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Abstract: The Ultimatum Game is a simplistic representation of bargaining processes occurring in
social networks. In the standard version of this game, the first player, called the proposer, makes an
offer on how to split a certain amount of money. If the second player, called the responder, accepts the
offer, the money is divided according to the proposal; if the responder declines the offer, both players
receive no money. In this article, an agent-based model is employed to evaluate the performance
of five distinct strategies of playing a modified version of this game. A strategy corresponds to
instructions on how a player must act as the proposer and as the responder. Here, the strategies
are inspired by the following basic emotions: anger, fear, joy, sadness, and surprise. Thus, in the
game, each interacting agent is a player endowed with one of these five basic emotions. In the
modified version explored in this article, the spatial dimension is taken into account and the survival
of the players depends on successful negotiations. Numerical simulations are performed in order to
determine which basic emotion dominates the population in terms of prevalence and accumulated
money. Information entropy is also computed to assess the time evolution of population diversity
and money distribution. From the obtained results, a conjecture on the emergence of the sense of
fairness is formulated.

Keywords: emotional expression; evolutionary game; information entropy; population dynamics;
social network; spatial game; Ultimatum Game

1. Introduction

The systematic study of emotion on an evolutionary perspective begins with the book
The Expression of the Emotions in Man and Animals written by Charles Darwin [1]. In this
book, first published in 1872, Darwin discusses the biological aspects and the social value of
emotional expression. To Darwin, an emotion reflects an underlying mental state generated
by the brain of human beings and other animals, which can be associated with typical facial
muscular pattern and body posture [1,2]. Also, to Darwin, emotions have evolved just
as anatomical structures have evolved [1,3,4]. Thus, the process of natural selection has
shaped not only phenotypic traits, but also psychological responses, in order to enhance
the evolutionary fitness of the species. Therefore, our emotional behavior is, at least in part,
genetically inherited [1,3,4].

Anger, fear, joy, sadness, and surprise are considered primal emotions [1–6], since they
were supposedly felt by ancestor species [1,3,4]. Such basic emotions may have increased
the chances of survival and reproduction in challenging environments. In fact, these emo-
tions drive vital behaviors: anger destroys obstacles; fear protects from threats; joy facilitates
social connections; surprise directs attention; and sadness promotes reflection [1–6].

Economic behavior, a particular form of decision-making, is influenced by emotions [7–11].
This statement can be validated by analyzing, for instance, the attitudes of individuals
playing the Ultimatum Game. In the original version of this game [12–16], a given amount
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of money must be divided between two players. The first player, referred to as the proposer,
makes an offer on how to split this amount. If the second player, referred to as the responder,
accepts the deal, both players divide the money as suggested by the proposer; however,
if the responder rejects the deal, neither player receives anything [12–16]. According to
classic game theory [17,18], a purely rational responder, seeking to maximize resources for
self-interest, should take any offered share, as receiving something is preferable to receiving
nothing. As a consequence, a purely rational proposer should offer the minimum possible
amount. However, experimental studies revealed that the mutually expected rationality is
barely observed, because the average offer is around 40% of the total [13]. Also, around
half of the offers below 20% are rejected [14]. Thus, some fifty percent of the responders
punish proposals perceived as unfair, despite exiting the game without any gain.

The Ultimatum Game can represent the final stage of a real-world bargaining process,
wherein the ultimate offer can either be accepted or rejected [16,17]. During this process,
emotions can arise and impact the final proposer’s offer and the final responder’s reply.
Functional magnetic resonance imaging has been employed to investigate the neural
activity elicited by this game [19,20]. Such neuroimaging studies have shown, for instance,
that unfair offers (about 20% or less) increase the activation of brain regions related to
cognition (dorsolateral prefrontal cortex), emotion (bilateral anterior insula), and cognitive
conflict (anterior cingulate cortex) [19,20]. Thus, unfair offers provoke a struggle in the
responder between logic reasons (to take any money) and emotional reasons (to reject
low proposals) [19,20]. The interplay between an emotional system and a rational system
shapes the responder’s decision [21].

Despite being paradigmatic in studies of cooperation and fairness [12–22], the original
version of this game presents two unrealistic features: the resource to be split appears out of
nowhere and it disappears in the case of disagreement between the players. In a variation
of this game [23], the resource to be divided belongs to the proposer; thus, it returns to
the proposer if the negotiation fails. However, in the case of uncompleted negotiation, the
survival chances of both players is reduced. On the other hand, a completed negotiation
increases the resources of the responder and the survival chances of both. This variation
can be suitable to represent a negotiation between employer (the proposer who possesses
the money) and employee (the responder who provides essential services to the proposer
after receiving the offered amount) [23].

A basic emotion can be simplistically viewed as an information-processing pro-
gram implemented in the brain to generate specific behaviors in response to specific
adaptive problems [1,3,4,24]. Basic emotions modulate the actions in the Ultimatum
Game [19,20,25–30]. For instance, studies have shown that induced sadness (by previ-
ously presenting short movie clips to responders) decreases the acceptance rate of unfair
offers [26] and increases the offered share [27]. Joy promotes a more flexible attitude to-
wards making concessions [28]. Fear of failed negotiation increases the offers and decreases
the rejection rate [29]. Anger from the responder can be a signal that only elevated amounts
will be accepted; anger from the proposer can be a signal of low proposals [30].

Here, five distinct strategies of playing the Ultimatum Game are associated with five basic
emotions. This association intends to reflect results found in the literature [13,14,19,20,25–30].
The aim is to determine the performance of these strategies. The question to be answered
here is the following: which strategies will prevail? In other words, which emotions
will have the greatest impact on enhancing survival and reproduction in a competitive
environment? This study is computationally performed by considering a spatial evolu-
tionary variation of the Ultimatum Game. The standard version of this game was already
investigated from the perspective of evolutionary game theory [31–37]. In the variation
investigated here, a single emotion is assigned to each agent and this emotion reflects a
game strategy (as the proposer and as the responder). Also, the money does not vanish
after the rejection of an offer, but the survival of the agents depends on closed deals. This
variation has not been explored in the literature.
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The remainder of this text is organized as follows. In Section 2, the agent-based model
used to simulate this evolutionary game is introduced. In Section 3, the metrics based on
information entropy used to analyze the population diversity and the money distribution
are defined. In Section 4, the results obtained from numerical simulations are presented. In
Section 5, these results are discussed from a Darwinian standpoint.

2. The Model

Agent-based models have been developed to study complex systems of diverse
nature [38–42]. For instance, agents with emotional states have been used to simulate
the emotion contagion [43] and the emergence of polarization opinion [44] in online social
media and to evaluate a candidate in a selection process [45]. The model proposed in this
manuscript is formulated in terms of interacting emotion-endowed agents.

Emotions can suddenly emerge in response to stimuli [1–6]. Such responses encom-
pass subjective feelings and physiological reactions [1–6]. Different experiences can evoke
diverse emotions [1–6]; however, here, each agent is considered to have a constant emo-
tional trait. Thus, the emotional state of each agent remains unchanged over time despite
its interactions.

The agents inhabit a two-dimensional lattice represented by an n × n matrix with
periodic boundary conditions (that is, the upper and lower edges are joined and the left and
right edges are also joined, in order to avoid edge effects). Each one of N = n2 agents lives
in a cell of this matrix and interacts with the four nearest agents (the north, east, south, and
west neighbors), as illustrated by Figure 1. In cellular automata literature, this connectivity
pattern is known as the von Neumann neighborhood of unit radius [46] and it has been
employed in theoretical investigations on the Ultimatum Game [15,23,32–34,36].

Figure 1. A block 5× 5 of a lattice showing the von Neumann neighborhood of unit radius of the black
central cell. This neighborhood is formed by the four gray cells. The white cells are not neighbors of
the black central cell.

Let di(t) and ℓi(t) be, respectively, the amount of money and the number of lives of the
i-th agent at the time step t. At t = 0, each agent receives D dollars and L lives. Then, at each
time step t, each agent acts as the proposer if it has an accumulated amount of money equal to
or exceeding the minimum value m (that is, if di(t) ≥ m) and if it is alive (that is, if ℓi(t) ≥ 1).

As the proposer, the i-th agent at the time step t allocates the fraction f of its accumu-
lated amount to play the Ultimatum Game with its neighbors. Thus, as the proposer, the
i-th agent sets aside the amount f di(t). Since it has four neighbors, the amount available to
play with each neighbor is f di(t)/4. The effective offered amount depends on its strategy
(its emotion), which will affect the responder’s decision. If the deal is closed, both players
gain a life each and the amount is split as determined by the proposer. If the deal is not
closed, the share f di(t)/4 stays with the proposer and both players lose a life. Observe that
the number of lives L represents a predetermined quantity of attempts available to a player
to continue playing the game without closing transactions. This limited quantity serves as
a buffer against failed transactions and is a parameter that critically influences the player’s
survival.

If an agent dies at the time step t (that is, if ℓi(t) = 0), the predominant emotion in its
neighborhood is assigned to the newborn agent that will occupy that empty cell at the time
step t + 1 (an alternative would be assigning the emotion of the richest neighbor to this
newborn agent). If a tie occurs, a random selection is made. This replacement mechanism
is called copycat and has been used in other studies on spatial games [47–49]. The newborn
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agent receives L lives and inherits the money from the deceased agent. Notice that, at each
time step, the i-th agent acts as the proposer four times (if di(t) ≥ m, with i = 1, 2, . . . , N)
and as the responder four times. In a simulation with T time steps (that is, t = 1, 2, . . . , T),
up to 8NT negotiations can be performed.

A game strategy consists of specifying how to act as the proposer and how to act as
the responder. Assume that, as the proposer, the i-th agent endowed with the emotion e
offers the percentage xi,e of f di(t)/4 to each neighbor; as the responder, it accepts offers
equal to or greater than the percentage yj,ϵ of f dj(t)/4 of the j-th neighbor imbued with
the emotion ϵ. Therefore, if xi,e ≥ yj,ϵ, a negotiation between the i-th proposer agent and its
j-th responder neighbor is carried out; otherwise, it fails.

Consider the basic emotions e = {anger, fear, joy, sadness, surprise}. Here, these
emotions correspond to game strategies, which are characterized by the values of xe and ye.
Inspired by results reported in the literature, the following values of xe and ye were chosen:

• Anger: xanger = 20% and yanger = 50% (an angry agent offers little and only accepts
high shares [30]);

• Fear: x f ear = 50% and y f ear = 0 (a fearful agent makes generous proposals and accepts
any offer [29]);

• Joy: xjoy is a random number and yjoy = 0. (Here, a joyful agent makes unpredictable
offers averaging around 50% and rationally takes any amount. As about 50% of the
unfair offers are rejected [14] and sad individuals tend to decline unfair offers [26], it
is assumed that the remaining 50% of accepted unfair offers are accepted by non-sad
individuals. In fact, joyful negotiators tend to be more cooperative [28]);

• Sadness: xsadness = 50% and ysadness = 20% (a sad agent makes generous proposals [27]
and rejects too-low offers [26]);

• Surprise: xsurprise is a random number and any offer is either accepted or rejected
with a 50%/50% chance (a surprising agent makes unpredictable proposals and the
acceptance/rejection is arbitrary and independent of the offered percentage).

Evidently, other values for xe and ye could have been chosen. Notice that anger, fear, and
sadness follow deterministic rules; joy and surprise follow probabilistic rules. Notice also that
the total number of agents N and the total amount of money DN remain constant throughout a
numerical simulation (because the number of cells is fixed and the money is only redistributed
among the agents as time progresses). Table 1 shows the payoff matrix of this game.

Table 1. In this variation of the Ultimatum Game, the i-th agent expressing the emotion e (the
proposer) makes an offer to the j-th agent expressing the emotion ϵ (the responder) at the time step
t only if di,e(t) ≥ m; that is, if the accumulated resources di,e(t) of the i-th agent is greater than
or equal to the minimum amount m. For ϵ = {anger, fear, joy, sadness}, a successful negotiation
occurs if xi,e ≥ yj,ϵ; otherwise, the negotiation fails. Here, xi,e is the percentage offered by i-th agent
with the emotion e and yj,ϵ is the percentage aspired by the j-th agent with the emotion ϵ. The
payoffs and the lives gained or lost by both players are shown in this table. As in the standard
payoff matrices employed in game theory, the first number within parentheses corresponds to the
payoff/life gained/lost by the i-th agent playing as the proposer and the second number to the
payoff/life gained/lost by the j-th agent playing as the responder. For ϵ = {surprise}, there is a 50%
chance of the negotiation being completed.

• for ϵ = {anger, fear, joy, sadness}

if xi,e ≥ yj,ϵ if xi,e < yj,ϵ

if di,e(t) ≥ m (− f di,e(t)xe/4,+ f di,e(t)xe/4) (0, 0) payoff

(+1,+1) (−1,−1) life

• for ϵ = {surprise}

50% chance 50% chance

if di,e(t) ≥ m (− f di,e(t)xe/4,+ f di,e(t)xe/4) (0, 0) payoff

(+1,+1) (−1,−1) life
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In the next section, two metrics based on information entropy are defined. These
metrics are employed to analyze how the basic emotions and the accumulated money vary
among the agents.

3. Metrics

Let Ne(t) and Me(t), respectively, be the number of agents expressing the emotion e
and the total amount of money accumulated by these Ne agents at the time step t, with
e = {anger, fear, joy, sadness, surprise}. Obviously, ∑e Ne(t) = N and ∑e Me(t) = DN.
Also, let pe(t) and qe(t) be defined as:

pe(t) =
Ne(t)

N
, (1)

qe(t) =
Me(t)
DN

. (2)

Thus, at the time step t, pe(t) is the percentage of agents endowed with the emotion e and
qe(t) is the percentage of accumulated money by such agents. Obviously, ∑e pe(t) = 1 and
∑e qe(t) = 1.

Let ϕe(t) be the accumulated money per agent with the emotion e at the time step t.
This metric is obtained from:

ϕe(t) =
Me(t)
Ne(t)

=
Dqe(t)
pe(t)

. (3)

The population diversity at t can be assessed by computing the normalized information
entropy Hp(t) defined as:

Hp(t) =
hp(t)
hmax

p
=

−∑e[pe(t) log pe(t)]
log 5

, (4)

in which the information entropy hp(t) is written in terms of pe(t) [50]. The maximum
value hmax

p occurs when all the emotions appear in equal proportion [50]. Since five distinct
emotions are considered, hmax

p is obtained from pe = 1/5 for any e; hence, hmax
p = log 5.

Similarly, the money distribution at t can be evaluated by calculating the normalized
information entropy Hq(t) defined as:

Hq(t) =
hq(t)
hmax

q
=

−∑e[qe(t) log qe(t)]
log 5

, (5)

in which the information entropy hq(t) is expressed as a function of qe(t) [50]. Since this
maximum value hmax

q occurs for a uniform distribution [50], then hmax
q = log 5.

Here, the normalized inhomogeneity in population diversity Ip and the normalized
inhomogeneity in money distribution Iq are calculated by [51]:

Ip(t) = 1 − Hp(t), (6)

Iq(t) = 1 − Hq(t). (7)

Similar metrics based on information entropy have been used to analyze the dynamics of
complex systems [52–57]. Plots of Ip(t) and Iq(t) reveal how the heterogeneities in agent
variability and resource allocation evolve as time passes.

4. Numerical Results

Computer simulations were performed in order the examine the influence of D (the
initial amount of money per agent) and L (the initial number of lives of each agent) on the
asymptotic values of pe(t), qe(t), ϕe(t), Ip(t), and Iq(t). In addition, the influences of xe
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(the offered percentage) and ye (the aspired percentage) for anger, fear, and sadness were
also investigated.

In the simulations, one of five emotions is randomly assigned to each agent at t = 0.
Thus, each emotion accounts for approximately 20% of the population at t = 0; conse-
quently, pe(0) ≃ 1/5, Hp(0) ≃ 1, and Ip(0) ≃ 0. In addition, qe(0) ≃ 1/5, because each
agent starts with D dollars. Hence, Hq(0) ≃ 1 and Iq(0) ≃ 0. Then, the N agents interact
with their four neighbors by playing the variation of the Ultimatum Game described in
Section 2 for T time steps.

Simulations show that, as time t passes, the variables pe(t) and qe(t) tend to fluctuate
around constant values. Thus, the dynamics of this game asymptotically tends to a nearly
stationary solution. In other words, for t → ∞, then, roughly, pe(t) → p∗e , qe(t) → q∗e ,
Ip → I∗p , and Iq(t) → I∗q , in which p∗e , q∗e , I∗p , and I∗q are constants. Figure 2 illustrates a simu-
lation with n = 50 (that is, N = 2500 agents), D = 100, L = 1, f = 1/2, m = 1, and T = 100.
In this simulation, the emotions anger, fear, joy, sadness, and surprise are, respectively,
represented by the colors cyan, green, red, blue, and magenta. Figure 2a shows that, at
t = 100, panger(100) = 0.012, p f ear(100) = 0.318, pjoy(100) = 0.292, psadness(100) = 0.254,
and psurprise(100) = 0.124; therefore, in Figure 2b, Ip(100) = 0.140. Figure 2c shows
that qanger(100) = 0.025, q f ear(100) = 0.357, qjoy(100) = 0.298, qsadness(100) = 0.255, and
qsurprise(100) = 0.065; hence, in Figure 2d, Iq(100) = 0.163. In this simulation,
ϕanger(100) = 208, ϕ f ear(100) = 112, ϕjoy(100) = 102, ϕsadness = 100, and ϕsurprise(100) = 52.
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Figure 2. (a) Time evolution of pe(t) for n = 50, D = 100, L = 1, f = 1/2, m = 1, and T = 100 from
pe(0) ≃ 20% and qe(0) ≃ 20% (consequently, Ip(0) ≃ 0 and Iq(0) ≃ 0). The emotion-endowed agents
interact as described in Section 2. In this plot, anger, fear, joy, sadness, and surprise are, respectively,
represented by cyan, green, red, blue, and magenta. (b) Time evolution of Ip(t). (c) Time evolution of
qe(t). (d) Time evolution of Iq(t). Notice that these variables converge to nearly constant values.

Here, a competitive scenario is specified by a particular combination of D, L, xe, and
ye for e = {anger, fear, sadness}, in which the agents compete for monetary resources. As
the proposer, the minimum amount to play and the allocated percentage remain fixed
in m = 1 and f = 1/2, respectively. In addition, the number of agents N also remains
fixed in N = 2500. Fifteen scenarios were examined. Each scenario was numerically
simulated 10 times. Then, the average values and the standard deviations of pe(t), qe(t),
ϕe(t), Ip(t), and Iq(t) at t = 100 were calculated (at t = 100, these variables already reached
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their approximate asymptotic values, as shown in Figure 2). These average values are,
respectively, denoted by ⟨pe⟩, ⟨qe⟩, ⟨ϕe⟩, ⟨Ip⟩, and ⟨Iq⟩. For instance, Table 2 exhibits the
results for D = 100 and L = 1. Table 3 presents the results for n = 100 (that is, N = 10000).
The other parameter values are the same as those shown in Table 2. Notice that the lattice
size does not significantly affect the average results; however, the standard deviations
usually become smaller when n is increased. Evidently, as n increases, the computer
processing time to finish the simulation also increases.

Table 2. The averages ⟨pe⟩, ⟨qe⟩, ⟨ϕe⟩, and the standard deviations obtained in 10 simulations with
n = 50, D = 100, L = 1, f = 1/2, m = 1, and T = 100. In this case, ⟨Ip⟩ = 0.136 ± 0.008 and
⟨Iq⟩ = 0.164 ± 0.009.

Emotion ⟨pe⟩ ⟨qe⟩ ⟨ϕe⟩
anger 0.016 ± 0.004 0.025 ± 0.007 156 ± 59
fear 0.301 ± 0.014 0.327 ± 0.012 109 ± 6
joy 0.297 ± 0.014 0.312 ± 0.013 105 ± 7

sadness 0.268 ± 0.015 0.274 ± 0.015 102 ± 8
surprise 0.118 ± 0.005 0.062 ± 0.005 53 ± 5

Table 3. The averages ⟨pe⟩, ⟨qe⟩, ⟨ϕe⟩, and the standard deviations obtained in 10 simulations with
n = 100, D = 100, L = 1, f = 1/2, m = 1, and T = 100. In this case, ⟨Ip⟩ = 0.131 ± 0.002 and
⟨Iq⟩ = 0.158 ± 0.003.

Emotion ⟨pe⟩ ⟨qe⟩ ⟨ϕe⟩
anger 0.016 ± 0.002 0.025 ± 0.002 156 ± 23
fear 0.297 ± 0.006 0.319 ± 0.009 107 ± 5
joy 0.290 ± 0.006 0.309 ± 0.010 107 ± 4

sadness 0.273 ± 0.004 0.281 ± 0.007 103 ± 3
surprise 0.124 ± 0.004 0.066 ± 0.003 53 ± 3

Figures 3–10 show how ⟨pe⟩, ⟨qe⟩, ⟨ϕe⟩, ⟨Ip⟩, and ⟨Iq⟩ vary with D and L, for L = 1,
D = {20, 60, 100, 140} and for D = 100, L = {1, 2, 3, 4, 5, 6}. These figures reveal that fear,
joy, and sadness tend to dominate the population in terms of prevalence and wealth. Notice
that agents endowed with fear or joy are purely rational responders (because they take
any offered share). As the proposer, agents endowed with fear or sadness are generous
proposers, because they always offer 50%. Agents endowed with joy or surprise makes
offers averaging around 50%; thus, sometimes they propose unfair offers. Angry agents
always present unfair proposals.

20 60 100 140
0

0.1

0.2

0.3

0.4

D

〈 
p

e
 〉

 

 

anger fear joy sadness surprise

Figure 3. The histograms of ⟨pe⟩ in function of D, for e = {anger, fear, joy, sadness, surprise}. Here,
n = 50, L = 1, f = 1/2, m = 1, T = 100, and D = {20, 60, 100, 140}. The black error bars represent
the standard deviations.



Entropy 2024, 26, 204 8 of 15
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〈 
q

e
 〉

 

 

anger fear joy sadness surprise

Figure 4. The histograms of ⟨qe⟩ in function of D, for e = {anger, fear, joy, sadness, surprise}. The
parameter values are the same as those used in Figure 3.

Figures 3–6 show that the parameter D has no evident impact on the asymptotic
solution of this game. Since the agent’s actions depend only on the offered/aspired
percentages of the negotiable amount, the actual value of this amount does not influence
their decisions; hence, D does not significantly affect the results. However, Figures 7–10
indicate that the population inhomogeneity and the economic inhomogeneity are reduced
by increasing L; that is, ⟨Ip⟩ and ⟨Iq⟩ decrease with L. Also, increasing L benefits anger and
surprise, the lowest prevalent emotions for L = 1.

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

D

〈 
φ

e
 〉

 

 

anger fear joy sadness surprise

Figure 5. The plots of ⟨ϕe⟩ in function of D, for e = {anger, fear, joy, sadness, surprise}. The parameter
values are the same as those used in Figure 3.
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Figure 6. The plots of ⟨Ip⟩ (thin line) and ⟨Iq⟩ (thick line) in function of D. The parameter values are
the same as those used in Figure 3.
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Figure 7. The histograms of ⟨pe⟩ in function of L, for e = {anger, fear, joy, sadness, surprise}. Here,
n = 50, D = 100, f = 1/2, m = 1, T = 100, and L = {1, 2, 3, 4, 5, 6}.
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Figure 8. The histograms of ⟨qe⟩ in function of L, for e = {anger, fear, joy, sadness, surprise}. The
parameter values are the same as those used in Figure 7.

Figures 5 and 9 show that, by following the rules presented in Section 2, angry agents
accumulate about 150 dollars per agent; fearful agents, joyful agents, and sad agents about
100 dollars per agent; and surprising agents about 50 dollars per agent. These numbers are
not strongly influenced by D or L (or N, as shown in Tables 2 and 3).

0 1 2 3 4 5 6 7
0

50

100

150

200

250

L

〈 
φ

e
 〉

 

 

anger fear joy sadness surprise

Figure 9. The plots of ⟨ϕe⟩ in function of L, for e = {anger, fear, joy, sadness, surprise}. The parameter
values are the same as those used in Figure 7.
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Figure 10. The plots of ⟨Ip⟩ (thin line) and ⟨Iq⟩ (thick line) in function of L. The parameter values are
the same as those used in Figure 7.

For e = {anger, fear, sadness}, two variations on xe and ye were simulated for D = 100
and L = 1. As defined in Section 2, an angry agent is characterized by xanger = 20%
and yanger = 50%. Therefore, a more angry agent corresponds to xanger = 20% − ∆ with
∆ > 0 (it decreases its offer) and yanger = 50% + ∆ (it increases its aspired percentage).
Conversely, a less angry agent can be described by these same expressions by taking
∆ < 0. A fearful agent is defined by x f ear = 50% and y f ear = 0. Hence, for a more fearful
agent, x f ear = 50% + ∆ with ∆ > 0 (it increases its offer); for a less fearful agent, ∆ < 0.
A sad agent is identified by xsadness = 50% and ysadness = 20%. For a more sad agent,
xsadness = 50% + ∆ with ∆ > 0 (it increases its offer) and ysadness = 20% + ∆ (it increases
its aspired percentage); for a less sad agent, ∆ < 0. Figures 11–16 exhibit ⟨pe⟩ and ⟨qe⟩
in the function of ∆. Only a single emotion is altered in each of these six figures (the
other four emotions behave as presented in Section 2). Figures 11 and 12 are for anger,
Figures 13 and 14 for fear, and Figures 15 and 16 for sadness.

Figures 12, 14, and 16, respectively, indicate that playing with less anger, less fear, or
less sadness increases the accumulated resources by angry agents, fearful agents, and sad
agents, respectively. This conclusion can be drawn by observing the cyan bars in Figure 12,
the green bars in Figure 14, and the blue bars in Figure 16. According to Figure 11, the
percentage of angry agents decreases with ∆; according to Figures 13 and 15, the percentages
of fearful agents and sad agents are not noticeably affected by ∆. In Figures 11 and 12,
the average inhomogeneities ⟨Ip⟩ and ⟨Iq⟩ increase with ∆; in Figures 13 and 14, these
inhomogeneities decrease with ∆; in Figures 15 and 16, these relations are not monotonous.

−0.1 0 0.1
0

0.1

0.2

0.3

0.4

∆

〈 
p

e
 〉

left: less anger; center: anger; right: more anger

 

 

Figure 11. The histograms of ⟨pe⟩ in function of ∆. Here, n = 50, D = 100, L = 1, f = 1/2,
m = 1, T = 100, and xanger = 0.2 − ∆ and yanger = 0.5 + ∆. The other four emotions follow the
rules as presented in Section 2. As usual, anger, fear, joy, sadness, and surprise are, respectively,
represented by cyan, green, red, blue, and magenta. For ∆ = −0.1, ⟨Ip⟩ = 0.037 ± 0.004; for ∆ = 0,
⟨Ip⟩ = 0.136 ± 0.008; and for ∆ = 0.1, ⟨Ip⟩ = 0.144 ± 0.006.
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Figure 12. The histograms of ⟨qe⟩ in function of ∆. The parameter values are the same as those used
in Figure 11. For ∆ = −0.1, ⟨Iq⟩ = 0.054 ± 0.003; for ∆ = 0, ⟨Iq⟩ = 0.164 ± 0.009; and for ∆ = 0.1,
⟨Iq⟩ = 0.167 ± 0.013.
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Figure 13. The histograms of ⟨pe⟩ in function of ∆. Here, n = 50, D = 100, L = 1, f = 1/2, m = 1,
T = 100, and x f ear = 0.5 + ∆ and y f ear = 0. The other four emotions follow the rules as presented
in Section 2. For ∆ = −0.1, ⟨Ip⟩ = 0.141 ± 0.006; for ∆ = 0, ⟨Ip⟩ = 0.136 ± 0.008; and for ∆ = 0.1,
⟨Ip⟩ = 0.086 ± 0.004.
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Figure 14. The histograms of ⟨qe⟩ in function of ∆. The parameter values are the same as those used
in Figure 13. For ∆ = −0.1, ⟨Iq⟩ = 0.183 ± 0.010; for ∆ = 0, ⟨Iq⟩ = 0.164 ± 0.009; and for ∆ = 0.1,
⟨Iq⟩ = 0.064 ± 0.005.
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Figure 15. The histograms of ⟨pe⟩ in function of ∆. Here, n = 50, D = 100, L = 1, f = 1/2, m = 1,
T = 100, and xsadness = 0.5 + ∆ and ysadness = 0.2 + ∆. The other four emotions follow the rules as
presented in Section 2. For ∆ = −0.1, ⟨Ip⟩ = 0.117 ± 0.007; for ∆ = 0, ⟨Ip⟩ = 0.136 ± 0.008; and for
∆ = 0.1, ⟨Ip⟩ = 0.112 ± 0.008.
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Figure 16. The histograms of ⟨qe⟩ in function of ∆. The parameter values are the same as those used
in Figure 15. For ∆ = −0.1, ⟨Iq⟩ = 0.156 ± 0.009; for ∆ = 0, ⟨Iq⟩ = 0.164 ± 0.009; and for ∆ = 0.1,
⟨Iq⟩ = 0.114 ± 0.013.

5. Discussion

In human beings, basic emotions are characterized by particular facial expressions [1,2]
and distinct patterns of cardiorespiratory activity [58,59] and neural dynamics [60,61],
reflecting differentiated brain states and affecting decision-making. In the Ultimatum
Game, the proposer’s decision is about resource allocation and the responder’s decision
depends on the personal aversion to inequity [12–21]. Here, a spatial evolutionary variation
of this game was played by interacting agents. Their strategies intended to emulate the
attitudes associated with five basic emotions. In the proposed model, agents manifesting
anger, fear, or sadness were guided by deterministic rules; agents expressing joy or surprise
exhibited probabilistic behavior.

In the original version of this game, the players must cooperate to obtain money. In
the simulations conducted here, lives are lost if negotiations are not successfully completed.
Thus, the agents must cooperate to survive, since lack of cooperation leads to death. Greater
cooperation is provided by agents with “high” xe and “low” ye; that is, by agents who
make generous proposals and even accept unfair offers. Fearful agents fit perfectly into
this description. Hence, fear (the green color) has a tendency to prevail in Figures 3 and 7.
In contrast, angry agents are characterized by “low” xe and “high” ye; hence, anger (the
cyan color) is the less prevalent emotion. However, as can be viewed in Figures 5 and 9,
angry agents are those that have more money per agent. These two figures also show that
surprised agents are the poorest. This result is aligned with the intuitive notion that using a
random approach in bargaining processes does not appear to be the most effective strategy
for achieving good results. In Figures 11–16, the rules guiding the agents imbued with
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anger, fear, or sadness were modified. These figures suggest that modifications towards
rationality increases pe and/or qe of the emotion e with altered rules.

Figure 6 indicates that natural selection is barely impacted by varying D; however,
according to Figure 10, natural selection is clearly affected by varying L. In fact, Figure 10
reveals that, by increasing L, the inhomogeneities in agent variability and in resource alloca-
tion decrease. Increasing L implies refraining from immediately punishing non-cooperative
agents with death, which enhances the prevalence of angry agents and surprising agents.

Basic emotions have been associated with responses to opportunities and threats
related to survival-relevant situations [1–6]. Fear is a response to menacing stimuli, which
may have been ubiquitous in nature since the very beginning. It is considered to be a (or
the most) primitive basic emotion, because it may have emerged at earlier stages in the
history of animal evolution [1,3,6,62]. In fact, even invertebrates can feel fear [63]. In this
study, the fear of unsuccessful negotiation is equivalent to the fear of dying.

In the model, joyful agents differ from fearful agents by offering an averaging of 50%
(instead of the fixed percentage of 50%); sad agents differ from fearful agents by accepting
proposals of at least 20% (instead of accepting any share). These slight differences imply
similar but distinct performances, as illustrated by Figures 2–10. Notice that these three
basic emotions are relevant in bargaining processes: fear aims at self-preservation; joy can
strengthen social connections by making very generous offers; sadness intensifies aversion
to unfairness. On the other hand, expressing anger may not be suitable in negotiations,
because it denotes a non-cooperative attitude. Anger, however, can be a driving force for
gathering more resources, as indicated by Figures 5 and 9.

Future research projects can consider that each agent can probabilistically exhibit dif-
ferent emotions. Such emotions may be triggered by the neighbors’ behavior or employed
as a strategy to improve performance. For instance, a responder can adopt the persona of
an angry individual in order to up the proposer’s offer.

Fairness is a moral and social concept. In the context of this study, fairness means
equitable distribution of resources. Conjectures on the origins of the sense of fairness
based on reputation [31,37], mutation and natural selection [35], food-sharing practices [64],
and reciprocity [65] have been proposed. The results found in the computer simulations
reported here suggest the following alternative conjecture. In primitive communities,
business transactions might have involved the exchange of labor-power for clothes and
food. In such ancient times, natural selection may have benefited (fair) individuals who deal
with “high” xe (who are generous proposers) and “low” ye (who are rational responders),
as fear, joy, and sadness are represented in the model. Thus, the bargaining processes may
have been shaped by economic considerations (“low” ye) and by affective impulses (“high”
xe). In this scenario, the selective pressure exerted by L (the number of chances of staying
alive without completing negotiations) may have been more pronounced than that imposed
by D (which determines the actual amount to be dealt).

Cooperation means acting together to achieve mutual advantages. Here, cooperation
between two fair individuals implies successful negotiation, which contributes to form
social bonds and improves the biological fitness of both. Therefore, the development
of the sense of fairness may have been supported by basic emotions and it may have
been a consequence of creating reliable social connections in order to increase the odds of
reproducing and staying alive.
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