
Citation: Ouyang, S.; Bai, Q.; Feng, H.;

Hu, B. Bitcoin Money Laundering

Detection via Subgraph Contrastive

Learning. Entropy 2024, 26, 211.

https://doi.org/10.3390/e26030211

Academic Editor: Stanisław Drożdż
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Abstract: The rapid development of cryptocurrencies has led to an increasing severity of money
laundering activities. In recent years, leveraging graph neural networks for cryptocurrency fraud
detection has yielded promising results. However, many existing methods predominantly focus on
node classification, i.e., detecting individual illicit transactions, rather than uncovering behavioral
pattern differences among money laundering groups. In this paper, we tackle the challenges pre-
sented by the organized, heterogeneous, and noisy nature of Bitcoin money laundering. We propose
a novel subgraph-based contrastive learning algorithm for heterogeneous graphs, named Bit-CHetG,
to perform money laundering group detection. Specifically, we employ predefined metapaths to
construct the homogeneous subgraphs of wallet addresses and transaction records from the address–
transaction heterogeneous graph, enhancing our ability to capture heterogeneity. Subsequently, we
utilize graph neural networks to separately extract the topological embedding representations of
transaction subgraphs and associated address representations of transaction nodes. Lastly, supervised
contrastive learning is introduced to reduce the effect of noise, which pulls together the transaction
subgraphs with the same class while pushing apart the subgraphs with different classes. By conduct-
ing experiments on two real-world datasets with homogeneous and heterogeneous graphs, the Micro
F1 Score of our proposed Bit-CHetG is improved by at least 5% compared to others.

Keywords: Bitcoin; graph neural network; anti-money laundering; contrastive learning; heterogeneous
graph

1. Introduction

As an emerging distributed ledger technology, blockchain has been abused by a great
deal of illicit activity due to its decentralized, pseudonymous, and convenience [1]. Accord-
ing to the report by Chainalysis [2], cybercriminals’ money laundering activities through
cryptocurrencies reached USD 23.8 billion in 2022, a 68.0% increase compared to 2021.
Money laundering involves transferring illicit funds through licit means and often includes
criminal activities such as gambling, fraud, and human trafficking [3]. Considering the ad-
verse impact of money laundering on society and the economy, international organizations
and governments are closely monitoring the issue of cryptocurrency money laundering,
aiming to strengthen regulations to curb money laundering crimes. For instance, the Finan-
cial Action Task Force updated its report on the implementation of standards for virtual
assets and virtual asset service providers in 2021, urging countries to enhance the regula-
tion of virtual assets [4]. Additionally, in 2022, the European Union passed the “Markets
in Crypto-assets” cryptocurrency regulatory protocol, standardizing participants in the
crypto market [5]. However, as blockchain acts as the “bank” for cryptocurrencies, with its
peer-to-peer and decentralized features [6], it presents various challenges for regulation.
Unlike transactions in regular banks, transactions in Bitcoin occur between addresses,
which are digitally signed and verified in a public ledger on the blockchain without any
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intermediaries. The user is hidden behind a pseudonym in Bitcoin, rendering centralized
regulatory approaches ineffective, which rely on rigorous compliance investigations and
user monitoring [7]. In view of this, it is imperative to study the detection of money
laundering in cryptocurrency.

Cryptocurrency anti-money laundering has garnered widespread attention in the
academic community, with methods primarily falling into three categories: rule-based
methods, unsupervised anomaly detection methods, and supervised machine learning
methods. Rule-based algorithms typically detect illicit activities by constructing expert
systems [8] or using heuristic algorithms [9–12], but these algorithms are limited by the
pseudonymous and ever-changing rules of cryptocurrencies. Unsupervised AML meth-
ods achieve detection through clustering, such as trimmed k-means [13] and community
clustering [14], classifying transactions with similar patterns as a group to help detect
anomalous transactions. However, research indicates that the effectiveness of those algo-
rithms is not comparable with supervised AML algorithms. Therefore, more and more
researchers are focusing on supervised learning methods to address these challenges, using
training data with known labels to train models that learn the features of normal and
suspicious transactions to help regulatory authorities detect potential money laundering
activities. Among these, graph-related algorithms perform exceptionally well, including
a node2vec-based classifier [15], graph convolutional neural networks (GCNs) [16], and
their variations [17–19]. Since the release of the largest supervised Bitcoin dataset by Ellip-
tic [20], which represents transactions as nodes and flows between transactions as edges,
the detection of illicit money laundering can be viewed as a node classification task.

However, detecting cryptocurrency money laundering using graph structures is highly
challenging due to the organized, heterogeneous, and noisy nature of the illicit behavior.

• Organized. Money laundering is usually an organized behavior while current al-
gorithms in Bitcoin mainly focus on node-level detection. Therefore, it is a chal-
lenge to come up with an algorithm that detects money laundering groups directly.
A large number of disclosed large-scale cryptocurrency money laundering cases
(e.g., 1MDB [21] and Danske Bank scandal [22]) show that money laundering activi-
ties typically exhibit scale and organizational characteristics. As shown in Figure 1,
node-level detection methods can identify individual nodes as potential illicit trans-
actions. However, they ignore the relationships and interactions between nodes. In
contrast, subgraph-level detection methods consider the topology between nodes and
attempt to identify subgraphs with similar transaction patterns, such as frequent fund
transfers and lengthy transaction chains.

• Heterogeneous. Although GNN-based illicit transaction detection techniques have
achieved significant success, most of them are focused on homogeneous graphs, i.e.,
transaction record graph [20] or wallet address graph [23] in the upper-left corner of
Figure 2. In reality, heterogeneity is an inherent characteristic of cryptocurrency trans-
action networks [24]. Specifically, the wallet address and transaction records together
form the graph, as depicted in the top-left corner of Figure 2. Heterogeneity increases the
complexity of data mining, leading to a more intricate risk identification process.

• Noisy. Despite the significant differences in behavioral patterns between licit and
illicit transactions, real-world transactions often exhibit a notable amount of noise,
including erroneous transactions and intentionally disruptive transactions initiated by
money launderers to obfuscate their activities [25]. As a result, these noises can lead
to an unclear distinction in the transaction topology.
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Node-level：
Illicit transaction

Subgraph-level：
Illicit group

Figure 1. Organized behavior of an illicit group. The node-level detection methods identify the
individual illicit transaction, while the subgraph-level detection methods identify the illicit group.

Figure 2. Address–transaction heterogeneous graph. The (top-left) is the wallet address graph and
transaction record graph. The (bottom-left) is the address–transaction heterogeneous graph. The
(top-right) is the neighbor of t1 under the TAT-metapath, and the (bottom-right) is the neighbor of a1

under ATA-metapath, where the dashed round box indicates the target node, the blue and red lines
distinguish different path directions, and the blue and red nodes are the neighbors of the target node
under the corresponding path.

Considering the above characteristics of cryptocurrency money-laundering behavior,
we design a subgraph-level graph contrastive learning algorithm based on the hetero-
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geneous information of the Bitcoin network, namely contrastive heterogeneous graph
neural network (Bit-CHetG). The Bit-CHetG consists of four main components: transaction
subgraph embedding (TSE), address feature aggregation (AFA), feature fusion (FF), and
contrastive learning (CL). Firstly, for the heterogeneity of the network, we propose an
address–transaction heterogeneous graph, as shown in the bottom-left corner of Figure 2,
to establish the connection between consecutive transaction records and related wallet
addresses. Thus, the TSE component and AFA component extract features under different
metapaths and merge them through the FF component. Secondly, for the organizational
characteristics of money-laundering behavior, the TSE component constructs downstream
transaction subgraphs, and the AFA component constructs the associated address sub-
graphs. Specifically, we recommend the tree-structure to be the representative structure of
the transaction subgraph since the flow of money laundering funds tends to be dispersed
from upstream to downstream [26], which is confirmed to be effective in the experiments
of Section 5.2. Thirdly, for the noise during trading, we employ graph data augmentation
strategies, such as edge perturbation and node reconnection, to simulate the scenarios with
inherent noise, so as to provide the model with input data filled with rich noise features.
Subsequently, we introduce supervised graph contrastive learning [27] to explicitly identify
differences in the augmented data and obtain a robust representation.

The contributions of this paper can be summarized as follows.

• This work focuses on mining transaction patterns in subgraphs. We have discovered
that the tree structure, as typical transaction patterns, can serve as a representative
structure for distinguishing money laundering from non-money laundering activities.

• To the best of our knowledge, we are the first to propose a subgraph detection model
based on graph contrastive learning methods in the field of cryptocurrency money
laundering detection.

• Experimental results demonstrate the effectiveness of the Bit-CHetG models by in-
tegrating various money laundering detection models such as random forest [28],
GCN [16], inspection-L [29], SubGNN [30], Tsgn [31], HAN [32], and MAGNN [33].
The comparison algorithms cover the latest graph-based money laundering detection
algorithms in Bitcoin, subgraph classification algorithms, and heterogeneous graph
classification algorithms. In particular, the Micro F1 Score of our proposed Bit_CHetG
is improved by at least 5%.

The rest of the paper is organized as follows. Section 2 presents related work in
cryptocurrency about money laundering detection and subgraph representation algorithms.
Section 3 introduces the Bitcoin address–transaction heterogeneous graph, defining two
types of metapaths, and clarifies the subgraph classification problem. In Section 4, the four
modules of the proposed algorithm are presented in detail. Section 5 describes the data
sources and the experimental results. In Section 6, we discuss the social and economic
implications of the algorithms proposed in the paper. In Section 7, the paper is summarized,
and we analyze the limitations of this research and propose future research directions.

2. Related Works

In this section, we will provide the necessary background knowledge for cryptocur-
rency about the classification of money laundering detection algorithms and subgraph
representation algorithms.

2.1. Money Laundering Detection in Cryptocurrency

Cryptocurrency AML methods fall into three main categories: rule-based methods,
unsupervised anomaly detection methods, and supervised machine learning methods.

In practice, AML for cryptocurrencies often relies on rule-based algorithms [34], such
as building expert systems using domain knowledge to detect money laundering activi-
ties [8], or employing heuristic algorithms for address identity inference [9–12] to enhance
the transaction traceability and further uncover illicit transactions. For example, the
process of money laundering involves complicated financial activities that may exhibit
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distinctions from normal ones, such as large-block or high-frequency transactions, the reac-
tivation of dormant addresses, and the immediate closures of newly opened addresses [35].
Zhou et al. [36] defined a feature system consisting of 40 statistical features to characterize a
money laundering transaction behavior based on that domain knowledge. However, most
rule-based algorithms are based on empirical inferences and may become ineffective when
facing rule changes.

Currently, the label-free anomaly detection method has become an important method
for AML in Bitcoin. Most unsupervised illicit behavior detection methods [37–39] aimed
to find behavioral patterns that differ significantly between illicit cases (the minority)
and licit cases (the majority). Among them, clustering is the most common approach.
Monamo et al. [13] studied the use of trimmed k-means to detect fraudulent activity in
Bitcoin transactions. Various graph centrality measures (i.e., in degree, out-degree of the
Bitcoin transactions) and currency features (i.e., the total amount sent) were used for Bitcoin
transaction clustering. The modified k-means clustering methods, such as local outlier
factor (LOF), are adopted to detect suspicious behavior on two graphs generated by Bitcoin
transactions [39], one graph with users as nodes and the other with transactions as nodes.
The two types of graphs consider the unspent transaction output (UTXO) model of Bitcoin,
where each transaction output is associated with a certain number of cryptocurrencies
initiated by a specific user. However, the construction of these graphs does not take into
account the rich information of heterogeneous networks, which will be emphasized by our
proposed algorithm.

Furthermore, entropy can also help identify unusual patterns or behaviors in the Bit-
coin network [40], providing a possible perspective for preventing cryptocurrency money
laundering. As a concept in information theory, entropy [41] denotes the degree of uncer-
tainty or chaos in a system. Liu et al. [42] used different entropies to describe the degree of
chaos in the cryptocurrency market, such as crypto-economic entropy and Kolmogorov en-
tropy. Recently, entropy is also used for anomaly detection in cryptocurrency networks [43],
which includes malicious actions, attacks, and illicit behaviors such as money laundering.
For example, one pioneering work by Pham et al. [39] combined entropy with clustering
algorithms to optimize the clustering effect of cryptocurrency transaction graphs using
cross-cluster entropy [44] in order to improve the accuracy of identifying illicit transactions.
They measure the quality of clusters by calculating the entropy of the data distribution
between different clusters to find the optimal number of clusters.

Nevertheless, extensive experimental results have shown that using unsupervised
anomaly detection methods is insufficient for detecting illicit patterns in a real-world Bit-
coin transaction dataset [45]. Therefore, our paper mainly focuses on supervised learning
algorithms for Bitcoin AML. Yining et al. [15] utilized “Wallet Explorer” to collect Bitcoin
transaction data and found that the classifier based on node2vec [46] outperformed the clus-
tering methods in detecting money laundering transactions. However, their approach solely
focuses on graph topological patterns and does not take the node features into account. In
recent years, Elliptic [47], a cryptocurrency intelligence company dedicated to protecting
cryptocurrency systems, has launched the Elliptic dataset, which contains local features
directly related to specific transactions and aggregated features from neighboring transac-
tions. This dataset has facilitated research in the AML community and the development of
machine learning techniques. In addition, the dataset labels nodes as licit and illicit, further
defining the problem of money laundering detection as a node classification problem on
the graph. Previous researchers have explored various approaches for utilizing the Elliptic
dataset, including classical supervised machine learning methods [48,49], EvolveGCN for
dynamic graphs [50], signature vectors in blockchain transactions (SigTran) model [51],
and so on. Moreover, Weng et al. [29] were the first to apply self-supervised GNNs to
research the Bitcoin AML problem. They proposed a graph neural network framework
called Inspection-L, which exploited unknown labeled data in a self-supervised manner,
thus improving the quality of representation for downstream tasks such as Bitcoin money
laundering detection. In contrast to self-supervised contrastive learning strategies, our
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approach makes full use of label information, preventing instances of the same label such as
the anchor being mixed into negative samples. In addition, since criminals can intentionally
mimic normal behaviors, we employ data augmentation techniques to introduce noise and
simulate real-world scenarios.

It is worth noting that the works mentioned above treated money laundering detection
as a node classification problem rather than subgraph classification, resulting in the neglect
of local topology.

2.2. Subgraph-Based Representation in Cryptocurrency

More and more subgraph mining methods such as complex network analysis as well as
motif matching methods are applied to cryptocurrency anomalous transaction mining [52].

Some researchers [23,53,54] have used relevant the metrics of complex networks to
study the anomalous subgraphs in Bitcoin transaction graphs. Tao et al. [54] sampled
subgraphs by a random walk with flying-back properties to observe the network’s small-
world phenomenon, polycentric state, etc., which provides insights for malicious activities
and fraud detection in cryptocurrency blockchain networks. Xiang et al. [23] conducted a
deep dive into the transaction patterns of the Bitcoin address network through complex
networks and machine learning, and they found that, in a suspected money laundering
subgraph, the original address would simultaneously send Bitcoins to both illicit addresses
and regular addresses through one-many transactions. Money laundering groups employ
multi-round top–down transactions to evade the tracking of the original Bitcoin, and this
pattern inspired our subgraph mining algorithm. Some scholars have studied motifs on
blockchain transaction networks for price prediction [55], network attribute analysis [56],
and exchange pattern mining [12]. Motif is defined as the cyclic subgraph patterns of
the networks, Wu et al. [57] built a feature-based network analysis framework based
on hybrid motifs to identify the statistical attributes of money laundering and mixing
services from three levels, namely the network level, account level, and transaction level.
Considering that the complexity of matching motifs increases exponentially with the growth
in nodes, the mentioned papers typically use size-2 and size-3 motifs as basic structures.
However, money laundering groups often have long chains, making it difficult for motif-
based methods to mine the key patterns. The subgraph mapping network proposed by
Tsgn [31] has achieved good results in Ethernet anomaly pattern mining; however, only
1-hop neighborhood information is collected, resulting in limited effectiveness for money
laundering pattern mining. In contrast, our Bit-CHetG can learn representations for larger
subgraphs in the Bitcoin network.

In recent years, several neural network-related algorithms performed well in subgraph
pattern mining, e.g., Cluster-GCN [58], SubGNN [30], and GCC [59] use subgraphs to
design more efficient and scalable algorithms for training deep and large-scale GNNs and
predicting subgraphs. However, employing neural networks to identify suspicious money
laundering groups in large cryptocurrency transaction networks remains an open challenge.
In this paper, we construct an address–transaction heterogeneous graph and aim to find
representative subgraph structures to distinguish money laundering patterns in Bitcoin.

3. Problem

Our research is dedicated to the detection of money laundering groups in cryptocur-
rency. Therefore, in this section, we formulate the Bitcoin address–transaction heteroge-
neous graph based on the smallest transaction unit of Bitcoin, including the input and
output. Subsequently, we define two types of metapaths on the heterogeneous graph, which
serve as the foundation to sample the subgraphs. Finally, we define the illicit subgraph
detection problem. The symbols are defined in Table 1.
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Table 1. Notation and definition.

Notation Definition

Ghet = {T ,A, ET→A, EA→T} Address–transaction heterogeneous graph

GT
sub =

{
GT

1 , . . . ,GT
m, . . . ,GT

M
}

Set of transaction subgraphs

GA
sub = {GA

1 , . . . ,GA
t , . . . ,GA

|T |} Set of associated address subgraphs

ΦATA Two types of metapaths: A EA→T−→ T ET→A−→ A or A EA→T−→ T EA→T←− A

ΦTAT One type of metapath: T ET→A−→ A EA→T−→ T

HΦTAT The embedding matrix of transaction subgraph under ΦTAT

hΦTAT
t The topological embedding representation of transaction node t under ΦTAT

HΦATA The embedding matrix of associated address subgraph under ΦATA

hΦATA
t The associated address representation of the central transaction node t under ΦATA

ht The node-level fusion feature vector for transaction node t

gm The graph-level fusion feature vector for the m-th transaction subgraph

Definition 1. Address–transaction heterogeneous graph. The heterogeneous graph is denoted by
Ghet = {T ,A, ET→A, EA→T}, including the node sets and edge sets. The address–transaction
heterogeneous graph is illustrated in the bottom-left corner of Figure 2. The transaction node-set
and address node-set are denoted as T and A, respectively. Each t ∈ T is a transaction record that
consists of a set of attributes, such as in-amount, out-amount, fee, and so on. Similarly, there are some
features associated with a wallet address a ∈ A such as the total amount, number of transactions,
and so on. Then, the input feature matrix is denoted by Xt ∈ R|T |×d1 and Xa ∈ R|A|×d2 , where
d1 and d2 are the dimensions of the feature vector, |T | is the total number of transactions, and |A|
is the total number of addresses. Moreover, there exist two types of edges from the source node to
the target node, EA→T ∈ EA→T represents an edge where a wallet address initiates a transaction
and ET→A ∈ ET→A represents an edge where a transaction outputs a certain wallet address. Note
that the subscript A indicates that the node type is an address and T indicates the transaction
node type. Therefore, the address–transaction heterogeneous graph not only contains the initiating
and receiving addresses of a particular transaction but also demonstrates the connections between
transactions and addresses during successive trading.

Definition 2. TAT-metapath. The transaction–address–transaction metapath, denoted by ΦTAT,

consists of one type of metapath T
ET→A−→ A

EA→T−→ T, which is indicated by the blue line in the top-right
corner of Figure 2.

The TAT-metapath represents a way where two transaction records are connected
through the same wallet address. The neighborhood set, denoted as NΦTAT

t , contains
the homogeneous neighborhood adjacent to the transaction node t via the TAT-metapath.
Therefore, the transaction neighborhood contains the set of downstream transactions
associated with transaction t. In the top-right corner of Figure 2, the node set {t3, t4},
which is pictured in blue, includes the downstream adjacent transactions of the transaction
node t1 based on the 1-hop TAT-metapath. Thus, we can sample the transaction subgraph
connected by TAT-metapath, with the set denoted as GT

sub =
{
GT

1 , . . . ,GT
m, . . . ,GT

M
}

, where
m is the index of the transaction subgraph and M is the total number of transaction
subgraphs. There, GT

m = {VT
m, ET

m}, which is a connected subgraph, represents the m-th
transaction subgraph.

It is important to note the edge direction when defining the TAT-metapath. When
detecting illicit transactions, we continuously monitor the downstream transactions related

to suspicious transactions through T
ET→A−→ A

EA→T−→ T, thus disregarding the reverse metapath.

Meanwhile, we exclude the same-level neighbors under T
ET→A−→ A

ET→A←− T because the
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downstream neighbors under T
ET→A−→ A

EA→T−→ T will cover the related nodes. As shown in

Figure 3, where T
ET→A−→ A

ET→A←− T is indicated by the red dotted line in Figure 3a, and t2
is considered as the same-level neighbor of t1 under that path in Figure 3b, then both t1
and t2 will also be included in the downstream neighbors of t0 in Figure 3c (perhaps after

multiple hops). In this case, even if both t1 and t2 are illicit, excluding T
ET→A−→ A

ET→A←− T does
not lead to the disappearance of t2, since they will appear in the transaction subgraph of
the source illicit node. The experimental results about sampling by polytree in Section 5.3
also demonstrate the rationality of that design.

Figure 3. Expansion of the address–transaction heterogeneous graph: (a) the TAT-metapath, disre-

garding the T ET→A−→ A ET→A←− T represented by the red dashed line; (b) the neighbor of t1, where t2 is
the neglected same-level neighbor; and (c) the neighbor of t0, where t1 and t2 is the downstream
neighbor framed by a blue ellipse.

Definition 3. ATA-metapath. The address–transaction–address metapath, denoted by ΦATA in

the bottom-right corner of Figure 2, is defined as a combination of two types of metapaths A
EA→T−→

T
ET→A−→ A in blue line and A

EA→T−→ T
EA→T←− A in red line.

The ATA-metapath represents a way for wallet addresses to be connected by jointly
participating in a transaction. The neighborhood set, denoted by NΦATA

a , contains the ho-
mogeneous neighborhood adjacent to the address node a via the ATA-metapath. Therefore,
the address neighborhood contains the set of initiating wallet addresses and receiving
wallet addresses associated with the target transaction t. In the bottom-right corner of
Figure 2, for example, address a1 has 1-hop neighborhood set {a3, a4, a5}, which is pictured

in blue, based on the metapath A
EA→T−→ T

ET→A−→ A and {a2}, which is pictured in red, based

on A
EA→T−→ T

EA→T←− A, which represents the associated wallet addresses for transaction t1.
Thus, based on the ATA-metapath, we sample the addresses associated with the transac-
tion node t into an associated address subgraph, denoted by GA

t . And, the set of address
subgraphs is denoted by GA

sub = {GA
1 , . . . ,GA

t , . . . ,GA
|T |}, where the index represents the

target transaction node t. Note that the total number of associated address subgraphs is
|T | because each transaction node can generate an associated address subgraph.

Our objective is to find a suitable sampling method to obtain the subgraphs GT
sub and

GA
sub from the global heterogeneous graph Ghet that facilitates distinguishing the patterns of

money laundering and non-money laundering, and then learn a function f : GT
sub×G

A
sub 7→

R to predict the probability that each subgraph is illicit. Given the transaction subgraph
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GT
sub =

{
GT

1 , . . . ,GT
m, . . . ,GT

M
}

, each transaction subgraph GT
m is associated with a label cm,

indicating the percentage of illicit nodes in each subgraph. Note that, while this paper
focuses on the transaction subgraph classification task, the methods we propose entail
learning a subgraph classifier f : GT

sub 7→ {1/N, 2/N . . . N/N}, while N is the size of
the subgraph.

4. Proposed Method

In the following section, we will provide a detailed explanation of our proposed model
for Bitcoin money laundering group detection, named Bit-CHetG. As shown in Figure 4,
the model comprises four main components: transaction subgraph embedding, address
feature aggregation, feature fusion, and contrastive learning. Leveraging the predefined
address–transaction heterogeneous graph and metapaths, we first extract topology features
for the transaction node and aggregated features for the address node from different meta-
paths. Specifically, for the TAT-metapath ΦTAT, the TSE component conducts multi-step
sampling on the transaction neighborhood set NΦTAT

t to obtain tree-structured transaction
subgraphs and then utilizes graph neural networks to derive the topological embedding
representation. On the other hand, for the ATA-metapath ΦATA, the AFA component,
which obtains the associated address representation, employs the graph neural networks
to embed the associated address subgraphs of the target transaction node based on the
neighbors NΦATA

a . Subsequently, the FF component aggregates these associated address
representations into the topological embedding representation and obtains the fused fea-
tures. Finally, to enhance the classification accuracy of the model, we introduce the CL
component, a supervised contrastive learning approach, to learn and classify the fused
features of transaction subgraphs from both the same and different classes.

Address-Transaction HetGraph

Concat Readout Pooling

…
…
…

…
…
…

Feature Fusion 

…
…

Transaction Record

Wallet Address

�Different
Label

Same
Label

Contrastive Learning

Transaction Subgraph Embedding

Address Feature Aggregation

G
C
N

G
C
N

…

Subgraph Sampling

…

…

Figure 4. Bit-CHetG. Including four components: transaction subgraph embedding, address feature
aggregation, feature fusion, and contrastive learning. The blue box in the address–transaction
HetGraph illustrates that one wallet may connect to multiple transactions, and the red dotted line
frames the target transaction node.

4.1. Transaction Subgraph Embedding

In the Bitcoin network, there are evident topological differences between money
laundering transaction subgraphs and non-money laundering transaction subgraphs, as
extensively described in Figure 5. To address this, we focus on the TAT-metapath in the
Bitcoin address–transaction heterogeneous graph. Thus, we perform transaction subgraph
sampling and then utilize GCN [16] to obtain the topological embedding matrix of the
transaction subgraph, denoted by HΦTAT .
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4.1.1. Transaction Subgraph Sampling

In order to summarize the structural commonalities of transaction subgraphs with
different sizes, we adopt an n-hop sampling method, where n is the number of hops, to
generate the licit and illicit subgraphs, respectively.

• When generating the illicit subgraph, we start with an illicit transaction node and
expand it by n hops. If all terminal nodes are licit, the process stops; otherwise,
continue expanding by n hops.

• When generating a licit subgraph, we initiate the process from a licit transaction node
and stop the extension after n hops. However, if the generated subgraph contains any
illicit nodes, it is considered to be illicit. This condition ensures that the generated licit
subgraph maintains its legality.

The above n-hop sampling method yields a tree structure that is similar to the flow
of money during cryptocurrency trading. And, the typical topology of the subgraphs is
displayed in Figure 6. The relevant conclusions show that the sampling method with a tree
structure helps distinguish the transaction patterns of money laundering groups.

unknown transaction
illicit transaction
licit transaction

unknown transaction
licit address
illicit address

Licit Subgraphs:

Illicit Subgraphs:

Licit Subgraphs:

Illicit Subgraphs:

Elliptic Dataset

BlockSec Dataset

Figure 5. Typical examples of subgraphs. Examples of different topologies of licit and illicit subgraphs
in two datasets. The number of sampling hops n is increasing from left to right.
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Figure 6. Relationship between the size of transaction subgraph (N) and the number of hops (n)
when sampling a transaction subgraph.

For the subgraph sampling process of the Bit-CHetG algorithm, we fix the size of each
transaction subgraph as N, while the optimal value of N is determined through parametric
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experiments in Section 5.4. In Bit-CHetG, we adopt a breadth-first random walk approach
to sample transaction nodes from the address–transaction heterogeneous graph, generating
a series of transaction subgraphs GT

m. The generated subgraph only contains transaction
nodes and is tree-structured.

• Step 1: Given a target transaction node t as the parent node p, add the 1-hop neigh-
borhood set NΦTAT

t of node t based on the TAT-metapath into the node set VT
m of

the subgraph GT
m. The edges between node t and the nodes in the neighborhood set

NΦTAT
t are added to the edge set ET

m of the subgraph. As shown by the subgraph
sampling process framed by the dashed line in the bottom-left corner of Figure 4, the
first generated subgraph contains the parent node framed in blue, as well as 1-hop
neighbor nodes.

• Step 2: Randomly select a node from the 1-hop neighborhood setNΦTAT
t with a certain

probability and extend the subgraph according to Step 1 with this node as the new
parent node. This process generates the second subgraph and third subgraph shown
in the subgraph sampling dashed line of Figure 4. If all the neighbor nodes have
been traversed, continue to extend to the next level until the number of nodes in the
node-set VT

m reaches a fixed number N.

During the subgraph sampling process, we use the breadth-first algorithm to sample
downstream nodes from the parent node to ensure that the transaction subgraphs sampled
by the TAT-metapath exhibit a tree-like structure. Through this sampling process, we
can generate highly correlated subgraphs to better capture the relationships between
transaction nodes. Figure 4 in the bottom-left corner shows the sampling process of a
transaction subgraph.

4.1.2. Topology Feature Embedding

Based on the transaction subgraph GT
m = {VT

m, ET
m}, which has an adjacency matrix

Am ∈ RN×N and a feature matrix Xm ∈ RN×d1 , we proceed with GCN to extract high-order
subgraph representation. The forward propagation process is as follows:

H(l) = σ
(

ÂmH(l−1)W(l−1)
)

, (1)

where σ is the activation function, Âm = D̃−
1
2 ÃD̃−

1
2 is the normalized adjacency matrix,

Ã = A + I is the adjacency matrix with added self-connections, Dii = ∑j Ãij represents
the degree of the i-th node, W(l−1) ∈ Rdl−1×dl is the weight matrix of the (l − 1)-th layer,
H(l−1) ∈ RN×dl−1 is the hidden layer representation matrix of the (l − 1)-th layer, and the
initial feature matrix H(0) = X.

Finally, we consider the feature matrix of the last layer as the final graph embedding
representation of the transaction subgraph:

HΦTAT = H(L), (2)

where HΦTAT ∈ RN×dT , L is the number of layers of the graph neural network, and dT is the
feature dimension of the last layer.

Note that hΦTAT
t ∈ RdT is the topological embedding the representation of the trans-

action node t, which is the node feature vector obtained from the final layer of the graph
neural network.

4.2. Address Feature Aggregation

In the Bitcoin network, each transaction may involve multiple input and output
addresses. To capture the relationships between the target transaction and its associated
addresses, we focus on the ATA-metapath predefined in the Bitcoin heterogeneous graph.
The purpose of this section is to learn the associated address representation, denoted by
hΦATA

t , of the target transaction nodes.
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As illustrated by the blue box in the address–transaction heterogeneous graph in
Figure 4, one wallet may connect to multiple transactions. Thus, the set of one-hop neigh-
bors generated through the ATA-metapath, denoted by NΦATA

a , may include wallet ad-
dresses associated with multiple transaction records. When constructing the associated
address subgraph GA

t , we are only interested in the neighbor set relevant to the target
transaction node t, which is a subset of NΦATA

a . The process of constructing the associated
transaction subgraph can be simplified as follows:

• Step1: Identify the target node. Firstly, designate t1 as the target transaction node for
the AFA module, and add t1 to the node set NA

t , highlighted by the red dashed box in
Figure 4.

• Step2: Determine the edge set and node set. Traverse the node and edge sets in the
address–transaction heterogeneous graph. Add all one-hop neighbor address nodes
of the target node t1 to the node set NA

t . These address nodes are connected through
the ATA-metapath. The edge set EA

t consists of edges connecting the target node t1
and the address nodes, without distinguishing the direction of edges.

After obtaining the associated address subgraph GA
t , we use a GCN model similar to

Section 4.1.2 for feature mapping. The layer update formula for heterogeneous graph con-
volutional networks can be expressed as follows, where H(l+1)

i is the node representation
matrix of node type i in layer l + 1:

H(l+1)
i = σ

(
∑

j∈Ni

D−
1
2

i AijD
− 1

2
j H(l)

j W(l)
ji + XiW

(l)
ii

)
, (3)

where H(l)
i is the node representation matrix of node type i in layer l, Ni is the set of

neighbor node types of node type i, Aij is the adjacency matrix from node type j to node

type i, Di is the degree matrix of node type i, W(l)
ji and W(l)

ii are learnable weight matrices
for information transfer from node type j to node type i, Xi is the feature matrix of node
type i, and σ is the activation function.

Thus, the embedding matrix of the associated address subgraph, denoted by HΦATA , is
represented by the feature matrix of the last layer:

HΦATA = H(L), (4)

where L is the number of layers of the graph neural network.
Since our goal is to obtain the associated address representation of the target trans-

action node t, denoted by hΦATA
t in Figure 4, we use average pooling [60] as the readout

function to generate the subgraph-level representations. It is formulated as follows:

hΦATA
t =

1
K

K

∑
j=1

HΦATA [j, :], (5)

where K is the size of the address subgraph, hΦATA
t ∈ RdA , and dA is the dimension of the

associated address representation.

4.3. Feature Fusion

For each transaction subgraph GT
m, we obtained the topological embedding representa-

tion hΦTAT
t of the individual transaction node t encoded by GCN, as well as the associated

addresses representation hΦATA
t for the target transaction node t. We then concatenate these

two representations to obtain a fused feature representation for the individual transaction
node t:

ht = Concat(hΦTAT
t , WhΦATA

t ), (6)

where W ∈ RdT×dA is the weight matrix, to align the two represented dimensions.
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Next, we use a readout function such as average pooling to obtain the graph-level
fused feature vector for each transaction subgraph, denoted by gm, where the subscript m
indicates the m-th subgraph:

gm = ReadOut
(

ht | ∀ti ∈ GT
m

)
. (7)

Finally, we use a fully connected (FC) layer followed by a softmax layer to obtain the
predicted scores for the illicit rate of each transaction subgraph:

ĉm = Softmax(FC(gm)). (8)

For the m-th transaction subgraph GT
m, cm represents the ground truth label for its illicit

rate. The prediction loss function is then defined as:

LMEA =
M

∑
m=1
|cm − ĉm|. (9)

4.4. Contrastive Learning

In the last section, we introduce contrastive learning and construct a new loss function
as the optimization objective for illicit transaction subgraph detection. The goal is to
maximize the consistency among positive samples while minimizing the similarity with
negative samples, given the provided labels. Specifically, for a given subgraph GT

a ∈ GT
sub

considered as an anchor, we treat subgraphs with the same label as positive trees GT
p , and

those with different labels as negative trees GT
n . Let GT

a be an illicit transaction subgraph,
and we aim to increase the similarity between its feature representation vector and those of
other illicit transaction subgraphs in high-dimensional space while decreasing the similarity
with the feature representations of licit transaction subgraphs. This helps the model learn
time-invariant representations. This is a form of supervised contrastive learning, where we
bring similar instances closer and push dissimilar instances apart, as shown in Figure 7. The
final loss function consists of two components, the prediction loss, and the contrastive loss:

L = LMEA + αLCL, (10)

where α is the hyperparameter and the contrastive loss LCL is calculated as follows:

LCL = −
M

∑
m=1

log

{
1

|P(m)| × ∑
p∈P(m)

exp
(
sim

(
gm, gp

)
τ
)

∑n∈N (m) exp(sim(gm, gn)τ)

}
. (11)

During the traversal process of the contrastive loss, the index m represents the anchor.
Index p corresponds to positive samples with the same label as the anchor, which forms the
positive index set P(m) =

{
p : cp = cm

}
. Index n corresponds to negative samples with dif-

ferent labels from the anchor m, which forms the negative index set N (m) = {n : cn ̸= cm}.
The function exp(·) represents the exponential function, and τ > 0 is a scalar temperature
parameter. The function sim(·) represents the cosine similarity function:

sim
(
gm, gp

)
=

gT
m · gp

∥gT
m∥∥gp∥

. (12)

In addition, data augmentation techniques are applied to simulate noise during the
transaction process, such as edge perturbation and node reconnection, as shown by the
dotted line of the anchor in Figure 7. For example, we introduce erroneous transactions or
intentional interference transactions initiated by money launderers to hide their activities.
This data augmentation process helps the model be more robust and better generalizes to
real-world scenarios where noise and anomalies are present.
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Figure 7. Supervised graph contrastive learning. Pull together the positive sample (same label) and
push apart the negative sample (different label).

5. Experiment

In this section, to validate the effectiveness of the algorithm, we first introduce the
selected dataset and comparison models. We then evaluate the proposed Bit-CHetG
method by comparing it with the comparison models. The results demonstrate that there is
a significant improvement in the micro F1-score by more than 5%.

Additionally, in order to explore the reasons for the effectiveness of the algorithm, we
first elucidate that the choice of tree structure as a subgraph can effectively distinguish
the topological patterns of cryptocurrency illicit groups. Then, we verify the enhancement
of the results by the AFA module and the CL module, i.e., the introduction of contrastive
learning and wallet address information.

Simultaneously, we conduct experiments to determine the optimal parameters, such
as the layers of GCN and the size of the sampling subgraph.

5.1. Experimental Setup
5.1.1. Datasets

Two datasets were selected for this paper, the Elliptic dataset [20] (a publicly available
benchmark) and the BlockSec dataset (a heterogeneous dataset we collected). The statistics
of the datasets are shown in Table 2. The main difference between these two datasets
is that the BlockSec dataset contains transaction record information and wallet address
information, while the Elliptic dataset contains only transaction record information.

Elliptic dataset: Provided by Elliptic [47], this is the largest labeled Bitcoin transaction
dataset. The Elliptic dataset [20] comprises 203,769 transaction nodes and 234,355 trans-
action payment edges (i.e., transaction inputs and outputs). Within the Elliptic dataset,
21% of nodes are labeled as licit, while only 2% are marked as illicit. These nodes include
166 features, with the initial 94 features encompassing local transaction information, includ-
ing time steps, transaction fees, and input or output amounts. The remaining 72 features are ag-
gregated features, consisting of transaction information aggregated from neighboring nodes
in a 1-hop graph, such as standard deviation, minimum, maximum, and correlation coefficients.

BlockSec dataset: Provided by BlockSec [61]. This dataset includes wallet address
information and the transaction record information of Bitcoin for April 2023. The raw
data include 16,674,890 transaction records involving 100,061 wallet addresses, with
1442 addresses labeled as illicit. The transaction record features include fees, input
amounts, and output amounts. The wallet address features include the total number of
input and output transactions, the amount of the transactions, and more information related to
the given address.

Next, we conducted subgraph sampling on both datasets, using the subgraph illicit
rates as the label, which represents the proportion of illicit nodes in each sampling subgraph.
The processing procedure for the two datasets is as follows: Since the BlockSec dataset is a
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heterogeneous graph, it undergoes the transaction subgraph sampling steps in Section 4.1.1
and the associated address subgraph sampling steps in Section 4.2. In contrast, the Elliptic
dataset is a homogeneous graph, and we omit the sampling of the associated address
subgraph. And, the transaction subgraph sampling of the Elliptic dataset employs a similar
breadth-first algorithm for downstream expansion. However, the generation of the 1-hop

neighborhood set is based on T
ET→T−→ T instead of the TAT-metapath. As shown in Table 2,

the size of the transaction subgraph is fixed at 10 for the Elliptic dataset and 5 for the
BlockSec dataset based on the experiments in Sections 5.2 and 5.4. An example of the
typical subgraphs of both datasets can be found in Figure 5. During the training of these
two datasets, the BlockSec dataset follows the four steps in Figure 4, while the Elliptic
dataset only undergoes topology feature embedding and contrastive learning.

Table 2. Statistical information of the datasets.

Dataset Number of
Transactions

Number of
Addresses

Number of
Subgraphs

Size of Transaction
Subgraph

Elliptic 203,769 None 24,533 10
BlockSec 16,674,890 100,061 16,583 5

5.1.2. Comparison Algorithms

We utilize the following widely used graph-based methods, including heterogeneous
and homogeneous graphs, as comparative methods for Bitcoin money laundering detection
to emphasize the effectiveness of our proposed method. It is worth noting that some node-
level classification algorithms are extended to become graph-level classification methods
through a unified readout function [62].

For the Elliptic dataset, which only contains transaction record features and does not
include wallet address features, we choose the homogeneous algorithm as the compari-
son method.

Random forest [28]: A supervised learning method used for ensemble learning enhances
the predictive ability by combining results from multiple decision trees. In previous experi-
ments focused on identifying illicit nodes in the Elliptic dataset, random forest demonstrated
an outstanding performance when compared to the graph neural network algorithm.

GCN [16]: The fundamental graph neural network, which can extract topological
features among transaction nodes. Here, we utilize GCN to obtain node representations
before proceeding with subgraph classification.

Inspection-L [29]: The first application of a self-supervised GNN to the Bitcoin money
laundering detection problem, which has a self-supervised Deep Graph Infomax framework
combined with a supervised learning algorithm, random forest.

SubGNN [30]: It is a subgraph-based neural network that proposes three property-
aware channels that capture position, neighborhood, and structural information to propa-
gate the information at the subgraph layer.

Tsgn [31]: It introduces a network mapping strategy from node to edge to fully capture
the potential topological information of the subgraph which cannot be easily obtained
from raw transaction networks, benefiting the subsequent fraud detection algorithms
in cryptocurrency.

For the BlockSec dataset, which includes both transaction record features and wallet
address features, we selected the heterogeneous network algorithm for the comparative
experiment.

HAN [32]: It is designed for heterogeneous graphs, which proposes the usage of a
graph neural network with hierarchical attention to evaluating node weights and metapaths.
Additionally, HAN is a semi-supervised heterogeneous method.

MAGNN [33]: It is a heterogeneous graph embedding model that utilizes metapath-
guided aggregation to acquire meaningful node representations by considering both struc-
tural relationships and attribute information.
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Our experimental environment is as follows: the operating system is Ubuntu 18.04,
the programming language is Python 3.8.13, the framework is PyTorch 1.4.0, the CPU is
Intel Core i7-6800K, and the GPU is GeForce GTX 1080, which is designed by NVIDIA,
Santa Clara, CA, USA.

The experimental parameters are set as follows: The epoch is set to 200, iterations are
set to 100, and early stopping [63] is applied when loss stops decreasing for 10 epochs. The
number of layers in GCN is set to 2, and the feature dimensions of the hidden and output
layers are both set to 64. The length of the metapath is set to 1 to ensure the generation
of one-hop neighbors. Stochastic gradient descent is used to update the parameters of
Bit-CHetG, and our model is optimized using the Adam optimizer [64]. We explore learning
rates ranging from 1 × 10−4 to 5 × 10−3. For the dropout rate, we experiment with values
from 0.1 to 0.5 in increments of 0.05, while hyperparameters are tuned between 0.1 and 0.9
in increments of 0.05.

Following the configuration of [20], the initial 35 graphs of the Elliptic dataset are
designated as the training set, and the remaining graphs are reserved for testing. The
BlockSec dataset is randomly divided into training and testing sets in a ratio of 7:3. In
our dataset, the distribution of labels (i.e., subgraph illicit rates) is unbalanced, so we
choose micro precision (Micro-Prec.), micro-recall (Micro-Rec.), and micro F1-score (Micro-
F1) as the evaluation metrics for subgraph multiclassification problems. To ensure a fair
comparison, we use the base implementation for all models and hyperparameter sweeps
as in our Bit-CHetG approach. Additionally, to achieve graph-level classification, we use
average pooling as a readout function [62] for methods [16,28,29,32,33]. In order to extend
the homogeneous benchmarking approach to heterogeneous graphs, we fuse the original
transaction features and the associated address features to obtain aggregated features,
which are used as input features for the method [16,28–31].

5.2. Mining Tree-Structured Subgraphs

In this part, we show that the results observed from the tree-structure subgraphs
and find that the topological patterns can be effectively distinguished between money
laundering and non-money laundering.

According to the n-hop sampling method proposed in Section 4.1.1, Figure 5 illustrates
the typical topology of the tree-structure subgraphs of illicit and licit transactions, respectively,
where the size of the subgraph increases from left to right. Thus, we observed that:

• There is a significant difference between the illicit and licit subgraphs. The distribution
of licit transaction trees is more centralized, similar to a network-like structure, while
the distribution of illicit transaction trees is more dispersed, similar to a chain-like
structure. This suggests that illicit and licit transactions exhibit different topologies
and that the tree-like subgraph generation method can effectively distinguish between
money laundering and non-money laundering transaction patterns.

• In the set of illicit subgraphs, there are continuous money laundering chains in the
transaction network. Therefore, identifying individual illicit nodes can be of great
help in the subsequent tracking of illicit groups.

Based on this observation, our algorithm focuses on the pattern differences between
the subgraphs and chooses a tree-like structure as a typical subgraph structure.

Furthermore, we counted the changes in the size of the transaction subgraphs N
when the number of sampling hops n is varied. As shown in Figure 6, the average size
of transaction subgraphs in the BlockSec dataset (only transaction nodes are counted) is
less than that in the Elliptic dataset for the same number of sampling hops. While the
collection time is not the same for the two datasets, this phenomenon may be related to
the rapid growth of mixing services [65] in recent years, and some users may use Bitcoin
mixing services to enhance the privacy of their transactions. These services mix multiple
transactions, making the transaction path on the chain more complex. Another possible
reason is that, out of a sense of security, some users may periodically change the address
they use to receive Bitcoin. This behavior can lead to truncated transaction paths in the
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graph because the new address is no longer associated with the previous address. This
indicates that the optimal subgraph sampling size may change as the cryptocurrency
ecosystem evolves. Combined with the parametric analysis of N performed in Section 5.4,
we finally fix n to 5. For the following experiments in Section 5.3, N is fixed to 5 for the
BlockSec dataset and 10 for the Elliptic dataset.

5.3. Experimental Results

In this part, we give THE experimental results and explain why our Bit-CHetG outper-
forms the comparison algorithm for four reasons.

For the elliptical dataset, we constructed 24,533 tree-structured subgraphs, starting
with the labeled nodes in the original dataset. The illicit rate was then used as the la-
bel for each subgraph. For the BlockSec dataset, 16,583 subgraphs were constructed.
Tables 3 and 4 present the Micro-Prec., Micro-Rec., and Micro-F1 of the compared methods
on both datasets. The bolded parts represent the best results. The results show that the
proposed Bit-CHetG model outperforms all comparison methods, highlighting the advan-
tages of introducing heterogeneous networks and contrastive learning in the task of Bitcoin
money laundering group detection.

As expected, the random forest approach based on primitive features yields the worst
results, mainly because it ignores the topology of the transaction network since there are
intricate feature interactions. The GNN-based approach improves on this aspect. The
results confirm that money laundering group detection using GCN is effective, which
emphasizes the reason why we chose GCN as the base encoder for the Bit-CHetG model.
Inspection-L follows the framework of DGI [66] and is the first algorithm to apply a self-
supervised GNN to the Bitcoin money laundering detection problem. SubGNN is a well-
known subgraph detection algorithm and is a state-of-the-art benchmark to validate the
superiority of the proposed Bit-CHetG model. It reasons about the topological properties of
a given subgraph but lacks a specially designed subgraph sampling algorithm. Tsgn focuses
on the subgraph pattern recognition of cryptocurrencies, but the designed Transaction
SubGraph Network only collects the 1-hop neighborhood information, which works well in
cryptocurrency phishing account identification. However, when applied to cryptocurrency
money laundering detection, it is not as effective as our Bit-CHetG algorithm. Based on
the results of Table 3, the proposed Bit-CHetG outperforms all the comparison methods,
improving the Micro-F1 on the Elliptic dataset by 12%, 7%, 6%, and 5% compared to GCN,
Inspection-L, SubGNN, and Tsgn, respectively.

Table 3. Result of Elliptic dataset.

Methods Micro-Prec. Micro-Rec. Micro-F1

Random forest 0.803 0.711 0.694
GCN 0.812 0.801 0.799

Inspection-L 0.869 0.836 0.851
SubGNN 0.865 0.843 0.858

Tsgn 0.879 0.854 0.867

Bit-CHetG (Reg + Cl + Aug) 0.905 0.893 1 0.919 1

Bit-CHetG (Reg + Cl) 0.914 1 0.872 0.889
Bit-CHetG (Reg) 0.873 0.851 0.869

Bit-CHetG (polytree) 0.871 0.841 0.858
1 Number in bold represent optimal performance.

The BlockSec dataset employs two commonly used heterogeneous network models as
comparison algorithms, i.e., HAN and MAGNN. In addition to this, by fusing address and
transaction features, we apply the homogeneous subgraph algorithms SubGNN and Tsgn
to the BlockSec dataset as well. Compared with the basic GCN method, HAN and MAGNN
have improved the performance on the BlockSec dataset considering the heterogeneity
of the address–transaction graph. In particular, the performance improvement is more
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significant for MAGNN by employing self-supervised tasks. However, compared to our
Bit-CHetG algorithm, HAN and MAGNN do not design specialized metapaths for our
Bitcoin money laundering group detection task. As the result in Table 4, the Micro-F1 of
Bit-CHetG proposed in this paper improves 10% and 7% compared to HAN as well as
MAGNN, and 9% and 7% compared to SubGNN as well as Tsgn, respectively.

Table 4. Result of BlockSec dataset.

Methods Micro-Prec. Micro-Rec. Micro-F1

GCN 0.701 0.696 0.699
SubGNN 0.742 0.712 0.722

Tsgn 0.749 0.723 0.741
HAN 0.742 0.712 0.718

MAGNN 0.751 0.736 0.745

Bit-CHetG (Reg + Cl + Aug) 0.825 1 0.760 0.815 1

Bit-CHetG (Reg + Cl) 0.807 0.772 1 0.802
Bit-CHetG (Reg) 0.791 0.751 0.789

Bit-CHetG (polytree) 0.771 0.740 0.758
1 Number in bold represent optimal performance.

Meanwhile, the bottom of Tables 3 and 4 shows additional experiments to verify the
performance of Bit-CHetG, where Bit-CHetG (Reg + Cl + Aug) is the complete algorithm
including regression loss, contrastive loss, and graph augmentation, Bit-CHetG (Reg +
Cl) removes data augmentation, and Bit-CHetG (Reg) removes data augmentation and
contrastive loss. Bit-CHetG (polytree) replaces tree structure sampling with polytree
sampling, which may contain multiple parent nodes. The Bit-CHetG model proposed in this
paper performs well in both homogeneous graphs containing only transaction information
and heterogeneous graphs containing both transaction and address information. The
advantages of Bit-CHetG can be attributed to four main reasons:

• Bit-CHetG selects the appropriate subgraph sampling structure. As shown in
Section 5.2, we have chosen the tree structure as the detection unit. The results
of Bit-CHetG (polytree) in Tables 3 and 4 show that the polytree structure as subgraph
is inferior to the tree structure. This is because the polytree contains more interaction
information which leads to interference in recognizing illicit and licit patterns.

• Bit-CHetG introduces a contrastive loss in addition to the original regression loss. As
shown in the results of Bit-CHetG (Reg) as well as Bit-CHetG (Reg + Cl + Aug) in
Tables 3 and 4, contrastive learning and graph augmentation help the model better
learn the commonalities between the same samples and the differences between
different samples and thus generates high-quality feature representations.

• Bit-CHetG employs a flexible data augmentation strategy. By randomly adding or
removing edges, we can simulate erroneous transactions or transactions deliberately
interfered with by money launderers to conceal their activities. By simulating the
noise during transactions through data augmentation, the results of Bit-CHetG (Reg +
Cl + Aug) in Tables 3 and 4 are more robust than those of Bit-CHetG (Reg + Cl).

• Bit-CHetG purposefully designed Metapaths. For UTXO, the smallest trading unit of
Bitcoin, we design ATA-Metapath and TAT-Metapath to directly detect money laun-
dering groups. Compared with the above comparison algorithms that acquire node
characterization before applying it to downstream tasks, our approach significantly
improves the effectiveness.

5.4. Ablation Study

In this part, we first validate the effectiveness of the AFA module and the CL mod-
ule, and then conduct experiments to select the optimal parameters, one is the optimal
number of layers of the graph neural network, and the other is the optimal sample size of
the subgraph.



Entropy 2024, 26, 211 19 of 24

To validate the effectiveness of various modules within Bit-CHetG, we conducted
comparisons with the following variants:

Bit-CHetG_NA: This variant only employs the transaction record information and
disregards the account address information. The AFA component is subjected to masking,
resulting in the degradation of the heterogeneous graph to a homogeneous graph.

Bit-CHetG_NC: In this variant, the contrastive learning module is removed, render-
ing the model unable to capture distinctions between instances of different classes and
diminishing the quality of representations.

Experimental results are presented in Table 5. The observations are as follows:

• The introduction of contrastive learning in the Bit-CHetG model yields significant
improvements over Bit-CHetG_NC. Specifically, Micro-Prec., Micro-Rec., and Micro-
F1 increased by 5.8%, 2.5%, and 4.3%, respectively, highlighting the beneficial impact
of contrastive learning.

• In comparison to Bit-CHetG, the Micro-Prec., Micro-Rec., and Micro-F1 of
Bit-CHetG_NA decreased by 3.2%, 1.4%, and 2.3%, respectively. When contrastive
learning is directly applied to the transaction graph without auxiliary account infor-
mation, the model achieves only moderate predictive accuracy.

Table 5. Result of the ablation study.

Methods Micro-Prec. Micro-Rec. Micro-F1

Bit-CHetG 0.825 1 0.760 1 0.815 1

Bit-CHetG_NC 0.767 0.735 0.772
Bit-CHetG_NA 0.793 0.746 0.792

1 Number in bold represent optimal performance.

These results highlight the importance of introducing different modules into the Bit-
CHetG model to improve the prediction performance. Meanwhile, Figure 8 shows the
confusion matrix about predicted and true labels from the baseline GNN model and the
Bit-CHetG model in three different settings. Bit-CHetG shows more concentration along
the main diagonal compared to Bit-CHetG_NA and Bit-CHetG_NC. This concentration
indicates higher accuracy. In the money laundering group detection task, more attention
should be paid to the detection of subgraphs with high illicit rates. It is worth noting that
our Bit-CHetG has a darker heatmap color in the lower right corner of the confusion matrix
compared to the simple GNN model, which indicates a more accurate identification of
subgraphs with high illicit rates.

Next, we performed some optimal parameter experiments. Firstly, The effect of
different GCN layers on the Micro-Prec. was first evaluated. Table 6 summarizes the
accuracy results on the BlockSec dataset, where k1 denotes the number of GCN layers in the
TSE component and k2 denotes the number of GCN layers in the AFA component. Thus,
the optimal setting for displaying the number of GCN layers for both components is 2.

Furthermore, we consider the optimal size of the transaction subgraph for sampling.
Figure 9 depicts the variation of weighted accuracy with the size of the transaction subgraph
(N) for both the BlockSec dataset and the Elliptic dataset. It can be seen that when N is set
to 5 for the BlockSec dataset and 10 for the Elliptic dataset, both precision and stability are
at their best.

Table 6. Accuracy at different number of GCN layers.

k1
k2 1 2 3

1 0.81 0.84 0.82
2 0.82 0.86 1 0.84
3 0.81 0.83 0.85

1 Number in bold represent optimal performance.
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Figure 8. Confusion matrix of the predicted label and true label from the Bit-CHetG model in three
different settings and GNN: (a) Bit-CHetG_NA; (b) Bit-CHetG_NC; (c) Bit-CHetG; and (d) GNN. The
darker the color, the higher the correlation between the predicted label and the real label.
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Figure 9. Boxplot of the size of the transaction subgraph vs. accuracy: (a) Elliptic dataset; (b) BlockSec
dataset.

6. Discussion

As of 9 August 2022, the size of the entire transaction record of Bitcoin, i.e., the
blockchain, is 420 GB, with an average growth rate of 129% [29]. The rule-based man-
ual money laundering detection methods used in the industry are time-consuming and
resource-intensive, and there is an urgent need for more efficient methods to detect Bitcoin
money laundering. Our algorithm aims to predict the illicit rate of subgraphs, significantly
reducing computational costs. Our algorithm will play a crucial role in screening the vast
data flow of cryptocurrencies, and subgraphs predicted to have higher illicit rates will be
added to a watchlist.

Our proposed algorithm performs exceptionally well in experiments. As illustrated in
Section 5.2, the patterns discovered can effectively distinguish money laundering groups
from non-money laundering groups. The transparency of the blockchain and the general-
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ization ability of neural networks ensure the practical application of our algorithm. Firstly,
cryptocurrency transaction information is recorded in real-time on the blockchain, with pub-
lic transparency. We can obtain the initiating wallet address ID, receiving wallet address ID,
and transaction record ID for a transaction on public platforms (e.g., Blockchain.com [67]).
This forms the basis for further mining the original features of IDs and constructing the
address–transaction heterogeneous graph, as detailed in Section 3. Secondly, in the pa-
per, we utilized two labeled datasets to train the proposed deep learning network model,
Bit-CHetG. The extensive time span covered by these datasets ensures that the model
learns optimal parameters with high generalization ability. In practical applications, when
dealing with unlabeled transaction graphs, after the subgraphs are sampled, we can directly
calculate the illicit rate of the transaction subgraph using those retained model parameters.

The money laundering group detection paradigm based on subgraphs, once applied in
reality, will significantly reduce the complexity of cryptocurrency AML. This regulation of
cryptocurrency money laundering will further maintain the stability of the global financial
system, resist criminal activities, and enhance international security.

7. Conclusions

In this paper, we mine the pattern of money laundering and introduce a feasible
subgraph sampling approach. We found that a tree-structured sampling approach can
distinguish the typical patterns of money laundering groups. Based on this, we propose a
novel model to detect Bitcoin money laundering groups, named Bit-CHetG. The model is
a subgraph-based graph neural network approach that combines heterogeneous graphs
as well as contrastive learning. Experimental results show that our algorithm is very
effective and robust in detecting illicit groups in two datasets, significantly outperforming
other algorithms.

However, our graph neural network algorithm does not adequately consider the
direction of edges in the transaction graph, which is a crucial detail since it provides
essential information about the flow of currency. To further enhance the performance of
our model, we plan to develop a directed network model in the future, aiming to more
accurately capture the directional features of transactions. Furthermore, the topology of
the Bitcoin transaction network evolves. This dynamism represents another crucial aspect
of our research. In future studies, we intend to incorporate key temporal information to
construct a dynamic graph neural network model. This will provide a more comprehensive
perspective for our analyses and further improve the performance of our model.
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