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Abstract: In a hierarchical caching system, a server is connected to multiple mirrors, each of which is
connected to a different set of users, and both the mirrors and the users are equipped with caching
memories. All the existing schemes focus on single file retrieval, i.e., each user requests one file. In this
paper, we consider the linear function retrieval problem, i.e., each user requests a linear combination
of files, which includes single file retrieval as a special case. We propose a new scheme that reduces
the transmission load of the first hop by jointly utilizing the two layers’ cache memories, and we
show that our scheme achieves the optimal load for the second hop in some cases.

Keywords: linear function retrieval; hierarchical coded caching scheme; transmission load

1. Introduction

In order to reduce the transmission pressure of wireless networks during peak traffic
times, Maddah-Ali and Niesen in [1] provided a (K, M, N) coded caching scheme (MN
Scheme) where a single server has N files and connects K cache-aided users with the cache
memories of M files through an error-free shared link. A coded caching scheme consists
of two phases: (1) the placement phase, where the server is equipped with the data and
each user’s cache is also equipped with the size of at most M files without knowledge of
the users’ future demands; (2) the delivery phase, where each user randomly requests one
file and then the server sends the coded signal to the users such that each user can decode
its requested file with the help of its cached packets. It is shown that the MN Scheme
is generally order-optimal within a factor of 2 [2] and optimal under the uncoded data
placement when K ≤ N [3]. The MN Scheme is also widely used in different networks,
such as combination networks [4,5], device-to-device networks [6], etc.

In practical scenarios, caching systems are transformed into multiple layers in order to
make transmission more efficient, such as the hierarchical edge caching architecture for
Internet of Vehicles [7], the three-tier mobile cloud-edge computing structure [8], and so
on. In this paper, we particularly study the hierarchical caching system [9], a two-layer
network as illustrated in Figure 1. A (K1, K2; M1, M2; N) hierarchical caching system
consists of a single server with a library of N files, K1 cache-aided mirror sites, and K1K2
cache-aided users. For the first layer, the K1 mirror sites are connected to the server through
an error-free shared link, and for the second layer, each user connects to only one mirror.
Our goal is to design a scheme to decrease the first load R1 in the first hop (i.e., from the
server to all the mirror sites) and the second load R2 in the second hop (i.e., from each
mirror site to its connected users).
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Figure 1. The (K1, K2; M1, M2; N) hierarchical caching system with N=4, K1 =K2 =2, M1 =2, and
M2 =1.

The authors in [9] proposed the first hierarchical coded caching scheme (KNMD
Scheme). The MN Scheme is applied two times in two layers consecutively. Although
the KNMD Scheme achieves the optimal transmission load for the second hop, it involves
a significant increase in R1 since it ignores the users’ cache memory when designing the
multicast message sent from the server. To improve the first load R1, the authors in [10,11]
proposed new schemes that jointly use the two types of the MN Scheme together for the
mirror sites and users, respectively.

It is worth noting that all the schemes consider the single file retrieval case, i.e., each
user requests one file. The authors in [12] first considered the linear function retrieval
scheme (WSJT Scheme), i.e., a linear combination of files is requested from each user
through the shared link broadcast network. Clearly, linear function retrieval includes the
single file retrieval case. In this paper, we study the linear function retrieval scheme for
hierarchical networks and obtain the following results.

• We first propose a baseline scheme via the WSJT Scheme and KNMD Scheme where
the second-layer load achieves the optimal transmission load. However, we achieve
this by sacrificing the first-layer load.

• Then, in order to reduce the first-layer load, we propose another scheme whose second
load also achieves optimality at the expense of increased subpacketization. Our
scheme also aids in reducing the redundancy for some special demand distributions.

The rest of this paper is organized as follows. Section 2 formally introduces the system
model and some existing schemes. Section 3 presents the main results. Section 4 gives an
example and the general description of our scheme, i.e., the scheme for Theorem 2. The
conclusion of this paper is given in Section 5.

Notations: For any positive integers a and b with a < b, let [a : b] , {a, . . . , b} and
[a] , [1 : a]. Let ([b]t ) , {V|V ⊆ [b], |V|= t}, for any positive integer t ≤ b. For a positive
integer n, the n-dimensional vector space over the field Fq is denoted by Fn

q . For a given
matrix P with row size X1, we divide it into X1 parts by row, which is represented by
P={P(x1)| x1∈ [X1]}. For any integer set T , define PT as the sub-matrix of P by selecting
some rows from P, where the rows have indices in T . The rank of matrix P is denoted as
rank(P). The transpose of P is represented by P> .

2. Preliminary

In this section, we give a formal description of the hierarchical caching system and
review some existing related schemes for the hierarchical caching problem.
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2.1. System Model

Consider a hierarchical network as shown in Figure 1. It consists of a single server
with a library of N files, K1 cache-aided mirror sites, and K1K2 cache-aided users. For
the first layer, the K1 mirror sites are connected to the server through an error-free shared
link, and for the second layer, each user connects to only one mirror. Mk1 represents the
k1-th mirror and the k2-th user attached to Mk1 as Uk1,k2 , k1 ∈ [K1], k2 ∈ [K2], and the set
of users attached to Mk1 as Uk1 . The server contains a collection of N files, denoted by
W={W(1), W(2), . . . , W(N)}, each of which is uniformly distributed over FB

2 , where B∈N+.
Each mirror and user is equipped with M1 and M2 files, respectively, where M1, M2 ≥ 0.
A (K1, K2; M1, M2; N) hierarchical caching system contains two phases.

• Placement phase: The mirror site Mk1 caches some parts of the files by using a cache
function ϕk1 :FNB

2 →FM1B
2 , where M1

N is the memory ratio of the mirror in the first layer,
M1∈ [0 : N]. The cache contents of mirror Mk1 are

Zk1 = ϕk1(W), k1∈ [K1].

The user Uk1,k2 caches some parts of the files by using a cache function φk1,k2 :FNB
2 →

FM2B
2 , where M2

N is the memory ratio of users in the second layer, M2∈ [0 : N]. Then,
the cache contents of Uk1,k2 are

Z̃k1,k2 =φk1,k2(W), k1∈ [K1], k2∈ [K2].

• Delivery phase: Each user Uk1,k2 randomly requests a linear combination of the files

Lk1,k2 =d(1)k1,k2
W(1) + d(2)k1,k2

W(2) + . . . + d(N)
k1,k2

W(N).

for any k1∈ [K1], k2∈ [K2], where dk1,k2 =(d(1)k1,k2
, . . ., d(N)

k1,k2
)∈FN

2 denotes the demand
vector of user Uk1,k2 . When each user requests a single file, the demand vector dk1,k2
is a N-length unit vector. For example, if user Uk1,k2 only requests the 1-st file, then
the demand vector is set as dk1,k2 = (1, . . . , 0) ∈ FN

2 , k1 ∈ [K1], k2 ∈ [K2], which is a
special case of our proposed scheme. We can obtain the demand matrices of all users
as follows:

D(k1)=

 dk1,1
...

dk1,K2

, D=

 D(1)

...
D(K1)

. (1)

where D(k1) represents the demand vectors of Uk1 . Given the demand matrix D, we
should consider the following two types of messages.

– The messages sent by the server: The server generates signal Xserver by using an
encoding function χ : FK1K2 N

2 × FNB
2 →FR1B

2 , where

Xserver=χ(D,W).

and then the server sends Xserver to the mirrors. The normalized number of
transmissions R1 is called the transmission load for the first layer.

– The messages sent by the mirror: Based on Xserver, Zk1 , and D, each mirror Mk1

generates a signal Xmirror
k1

by using the encoding function κ : FK2 N
2 × FM1B

2 ×
Xserver→FR2B

2 , where

Xmirror
k1

=κ(D(k1),Zk1 , Xserver).
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and then mirror Mk1 sends Xmirror
k1

to its connected users. The normalized number
of transmissions R2 is called the transmission load for the second layer.

For the retrieval process, each user Uk1,k2 can decode its required linear combination
of files from (D, Z̃k1,k2 , Xmirror

k1
), which means that there exist decoding functions

ξk1,k2 : FK1K2 N
2 × FM2B

2 × FR2B
2 →FB

2 , k1∈ [K1], k2∈ [K2], such that

ξk1,k2(D, Z̃k1,k2 , Xmirror
k1

)=d(1)k1,k2
W(1) + . . . + d(N)

k1,k2
W(N).

We define the optimal transmission loads for the two layers as R∗1 and R∗2 separately.

R∗1 = infχ,κ,(ξk1,k2
)k1∈[K1 ],k2∈[K2 ]

{R1},

R∗2 = infχ,κ,(ξk1,k2
)k1∈[K1 ],k2∈[K2 ]

{R2}.

Our goal is to design schemes in which the transmission loads R1 and R2 are as
small as possible.

2.2. Existing Schemes

In the following, we review the KNMD Scheme for the hierarchical caching problem
and the WSJT Scheme over the binary field F2, which will be useful for the hierarchical
caching system with linear function retrieval. First, let us outline the MN Scheme.

(1) MN Scheme [1]: Set t , MK/N, when t ∈ [0 : K], N ≥ K, each file is partitioned
into F=(K

t ) packets, i.e., for each n∈ [N], W(n)=(W(n)
T ), where T ∈ ([K]t ). In the placement

phase, for each user Uk, k ∈ [K]. The cache content of user Uk is Zk = {W
(n)
T |n ∈ [N], k ∈

T , T ∈ ([K]t )}. In the delivery phase, the file Wdk
is requested by each user Uk, where dk∈ [N].

Fixing a user k∈S , the user k requests the subfiles Wdk ,S\{k} when it is presented in the
cache of any user k′∈S \ {k}. Then, the server transmits the coded signal

⊕
k∈S Wdk ,S\{k},

where S ⊆ [K] of |S|= t + 1. The transmission load RMN= K(1−M/N)
KM/N+1 .

(2) KNMD Scheme [9]: This scheme uses the MN Scheme in each layer of the hierarchi-
cal network. More specifically, for the first layer between the server and K1 mirrors, it uses
the (K1, M1, N) MN Scheme K2 times to recover all K1K2 requested files, and then each
mirror Mk1 , k1 ∈ [K1] works as a server whose library contains K2 files that are requested
by users in Uk1 , and finally it utilizes the (K2, M2, N) MN Scheme between Mk1 and Uk1 .
Then, each user can retrieve its requested file with the transmission load as follows.

R1 = K2
K1 − K1M1/N
K1M1/N + 1

, R2 =
K2 − K2M2/N
K2M2/N + 1

.

However, the MN Scheme only works for single file retrieval. The authors in [12] proposed
a scheme (WSJT Scheme) that is suitable for the linear function retrieval problem.

(3) WSJT Scheme [12]: Using the placement strategy of the MN Scheme, each user
Uk where k ∈ [K] requests a linear combination of files with demand vector dk ∈ FN

2 .
After revealing the demand matrix D=(d>1 , . . . , d>K )

> with dimension K× N, the server
broadcasts some coded packets by modifying the transmission strategy of the MN Scheme
such that each user is able to recover its demanded linear combination of files with the
transmission load

RWSJT=
( K

t+1)− (K−rank(D)
t+1 )

(K
t )

, t∈ [0 : K].

It is worth noting that when D is row full rank, RWSJT is optimal under the uncoded
placement.
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3. Main Results

In this section, we first propose a baseline scheme via the WSJT Scheme where R2
achieves optimality when the sub-matrix D(k1), k1 ∈ [K1], is full rank. Then, we propose
another scheme that improves R1 while the R2 remains unchanged compared with the
Baseline Scheme. Finally, some theoretical and numerical comparisons are provided.

For the sake of convenience in proposing another scheme for some special demand
distributions, the following definitions of the leader mirror and user sets are necessary.

Definition 1 (Leader mirror set). For a K1K2 × N demand matrix D in (1), we call a subset
of mirrors the leader mirror set, which is represented by LM = {l1, . . . , l|LM|}, LM ⊆ [K1], if it
satisfies the following condition for k1∈ [K1], k2∈ [K2]

dk1,k2 =α
(k1)
1 dl1,k2 + . . . + α

(k1)
|LM|

dl|LM | ,k2 . (2)

and it has the minimum cardinality among all the subsets satisfying (2), where (α(k1)
1 , . . . , α

(k1)
|LM|

) ∈

F|LM|
2 .

Definition 2 (Leader user set). For a K2 × N demand matrix D(k1) in (1), we call a subset of
users the leader user set, which is represented by Lk1 = {l

′
1, . . . , l

′
|Lk1
|}, Lk1 ⊆ [K2], if, for any

k1∈ [K1], k2∈ [K2], it satisfies the condition (3) and it has the minimum cardinality among all the

subsets satisfying (3), where (α1, . . . , α|Lk1
|)∈F

|Lk1
|

2 :

dk1,k2 =α1dk1,1 + . . . + α|Lk1
|dk1,l′|Lk1

|
. (3)

Now, we introduce the Baseline Scheme, which is generated by using the KNMD
Scheme in [9] and the WSJT Scheme in [12]. We utilize the WSJTC Scheme to replace the
MN Scheme in the KNMD Scheme, and then we obtain the Baseline Scheme, which is
suitable for the linear function retrieval problem in the hierarchical network.

Theorem 1 (Baseline Scheme). For any positive integers K1, K2, t1 ∈ [K1], t2 ∈ [K2] and the
demand matrix D in (1), there exists a (K1, K2; M1, M2; N) hierarchical coded caching scheme for a
linear function retrieval problem with memory ratios M1

N = t1
K1

, M2
N = t2

K2
and transmission loads

Rbase1=K2

((
K1

t1 + 1

)
−
(

K1 − |LM|
t1 + 1

))
/
(

K1

t1

)
.

Rbase2= max
k1∈[K1]

{((
K2

t2 + 1

)
−
(

K2 − rank(D(k1))

t2 + 1

))
/
(

K2

t2

)}
.

where LM is defined in Definition 1.

In fact, the transmission loads are related to the placement strategy and demand dis-
tribution, respectively. The KNMD Scheme considers the first and second layers separately
and ignores the users’ and mirrors’ cache memories, which leads to good performance on
R2 but results in a large transmission load R1. For the second layer, it can be regarded as a
(K2, M2, N) shared link caching problem in which the WSJT Scheme achieves the optimal
transmission load under certain circumstances, i.e., when the sub-matrix D(k1), k1∈ [K1],
is full rank, Rbase2 = R∗2 . For the purpose of improving R1, we propose another scheme,
stated below, and the proof is included in Section 4.
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Theorem 2. For any positive integers K1, K2, t1∈ [K1], t2∈ [K2] and the demand matrix D in (1),
there exists a (K1, K2; M1, M2; N) hierarchical coded caching scheme for a linear function retrieval
problem with memory ratios M1

N = t1
K1

, M2
N = t2

K2
and transmission loads

R1 =

((
K1

t1 + 1

)
−
(

K1 − |LM|)
t1 + 1

))(
K2

t2 + 1

)
/
(

K1

t1

)(
K2

t2

)
, (4)

R2 = max
k1∈[K1]

{((
K2

t2 + 1

)
−
(

K2 − rank(D(k1))

t2 + 1

))
/
(

K2

t2

)}
.

Now, let us consider the performance of our two schemes. For the first layer, we claim
that R1 < 1

t2+1 Rbase1, where t2 ≥ 0 since

R1

Rbase1
=

(
( K1

t1+1)− (K1−|LM|)
t1+1 )

)
( K2

t2+1)(
K1
t1
)

K2

(
( K1

t1+1)− (K1−|LM|
t1+1 )

)
(K1

t1
)(K2

t2
)
=

( K2
t2+1)

K2(
K2
t2
)

=
K2! t2!(K2 − t2)!

K2 K2!(t2 + 1)!(K2 − t2 − 1)!

=
t2!(K2 − t2)(K2 − t2 − 1)!

K2 t2!(t2 + 1)(K2 − t2 − 1)!

=
K2 − t2

K2
· 1

t2 + 1
≤ 1

t2 + 1
.

Obviously, this scheme has the same performance as the Baseline Scheme, i.e., R2 = Rbase2,
which also achieves the optimal transmission load when the demand matrix D(k1), k1∈ [K1],
is full rank.

Finally, we perform a numerical comparison to further show the performance of our
scheme. In Figure 2, we compare the Baseline Scheme with the scheme for Theorem 2
with fixed parameters (K1, K2, |LM|, N) = (20, 10, 10, 200) and varying the memory ratio
M1/N from 0 to 1 with a step size 0.1. As seen in Figure 2, compared to the Baseline
Scheme, the scheme for Theorem 2 can reduce the transmission load R1 significantly, as
this scheme utilizes both the user’s cache and the mirror’s cache when constructing the
multicast message sent by the server. The scheme for Theorem 2 achieves the same R2 as
the Baseline Scheme, while our scheme has a lower transmission load R1.

0.2 0.4 0.6 0.8 1.0
M1/N

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

R 1

N = 200  K1 = 20  K2 = 10

The baseline Scheme

Scheme for Theorem 2

Figure 2. R1 on N = 200, K1 =20, K2 =10.
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4. Scheme for Theorem 2

In this section, we first give an illustrative example of our scheme. Then, the general
description of the scheme is provided. Before the description, we first introduce the
following lemmas regarding the message sent by the server and mirrors, whose proofs are
included in Appendices A and B, respectively.

Lemma 1 (The messages sent by the server). Given a demand matrix D in (1), the leader mirror
set LM, and a user set B ∈ ( [K2]

t2+1), if there exists a mirror set C ∈ ( [K1]
|LM|+t1+1), where LM ⊆ C,

let VC be the family of mirror set V , V ⊆ C, where each V satisfies Definition 1. Then, we have
∑V∈VC XC\V ,B=0, where XC\V ,B represents the message sent by the server, which is defined in (8).

Lemma 2 (The messages sent by the mirror). Given a sub-matrix D(k1), k1 ∈ [K1] of D, the
leader user set Lk1 , and a mirror set T1∈ ([K1]

t1
), if there exists a user set C ′ ∈ ( [K2]

|Lk1
|+t2+1), where

Lk1 ⊆ C
′, let V′C ′ be the family of all set V ′, V ′ ⊆ C ′, where each V ′ satisfies Definition 2. Then, we

have ∑V ′∈V′C′
X(k1)
T1,C ′\V ′=0, where X(k1)

T1,C ′\V ′ represents the message sent by the mirror Mk1 , which
is defined in (9).

By Lemma 1, for any mirror set A ∈ ( [K1]
t1+1), LM

⋂A = ∅, and the message XA,B ,

B∈ ( [K2]
t2+1) can be computed directly from the broadcast messages by using the following

equation

XA,B= ∑
V∈VC\LM

XC\V ,B (5)

where C=A⋃LM.
By Lemma 2, for any user set B = ( [K2]

t2+1), Lk1

⋂B = ∅, the message X(k1)
T1,B can be

computed directly from the broadcast messages by using the equation

X(k1)
T1,B= ∑

V ′∈V′C′\Lk1

X(k1)
T1,C ′\V ′ (6)

where C ′=B⋃Lk1 . After receiving the messages sent by the mirror Mk1 , user Uk1,k2 is able
to recover its desired linear combination of files.

4.1. An Example for Theorem 2

When K1 = 3, K2 = 2, t1 = t2 = 1, we can obtain an F-(K1, K2; M1, M2; N) = 6 −
(3, 2; 2, 3; 6) coded caching scheme as follows.

• Placement phase: Each file from FB
2 is divided into (3

1)(
2
1)=6 subfiles with equal size,

i.e., W(n)={W(n)
1,1 , W(n)

1,2 , . . . , W(n)
3,1 , W(n)

3,2 }, n∈ [6]. For simplicity, we represent a set that
is the subscript of some studied object by a string. For example, T{1,2} is represented
by T12. The contents cached by the mirrors are as follows:

Z1={W
(n)
1,1 , W(n)

1,2 | n∈ [6]},Z2={W
(n)
2,1 , W(n)

2,2 | n∈ [6]},Z3={W
(n)
3,1 , W(n)

3,2 |n∈ [6]}.

The subfiles cached by the users are as follows:

Z̃1,1= Z̃2,1= Z̃3,1={W
(n)
1,1 , W(n)

2,1 , W(n)
3,1 |n∈ [6]},

Z̃1,2= Z̃2,2= Z̃3,2={W
(n)
1,2 , W(n)

2,2 , W(n)
3,2 |n∈ [6]}.

• Delivery phase: In the delivery phase, the demand vectors with length 12 are dk1,1=

(1, 1, 0, 0, 0, 0), dk1,2 = (0, 0, 1, 1, 0, 0), k1 ∈ [3]. As we can see, D(1) = D(2) = D(3).
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Without loss of generality, we set LM={1}. We denote a linear combination of subfiles
as

Ldk1,k2
T1,T2 = ∑

n∈[N]

d(n)
k1,k2
·W(n)
T1,T2

.

where T1∈{{1}, {2}, {3}} and T2∈{{1}, {2}}, k1∈ [3], k2∈ [2]. Then, the messages
sent in this hierarchical system consist of the following two parts.

– The messages sent by the server: The server generates signal XA,B satisfying

A∈ ([3]2 ),B∈ (
[2]
2 ) and A⋂LM 6=∅ as follows:

X12,12=Ld1,1,2,2 ⊕ Ld1,2,2,1 ⊕ Ld2,1,1,2 ⊕ Ld2,2,1,1

=(⊕i∈[2](W
(i)
2,2 ⊕W(i)

1,2))⊕ (⊕i∈[3:4](W
(i)
2,1 ⊕W(i)

1,1)),

X13,12=Ld1,1,3,2 ⊕ Ld1,2,3,1 ⊕ Ld3,1,1,2 ⊕ Ld3,2,1,1

=(⊕i∈[2](W
(i)
3,2 ⊕W(i)

1,2))⊕ (⊕i∈[3:4](W
(i)
3,1 ⊕W(i)

1,1)).

In this example, we have LM={1}, and A={2, 3} has no intersection with LM.
Here, we have C=LM

⋃A={1, 2, 3} and VC={{1}, {2}, {3}}. By Lemma 2, we
can generate X23,12 = X12,12 + X13,12 = (⊕i∈[2](W

(i)
3,2 ⊕W(i)

2,2)) ⊕ (⊕i∈[3:4](W
(i)
3,1 ⊕

W(i)
2,1)). Thus, the transmission load of the first layer is R1=

3−1
6 =1/3.

– The messages sent by mirror Mk1 : Here, we take mirror M1 as an example. From

D(1), we have L1 = {1, 2}, and M1 transmits X(1)
T1,B , where T1 ∈ ([3]1 ), B ∈ ([2]2 ),

B⋂L1 6=∅, i.e.,

X(1)
2,12=X12,12 − X(2)

1,12=(⊕i∈[2]W
(i)
2,2)⊕ (⊕i∈[3:4]W

(i)
2,1),

X(1)
3,12=X13,12 − X(3)

1,12=(⊕i∈[2]W
(i)
3,2)⊕ (⊕i∈[3:4]W

(i)
3,1),

X(1)
1,12=W(1)

1,2 ⊕W(2)
1,2 ⊕W(3)

1,1 ⊕W(4)
1,1 .

Then, the transmission amount by mirror M1 is 3 packets, and the transmission load
of the second layer is R2=

3
6 =

1
2 .

User U1,1 can decode W(1)
1,2 ⊕W(2)

1,2 , W(1)
2,2 ⊕W(2)

2,2 , W(1)
3,2 ⊕W(2)

3,2 , from X(1)
1,12, X(1)

2,12, X(1)
3,12,

respectively, as it has cached {W(n)
1,1 , W(n)

2,1 , W(n)
3,1 |n∈ [6]}.

Compared with the Baseline Scheme, which achieves Rbase1 = 4
3 , Rbase2 = 1

2 , our
scheme has a significant improvement in R1.

4.2. General Description of Scheme for Theorem 2

Given a (K1, K2; M1, M2; N) hierarchical caching system, we have an F-(K1, K2, M1,
M2, N) coded caching scheme where F = (K1

t1
)(K2

t2
), t1 ∈ [0 : K1], t2 ∈ [0 : K2]. The scheme

consists of two phases.

• Placement phase: Firstly, we divide each file into (K1
t1
) equal-size subfiles; then, we

further divide each subfile into (K2
t2
) sub-subfiles. The index of subfiles consists of

two parts, T1 and T2, i.e., W(n) = {W(n)
T1,T2

| T1 ∈ ([K1]
t1
), T2 ∈ ([K2]

t2
)}, n ∈ [N]. Each

mirror site Mk1 , k1∈ [K1] caches subfiles W(n)
T1,T2

according to the following rule, which
is mainly related to the first subscript T1.

Zk1 =

{
W(n)
T1,T2

∣∣∣T1∈
(
[K1]

t1

)
, T2∈

(
[K2]

t2

)
, k1∈T1, n∈ [N]

}
.
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Similarly, each user Uk1,k2 , k1 ∈ [K1], k2 ∈ [K2] caches subfiles W(n)
T1,T2

according to the
following rule, which is mainly related to the second subscript T2.

Z̃k1,k2 =

{
W(n)
T1,T2

∣∣∣T1∈
(
[K1]

t1

)
,T2∈

(
[K2]

t2

)
,k2∈T2,n∈ [N]

}
.

Under this caching strategy, we can verify that it satisfies the memory constraints
stated in Theorem 2. Each mirror caches (K1−1

t1−1 )(
K2
t2
)N subfiles and each user caches

(K1
t1
)(K2−1

t2−1 )N subfiles, where each subfile is B/(K1
t1
)(K2

t2
) bits. Thus, the memory ratios

of the mirror and user are M1
N = t1

K1
and M2

N = t2
K2

, respectively. For any user’s demand

vector dk1 ,k2 =(d(1)k1,k2
, . . . , d(N)

k1,k2
) of N-length, we use the notation as follows to denote

a linear combination of subfiles:

Ldk1,k2
T1,T2 = ∑

n∈[N]

d(n)
k1,k2

W(n)
T1,T2

, T1∈
(
[K1]

t1

)
, T2∈

(
[K2]

t2

)
. (7)

• Delivery phase: For the convenience of the subsequent discussion, we first give the
following two definitions of the signals transmitted in the first layer, say XA,B , and

the second layer, say X(k1)
T1,B . For any mirror set containing t1 + 1 mirrors defined as

A ∈ ( [K1]
t1+1), any mirror site set containing t1 mirror sites defined as T1 ∈ ([K1]

t1
), and

any user set containing t2 + 1 users defined as B ∈ ( [K2]
t2+1), we define

XA,B= ∑
k1∈A

∑
k2∈B

Ldk1,k2
,A\{k1},B\{k2}, (8)

X(k1)
T1,B= ∑

k2∈B
Ldk1,k2

,T1,B\{k2}. (9)

After the demand matrix D of size K1K2×N and its sub-matrix D(k1) of size K2×N in
(1) are revealed, we have the leader mirror set LM according to Definition 1. For each
sub-matrix D(k1) of D, k1∈ [K1], we have the leader user set Lk1 , Lk1 ⊆ [K2] according
to Definition 2. There are two types of messages transmitted by the server and mirror,
respectively.

– The messages sent by the server: For each A∈ ( [K1]
t1+1), B ∈ ( [K2]

t2+1), LM
⋂A 6= ∅,

the server transmits XA,B to the mirror sites.

– The messages sent by the mirror: Mirror site Mk1 transmits X(k1)
T1,B via the following

rules.
(1) For each T1∈ ([K1]

t1
), k1 /∈T1, A=T1

⋃{k1}, B∈ ( [K2]
t2+1), B

⋂Lk1 6=∅, mirror Mk1

transmits X(k1)
T1,B by subtracting ∑k′1∈T1

X(k′1)
A\{k′1},B

from XA,B , i.e.,

X(k1)
T1,B = XA,B − ∑

k′1∈T1

X(k′1)
A\{k′1},B

.

(2) For each T1 ∈ ([K1]
t1
), k1 ∈ T1, B ∈ ( [K2]

t2+1), B
⋂Lk1 6= ∅, mirror Mk1 directly

transmits X(k1)
T1,B to its connected users generated from its cached content Zk1 .

As regards the messages XA,B , A⋂LM =∅, and X(k1)
T1,B , B⋂Lk1 =∅, which are also

necessary for the users, these messages can be computed from the sent messages by
using Lemmas 1 and 2. More precisely, XA,B , A⋂LM=∅ can be obtained by (5), and

X(k1)
T1,B , B⋂Lk1 =∅ can be obtained by (6).

Now, we prove that each message XA,B transmitted by the server is decodable, i.e., after
each mirror subtracts some packets from XA,B , the rest of the message only contains coded
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packets required by the users in Uk1 . Then, we further prove that each message X(k1)
T ,B

transmitted by Mk1 is decodable, i.e., after user Uk1,k2 , k1∈ [K1], k2∈ [K2], subtracting some

packets from X(k1)
T ,B , the rest of the message only contains coded packets required by user

Uk1,k2 .

4.2.1. Decodability of Mirror

For each mirror Mk1 , k1∈ [K1], it can receive or recover all the XA,B A ⊆ [K1], B ⊆ [K2],
from the server. By (8), we have

XA,B= ∑
k1∈A

∑
k2∈B

Ldk1,k2
,A\{k1},B\{k2}

= ∑
k1∈A

∑
k2∈B

∑
n∈[N]

d(n)k1,k2
W(n)
A\{k1},B\{k2}

(10)

= ∑
k2∈B

∑
n∈[N]

d(n)k1,k2
W(n)
A\{k1},B\{k2}

+ ∑
k′1∈A\{k1}

∑
k2∈B

∑
n∈[N]

d(n)k′1,k2
W(n)
A\{k′1},B\{k2}

(11)

= X(k1)
A\{k1},B︸ ︷︷ ︸

The coded packets required by users in Uk1 .

+ ∑
k′1∈A\{k1}

∑
k2∈B

∑
n∈[N]

d(n)k′1,k2
W(n)
A\{k′1},B\{k2}︸ ︷︷ ︸

The coded packets cached by Mk1 .

where (10) holds directly from (7), and (11) holds by separating k1 from A. Moreover, (11)
holds by (7) and (9). The first term of (11) denotes coded packets that will be transmitted to
Uk1 and the second term denotes packets cached by Mk1 because k1∈A \ {k′1}.

4.2.2. Decodability of User

For each user Uk1,k2 , k1∈ [K1], k2∈ [K2], it can receive all the X(k1)
T1,B , T1 ⊆ [K1], B ⊆ [K2],

k2∈B, from mirror Mk1 . By (9), we have

X(k1)
T1,B = ∑

k2∈B
Ldk1,k2

,T1,B\{k2}= ∑
n∈[N]

d(n)k1,k2
W(n)
T1,B\{k2}︸ ︷︷ ︸

requested by user Uk1 ,k2

(12)

+ ∑
k′2∈B\{k2}

∑
n∈[N]

d(n)k1,k′2
W(n)
T1,B\{k′2}︸ ︷︷ ︸

cached by user Uk1 ,k2

. (13)

where (12) holds directly by separating k2 from B. It is clear that user Uk1,k2 can decode its
desired linear combination of packets, i.e., the first term of (12), by subtracting the cached
contents, i.e., the second term of (12), as k2∈B \ {k′2}, which means that Uk1,k2 has already

cached the packets from X(k1)
T1,B .

4.2.3. Performance

From the placement phase, each file is firstly divided into (K1
t1
) subfiles and then

each subfile is further divided into (K2
t2
) subfiles, so the subpacketization is (K1

t1
)(K2

t2
). Each

subfile is B/(K1
t1
)(K2

t2
) bits, each mirror caches (K1−1

t1−1 )(
K2
t2
)N subfiles, and each user caches

(K1
t1
)(K2−1

t2−1 )N subfiles. Thus, the memory ratios of the mirror and user are M1
N = t1

K1
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and M2
N = t2

K2
, which satisfy the memory constraints in Theorem 2. In total, the server

transmits ( K1
t1+1)− (K1−|LM|

t1+1 )( K2
t2+1) multicast messages, and the mirror transmits ( K2

t2+1)−

(K2−rank(D(k1))
t1+1 )(K1

t1
) multicast messages. Each message contains B/(K1

t1
)(K2

t2
) bits, so the trans-

mission loads of the first layer and the second layer are as illustrated in (4). Although
the scheme for Theorem 2 has a higher subpacketization level of (K1

t1
)(K2

t2
) compared with

(K1
t1
) + (K2

t2
) of the Baseline Scheme, we achieve a much lower transmission load R1 under

the same transmission load R2, where both schemes achieve the optimal transmission load
of the second layer when the sub-demand matrix D(k1), k1 ∈ [K1] is full rank.

5. Conclusions

In this paper, we studied the linear function retrieval problem for hierarchical cache-
aided networks. We proposed two schemes, where the first scheme achieves the optimal
transmission load for the second layer for some demand distribution and our second
scheme further reduces the load of the first layer while maintaining the same transmission
load in the second layer.
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Appendix A. Proof of Lemma 1

Proof. Without loss of generality, we assume that LM=[|LM|]. From (8) and (7), we have

∑
V∈VC

XC\V ,B= ∑
V∈VC

∑
k1∈C\V

∑
k2∈B

Ldk1,k2
,C\(V ⋃{k1}),B\{k2}

= ∑
V∈VC

∑
k1∈C\V

∑
k2∈B

∑
n∈[N]

d(n)k1,k2
·W(n)
C\(V ⋃{k1}),B\{k2}

. (A1)

If the occurrence number of each subfile W(n)
T1,T2

, T1 ∈ ([K1]
t1
), T2 ∈ ([K2]

t2
), n ∈ [N] is even in

∑V∈VC XC\V ,B , then the coefficient of W(n)
T1,T2

in the summation is 0. Note that if we focus

on W(n)
T1,T2

, then k2 = B \ T2, which is a fixed user label. W(n)
T1,T2

appears in ∑V∈VC XC\V ,B
if and only if there exist some mirrors Mk1 , k1∈C \ T1, which satisfy the two conditions:

d(n)k1,k2
6=0, C \ ({k1}

⋃ T1)∈VC . Moreover, for each k1∈C \ T1 satisfying the two conditions,

there exists one coded message that contains W(n)
T1,T2

. Thus, we only need to prove that the
number of mirrors Mk1 , k1∈C \ T1 satisfying the two conditions is even.

Assume that mirror k1 satisfies the two conditions; then, we have d(n)k1,k2
6= 0 and C \

({k1}
⋃ T1)∈VC . Let L′M =C \ ({x}⋃ T1)={l1, . . . , l|L′M|}, and L′M is also a leader mirror

set satisfying Definition 1. Then, by (2), we have dk1,k2 = α
(k1)
1 dl1,k2 + . . . + α

(k1)
|L′M|

dl|L′M |
,k2 .

Then, there must be k′1 mirrors in α
(k1)
1 dl1,k2 + . . .+ α

(k1)
|L′M|

dl|L′M |
,k2 satisfying d(n)k1,k2

6=0 and the

corresponding coefficient α
(k′1)
l′M
6=0, l′M∈ [|L′M|]. k′1 is an odd number; otherwise, d(n)k1,k2

=0. It

is easy to check that these k′1 mirrors also satisfy constraints d(n)k1,k2
6=0, C \ ({k1}

⋃ T1)∈VC .
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Thus, there are in total k′1 + 1 mirrors in C \ T1, which is an even number, satisfying the
two constraints.

Appendix B. Proof of Lemma 2

Proof. Without loss of generality, we assume that Lk1 =[|Lk1 |]. From (9) and (7), we have

∑
V ′∈V′C′

X(k1)
T1,C ′\V ′= ∑

V ′∈V′C′
∑

k2∈C ′\V ′
Ldk1,k2

,T1,C ′\(V ′ ⋃{k2})

= ∑
V ′∈V′C′

∑
k2∈C ′\V ′

∑
n∈[N]

d(n)k1,k2
·W(n)
T1,C ′\(V ′ ⋃{k2})

.

If the occurrence number of subfile W(n)
T1,T2

is even in ∑V ′∈V′C′
X(k1)
T1,C ′\V ′ , then the coefficient

of W(n)
T1,T2

in the summation is 0. W(n)
T1,T2

appears in ∑V ′∈V′C′
X(k1)
T1,C ′\V ′ if and only if there

exist some users Uk1,x, x∈C ′ \ T2, which satisfy the following two conditions: d(n)k1,x 6=0 and
C ′ \ ({x}⋃ T2)∈V′C ′ .

Moreover, for each x ∈ C ′ \ T2 satisfying the two conditions, there exists one coded
message that contains W(n)

T1,T2
. Thus, we only need to prove that the number of users Uk1,x,

x∈C ′ \ T2 satisfying the two conditions is even.
Assume that user Uk1,x satisfies the two conditions; then, we have d(n)k1,x 6= 0 and

C ′ \ ({x}⋃ T2) ∈V′C ′ . Let L′k1
= C ′ \ ({x}⋃ T2) = {l1, . . . , l|L′k1

|}, and L′k1
is also a leader

user set among users in Uk1 , where rank(D(k1))= rank(DL′k1
). Then, we have

dk1,k2 =α1dk1,l1 + . . . + α|L′k1
|dk1,l|L′k1

|
, (α1, . . . , α|L′k1

|)∈ [F2]
|L′k1
|.

Then, there must be x′ users in α1dk1,l1 + . . . + α|L′k1
|dk1,l|L′k1

|
, (α1, . . . , α|L′k1

|) ∈ [F2]
|L′k1
|

satisfying d(n)k1,x 6= 0 and the corresponding coefficient αl′k1
6= 0, k1 ∈ [|L′k1

|]. x′ is an odd

number; otherwise, d(n)k1,x = 0. It is easy to check that these x′ users also satisfy C ′ \
({x}⋃ T2)∈V′C ′ . Thus, there are in total x′ + 1 users in C ′ \ T ′1 , which is an even number,
satisfying the two constraints.
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