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Abstract: A shock wave is a flow phenomenon that needs to be considered in the development
of high-speed aircraft and engines. The traditional computational fluid dynamics (CFD) method
describes it from the perspective of macroscopic variables, such as the Mach number, pressure,
density, and temperature. The thickness of the shock wave is close to the level of the molecular free
path, and molecular motion has a strong influence on the shock wave. According to the analysis of the
Chapman-Enskog approach, the nonequilibrium effect is the source term that causes the fluid system
to deviate from the equilibrium state. The nonequilibrium effect can be used to obtain a description
of the physical characteristics of shock waves that are different from the macroscopic variables.
The basic idea of the nonequilibrium effect approach is to obtain the nonequilibrium moment of
the molecular velocity distribution function by solving the Boltzmann–Bhatnagar–Gross–Krook
(Boltzmann BGK) equations or multiple relaxation times Boltzmann (MRT-Boltzmann) equations
and to explore the nonequilibrium effect near the shock wave from the molecular motion level. This
article introduces the theory and understanding of the nonequilibrium effect approach and reviews
the research progress of nonequilibrium behavior in shock-related flow phenomena. The role of
nonequilibrium moments played on the macroscopic governing equations of fluids is discussed, the
physical meaning of nonequilibrium moments is given from the perspective of molecular motion,
and the relationship between nonequilibrium moments and equilibrium moments is analyzed.
Studies on the nonequilibrium effects of shock problems, such as the Riemann problem, shock
reflection, shock wave/boundary layer interaction, and detonation wave, are introduced. It reveals
the nonequilibrium behavior of the shock wave from the mesoscopic level, which is different from the
traditional macro perspective and shows the application potential of the mesoscopic kinetic approach
of the nonequilibrium effect in the shock problem.

Keywords: shock wave; nonequilibrium; Boltzmann equation; CFD; molecular motion

1. Introduction

In the realm of supersonic flow, shock waves stand out as one of the most typical
phenomena, exerting a significant influence on the distribution of the flow field. In the
development of supersonic aircraft and engines, the structure and properties of shock waves
often take precedence. Pham-Van-Diep et al. [1], through experimental means, observed
nonequilibrium molecular motion within shock waves. Such nonequilibrium molecular
motion can induce nonequilibrium effects on different physical levels. The thickness of
shock waves is often on the scale of the mean free path of molecules, and molecular
motion plays a substantial role in influencing shock waves. Traditional approaches to
understanding and studying shock waves mainly involve macroscopic variables such
as the Mach number, pressure, density, and temperature, with little attention paid to
nonequilibrium effects.

Macroscopic fluid control equations are the primary computational fluid dynamics
(CFD) methods for studying supersonic flow, such as the Navier-Stokes and Euler equa-
tions. The latter is commonly considered a simplified equation obtained by neglecting
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viscous effects in the former. However, starting from the mesoscopic Boltzmann equa-
tion can lead to a different perspective. By performing Chapman-Enskog analysis on
the Boltzmann–Bhatnagar–Gross–Krook (Boltzmann BGK) equations [2] or multiple re-
laxation times Boltzmann (MRT-Boltzmann) equations [3], macroscopic equations can be
derived. If the nonequilibrium terms of the molecular velocity distribution function are
neglected, retaining only the equilibrium terms, the Euler equation is obtained. Including
the first-order nonequilibrium terms of the molecular velocity distribution function yields
the Navier-Stokes equation. From this viewpoint, the Euler equation can be regarded as a
simplified equation that neglects the nonequilibrium effects present in the Navier-Stokes
equation. In other words, the additional terms in the Navier-Stokes equation compared to
the Euler equation reflect the first-order nonequilibrium effects in the fluid system. Based
on this perspective, focusing on the distribution characteristics of nonequilibrium effects in
fluid systems allows for the exploration of phenomena and mechanisms that deviate the
fluid system from equilibrium.

To effectively capture the nonequilibrium effects in fluid systems, the focus can be
directed towards the Boltzmann-BGK equation and MRT-Boltzmann equation, as discussed
earlier. These equations are methods based on nonequilibrium statistical mechanics that
describe molecular motion statistics, providing a means to depict macroscopic fluid flow in
multiscale physical systems. The fundamental idea involves the statistical migration and
collisions of molecules to achieve the macroscopic fluid flow description, with collision
processes achieved through the difference between the current state of the molecular
velocity distribution function and its corresponding local equilibrium state, representing
the nonequilibrium effects of molecular velocity distribution. Clearly, nonequilibrium
characteristics, such as those in the Boltzmann-BGK equation and MRT-Boltzmann equation,
are well-suited for studying nonequilibrium effects in fluid systems.

The Lattice Boltzmann Method (LBM) [4–6] is a mesoscopic CFD method for solving
the Boltzmann-BGK equation or MRT-Boltzmann equation. Due to its clear physical inter-
pretation, straightforward boundary handling, and efficient parallel computing capabilities,
LBM has found widespread applications in incompressible flow problems such as turbu-
lence [6,7], multiphase flow [8,9], heat transfer [10,11], fluid-structure interaction [12,13],
and porous media flow [14,15]. However, standard LBM models are limited by the con-
struction of the discrete velocity model and are not suitable for compressible flow with
shock waves. Over the years, significant developments have been made in discrete velocity
models, equilibrium distribution functions, and solution formats to achieve compress-
ible LBM. Various compressible LBM models have been established based on different
approaches, enabling numerical simulations of supersonic flows with shock waves [16–23].
However, most research on compressible LBM has primarily focused on establishing theo-
retical frameworks and models to achieve the required physical accuracy. When LBM is
merely used as a solving method for the Navier-Stokes equations, it does not delve into the
statistical molecular motion information. The study of nonequilibrium effects utilizes the
mesoscopic nature of LBM. In recent years, Professor Xu’s research group has conducted
extensive work in nonequilibrium theory. They have analyzed the relationship between
nonequilibrium moments and macroscopic quantities such as viscous stress and heat flux.
Additionally, their research has covered nonequilibrium behaviors in phenomena such
as multiphase flow [8,24–26], fluid instability [25,27], shock waves [17,28], and chemical
reactions [3,29–31].

Through the LBM, various nonequilibrium moments can be obtained, each reflecting
nonequilibrium effects on the corresponding physical level. These nonequilibrium effects
serve as indicators of the deviation of the fluid system from equilibrium, providing valuable
information. In addition to LBM, mesoscopic methods [32,33] such as Direct Simulation
Monte Carlo (DSMC) [34] and the discrete velocity method (DVM) [35] can also be used for
nonequilibrium effect studies. DSMC is a stochastic method, and it is well suited for simu-
lations of high-speed rarefied gas flows. Significant statistical noise and slow convergence
speeds may arise when simulating low-speed flows, attributed to the statistical nature
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of the method [36]. Due to the separate handling of streaming and collision processes
in DSMC, simulating near-continuum flows becomes computationally expensive as the
spatial cell size and time step must be smaller than the mean free path and mean collision
time of gas molecules for numerical accuracy to be guaranteed [37]. DVM is a deterministic
method that can simulate fluid flows from the free molecular regime to the continuum
regime by directly dividing discrete velocity points in velocity space. However, a large
number of discrete velocity points are usually required to minimize quadrature error, mak-
ing it computationally more intensive compared to LBM, especially for fluid flows near the
continuum regime. Unlike DVM, LBM significantly reduces computational costs by seeking
minimal velocities and discrete distribution functions in particle velocity space instead of
using the full Maxwellian distribution [38]. The desired physical conservation laws can be
exactly satisfied through weighted sums of distribution functions at these velocity points.
In LBM, this set of discrete velocities and corresponding equilibrium distribution functions
is referred to as the lattice Boltzmann model. Currently, most studies on shock waves using
DSMC and DVM focus on macroscopic quantities such as density, velocity, and tempera-
ture; few instances in the literature have discussed the physical significance of shock waves
from nonequilibrium effects caused by molecular motion deviating from the equilibrium
state. Based on existing literature, numerical investigations specifically addressing this
perspective primarily employ LBM. Thus, this paper primarily introduces the research
methodology based on LBM for studying these nonequilibrium effects of shock waves.
Specifically, it focuses on a nonequilibrium theory based on nonequilibrium moments,
presenting an equation form and an approach to understanding nonequilibrium effects
from the perspective of molecular motion. The emphasis is placed on the numerical values
and the physical implications of the nonequilibrium moments. Through this methodology,
a novel understanding of shock wave phenomena can be gained by examining the factors
that drive the fluid system away from equilibrium.

The structure of this paper is as follows: In the first section, the relationship between
LBM nonequilibrium moments and macroscopic equations is outlined. The second section
introduces an approach to understanding nonequilibrium effects from the perspective of
molecular motion. The third section demonstrates the application of the nonequilibrium
effects method in studying shock wave problems. Finally, the fourth section concludes the
paper with a summary and discussion.

2. Mesoscopic LBM Nonequilibrium Moments

In 1872, the renowned physicist Ludwig Boltzmann, building upon the existing ki-
netic theory of gases, formulated the Boltzmann equation applicable across diverse flow
domains and introduced the Maxwell-Boltzmann distribution. This marked a significant
advancement in the theory of gas kinetics. The specific form of the Boltzmann equation is:

∂ f
∂t

+ ξ · ∇x f + a · ∇x f = Q( f , f∗) (1)

The velocity distribution function f (u, x, t) is a function of the velocity vector u, spatial
position vector x, and time t. Here, a represents the particle’s acceleration, and Q( f , f∗)
accounts for the changes in the distribution function due to molecular collisions. The form
is quite complex. The high-dimensional nonlinear integro-differential equation structure
makes it challenging to provide an analytical solution to the Boltzmann equation from a
theoretical perspective. Therefore, numerical simulation methods are commonly used as
auxiliary means to solve the Boltzmann equation. In 1954, Prabhu Bhatnagar, Eugene Gross,
and Max Krook proposed the BGK operator named after them [17], which, while ensuring
mathematical and physical properties, discretizes the velocity space to simplify the solving
process. The specific form of the BGK collision operator is: Ω( f ) = − 1

τf
( f − f eq). The

symbol τf represents the relaxation time for density, and f eq is the equilibrium state of the
distribution function. Subsequently, the modern LBM has seen significant development by
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directly discretizing the particle velocity space in the Boltzmann-BGK equation. LBM is
composed of a discrete velocity set, lattice structure, and evolution equations, namely:

f (x + cαδt, t + δt)− f (x, t) = Ω( f ) (2)

Here, x represents the points on the lattice, cα is the discrete velocity set of fluid particles,
and δt is the discrete time step.

f eq = ωαρ

(
1 +

cα·u
c2

s
+

(cα·u)2

2c4
s

− u2

2c2
s

)
(3)

Here, ωα represents the weighting coefficients, and cs denotes the speed of sound. Taking
the D2Q9 discrete velocity model [4] as an example, the discrete velocities and their corre-

sponding weighting coefficients are: cα =
[

0, 1, 0,−1, 0, 1,−1,−1, 1
0, 0, 1, 0,−1, 1, 1,−1,−1

]
, ω0 = 4

9 , ω1−4 = 1
9 ,

ω5−8 = 1
36 . By migrating and colliding the particle points in the equation, the distribution

function can be continuously updated, allowing for the simulation of the flow field.

2.1. Compressible LBM Model

The research methodology for nonequilibrium effects involves extracting nonequilib-
rium moments through LBM and establishing the physical significance of nonequilibrium
effects based on their relationship with macroscopic equations. Therefore, this paper begins
with compressible LBM models.

Currently, there are various compressible LBM models [16–18,20,22,32–35,39,40] ca-
pable of recovering the complete Navier-Stokes equations. The extraction of nonequi-
librium moments is not influenced by the differences in LBM models, as long as they
solve the Boltzmann-BGK equation or MRT-Boltzmann equation. These equations enable
the acquisition of the required nonequilibrium moments. This paper takes the example
of a double-distribution-function (DDF) LBM model [20] for illustration. The double-
distribution function LBM model describes the evolution of density and total energy using
two distribution functions:

∂ fα

∂t
+ (eα·∇) fα = − 1

τf

(
fα − f eq

α

)
(4)

∂hα

∂t
+ (eα·∇)hα = − 1

τh

(
hα − heq

α

)
+

1
τh f

(
eα·u − u2

2

)(
fα − f eq

α

)
(5)

In the equation, f eq
α represents the discrete equilibrium distribution function for density,

describing the molecular velocity distribution of the local equilibrium state. fα represents
the current state velocity distribution function. heq

α and hα are discrete equilibrium dis-
tribution functions for total energy, corresponding to the equilibrium and current state
distribution functions, respectively. Subscript α denotes the discrete velocity direction
index, eα is the discrete lattice velocity vector, and u is the macroscopic velocity vector. τf
and τh are the relaxation times associated with fα and hα respectively. The relationship with
τh f is: 1/τh f = 1/τh − 1/τf .

A crucial element in constructing an LBM model is determining the expression for
the discrete equilibrium distribution functions. For compressible Navier-Stokes physical
accuracy, f eq

α and heq
α must satisfy the following seven conservation relations:

M0

(
f eq
α

)
= ∑

α

f eq
α = ρ (6)

M1,i

(
f eq
α

)
= ∑

α

f eq
α eαi = ρui (7)
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M2,ij

(
f eq
α

)
= ∑

α

f eq
α eαieαj = ρuiuj + pδij (8)

M3,ijk

(
f eq
α

)
= ∑

α

f eq
α eαieαjeαk = ρuiujuk + p

(
ukδij + ujδik + uiδjk

)
(9)

M0

(
heq

α

)
= ∑

α

heq
α = ρE (10)

M1,i

(
heq

α

)
= ∑

α

heq
α eαi = (ρE + p)ui (11)

M2,ij

(
heq

α

)
= ∑

α

heq
α eαieαj = (ρE + 2p)uiuj + p(E + RT)δij (12)

In the equations, the subscripts I, j, and k refer to the x, y, and z-direction components.
E =

(
bRT + u2)/2 represents the total energy. T is the temperature. The relationship

between b and the specific heat ratio γ is denoted as γ = (b + 2)/b. In the middle of
the equations are the moments of the equilibrium distribution function, representing the
macroscopic expressions on the right side. On the left side, the symbols correspond to each
moment, and the numerical subscript indicates the number of discrete velocities multiplied
in the moment.

Clearly, there is not a unique set of f eq
α and heq

α that satisfies the relationships (6)–(12).
As long as these seven relationships are satisfied, an LBM model with physical accuracy
for compressible Navier-Stokes equations can be obtained. The numerical characteristics
of different f eq

α and heq
α values may impact the numerical stability of the LBM model for

solving compressible flows. However, as this is not the focus of this paper, it will not be
discussed further here.

2.2. Nonequilibrium Effects

By multiplying both sides of Equation (4) by 1 and eα, respectively, and taking mo-
ments, then applying Equation (6) to Equation (8), we can obtain:

∂ρ

∂t
+∇ · (ρu) = 0 (13)

∂(ρu)
∂t

+∇ · (ρuu) = −∇p −∇ · λ f ,2 (14)

Similarly, by taking moments of Equation (5) on both sides and utilizing the relations
in Equations (10) and (11), we can obtain:

∂(ρE)
∂t

+∇ · (ρEu) = −∇ · (pu)−∇ · λh,1 (15)

where,
λ f ,2,ij = ∑

α

(
fα − f eq

α

)
eαieαj (16)

λh,1,i = ∑
α

(
hα − heq

α

)
eαi (17)

λ f ,2 can be regarded as the nonequilibrium moment corresponding to Equation (8),
representing a nonequilibrium effect at that physical level. Similarly, λh,1 can be considered
as the nonequilibrium moment corresponding to Equation (11). By comparing with the
compressible Navier-Stokes equations, it can be observed that Equation (13) to Equation (14)
correspond to the conservation equations for mass, momentum, and energy, respectively.
In Equation (16), the nonequilibrium moment λ f ,2 is related to the viscous stress term Π in
the momentum equation as follows:

λ f ,2 = −Π (18)
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And the nonequilibrium moment λh,1 in Equation (17) is related to the heat flux term
jq as follows:

λh,1 = jq − u·Π (19)

The paper provides a diagram (Figure 1) illustrating the relationship between the
macroscopic fluid control equations at the Navier-Stokes level and the (non)equilibrium
moments in the Boltzmann-BGK equation.
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In fact, the validity of Equations (18) and (19) is subject to certain conditions. We
derived these conclusions by comparing with the compressible Navier-Stokes equations.
If we compare Equation (13) to Equation (15) with the Euler equations, we find that both
nonequilibrium moments, λ f ,2 and λh,1, are equal to 0. Why does this happen? From
Equations (16) and (17), it is evident that the values of nonequilibrium moments λ f ,2 and
λh,1 depend on the accuracy of the current distribution functions fα and hα. In Chapman-
Enskog analysis, fα can be expressed as:

fα = f eq
α + ε f (1)α + ε2 f (2)α + · · · (20)

The symbol εn f (n) represents the nth order deviation of the velocity distribution function
from the local equilibrium state distribution, where ε is a small quantity related to the
Knudsen number. A smaller value of ε corresponds to the system being closer to the local
equilibrium state. If the nonequilibrium term of fα is neglected, i.e., fα = f eq

α , then the
physical accuracy level of the LBM model is the same as that of the Euler equations. In
this case, the fluid control equations do not consider the deviation of the fluid system from
equilibrium. If only the first-order nonequilibrium term is considered, i.e., fα = f eq

α + ε f (1)α ,
then the physical accuracy level of the LBM model is the same as that of the Navier-Stokes
equations. In this case, nonequilibrium moments λ f ,2 and λh,1 are not equal to 0, and they
represent the nonequilibrium effect-related terms in the fluid control equations. At this
physical level, the contribution of nonequilibrium effects in the fluid control equations is
demonstrated as shown in Equations (18) and (19). If the nonequilibrium term of fα is
retained to the second order or even higher, it is possible to derive fluid control equations
with higher physical accuracy, such as the Burnett equations, super-Burnett equations,
etc. [41]. In this process, the form of Equation (13) to Equation (15) does not change; what
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differs is the expression of nonequilibrium moments λ f ,2 and λh,1. Therefore, Equation (13)
to Equation (15) can be considered as the framework of macroscopic fluid control equations,
and macroscopic fluid control equations can be obtained based on the accuracy of λ f ,2
and λh,1.

From this, it is evident that nonequilibrium moments are crucial in fluid systems.
For instance, in high-altitude rarefied gas fluid systems, the Navier-Stokes equations are
not applicable. This is generally attributed to the derivation of the Navier-Stokes equa-
tions under the assumption of continuity. Alternatively, we can explain this from the
perspective of nonequilibrium effects: the molecular motion nonequilibrium effects in
rarefied gas systems are significant, and the Navier-Stokes equations only consider the
first-order nonequilibrium effects of molecular motion, making it challenging to meet the
required physical accuracy for nonequilibrium effects. In contrast, the Burnett equations,
incorporating higher-order nonequilibrium moments, provide a more accurate description
of nonequilibrium effects in rarefied gas fluid systems. Therefore, in complex fluid sys-
tems, analyzing the distribution characteristics of nonequilibrium effects contributes to an
enhanced understanding of the mechanisms underlying flow phenomena.

3. Research Methods for Nonequilibrium Effects

The preceding discussion highlighted the significance of nonequilibrium effects in
fluid systems. This section will introduce the methodology for studying fluid systems using
nonequilibrium effects. This approach was proposed and developed by Professor Xu’s
research group [3,8,42], and we, inspired by their work, have introduced a method to under-
stand and apply nonequilibrium effects from the perspective of molecular motion [43,44].
Here, we will primarily focus on the fundamental ideas of this method, the interpretation
based on molecular motion kinematics, and the physical significance of the strength and
direction of nonequilibrium effects. It should be noted that this section presents our under-
standing of nonequilibrium effects, which may slightly differ from Professor Xu’s research
group’s perspective on the physical significance of nonequilibrium effects. Both interpre-
tations are considered reasonable, with differences arising from varying perspectives on
understanding nonequilibrium effects.

3.1. Equilibrium Kinetic Moment

Equations (15)–(18) and Equations (10)–(12) represent the equilibrium moments
corresponding to the compressible Navier-Stokes level. Nonequilibrium moments are
derived from equilibrium moments by taking moments of the nonequilibrium quantities
in the distribution function. Therefore, let us initiate the discussion by focusing on
equilibrium moments.

From Equations (15)–(18) and Equations (10)–(12), it can be observed that equilibrium
moments can be divided into moments containing the mass density distribution function f eq

α

and moments containing the total energy density distribution function heq
α . In Equation (7),

the equilibrium moment is composed of the product of f eq
α and eαi. It is known that

mass multiplied by velocity is momentum at the macroscopic level. Therefore, ∑α f eq
α eαi

corresponds to the macroscopic momentum density. In Equation (8), ∑α f eq
α eαieαj, when

i = j, represents the translational kinetic energy density. Looking back at the history of
physics, momentum mv was initially defined to describe the motion state of an object in
the direction of velocity v. Subsequently, the kinetic energy m|v|2/2 was introduced to
characterize the motion state of an object with thermodynamic information. If an object is
only moving in i direction, its momentum and kinetic energy in that direction are mvi and
mv2

i /2, respectively. The essential mathematical difference between the two is that kinetic
energy mv2

i /2 involves an additional multiplication by velocity compared to momentum
mvi. “∑α f eq

α eαieαj” can be understood as an equilibrium moment at the same physical
level as kinetic energy mv2

i /2. In Equation (9), the equilibrium moment ∑α f eq
α eαieαjeαk

involves an additional multiplication by velocity eαi compared to ∑α f eq
α eαieαj. We can easily

associate this with a physical quantity: the kinetic energy of an object in motion along i
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direction multiplied by velocity, i.e., mv3
i . Although such a quantity is rarely used, the

analysis above reveals that it represents a macroscopic quantity describing the motion of
an object, providing information distinct from momentum or kinetic energy. ∑α f eq

α eαieαjeαk
can be understood as an equilibrium moment at its own physical level. It is important to
note that this discussion is not an accurate physical definition of equilibrium moments but
rather a means to comprehend their physical significance through macroscopic momentum
and kinetic energy.

Thus, equilibrium moments can be defined within a generalized moment framework,
which we refer to as the kinetic moment:

Mkinetic = ∑
α

Ψα (21)

Here, Ψα = ϕαξαiξαj · · · is a motion state variable composed of a physical property
ϕα and several motion multipliers ξα. In Equations (6)–(9), ϕα is the mass density equilib-
rium distribution function f eq

α , and in Equations (10)–(12), ϕα is the total energy density
equilibrium distribution function heq

α . ξα is the characteristic velocity at the scale of ϕα,
which in Equations (6)–(9) and Equations (10)–(12) corresponds to the discrete molecular
velocity eα. Kinetic moments are moments of a physical property ϕα multiplied by motion
multipliers ξα. Kinetic moments with more motion multipliers, denoted as ξα, contain more
information about motion, and the influence of motion on the physical property is greater.
Thus, a quantity such as ∑α f eq

α eαieαj contains more “motion action” compared to ∑α f eq
α eαi,

providing a better understanding of the physical meaning of higher-order moments. This
framework allows for a molecular-level understanding of the physical meanings of equi-
librium and nonequilibrium moments. For macroscopic quantities, a similar approach
using state variables Ψα can help in understanding their physical meanings. For instance,
considering ρuiuj in Equation (8), where density ρ is a physical property, and ui and uj are
two motion multipliers. Building on this, we can better understand the physical meaning
of ρuiujuk in Equation (9).

Tables 1 and 2 present the physical meanings of mass density and total energy density
equilibrium moments based on the kinetic moment concept. It is important to note the
following:

1. The discussion here focuses on physical meanings rather than precise definitions.
2. The units of each equilibrium moment are provided in the tables to aid in understand-

ing the physical meanings of higher-order moments.
3. A state variable with n motion multipliers is referred to as an n-order state. Higher-

order states contain stronger information about material “motion action”.
4. f eq

α eαi represents the i-directional component of the momentum density for the α

component in the equilibrium state, and f eq
α eαieαj is the i-directional component of the

translational kinetic energy density for the α component in the equilibrium state.

Table 1. Physical meaning of equilibrium kinetic moments of mass density.

Equilibrium Moments Physical Meaning Dimension (Unit)

M0 (feq) Molecular mass density kg m−3

M1,i (feq) Molecular momentum density in the i-direction N s m−3

M2,ij (feq), i = j Molecular translational kinetic energy density in the
i-direction at equilibrium N m−2 or J m−3

M2,ij (feq), i ̸= j Moments of the first-order motion state of f eq
α eαi in the

j-direction N m−2 or J m−3

M3,ijk (feq), i = j = k Moments of the first-order motion state of fαeqeαieαi N m−1 s−1 or J m−2 s−1

M3,ijk (feq), i = j ̸= k Moments of the first-order motion state of fαeqeαieαi in
the k-direction N m−1 s−1 or J m−2 s−1

M3,ijk (feq), i ̸= j ̸= k
The moment of the first-order motion state in the
j-direction and the first-order motion state in the
k-direction for fαeqeαi

N m−1 s−1 or J m−2 s−1
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Table 2. Physical meaning of equilibrium kinetic moments of total energy density.

Equilibrium Moments Physical Meaning Dimension (Unit)

M0 (heq) Total energy density of molecules J m−3 or N m−2

M1,i (heq) The moment of the first-order motion state in the
i-direction for hα

eq J m−2 s−1 or N m−1 s−1

M2,ij (heq), i = j The moment of the second-order motion state in the
i-direction for hα

eq J m−1 s−2 or N s−2

M2,ij (heq), i ̸= j
The moment of the first-order motion state in the
i-direction and the first-order motion state in the
j-direction for hα

eq
J m−1 s−2 or N s−2

3.2. Nonequilibrium Kinetic Moment

Substituting the variables f eq
α and heq

α in Equations (6)–(9) and (13) with
(

fα − f eq
α

)
and

(
hα − heq

α

)
, respectively, yields the nonequilibrium moments. Utilizing the above-

discussed physical meanings of equilibrium kinetic moments, the physical interpretation
of the nonequilibrium kinetic moments can naturally be derived, representing the local
nonequilibrium state of kinetic moments in Tables 1 and 2.

In this study, we take the kinetic moments at the Navier-Stokes level as an exam-
ple for discussion. Since mass, momentum, and energy are conserved in fluid systems,
λ f ,0 = λ f ,1 = λh,0 = 0. The nonequilibrium moments of interest are λ f ,2, λ f ,3, λh,1, and
λh,2, where each has two terms related to mass density and total energy density. With
Equations (18) and (19), and the corresponding macroscopic expressions known for λ f ,2 and
λh,1, the physical interpretations of the nonequilibrium moments corresponding to viscous
stress and heat flux can be obtained. However, higher-order nonequilibrium moments λ f ,3
and λh,2 are not present in the macroscopic fluid control equations (Equations (13)–(15)).

In the context of Chapman-Enskog analysis, by only retaining the first-order nonequi-
librium terms, the relationship between variables f neq

α and f eq
α can be obtained:

f neq
α = fα − f eq

α = −τf · (
∂ f eq

α

∂t
+ eα · ∇ f eq

α ) (22)

We employed this relationship to deduce the association between nonequilibrium
moments and equilibrium moments [38]:

λ f ,n,î = −τf ·

∂Mn,î

(
f eq
α

)
∂t

+∇ · Mn+1,î ĵ

(
f eq
α

) (23)

λh,n,î = −τh ·

∂Mn,î

(
heq

α

)
∂t

+∇ · Mn+1,î ĵ

(
heq

α

)+
τh
τh f

·
(

u · λ f ,n+1,î ĵ −
u2

2
· λ f ,n,î

)
(24)

In the expressions, the subscript î corresponds to i, ij, or ijk, and the subscript ĵ rep-
resents the vector component obtained by multiplying eα and f eq

α . Equations (23) and (24)
are derived based on Chapman-Enskog analysis to define nonequilibrium effects at the
Navier-Stokes level, leading to expressions for the nonequilibrium moments λ f ,2, λ f ,3,
λh,1, and λh,2. Here, the subscripts f and h respectively denote nonequilibrium effects
related to mass and total energy, and the numbers 1 and 2 represent the corresponding
orders. It is noteworthy that the calculation of nonequilibrium moments requires the use
of higher-order equilibrium moments. For λ f ,2 and λh,1, the corresponding equilibrium

moments at the Navier-Stokes level involve their respective higher-order M3

(
f eq
α

)
and

M2

(
heq

α

)
. However, M4

(
f eq
α

)
and M3

(
heq

α

)
, which are one order higher than λ f ,3 and λh,2,

respectively, are not included in Equations (6)–(9) and (10)–(12). Therefore, to calculate
λ f ,3 and λh,2 using Equations (23) and (24), the expressions for M4

(
f eq
α

)
and M3

(
heq

α

)
are
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needed, which can be found in the literature that has considered LBM models beyond the
Navier-Stokes level [36]. Furthermore, Equations (23) and (24) allow for an analysis of the
strength and directional characteristics of nonequilibrium effects. It is worth noting that the
nonequilibrium moments characterizing system nonequilibrium effects, as described above,
encompass information about both macroscopic quantities and particle fluctuations. In the
literature [43–45], nonequilibrium moments in this form have been utilized to represent
nonequilibrium effects. Additionally, in the literature [3,17,28–31,46,47], the macroscopic
velocity’s influence has been subtracted during the moment calculation processes, as shown
in Equations (7)–(9) and (11)–(12).

M∗
1,i

(
f eq
α

)
= ∑

α

f eq
α (eαi − u) (25)

M∗
2,ij

(
f eq
α

)
= ∑

α

f eq
α (eαi − u)

(
eαj − u

)
(26)

M∗
3,ijk

(
f eq
α

)
= ∑

α

f eq
α (eαi − u)

(
eαj − u

)
(eαk − u) (27)

M∗
1,i

(
heq

α

)
= ∑

α

heq
α (eαi − u) (28)

M∗
2,ij

(
heq

α

)
= ∑

α

heq
α (eαi − u)

(
eαj − u

)
(29)

In the paper, nonequilibrium effects associated with the distribution function f eq
α are

referred to as non-organized momentum flux (NOMF), while those related to the heq
α are

termed non-organized energy flux (NOEF). It is important to note that symbols used may
vary across different sources.

However, regardless of the chosen representation, gaining a clear understanding of the
magnitude and directional implications of non-equilibrium moments remains challenging and
may require further investigation, especially to comprehend their physical significance. There-
fore, this paper introduces an approach, as expressed in Equations (23) and (24), to discuss the
physical implications of nonequilibrium effects from a molecular motion perspective.

Returning to the fundamentals of the Boltzmann-BGK equation and MRT-Boltzmann
equation, the description of fluid flow involves the local nonequilibrium state

(
fα − f eq

α

)
of the molecular distribution function. Here, the equilibrium distribution function f eq

α

represents the local equilibrium state of molecular motion, while the current distribution
function fα represents the actual state of molecular motion. In regions where the fluid
system exhibits nonequilibrium behavior, the distributions of these two functions do
not align. But due to mass and momentum conservation, λ f ,0 as well as λ f ,1 are zero.
Drawing from the principles of kinetic theory, it is understood that λ f ,1 has a single motion
multiplier, while λ f ,2 and λ f ,3 have more motion multipliers, indicating a stronger “motion

effect”. This effect amplifies the nonequilibrium effects of
(

fα − f eq
α

)
, resulting in nonzero

values for λ f ,2 and λ f ,3. Figure 2 provides a somewhat idealized example to illustrate
this concept. In the schematic diagram, the velocity distributions of fα and f eq

α differ, and
under the amplifying effect of motion multipliers, the components of λ f ,2 and λ f ,3 in the
x-direction are both greater than 0. For locations where the macroscopic flow velocity
ux > 0, positive components of the nonequilibrium moments in the x-direction indicate
that at these positions, the current-state kinetic moments deviate from the local equilibrium-
state kinetic moments along the positive x-direction. Both moments reflect the motion
state of molecular clusters, with the former exhibiting a stronger motion state. If the
nonequilibrium moments are negative, different scenarios need to be considered, such as:

1. The current-state kinetic moments remain positive, indicating a weaker motion com-
pared to the kinetic moments of the local equilibrium state.
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2. The current-state kinetic moments are negative, with an absolute value smaller than
those of the local equilibrium kinetic moments. In this case, not only is the motion
weaker in the former compared to the latter, but their directions of motion also differ.

3. The current-state kinetic moments are negative, with an absolute value greater than
those of the local equilibrium kinetic moments. In this scenario, the motion in the
former is stronger than in the latter, and their directions of motion are distinct.
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tion function.

In summary, the physical significance of nonequilibrium effects can be explained
as follows:

1. Nonequilibrium effects reflect the extent to which molecular motion deviates from
local equilibrium states, mapped onto the corresponding physical levels of mass and
total energy. This deviation can be understood as a kind of “instability” of the local
system relative to equilibrium states.

2. The sign of nonequilibrium effects indicates the direction in which molecular motion
deviates from its local equilibrium state.

3. The magnitude of nonequilibrium effects reflects the local “instability” level of molec-
ular motion at the corresponding hierarchy.

4. With this perspective, nonequilibrium behavior can be interpreted in a more intuitive
manner. The nonequilibrium effects research method discussed in this paper is not
limited to specific LBM models. At the Navier-Stokes level, any model that satisfies
the moment relations in Equations (2) and (3) can be applied.

4. Nonequilibrium Effects Study on Shock-Related Problems

A shock wave is one of the most typical flow phenomena in supersonic fluid dynamics,
widely present in the internal and external flows of aerospace equipment such as supersonic
aircraft, missiles, and rockets. In 2013, Gan et al. [17] applied the nonequilibrium effects
method to the study of two-dimensional shock wave reflection problems. They prelimi-
narily demonstrated the distribution characteristics of various nonequilibrium moments
at the incident and reflected shock waves. As shown in Figure 3, different intensities and
directions of nonequilibrium effects are observed at the shock wave locations. In the figure,
the variable ∆∗

n represents the nonequilibrium effects of the nth order. It is evident that uti-
lizing nonequilibrium effects to study such flow-discontinuity issues, such as shock waves,
provides a different perspective on flow mechanics compared to traditional macroscopic
variables such as density and temperature.
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In recent years, a series of research studies have been conducted on the nonequilibrium
effects in flow-discontinuity problems, such as shock waves and detonation waves. The
following provides an overview of the research progress in this area. It is important to note
that in the following research progress, the double-distribution-function LBM model used in
references [38,43] is different from the research conducted by Professor Xu’s group, which is
based on the Discrete Boltzmann Method (DBM) [3,17,28–31]. The primary objective of this
paper is to comprehensively review the advancements in research on the nonequilibrium
effects of shock waves. The details of the theoretical method, simulation configuration, and
numerical verification of the corresponding cases can be found in the relevant literature for
readers’ reference, thus avoiding repetition here.

4.1. Shock Wave

The one-dimensional Riemann problem is a typical one-dimensional shock wave prob-
lem, and its evolution involves shock waves, expansion waves, and contact discontinuities,
encompassing various flow characteristics of waves. Moreover, the one-dimensional nature
of the problem eliminates the interference from the two-dimensional flow direction, simpli-
fying the complexity of analyzing nonequilibrium effects and facilitating the examination
of the shock wave’s nonequilibrium behavior.

Recently, we conducted research on the nonequilibrium effects of the one-dimensional
Riemann problem [43]. The initial conditions are specified as follows:

(ρ, ux, p) =
{

(1.0, 0, 1.0), 0 ≤ x/L0 ≤ 0.5,
(0.125, 0, 0.1), 0.5 < x/L0 ≤ 1.

ρ represents density, ux denotes the transverse velocity, p stands for pressure, and L0
represents the reference length. The traditional approach involves describing the shock
wave evolution process of the Riemann problem using macroscopic quantities. Figure 4
shows the density and temperature distributions at the moment t = 0.1644t0 for the LBM
solution of the Sod shock tube problem. The results by LBM are compared with the
analytical solutions, which are in good agreement. Among these, t0 = L0/u0 represents the
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dimensionless reference time. Macroscopic quantities exhibit significant gradient changes
at the location of the expansion wave, while flow discontinuities are observed at the shock
wave and contact discontinuity locations.
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Figure 5 illustrates the distribution of equilibrium moments and nonequilibrium mo-
ments in the flow field of the Sod shock tube. Since λ f ,0 = λ f ,1 = λh,0 = 0, only the
nonzero equilibrium moments and nonequilibrium moments are considered. For analytical
purposes, the flow field is divided into five regions (A–E) based on the shock wave, contact
discontinuity, and expansion wave. Region B corresponds to the expansion wave, the
junction between regions C and D represents the contact discontinuity, and the junction
between regions D and E represents the shock wave. The distribution characteristics of
equilibrium moments are quite similar to macroscopic quantities, showing flow disconti-
nuities at the shock wave and contact discontinuity locations, while the expansion wave
exhibits noticeable fluctuations, and other positions remain at their corresponding con-
stants. The distribution characteristics of nonequilibrium moments, however, differ: the
absolute values significantly increase at the shock wave and contact discontinuity, forming
peaks or valleys; there is a slight increase in the absolute values at the expansion wave;
and the values of nonequilibrium moments at other positions are zero. The results of
nonequilibrium moment distribution indicate a strong molecular motion instability at the
shock wave and contact discontinuity, reflecting a pronounced instability relative to local
equilibrium states, with the former exhibiting significantly greater intensity than the latter.
Moreover, the direction of nonequilibrium effects also shows distinct distribution character-
istics at the shock wave, contact discontinuity, and expansion wave locations. For a detailed
analysis of nonequilibrium effects, refer to the literature [48]. Additionally, verification of
nonequilibrium moments is provided in Section III.D of the same reference [48].

To further discuss the meaning of nonequilibrium effects, consider the schematic
diagram in Figure 6. The red dashed line represents the kinetic moments of the current
state, the blue solid line represents the kinetic moments of the local equilibrium state,
and the black solid line represents the nonequilibrium effects; i.e., the difference between
the corresponding current moments and local equilibrium moments. When the red line
coincides with the blue line, the system’s current state is almost identical to the local
equilibrium state, and the nonequilibrium effects along the black line are nearly zero. In
cases where the red line is above the blue line, as shown in Figure 6a, the current moments of
the system have larger values than the local equilibrium moments, and the nonequilibrium
effects along the black line show positive values, reaching a peak where the difference
between the two is greatest. The opposite occurs when the red line is below the blue line,
as shown in Figure 6b. For ease of analysis, situations where nonequilibrium effects are
positive are referred to as “positive instability”, and situations where nonequilibrium effects
are negative are referred to as “negative instability”. This provides a definition for the
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“unstable” direction of molecular motion. It is important to note that when nonequilibrium
effects are positive, there are roughly three cases: first, both the current moments and local
equilibrium moments are positive, with the former having a larger absolute value than the
latter; second, both are negative, with the absolute value of the current moments smaller
than that of the local equilibrium moments; third, the current moments are positive, and
local equilibrium moments are negative, with the absolute values not necessarily equal.
Of course, there are also special cases where one of them is zero, which requires specific
analysis depending on the circumstances.
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Based on this foundation, we conducted a one-dimensional unsteady simulation of
the shock wave reflection case inside the shock tube presented by Daru and Tenaud [49].
The distribution of nonequilibrium moments at various time steps is shown in Figure 7.
The flow field exhibits shock waves, contact discontinuities, and expansion waves. In the
initial stages of flow evolution, all three exhibit a trend of moving to the right. The shock
wave is in a relatively strong “positive instability” state, while the contact discontinuity and
expansion wave are in a relatively weak “negative instability” state. When the shock wave
reflects from the right wall at the beginning of the simulation and changes its direction
to the left, it encounters the contact discontinuity moving to the right at t = 0.3. At this
moment, due to the opposite “unstable” directions of the shock wave and the contact
discontinuity, the nonequilibrium effects of the shock wave decrease, and the intensity
of nonequilibrium effects of the contact discontinuity at the shock wave location also
significantly decreases. This indicates that the interaction between shock waves and contact
discontinuities can mutually suppress nonequilibrium effects in different directions. As
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they move apart in opposite directions, the separated shock wave is greatly influenced, and
the nonequilibrium effects change from positive to negative, an unstable state. When the
shock wave encounters the expansion wave, their interaction causes a strong rebound in
the nonequilibrium effects of the shock wave, exhibiting a stronger “positive instability”
state than the early stages of flow evolution. This suggests that under the interaction of
shock waves with contact discontinuities or expansion waves, the instability of molecular
motion significantly increases, and the state deviating from local equilibrium becomes
extremely unstable. Subsequently, as the shock wave continues to move to the left and
interacts with the expansion wave, the nonequilibrium effects of the shock wave become
very weak, with an intensity smaller than that of the contact discontinuity. Thus, from the
perspective of nonequilibrium effects in molecular motion, the interaction phenomena of
shock waves, contact discontinuities, and expansion waves are elucidated.
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Lin et al. conducted a study on the characteristics near a one-dimensional shock wave,
focusing on the velocity distribution function and nonequilibrium intensity [28]. The initial
state is set by the Hugoniot relation:{

(ρ, ux, T, p)le f t = (2.667, 1.479, 1.688, 4.5), 0 ≤ x/L0 ≤ 0.01,
(ρ, ux, T, p)right = (1, 0, 1, 1), 0.01 < x/L0 ≤ 1

Figure 8 illustrates the distribution of macroscopic quantities, macroscopic quantity gradi-
ents, partial nonequilibrium quantities, and nonequilibrium intensity near the shock wave.
Locations where nonequilibrium effects increase are observed to correspond to regions
with larger gradients of macroscopic quantities, such as velocity and temperature near the
shock wave. Figure 9 shows the distribution characteristics of the velocity distribution
function at three typical positions: ahead of the wave, within the wave, and behind the
wave. From observation of the figure, the shape of the velocity distribution function peaks
becomes more concentrated from behind the wave to ahead of the wave. This is due to the
rapid changes in physical quantities as the shock wave passes through the medium. Mean-
while, in the two-dimensional distribution in the second row, an x-direction asymmetry
between ahead of the wave and behind the wave is observed, indicating the presence of
nonequilibrium effects.
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Subsequently, they investigated the influence of fluid properties or parameters such as
the relaxation frequency, the Mach number, thermal conductivity, viscosity, and the specific
heat ratio on the strength of nonequilibrium effects near shock waves, further revealing
the nonequilibrium behavior near shock waves. Figure 10 depicts the nonequilibrium
effect strength at shock waves under different relaxation frequencies. As the relaxation
frequency increases, the peak strength of nonequilibrium effects at shock waves remains
almost unchanged, while the region of nonequilibrium effects decreases. This is because
with an increase in relaxation frequency, the relaxation time for the system to approach
local equilibrium decreases, naturally leading to a reduction in nonequilibrium effects near
shock waves. A linear relationship between the strength of nonequilibrium effects and the
natural logarithm of the relaxation frequency was observed through linear equation fitting.
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The impact of other fluid properties or parameters on the strength of nonequilibrium effects
at shock waves can be found in reference [28].
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The two-dimensional flow is more universal than the one-dimensional counterpart.
Figure 11 is the density distribution of two-dimensional regular reflected shock waves.
The flow field in shock wave reflection includes incident and reflected shock waves. The
inflow Mach number simulated is 2.9. Dirichlet conditions are applied on the left and upper
boundaries as follows:(

ρ, ux, uy, p
)∣∣∣le f t = (1.0, 2.9

√
γ, 0, 1.0),

(
ρ, ux, uy, p

)∣∣∣top = (1.69997, 2.61934
√

γ,−0.50633
√

γ, 2.139466) ,

the specific heat ratio γ = 1.4. By solving the unsteady shock wave reflection problem,
the process involves the formation of moving curved shock waves, exhibiting richer
shock wave characteristics. We conducted a study on the formation process of two-
dimensional shock waves and the nonequilibrium behavior of the system reaching a
steady state [43]. The following is a brief introduction using symbols Mneq

f and Mneq
h to

represent nonequilibrium moments.
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is significant. As the incident shock wave contacts the bottom wall and forms a reflected 
shock wave, there is a certain degree of enhancement in the nonequilibrium effects. Sub-
sequently, as the reflected shock wave gradually takes shape, the nonequilibrium effect 
intensity remains within a certain range. Observing the overall trend, the nonequilibrium 

effect intensities 1hS  and 2hS  related to total energy show a clear decreasing trend from 
the formation of the incident shock wave to the generation of the reflected shock wave 
upon contacting the wall, while the change in the nonequilibrium effect intensity related 
to mass is relatively small. This is related to the fact that total energy contains richer infor-
mation about motion. Thus, the evolution of nonequilibrium effect intensity can to some 
extent reflect the state of the flow system. 

Figure 11. Distributions of density [44].

Figure 12 illustrates the distribution of two nonequilibrium moments, Mneq
h1,y and

Mneq
f 3,xyy. Apart from the strong nonequilibrium effects near the shock waves, the rest of the

spatial flow field exhibits almost zero nonequilibrium effects. This is consistent with the
nonequilibrium behavior observed in one-dimensional shock wave flow. Interestingly, the
characteristics of nonequilibrium effects for Mneq

h1,y and Mneq
f 3,xyy at the incident and reflected

shock waves differ. The former shows different “unstable” directions at these locations,
while the latter maintains a consistent direction. This indicates that certain nonequilibrium
effects manifest distinct characteristics at incident and reflected shock waves. Leveraging
this feature might contribute to a better understanding of complex shock wave systems.
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Figure 13 illustrates the evolution of the system’s nonequilibrium effects during the
shock wave reflection process. The definition of nonequilibrium effect intensity S f 2, S f 3,
Sh1, Sh2 is:

S f 2 =
∫ √

(Mneq
f 2,xx)

2
+ (Mneq

f 2,yy)
2
+ (Mneq

f 2,xy)
2
dxdy

Sh1 =
∫ √

(Mneq
h1,x)

2
+ (Mneq

h1,y)
2
dxdy

S f 3 =
∫ √
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f 3,xxx)

2
+ (Mneq

f 3,yyy)
2
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f 3,xyy)
2
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2
dxdy
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nonequilibrium effect vectors. The results indicate that nonequilibrium effects at different 
physical levels in the shock wave exhibit different distribution characteristics, showing a 
certain periodic trend along the shock wave. This periodic variation is particularly pro-
nounced in the case of curved shock waves. The periodic variation at the straight shock 
wave is very small, which may be attributed to numerical oscillations near the shock wave. 
The significant periodic variation observed in curved shock waves is an “illusion” caused 
by the curved distribution. If viewed along the direction of the curved shock wave, 
nonequilibrium effects do not exhibit periodic distribution. Moreover, the distribution 
characteristics of nonequilibrium effects at the curved shock wave are related to the dis-
tribution characteristics of nonequilibrium effects at the two straight shock waves on ei-
ther side. The main change is observed from the distribution characteristics of the straight 

Figure 13. Strengths of nonequilibrium effects at different physical levels during the formation of a
regular reflection shock wave [44].

They characterize the intensity of nonequilibrium effects at various physical levels
in the fluid system at a certain moment. The results indicate that in the early stages
of evolution, when the incident shock wave has just formed, the nonequilibrium effect
intensity is significant. As the incident shock wave contacts the bottom wall and forms a
reflected shock wave, there is a certain degree of enhancement in the nonequilibrium effects.
Subsequently, as the reflected shock wave gradually takes shape, the nonequilibrium effect
intensity remains within a certain range. Observing the overall trend, the nonequilibrium
effect intensities Sh1 and Sh2 related to total energy show a clear decreasing trend from the
formation of the incident shock wave to the generation of the reflected shock wave upon
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contacting the wall, while the change in the nonequilibrium effect intensity related to mass
is relatively small. This is related to the fact that total energy contains richer information
about motion. Thus, the evolution of nonequilibrium effect intensity can to some extent
reflect the state of the flow system.

During the unsteady solution process of shock wave reflection problems, it was
observed that curved shock waves formed in both the incident shock wave and reflected
shock wave regions, as shown in Figure 14. Consequently, an analysis of nonequilibrium
effects was specifically conducted for curved shock waves. The focus was on understanding
the similarities and differences in nonequilibrium effects between curved shock waves and
straight shock waves. For detailed analysis, please refer to the literature [44].
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Figure 14. Magnitude of the density gradient of a regular reflection shock wave [44]: (a) t = 0.95t0

(b) t = 1.6t0.

To visually analyze the distribution characteristics of nonequilibrium effects more
intuitively, the x and y components of the nonequilibrium moments can be considered
as vector components for plotting. Figures 15 and 16 show the distribution of some
nonequilibrium effect vectors. The results indicate that nonequilibrium effects at different
physical levels in the shock wave exhibit different distribution characteristics, showing
a certain periodic trend along the shock wave. This periodic variation is particularly
pronounced in the case of curved shock waves. The periodic variation at the straight
shock wave is very small, which may be attributed to numerical oscillations near the
shock wave. The significant periodic variation observed in curved shock waves is an
“illusion” caused by the curved distribution. If viewed along the direction of the curved
shock wave, nonequilibrium effects do not exhibit periodic distribution. Moreover, the
distribution characteristics of nonequilibrium effects at the curved shock wave are related
to the distribution characteristics of nonequilibrium effects at the two straight shock waves
on either side. The main change is observed from the distribution characteristics of the
straight shock wave on the incoming flow side to the distribution characteristics on the
downstream side. Therefore, the observed significant changes in some nonequilibrium
moments and the sustained conditions of others in the curved region in Figure 15 are
related to the distribution characteristics of nonequilibrium effects at the straight shock
waves on either side of the curved shock wave. For detailed analysis and discussion, please
refer to the literature [44].
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From the above research work, we can see that the characteristics and physical mean-
ing of nonequilibrium effects of shock waves are studied through typical one- and two-
dimensional shock wave problems. In practical engineering applications, there are often
complex shock wave interference phenomena. It can be seen that the nonequilibrium effect
is a very potential perspective for the study of shock wave phenomena. In the future,
nonequilibrium effects can be used to study various typical shock wave interference phe-
nomena, so as to obtain a deep understanding of the flow mechanism and develop methods
to identify the characteristics of complex shock wave phenomena.

4.2. Shock Wave/Boundary Layer Interaction
4.2.1. Oblique Shock Wave/Boundary Layer Interaction

Shock wave/boundary layer interaction (SWBLI) is the process where the bottom vis-
cous boundary layer matches the external inviscid shock wave by thickening or separating,
causing adverse pressure gradients. The SWBLI phenomenon has a significant impact on
the flight safety and aerodynamic characteristics of aircraft. In the past two years, scholars
have conducted mechanistic studies on the critical issue that must be considered in the
design of hypersonic aircraft from a nonequilibrium perspective.

In the aspect of shock wave/laminar boundary layer interaction, Song et al. [46]
primarily analyzed the entropy increase characteristics caused by nonequilibrium effects,
such as viscosity and heat flux. The inflow Mach number simulated in their study was
5, and the gas was considered viscous and followed the Sutherland formula for viscosity.
By observing the distribution of nonequilibrium effects at different positions along the
vertical direction, as shown in Figure 17, and comparing it with two-dimensional regular
reflected shock waves without considering viscosity, they found that the nonequilibrium
effects in the former case are concentrated at the reflected shock wave, while in the latter
case, they are concentrated at the reflected shock wave, reattachment shock wave, and the
wall. Moreover, the total nonequilibrium intensity is highest near the wall. Examining the
distribution of entropy generation rate in Figure 18 at these three positions, they observed
three extreme states, indicating that shock waves and boundary layers contribute to the
increased turbulence level in the flow field. At these critical positions, they conducted a
detailed analysis of the contributions of total energy-related and mass-related nonequilib-
rium effects. They found that entropy increase at the shock wave surface is dominated by
mass-related nonequilibrium effects, which are closely related to viscosity. On the other
hand, near the wall, it is dominated by total energy-related nonequilibrium effects, which
are inseparable from heat flux.

Subsequently, they analyzed the distribution characteristics of the nonequilibrium
effects shown in Figure 19 in the shock wave/laminar boundary layer interaction under
different Mach numbers. They further investigated the influence of Mach number varia-
tions on thermodynamic nonequilibrium effects. The study revealed that at three critical
positions, both total energy-related and mass-related nonequilibrium effects increase with
an increase in the incoming Mach number. However, there are noticeable differences in
the response of different positions to total energy-related nonequilibrium effects. Specifi-
cally, the vicinity of the reattachment shock wave is most affected by the viscous entropy
generation rate, gradually overtaking the dominant position near the wall as the incoming
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Mach number increases. Whether at low or high Mach numbers, the strength relationships
at different positions remain unchanged. Near the wall, entropy generation rates related to
heat flux remain stronger than those near the reattachment shock wave and reflected shock
wave even at high Mach numbers.
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Existing research on nonequilibrium effects in fluid dynamics is primarily based on
solving LBM equations. However, LBM is not well-established for solving hypersonic flows
involving shock waves and boundary layers. Research on hypersonic flow using LBM
mainly focuses on exploring more optimal physical models. Faced with numerical stability
issues in solving hypersonic flows with shock waves and boundary layers using LBM,
BAO took a different approach and proposed a macroscopic-equation-based method for
studying nonequilibrium effects related to SWBLI [45]. This method solves the macroscopic
equations to analyze the flow field disturbed by shock waves and boundary layers, and
then utilizes the obtained macroscopic quantities to derive corresponding nonequilibrium
quantities. Taking a nonequilibrium perspective, they initially conducted a mechanistic
exploration of the shock wave/laminar boundary layer interaction under Mach 2 inflow
conditions. In the simulation, the left boundary serves as the inflow condition, specified
as follows:

(
T, ux, uy, p

)
le f t =

(
293, 2.0

√
γRT,0, 657.5

)
. By observing the characteristics of

dominant nonequilibrium quantities related to mass and total energy, as illustrated in the
Figure 20, and their connection with the non-uniformly distributed macroscopic quantities,
they aimed to uncover the underlying reasons causing macroscopic phenomena.
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They further elucidated the energy conversion mechanism of boundary layer separa-
tion in SWBLI by analyzing the relationship between internal nonequilibrium effects in the
boundary layer and energy conversion. The relationships are organized into the network
shown in Figure 21.
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Then, they further analyzed the flow characteristics of separation shocks, incident
shocks, and reattachment regions based on the clue of the speed-of-sound lines that shock
waves can reach within the boundary layer. The distribution of nonequilibrium quantities at
these positions is illustrated in Figure 22, and specific analysis can be found in reference [45].

To account for the transition from the laminar to turbulent boundary layer with an
increasing freestream Mach number, they derived macroscopic expressions for different-
level nonequilibrium effects when considering the influence of turbulence. They found that
these expressions still corresponded to viscous stress terms and heat flux terms. However,
the mass-related nonequilibrium effects include the impact of turbulent viscosity on viscous
stress, and the total energy-related nonequilibrium effects, particularly the heat flux term,
also encompass the influence of turbulence on energy conservation. In their analysis,
they considered the interaction of a Mach 6 shock wave with a turbulent boundary layer,
as depicted in Figure 23. In this particular case, the incoming flow condition at the left
boundary is as follows:

(
T, ux, uy, p

)
le f t =

(
222.5, 6.0

√
γRT,0, 2188

)
.

They observed that, unlike the marginal impact of nonequilibrium effects on the
boundary layer observed with a Mach 2 incident shock wave, the effects become more
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pronounced as the freestream Mach number increases. The shock wave intensifies fur-
ther, and on the nonequilibrium effects, the incident shock wave notably influences the
nonequilibrium effects in the boundary layers above and below the speed-of-sound line.
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4.2.2. Curved Shock Wave/Boundary Layer Interaction

Building upon the aforementioned investigation into oblique shock/boundary layer
interactions (OSWBLI), we extended our research to examine the effects of curved
shock/boundary layer interactions (CSWBLI). These results, which are being presented
for the first time, have not been published before. Given that the profiles of aircraft are
often curved, curved shock waves induced are more prevalent compared to oblique shock
waves. The fundamental distinction between OSWBLI and CSWBLI lies in the curvature
variation of shock waves and the non-uniformity of the flow field behind the shock waves.
The theoretical understanding of curved shock waves is continuously evolving, with
Molder deriving the non-uniform first-order curved shock wave equations [50], and
Shi et al. establishing connections between the parameters before and after the shock
wave and the curvature of the shock wave [51,52]. Most existing studies predominantly
explored CSWBLI from a macroscopic perspective. Recognizing the necessity of inves-
tigating CSWBLI, we adopted an analysis methodology similar to that of OSWBLI. We
conducted further analysis on the positions where the nonequilibrium quantities, as
shown in Figure 24, exhibited distinctive features in the interaction between curved shock
waves and turbulent boundary layers. The partial dominant nonequilibrium moment

components are represented by the symbols “Mneq(l)
f 2,xy Mneq(l)

h1,y Mneq(t)
f 2,xy Mneq(t)

h1,y ”. The super-
scripts “l” and “t” denote the effects under laminar and turbulent conditions, respectively.
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By decomposing nonequilibrium effects into laminar and turbulent influence modes, we
aim to provide readers with a clearer understanding of how these two modes contribute
to nonequilibrium effects.
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Figure 25. Schematic diagrams: (a) Separation shock (b) Transmitted shock. 

Figure 24. Distribution of nonequilibrium effects of Mach 6 CSWBLI on speed-of-sound lines:
(a) Mass-related nonequilibrium effects (b) Total-energy-related nonequilibrium effects.

The schematic diagrams of the separation shock wave and transmitted shock wave
are shown in Figure 25. The distribution of the dominant nonequilibrium moments at
the positions of the separation shock wave and transmitted shock wave is illustrated in
Figures 26 and 27, respectively. The positions 1⃝– 6⃝ shown in Figure 26 correspond to the
position schematic of Figure 25a, and the positions 1⃝– 4⃝ shown in Figure 27 correspond
to the position schematic of Figure 25b. Through analysis, it was observed that, with
the continuous action of shock waves on the boundary layer, the nonequilibrium effects
related to turbulence are more than three orders of magnitude higher than those related
to laminar flow. The turbulence-induced nonequilibrium effects gradually take over the
dominant position.
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After analyzing the connection between the distribution of nonequilibrium effects in
CSWBLI and macroscopic phenomena, our focus shifted to understanding the characteris-
tics of the separation region and its connection with nonequilibrium quantities caused by
oblique shock waves and curved shock waves. To conduct such a test, it is necessary to
ensure the consistency of the testing conditions between OSWBLI and CSWBLI, except for
the differences in shock wave generator configurations. This includes consistent boundary
layer development, as the boundary layer continuously thickens and laterally evolves,
resulting in different separation characteristics of the boundary layer disturbed by shock
waves. Comparing the adverse pressure gradient and nonequilibrium effect intensity at
the three-wave points along the vertical direction, as shown in Figure 28, we found that,
regardless of the adverse pressure gradient, total energy-related, or mass-related nonequi-
librium effect intensity, the curved shock wave is greater than the oblique shock wave at the
three-wave point positions. In other words, the intensity of nonequilibrium effects to some
extent could characterize the shock wave intensity. This establishes a logical relationship
where the stronger nonequilibrium effects induced by the curved shock wave lead to a
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stronger shock wave, resulting in a larger adverse pressure gradient and ultimately a higher
macroscopic separation region.

Our team also observed that the enlargement of the boundary layer separation region
in CSWBLI is manifested not only in the increased separation bubble height but also in the
earlier onset of separation and a relatively delayed attachment point. By comparing the
distribution of the dominant nonequilibrium quantities shown in Figure 29, it was found
that before separation, the nonequilibrium effects are in a stable state. As the boundary
layer exhibits a separated state under the influence of the shock wave, the nonequilibrium
effects related to the viscous shear force tend to zero. The trend of approaching zero in
CSWBLI is significantly earlier than in OSWBLI, and the span of nonequilibrium effects
variation is also larger. This may be the reason for CSWBLI leading to a longer downstream
separation distance.
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The investigation of nonequilibrium effects on SWBLI has evolved from laminar to
turbulent flows. Simultaneously, this study delves into CSWBLI. The research incremen-
tally progresses, enhancing comprehension of this phenomenon from a nonequilibrium
perspective. Due to the existing problems in the applicability of the supersonic LBM
method for high Mach number flow, the existing literature is to extract nonequilibrium
effects from the macroscopic equation. The current methods are not suitable for SWBLI
of rarefied gases. It is necessary to establish the nonequilibrium effect analysis method
by a unified method, such as the unified gas-kinetic scheme (UGKS) [53]. Additionally,
findings from the existing literature suggest that nonequilibrium quantities related to shear
stress can serve as criteria for boundary layer separation, potentially playing a pivotal
role in shock/boundary layer control. These endeavors aim to deepen our understanding
of shock-boundary layer interactions, providing robust support for the advancement of
related fields. Moreover, the nonequilibrium kinetic approach is expected to be further
applied to the aerodynamic design and optimization of aircraft and engines.

4.3. Detonation Wave

Detonation is a chemical reaction propagation process accompanied by a large re-
lease of energy, where the leading edge of the reaction zone forms a shock wave with
supersonic motion, known as a detonation wave. Pulse detonation engines [54,55], rotat-
ing detonation engines [56,57], oblique detonation engines [58,59], or curved detonation
engines [60,61] utilize this phenomenon to generate thrust using high-temperature and
high-pressure combustion gases. They exhibit characteristics such as a simple structure
and a high thrust-to-weight ratio relative to traditional engines, making them a highly
promising class of propulsion systems for aerospace applications. Scholars have conducted
a series of research studies on the mechanism of detonation waves from the perspective of
nonequilibrium behavior.

In 2015, Xu et al. investigated the nonequilibrium behavior near one-dimensional deto-
nation waves [3]. Figure 30 illustrates the macroscopic and nonequilibrium quantities near
the detonation wave. The initially simulated flow field for the one-dimensional detonation
simulation is as follows: (ρ, T, ux, γ)le f t = (1.38837, 1.57856, 0.57735, 1), (ρ, T, ux, γ)right =

(1, 1, 0, 0). The results show that the sum of the deviations from the equilibrium of inter-
nal energy in the x-direction, internal energy in the y-direction, and additional degree of
freedom energy is zero. This is because, when the system is not in thermal equilibrium,
the energies associated with different degrees of freedom may deviate in different direc-
tions due to molecular collisions. In this one-dimensional flow in the x-direction, shear
effects and energy flux associated with the y-direction are in equilibrium. They also ob-
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served that while the system’s viscosity or thermal conductivity may reduce local thermal
nonequilibrium, it increases the overall thermal nonequilibrium near the detonation wave.

Entropy 2024, 26, x FOR PEER REVIEW 33 of 41 
 

 

promising class of propulsion systems for aerospace applications. Scholars have con-
ducted a series of research studies on the mechanism of detonation waves from the per-
spective of nonequilibrium behavior. 

In 2015, Xu et al. investigated the nonequilibrium behavior near one-dimensional 
detonation waves [3]. Figure 30 illustrates the macroscopic and nonequilibrium quantities 
near the detonation wave. The initially simulated flow field for the one-dimensional det-

onation simulation is as follows: ( ) ( ), , , 1.38837,1.57856,0.57735,1x leftT uρ γ =  , 
( ) ( ), , , 1,1,0,0x right
T uρ γ = . The results show that the sum of the deviations from the equi-

librium of internal energy in the x -direction, internal energy in the y -direction, and ad-
ditional degree of freedom energy is zero. This is because, when the system is not in ther-
mal equilibrium, the energies associated with different degrees of freedom may deviate 
in different directions due to molecular collisions. In this one-dimensional flow in the x -
direction, shear effects and energy flux associated with the y -direction are in equilibrium. 
They also observed that while the system’s viscosity or thermal conductivity may reduce 
local thermal nonequilibrium, it increases the overall thermal nonequilibrium near the 
detonation wave. 

 

Entropy 2024, 26, x FOR PEER REVIEW 34 of 41 
 

 

 
Figure 30. Macroscopic physical quantities and nonequilibrium quantities in an unsteady detona-
tion [3]: (a) ρ   (b) T   (c) p  (d) xu   (e) λ   (f) 

x xv vΔ   (g) 
x yv vΔ   (h) 

y yv vΔ   (i) 2η
Δ   (j) 

x x xv v vΔ   (k) 

x x yv v vΔ  (l)
x y yv v vΔ  (m) 

y y yv v vΔ  (n) 2 2( ) xv vη+
Δ  (o) 2 2( ) yv vη+

Δ . 

Figure 31 presents the quantitative comparison results of viscous stress, heat flux, 
and their corresponding nonequilibrium quantities by Zhang et al. [29]. The simulated 
initial conditions are consistent with the one-dimensional detonation case mentioned ear-
lier in this paper. From the figure, it can be observed that viscous stress and heat flux are 
numerically consistent with their respective nonequilibrium quantities. Additionally, 
these nonequilibrium quantities are directly derived from the Boltzmann equation, 
providing a more accurate description of flow phenomena with strong nonequilibrium 
effects, such as detonation waves. 

  
(a) (b) 

Figure 31. Comparisons of viscous stress, heat flux, and nonequilibrium quantities [29]: (a) Viscous 
stress and nonequilibrium quantity (b) Heat flux and nonequilibrium quantity. 

They further derived an expression for entropy increase based on the mathematical 
relationships among viscous stress, heat flux, and their corresponding nonequilibrium 
quantities. From this expression, it becomes evident that entropy increase is attributed to 
both thermodynamic nonequilibrium effects and chemical reactions. The computational 
results for detonation waves under various conditions (refer to Figure 32) reveal that en-
tropy increase is primarily governed by chemical reactions, with the contribution from 

Figure 30. Macroscopic physical quantities and nonequilibrium quantities in an unsteady detona-
tion [3]: (a) ρ (b) T (c) p (d) ux (e) λ (f) ∆vxvx (g) ∆vxvy (h) ∆vyvy (i) ∆η2 (j) ∆vxvxvx (k) ∆vxvxvy (l) ∆vxvyvy

(m) ∆vyvyvy (n) ∆(v2+η2)vx
(o) ∆(v2+η2)vy

.



Entropy 2024, 26, 200 32 of 39

Figure 31 presents the quantitative comparison results of viscous stress, heat flux, and
their corresponding nonequilibrium quantities by Zhang et al. [29]. The simulated initial
conditions are consistent with the one-dimensional detonation case mentioned earlier
in this paper. From the figure, it can be observed that viscous stress and heat flux are
numerically consistent with their respective nonequilibrium quantities. Additionally, these
nonequilibrium quantities are directly derived from the Boltzmann equation, providing a
more accurate description of flow phenomena with strong nonequilibrium effects, such as
detonation waves.
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They further derived an expression for entropy increase based on the mathematical
relationships among viscous stress, heat flux, and their corresponding nonequilibrium
quantities. From this expression, it becomes evident that entropy increase is attributed
to both thermodynamic nonequilibrium effects and chemical reactions. The computa-
tional results for detonation waves under various conditions (refer to Figure 32) reveal
that entropy increase is primarily governed by chemical reactions, with the contribution
from thermodynamic nonequilibrium effects being relatively small. Moreover, among the
latter two factors, the entropy increase induced by mass-related nonequilibrium effects is
significantly larger than that from total energy-related nonequilibrium effects.
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Lin et al. investigated the impact of chemical heat and relaxation time on the deto-
nation wave mechanism using nonequilibrium analysis [30]. The initially simulated flow
field in this study was: (ρ, ux, p)le f t = (1.48043, 0.81650, 3.05433), (ρ, ux, p)right = (1, 0, 1).
Figure 33 illustrates the relationship between nonequilibrium effects and chemical heat.
Both the local and global thermodynamic nonequilibrium effects of detonation waves in-
tensify with an increase in chemical heat. Upon the logarithmic transformation of chemical
heat and nonequilibrium effects, an approximately linear relationship between the two
is observed. Remarkably, this characteristic holds for both reactants and products of the
chemical reactions.
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Additionally, regarding the influence of relaxation time on controlling the transition
of fluid systems toward equilibrium velocities, Lin et al. investigated the peak heights
of macroscopic quantities such as the detonation wave density and temperature, along
with nonequilibrium effects under different relaxation times. They discovered that as the
relaxation time increases, the global nonequilibrium effects of the fluid system increase,
resulting in lower peak heights and broader widths of the detonation wave. Figure 34
illustrates the relationship between the peak heights of macroscopic quantities in detonation
waves and relaxation time. Subsequently, they compared the macroscopic quantities and
nonequilibrium effects of detonation waves, considering and neglecting nonequilibrium
effects, respectively, as depicted in Figure 35. The results still conform to this pattern [31].
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Figure 36 presents the results of the unsteady detonation wave within one cycle, show-
ing the reaction process, pressure, and nonequilibrium effects [31]. During the evolution,
the reaction layer exhibits a fluctuating concave-convex shape, and the peak pressure
repeatedly varies in the y-direction center and both sides. Examining the distribution
of nonequilibrium effects reveals pronounced nonequilibrium states in regions of high
reaction and pressure gradients, specifically highlighting strong nonequilibrium effects at
the leading edge of the detonation wave and the reaction zone. Additionally, transverse
waves exhibit noticeable nonequilibrium effects.
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In the evolution of two-dimensional detonation waves, Shan et al. [47] investigated the
impact of the Prandtl number (Pr) on nonequilibrium effects in detonation waves, as shown
in Figure 37. The simulated initial flow field in this study is as follows:

(
ρ, ux, uy, T, λ

)
le f t =

(1.388, 0.577, 0, 1.579, 1) (upper left and lower left plot A and B of the computational do-
main),

(
ρ, ux, uy, T, λ

)
right = (1, 0, 0, 1, 0) (others). They observed that variations in the Pr



Entropy 2024, 26, 200 35 of 39

have minimal influence on the propagation speed of detonation waves. However, with a
decrease in the Pr, total energy-related nonequilibrium effects increase.
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Moreover, the mutual interference between shock waves and detonation waves is
prevalent in the internal flow of aircraft. Shan [47] conducted a study on the nonequilib-
rium characteristics of this phenomenon. Figure 38 illustrates the density contour and
distribution of nonequilibrium effects after their interaction. In this scenario, there is a
sudden change in the nonequilibrium moments ahead of the shock and detonation waves,
and their collision results in varying degrees of increase in nonequilibrium quantities at
different physical levels.
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In the case of detonation waves, the nonequilibrium effect also brings a new meso-
scopic perspective to the macroscopic approach. From the point of view of the nonequilib-
rium effect, the discussion of the detonation wave is still carried out through the nonequi-
librium effect related to viscosity and heat flow. Combustion is one of the core phenomena
of the detonation wave. The use of mesoscopic dynamics to extract the nonequilibrium
effects related to the chemical reaction of the detonation wave will provide a deeper under-
standing of the detonation wave. Moreover, the present studies are only for simple cases,
which are quite different from the actual engine combustion chamber. The actual working
conditions put forward have higher requirements for the solving ability of the mesoscopic
kinetics method.
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5. Summary and Discussion

This article is a review of a research method that describes the nonequilibrium effects
of shock waves from the perspective of molecular motion. The method is based on the
Boltzmann-BGK equation or MRT-Boltzmann equation, which reflects the deviation of
the fluid system from local equilibrium through nonequilibrium moments. A detailed
analysis and discussion of nonequilibrium moments are provided, including their role in
the fluid system, the relationship between nonequilibrium and equilibrium moments based
on Chapman-Enskog analysis, and the physical meaning of nonequilibrium effects based
on kinetic theory. Subsequently, the article demonstrates the application of this method
to study the nonequilibrium behavior of phenomena such as shock waves, SWBLI, and
detonation waves. The following provides some explanations for this method:

1. The method presented in the article offers additional flow field information beyond
macroscopic variables from the perspective of molecular nonequilibrium motion for
shock wave systems, enhancing the understanding of shock wave phenomena.

2. The discussion in this article uses the Navier-Stokes level as an example, but the
method is not limited to the Navier-Stokes level. It is applicable to LBM models with
higher physical accuracy.

3. Nonequilibrium effects are the root cause of the deviation of fluid systems from
equilibrium. In the absence of chemical reactions, they are macroscopically related to
the viscous stress and heat flux in fluid flow. In other words, viscous stress and heat
flux act as the “instigators” of nonequilibrium behavior in fluid systems.

4. Nonequilibrium effects represent a kind of “instability” of molecular motion rela-
tive to local equilibrium, and their numerical magnitude reflects the strength of the
system’s “instability”.

5. Strong nonequilibrium effects exist within shock waves. Interactions such as shock
waves with solid walls, contact discontinuities, expansion waves, and boundary layers
lead to variations in nonequilibrium behavior.

We suggest that the nonequilibrium effect can be further studied in the following aspects:

1. Delve deeper into exploring the nonequilibrium effects of fluid systems. Utilize
information on nonequilibrium behavior to reveal the formation mechanisms of flow
phenomena at the mesoscopic level, further enabling the prediction of complex fluid
flow systems.

2. Trace the origin of fluid systems deviating from equilibrium using nonequilibrium
moments. Employ nonequilibrium effects to control fluid flow systems and integrate
them into the aerodynamic design of high-speed aircraft and engines.

3. Extend the application of this research method to complex flow phenomena such as
turbulence, aerodynamic heating, rarefied flow, etc.

4. For problems with source terms, such as chemical reaction, further develop a
nonequilibrium effect extraction approach to obtain the source-term related to
nonequilibrium effects.

5. Develop an approach for the nonequilibrium effect based on the unified mesoscopic
kinetic method applicable to simulating fluids from continuous to rarefied.
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