.16333
http://www.ncbi.nlm.nih.gov/pubmed/31478577
http://dx.doi.org/10.1016/j.jad.2023.06.002


Entropy 2024, 26, 220 19 of 20

8. Houssein, E.H.; Hammad, A.; Ali, A.A. Human emotion recognition from EEG-based brain–computer interface using machine
learning: A comprehensive review. Neural Comput. Appl. 2022, 34, 12527–12557. [CrossRef]

9. Hámori, G.; File, B.; Fiath, R.; Paszthy, B.; Réthelyi, J.M.; Ulbert, I.; Bunford, N. Adolescent ADHD and electrophysiological
reward responsiveness: A machine learning approach to evaluate classification accuracy and prognosis. Psychiatry Res. 2023,
323, 115139. [CrossRef]

10. Saeidi, M.; Waldemar, K.; Farahani, F.V. Neural Decoding of EEG Signals with Machine Learning: A Systematic Review. Brain Sci.
2021, 11, 1525. [CrossRef]

11. Ouyang, G.; Zhou, C. Exploiting Information in Event-Related Brain Potentials from Average Temporal Waveform,
Time–Frequency Representation, and Phase Dynamics. Bioengineering 2023, 9, 1054. [CrossRef]

12. Donchin, E.; Coles, M.G.H. Is the P300 component a manifestation of context updating? Behav. Brain Sci. 1988, 11, 357–374.
[CrossRef]

13. Criaud, M.; Boulinguez, P. Have we been asking the right questions when assessing response inhibition in go/no-go tasks with
fMRI? A meta-analysis and critical review. Neurosci. Biobehav. Rev. 2013, 37, 11–23. [CrossRef]

14. Nieuwenhuis, S.; Yeung, N.; van den Wildenberg, W.; Ridderinkhof, K.R. Electrophysiological correlates of anterior cingulate
function in a go/no-go task: Effects of response conflict and trial type frequency. Cogn. Affect. Behav. Neurosci. 2003, 3, 17–26.
[CrossRef]

15. Fernandez, M.; Tartar, J.; Padron, D.; Acosta, J. Neurophysiological marker of inhibition distinguishes language groups on a
non-linguistic executive function test. Brain Cogn. 2013, 83, 330–336. [CrossRef] [PubMed]

16. Fernandez, M.; Acosta, J.; Douglass, K.; Doshi, N.; Tartar, J. Speaking Two Languages Enhances an Auditory but Not a Visual
Neural Marker of Cognitive Inhibition. AIMS Neurosci. 2014, 1, 145–157. [CrossRef]

17. Falkenstein, M.; Hoormann, J.; Hohnsbein, J. ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol.
1999, 101, 267–291. [CrossRef]

18. DeLaRosa, B.L.; Spence, J.S.; Motes, M.A.; To, W.; Vanneste, S.; Kraut, M.A.; Hart, J., Jr. Identification of selection and inhibition
components in a Go/NoGo task from EEG spectra using a machine learning classifier. Brain Behav. 2020, 10, e01902. [CrossRef]
[PubMed]

19. Dück, K.; Overmeyer, R.; Mohr, H.; Endrass, T. Are electrophysiological correlates of response inhibition linked to impulsivity
and compulsivity? A machine-learning analysis of a Go/Nogo task. Psychophysiology 2023, 60, e14310. [CrossRef] [PubMed]

20. Singh, A.K.; Krishnan, S. Trends in EEG signal feature extraction applications. Front. Artif. Intell. 2023, 5, 1072801. [CrossRef]
21. Melnik, A.; Legkov, P.; Izdebski, K.; Kärcher, S.M.; Hairston, W.D.; Ferris, D.P.; König, P. Systems, Subjects, Sessions: To What

Extent Do These Factors Influence EEG Data? Front. Hum. Neurosci. 2017, 11, 150. [CrossRef]
22. Rabcan, J.; Levashenko, V.; Zaitseva, E.; Kvassay, M. Review of methods for EEG signal classification and development of new

fuzzy classification-based approach. IEEE Access 2020, 8, 189720–189734. [CrossRef]
23. Zubair, M.; Belykh, M.V.; Naik, M.U.K.; Gouher, M.F.M.; Vishwakarma, S.; Ahamed, S.R.; Kongara, R. Detection of epileptic

seizures from EEG signals by combining dimensionality reduction algorithms with machine learning models. IEEE Sens. J. 2021,
21, 16861–16869. [CrossRef]

24. Cheung, B.L.; Riedner, B.; Tononi, G.; Van Veen, B.D. Estimation of cortical connectivity from EEG using state-space models.
IEEE Trans. Biomed. Eng. 2010, 57, 2122–2134. [CrossRef]

25. Fernandez, M.; Banks, J.B.; Gestido, S.; Morales, M. Bilingualism and the executive function trade-off: A latent variable
examination of behavioral and event-related brain potentials. J. Exp. Psychol. Learn. Mem. Cogn. 2023, 49, 1119–1144. [CrossRef]
[PubMed]

26. Jing, H.; Takigawa, M. Low sampling rate induces high correlation dimension on electroencephalograms from healthy subjects.
Psychiatry Clin. Neurosci. 2000, 54, 407–412. [CrossRef] [PubMed]

27. Semlitsch, H.V.; Anderer, P.; Schuster, P.; Presslich, O. A Solution for Reliable and Valid Reduction of Ocular Artifacts, Applied to
the P300 ERP. Psychophysiology 1986, 23, 695–703. [CrossRef] [PubMed]

28. Leon-Medina, J.X. Desarrollo de un Sistema de Clasificación de Sustancias Basado en un Arreglo de Sensores Tipo Lengua
Electrónica. Ph.D. Thesis, Universidad Nacional de Colombia, Facultad de Ingeniería, Departamento de Ingeniería Mecánica y
Mecatrónica, Bogotá, Colombia, 2021.

29. Kung, S. A New Identification and Model Reduction Algorithm via Singular Value Decomposition. In Proceedings of the 12th
Asilomar Conference on Circuits, Systems and Computers, Pacific Grove, CA, USA, 6–8 November 1978; pp. 705–714.

30. Mercère, G.; Prot, O.; Ramos, J.A. Identification of parameterized gray-box state-space systems: From a black-box linear
time-invariant representation to a structured one. IEEE Trans. Autom. Control 2014, 59, 2873–2885. [CrossRef]

31. Sinha, N.K. Identification of continuous-time systems from samples of input-output data: An introduction. Sadhana 2000,
25, 75–83. [CrossRef]

32. Van Overschee, P.; De Moor, B. Subspace Identification for Linear Systems: Theory—Implementation—Applications; Springer Science &
Business Media: Berlin, Germany, 2012.

33. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
34. Omidvar, M.; Zahedi, A.; Bakhshi, H. EEG signal processing for epilepsy seizure detection using 5-level Db4 discrete wavelet

transform, GA-based feature selection and ANN/SVM classifiers. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 10395–10403.
[CrossRef]

http://dx.doi.org/10.1007/s00521-022-07292-4
http://dx.doi.org/10.1016/j.psychres.2023.115139
http://dx.doi.org/10.3390/brainsci11111525
http://dx.doi.org/10.3390/bioengineering10091054
http://dx.doi.org/10.1017/S0140525X00058027
http://dx.doi.org/10.1016/j.neubiorev.2012.11.003
http://dx.doi.org/10.3758/CABN.3.1.17
http://dx.doi.org/10.1016/j.bandc.2013.09.010
http://www.ncbi.nlm.nih.gov/pubmed/24141240
http://dx.doi.org/10.3934/Neuroscience.2014.2.145
http://dx.doi.org/10.1016/S0001-6918(99)00008-6
http://dx.doi.org/10.1002/brb3.1902
http://www.ncbi.nlm.nih.gov/pubmed/33078586
http://dx.doi.org/10.1111/psyp.14310
http://www.ncbi.nlm.nih.gov/pubmed/37070802
http://dx.doi.org/10.3389/frai.2022.1072801
http://dx.doi.org/10.3389/fnhum.2017.00150
http://dx.doi.org/10.1109/ACCESS.2020.3031447
http://dx.doi.org/10.1109/JSEN.2021.3077578
http://dx.doi.org/10.1109/TBME.2010.2050319
http://dx.doi.org/10.1037/xlm0001186
http://www.ncbi.nlm.nih.gov/pubmed/36201803
http://dx.doi.org/10.1046/j.1440-1819.2000.00729.x
http://www.ncbi.nlm.nih.gov/pubmed/10997856
http://dx.doi.org/10.1111/j.1469-8986.1986.tb00696.x
http://www.ncbi.nlm.nih.gov/pubmed/3823345
http://dx.doi.org/10.1109/TAC.2014.2351853
http://dx.doi.org/10.1007/BF02703750
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1007/s12652-020-02837-8


Entropy 2024, 26, 220 20 of 20

35. Upadhyay, P.K.; Nagpal, C. Wavelet based performance analysis of SVM and RBF kernel for classifying stress conditions of sleep
EEG. Sci. Technol. 2020, 23, 292–310.

36. George, F.P.; Shaikat, I.M.; Ferdawoos, P.S.; Parvez, M.Z.; Uddin, J. Recognition of emotional states using EEG signals based on
time-frequency analysis and SVM classifier. Int. J. Electr. Comput. Eng. 2019, 9, 2088–8708. [CrossRef]

37. Bonaccorso, G. Machine Learning Algorithms; Packt Publishing Ltd.: Birmingham, UK, 2017.
38. Kurita, T. Principal component analysis (PCA). In Computer Vision: A Reference Guide; Springer: Cham, Switzerland, 2019; pp. 1–4.
39. Ljung, L. System Identification: Theory for the User; Prentice Hall: Upper Saddle River, NJ, USA, 1987.
40. Ballabio, D.; Grisoni, R.; Todeschini, R. Multivariate comparison of classification performance measures. Chemom. Intell. Lab. Syst.

2018, 174, 33–44. [CrossRef]
41. Lavric, A.; Pizzagalli, D.A.; Forstmeier, S. When ‘go’ and ‘nogo’ are equally frequent: ERP components and cortical tomography.

Eur. J. Neurosci. 2004, 20, 2483–2488. [CrossRef]
42. Smith, J.L.; Johnstone, S.J.; Barry, R.J. Inhibitory processing during the Go/NoGo task: An ERP analysis of children with

attention-deficit/hyperactivity disorder. Clin. Neurophysiol. 2004, 115, 1320–1331. [CrossRef] [PubMed]
43. Wu, H.M.; Hsiao, F.J.; Chen, R.S.; Shan, D.E.; Hsu, W.Y.; Chiang, M.C.; Lin, Y.Y. Attenuated NoGo-related beta desynchronisation

and synchronisation in Parkinson’s disease revealed by magnetoencephalographic recording. Sci. Rep. 2019, 9, 7235. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.11591/ijece.v9i2.pp1012-1020
http://dx.doi.org/10.1016/j.chemolab.2017.12.004
http://dx.doi.org/10.1111/j.1460-9568.2004.03683.x
http://dx.doi.org/10.1016/j.clinph.2003.12.027
http://www.ncbi.nlm.nih.gov/pubmed/15134699
http://dx.doi.org/10.1038/s41598-019-43762-x
http://www.ncbi.nlm.nih.gov/pubmed/31076640

	Introduction
	Study Methodology and EEG Recording
	Participant Information
	Visual Go/NoGo Task
	EEG Recording and Processing

	Data Reduction and Machine Learning Methodology
	State Space Modeling of EEG Data
	Identification of {nx,Ac,Bc,Cc} via the Impulse Response Coefficients
	System Identification of an EEG Signal
	Results
	Conclusions
	References

