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Received: 24 January 2024

Revised: 11 February 2024

Accepted: 12 February 2024

Published: 15 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

An N-Shaped Lightweight Network with a Feature Pyramid and
Hybrid Attention for Brain Tumor Segmentation
Mengxian Chi 1 , Hong An 1,*, Xu Jin 1 and Zhenguo Nie 2,3,4,*

1 School of Computer Science and Technology, University of Science and Technology of China,
Hefei 230026, China

2 Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
3 State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
4 Beijing Key Laboratory of Precision/Ultra-Precision Manufacturing Equipments and Control,

Tsinghua University, Beijing 100084, China
* Correspondence: han@ustc.edu.cn (H.A.); zhenguonie@tsinghua.edu.cn (Z.N.)

Abstract: Brain tumor segmentation using neural networks presents challenges in accurately cap-
turing diverse tumor shapes and sizes while maintaining real-time performance. Additionally,
addressing class imbalance is crucial for achieving accurate clinical results. To tackle these issues, this
study proposes a novel N-shaped lightweight network that combines multiple feature pyramid paths
and U-Net architectures. Furthermore, we ingeniously integrate hybrid attention mechanisms into
various locations of depth-wise separable convolution module to improve efficiency, with channel
attention found to be the most effective for skip connections in the proposed network. Moreover, we
introduce a combination loss function that incorporates a newly designed weighted cross-entropy loss
and dice loss to effectively tackle the issue of class imbalance. Extensive experiments are conducted
on four publicly available datasets, i.e., UCSF-PDGM, BraTS 2021, BraTS 2019, and MSD Task 01
to evaluate the performance of different methods. The results demonstrate that the proposed net-
work achieves superior segmentation accuracy compared to state-of-the-art methods. The proposed
network not only improves the overall segmentation performance but also provides a favorable
computational efficiency, making it a promising approach for clinical applications.

Keywords: brain tumor segmentation; CNNs; feature pyramid; lightweight model; hybrid attention

1. Introduction

Brain tumor segmentation plays a crucial role in the diagnosis, treatment planning, and
monitoring of brain tumors [1]. Accurate segmentation of brain tumor regions from multi-
sequence magnetic resonance imaging (MRI) data is of paramount importance for precise
tumor analysis and subsequent clinical decision making [2]. The ability to delineate tumor
boundaries in MRI scans enables radiologists and clinicians to assess tumor size, location,
and heterogeneity, facilitating treatment planning and evaluating treatment response [3].
Traditional manual segmentation methods are time-consuming, subjective, and prone to
inter-observer variability [4]. Therefore, the automatic segmentation algorithm has received
widespread attention as an alternative solution. For instance, the self-organizing map
(SOM) [5] is an unsupervised exploratory data analysis tool that leverages principles of
vector quantization and similarity measurement to automatically partition images into
self-similar regions or clusters. Segmentation methods based on SOM have demonstrated
the ability to distinguish high-level and low-level features of tumors, edema, necrosis,
cerebrospinal fluid, and healthy tissue [6,7].

Furthermore, with the rapid advancements in deep learning techniques, particularly
convolutional neural networks (CNNs), there has been a paradigm shift in the field of
brain tumor segmentation [8,9]. Moreover, the application of the U-Net model in brain
tumor segmentation has led to significant strides in this field [10]. The remarkable progress
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achieved by the U-Net model and its variants can be attributed to its unique architectural
design, which addresses several challenges specific to brain tumor segmentation [11,12].
Firstly, the U-Net model adopts a fully convolutional network architecture, eliminating
the need for fully connected layers typically found in traditional CNNs. This design
choice enables the U-Net model to handle input images of arbitrary sizes, making it well-
suited for the analysis of medical images with varying dimensions. Additionally, the
U-Net model incorporates transpose convolution, also known as deconvolution or up-
sampling, which allows up-sampling of the learned features to the original input size.
This capability is particularly advantageous in brain tumor segmentation, as it enables the
U-Net model to generate segmentation maps with the same resolution as the input images,
preserving fine-grained details necessary for accurate tumor delineation. By combining
these architectural features, the U-Net model exhibits superior performance in capturing
contextual information, localizing tumor boundaries, and accurately segmenting brain
tumor regions [13].

However, despite its remarkable performance, the U-Net model does have certain
limitations that should be taken into consideration. Firstly, the U-Net model relies on
an encoder–decoder structure, where the encoder captures contextual information while
the decoder performs up-sampling for precise localization [14]. Nevertheless, this design
may result in the loss of fine-grained details during the down-sampling and up-sampling
processes, which can affect the accuracy of tumor segmentation, especially for small or
subtle tumor regions. Additionally, an important consideration when using the U-Net
model is its large model size [15]. U-Net architecture typically requires a significant number
of parameters and memory to accommodate the expansive feature maps and deep network
structure. This large model size can pose challenges in terms of deployment and practical
usage, especially in resource-constrained environments such as mobile devices or real-time
clinical applications. Furthermore, the U-Net model may struggle with handling class
imbalance issues, which are commonly encountered in brain tumor segmentation tasks,
where the tumor regions typically occupy a small portion of the overall image [16]. Class
imbalance can lead to biased training and produce suboptimal segmentation results.

In this work, our focus lies in proposing a novel neural network architecture for
multi-sequence MRI brain tumor image segmentation to address the aforementioned
challenges faced by the U-Net model and further improve the accuracy and efficiency of
tumor segmentation.

To address the issue of fine-grained information loss inherent in the encoder-decoder
structure of U-Net, we introduce the N-shaped neural network, which uniquely combines the
core concepts of multi-path CNNs, Feature Pyramids [17], and the U-Net architecture [18].
Notably, the proposed N-shaped neural network incorporates the novel Multiple Feature
Pyramid (MFP) paths as a multi-path CNN component. These MFP paths extract features
at multiple scales from brain tumor images and seamlessly transmit them to the encoder.
By integrating the MFP paths, the N-shaped neural network adeptly handles variations in
tumor size, shape, and appearance, thereby showcasing improved segmentation performance.
Consequently, the N-shaped neural network effectively harnesses the strengths of both multi-
path CNNs and U-Net architectures, enabling it to capture diverse contextual information
while accurately localizing and preserving fine-grained details.

In addition, to effectively reduce the model’s parameter size and computational
complexity while maintaining performance, we propose a novel lightweight convolution
module that integrates hybrid attention mechanisms. This integration has not been ex-
plored before, making it a unique contribution to the field. The commonly used deep
separable convolution (DSC) module [19] often faces performance degradation. To over-
come this limitation, we investigate the insertion of a spatial attention module [20] after
the depth-wise convolution and a channel attention module [21] after point-wise con-
volution. Remarkably, this configuration significantly enhances the performance of the
deep separable convolution module. Consequently, we term this module configuration,
consisting of the sequence of Depth-wise convolution, Spatial attention module, Point-wise
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convolution, and Channel attention module, as the DSPC module. Additionally, we explore
the application of different attention mechanisms in the horizontal skip connections of
our proposed model. Through meticulous experimentation, we discover that the channel
attention mechanism yields the most promising results.

Finally, to further effectively address the challenge of tumor region imbalance in
brain tumor segmentation, we employ a combo loss function that combines an improved
weighted cross-entropy loss [22] and Dice loss [23] for supervised training. The weighted
cross-entropy loss assigns higher weights to the minority class during training. We develop
a unique weighting algorithm that utilizes sub-region-based weights instead of label-based
weights. This innovative approach enables the model to be more sensitive to the smallest yet
crucial enhancing tumor (ET) region, thus improving segmentation accuracy. Furthermore,
Dice loss measures the overlap between the predicted and ground truth segmentation
masks, providing a comprehensive evaluation of segmentation performance. By leveraging
the strengths of both loss functions, our approach promotes accurate segmentation of brain
tumor regions.

Our contributions are summarized as follows:

• To the best of our knowledge, this is the first work to propose the integration of the
Multi-path CNN ideology, Feature Pyramid structure, and U-Net architecture into the
novel N-shaped neural network structure, accompanied by the introduction of the MFP
pathway module. This integration enables the extraction of multi-scale features from
brain tumor images, enhancing the model’s capability for comprehensive analysis.

• N-LiNet utilizes the DSPC lightweight module as the foundational building block
and integrates channel attention mechanisms in skip connections. This innovative ap-
proach, which explores the integration of attention mechanisms in different locations
within the DSC module, is a novel contribution to the field. The hybrid module not
only reduces the computational resources required by the model, but also improves
its segmentation performance. Moreover, it provides valuable insights into the vary-
ing sensitivity of different modules within deep separable convolutions to different
features, opening avenues for further research.

• To tackle the issue of class imbalance in brain tumor segmentation, we propose a novel
combo loss function that combines the improved weighted cross-entropy loss and
Dice loss. We introduce a sub-region-based weighting algorithm specifically designed
for brain tumor segmentation, which, to our knowledge, has not been previously
explored. By assigning higher weights to tumor regions, our approach provides a
unique solution to tackle the problem of class imbalance, enhancing the segmentation
accuracy and contributing to the field of brain tumor analysis.

By comparing the proposed N-shaped Lightweight neural Network (N-LiNet) ar-
chitecture with several state-of-the-art segmentation models [24–32] on multiple publicly
available brain tumor segmentation datasets (UCSF-PDGM [33], BraTS [34], and MSD [35]),
N-LiNet achieves superior segmentation metrics with lesser parameter size and computa-
tional complexity. The performance of N-LiNet highlights its effectiveness in accurately
segmenting brain tumors while minimizing resource requirements, making it a promising
solution for practical applications in medical image analysis.

The subsequent sections of this paper are organized as follows. Section 2 provides an
overview of the related work in the field of brain tumor segmentation. Section 3 presents
the methodology employed in this study, focusing on the proposed N-LiNet architecture
and its components. In Section 4, the datasets and evaluation metrics utilized for the
experiments are introduced. Section 5 presents the experimental results and analysis,
discussing the segmentation performance of N-LiNet compared to state-of-the-art methods
on the selected datasets. Finally, Section 6 concludes the paper by summarizing the
contributions, discussing the limitations, and outlining potential directions for future
research in the field of brain tumor segmentation.
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2. Related Work
2.1. Attention Mechanisms in CNNs

The channel attention mechanism [21] focuses on enhancing important channel infor-
mation while suppressing less relevant channels, achieved by computing attention weights
along the channel dimension. It typically involves global average pooling and a multi-layer
perceptron (MLP) to generate attention weights, which are then used to weight the original
feature maps. On the other hand, the spatial attention mechanism [20] aims to highlight
important spatial locations and suppress unimportant ones. It can be implemented through
convolutional operations with different kernel sizes or using self-attention mechanisms
to compute attention weights between spatial positions. These attention mechanisms,
when combined, form the Convolutional Block Attention Module (CBAM) [36], which
integrates both channel and spatial attention. Additionally, a recently proposed attention
mechanism called coordinate attention [37] focuses on modeling the relationships between
different positions in the feature maps by incorporating coordinate information. It utilizes
an MLP to process the coordinate information and generates position weights, which are
then multiplied with the original feature maps. The 3D structures of these commonly
used attention mechanisms are illustrated in Figure 1. While these attention mechanisms
enhance the modeling capability of CNNs by capturing important channel, spatial, and
positional information, they also introduce additional computational overhead.
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Figure 1. Attention mechanisms with (a) channel attention, (b) spatial attention, (c) CBAM, and
(d) coordinate attention.

2.2. Single-Path and Multi-Path CNNs for Brain Tumor Segmentation

CNNs have shown great promise in achieving accurate and efficient segmentation
results, revolutionizing the way brain tumors are analyzed and diagnosed due to their
ability to automatically learn discriminating features from input data [38]. Initially, single-
path CNNs were employed, where a single data processing stream was utilized [39].
These networks, which take multi-modal brain tumor MRI scans as input, sequentially
pass the data through a combination of convolutional layers, pooling layers, and non-
linear activation layers, ultimately performing segmentation using a classifier at the end
of the model. Single-path CNNs are characterized by their simplicity in structure and
shallow hierarchy, but their segmentation performance may be sub-optimal. As brain
tumor images are inherently complex and diverse, relying solely on a single processing
path may limit the network’s ability to capture and represent the intricate details present in
different modalities.

To address this limitation, multi-path CNNs have been introduced, featuring multiple
parallel convolutional pathways [40]. This architecture allows for the processing of input
information at multiple scales, providing a larger receptive field and the potential for
enhanced segmentation accuracy. However, it is worth noting that multi-path CNNs tend
to exhibit a higher level of complexity and require a larger model size to accommodate the
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increased number of pathways. Furthermore, an inherent challenge arises from the uneven
distribution of tumor regions, where certain tumor areas may exhibit varying sizes and
proportions compared to others.

To tackle this class imbalance issue, cascaded CNNs have been proposed as a poten-
tial solution [41]. By cascading multiple network models, each designed to segment a
specific region of interest, cascaded CNNs enable the transformation of the multi-region
tumor segmentation problem into a series of binary segmentation tasks. One of the key
advantages of cascaded CNNs is their ability to consider the unique relationships between
sub-regions when predicting subsequent segmentation tasks. This can be particularly
beneficial in minimizing false positives, as each network operates on regions extracted
from the output of the previous network. However, an important point to consider is that
cascaded CNNs, in contrast to single-path and multi-path CNNs, are not end-to-end and
require additional time for training and testing due to the sequential nature of the cascaded
segmentation process.

2.3. The U-Net and Its Variants for Brain Tumor Segmentation

The U-Net architecture consists of an encoder–decoder structure coupled with skip
connections [10]. The encoder path incorporates a series of convolutional and pooling
layers to progressively extract hierarchical features and reduce spatial resolution. The de-
coder path utilizes up-sampling and transposed convolutional layers to recover the spatial
information and generate segmentation maps. Skip connections connect the corresponding
encoder and decoder layers, allowing for the model to fuse low-level and high-level fea-
tures. This design enables U-Net to capture both local and global contextual information,
facilitating the accurate delineation of tumor boundaries.

Initially, the research focused on 2D segmentation networks operating within indi-
vidual 2D image planes. U-Net [12] has demonstrated its efficacy in capturing tumor
boundaries and distinguishing tumor regions from healthy brain tissue. U-Net++ [25]
extends the U-Net architecture by incorporating nested and dense skip pathways, enabling
the capture of multi-scale contextual information for precise brain tumor segmentation.
SegResNet [26] combines U-Net architecture with the residual network (ResNet) to enhance
feature representation and segmentation performance, effectively capturing both local and
global contextual information. To further improve feature representation, DynU-Net [27]
integrates a dynamic routing algorithm inspired by capsule networks into the U-Net archi-
tecture, enabling the capture of hierarchical relationships among different tumor regions.
MS-Net [31] is a medical image segmentation technique based on a codec structure com-
posed of a Multi-Scale Attention Module (MSAM) and a Stacked Feature Pyramid Module
(SFPM). MSAM dynamically adjusts the receptive fields to capture different levels of con-
text details, while SFPM adaptively increases the weight of the features of interest to focus
the network’s attention on the target region. Fusion factor [42] is introduced to control
the amount of information transferred from deep to shallow layers in Feature Pyramid
Networks (FPN) for tiny object detection. The paper explores how to estimate the effective
value of the fusion factor for a specific dataset by statistical methods. However, these
2D networks may disregard the crucial depth information inherent in the MRI images,
consequently impeding their ability to comprehensively utilize the rich local and global
contextual information available.

Therefore, 3D U-Net [43] was developed to extend the U-Net framework for processing
volumetric data, enabling the segmentation of brain tumors in 3D medical images. By
considering spatial dependencies along the three dimensions, SCAR U-Net [44] improves
the accuracy of tumor segmentation in volumetric scans. V-Net [45] is another extension
of U-Net that incorporates a volumetric residual learning framework. It leverages 3D
convolutional neural networks and residual connections to capture fine-grained details
in volumetric data. The evolution of mainstream 2D segmentation networks into their
3D counterparts has resulted in significant improvements in brain tumor segmentation
performance [46]. DSTGAN [47] presents a spatiotemporal generative adversarial learning
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approach for segmentation and quantification of myocardial infarction without contrast
agents. The approach utilizes a generator and a discriminator module, which consist of
three seamlessly connected networks to extract the morphological and motion abnormalities
of the left ventricle, learn the complementarity between segmentation and quantification
tasks, and leverage adversarial learning to enhance the accuracy of estimation. However, it
remains crucial to strike a balance between model complexity and computational feasibility,
considering the practical constraints and available computational resources.

Simultaneously, the transformer [48] architecture has gained significant popular-
ity in natural language processing (NLP) and has found applications in medical image
analysis [49,50]. Initially developed for sequence modeling tasks, transformers have show-
cased their ability to capture long-range dependencies and capture contextual information
effectively. Building upon this success, researchers have extended transformers to medical
image analysis, leading to the emergence of models. UNETR [30] combines the transformer
architecture with the U-Net framework, enabling the modeling of long-range dependen-
cies and achieving state-of-the-art performance in brain tumor segmentation. Similarly,
SwinUNETR [28] integrates the Swin Transformer, a hierarchical vision transformer, with
the U-Net framework, effectively capturing global and local dependencies with reduced
computational complexity. nnFormer [32] is a novel approach using a 3D transformer to
segment medical images based on interleaved convolution and self-attention operations. It
introduces local and global volume-based self-attention to learn volume representations and
outperforms previous transformer-based methods on three public datasets. SeMask [51]
proposes a semantically masked transformer network for semantic segmentation of images.
The network leverages an additional semantic layer to incorporate semantic information
about the image, which improves the performance of the pre-trained transformer backbone.
However, these transformer-based U-Net models face challenges such as increased model
size, longer training time, and higher computational requirements, which can limit their
practicality in real-world applications.

3. Methods

In this section, we commence by presenting a succinct overview of the architecture
of the proposed N-shaped Lightweight Network (N-LiNet). Subsequently, we undertake
an in-depth exploration of its constituent components, including the Multiple Feature
Pyramid (MFP) paths, the sequence of Depth-wise convolution, Spatial attention, Point-
wise convolution, and Channel attention (DSPC) module, and the integration of Channel
Attention in the Horizontal skip connections (HCA). Afterward, we expound upon the
design of a novel combo loss function.

3.1. Architecture Overview of the Proposed Network

The overall structure of N-LiNet, illustrated in Figure 2, consists of three primary
components. On the left-hand side, the MFP paths are depicted, which encompass a Feature
Pyramid pathway comprised of multiple CNNs. In the middle, the encoder component is
situated, while on the right-hand side, the decoder component is located. Horizontal skip
connections are utilized to establish interconnections among the three constituent parts. In
addition to the aforementioned architectural components, we employ wider channels and
deeper sampling levels in the design of N-LiNet to effectively handle the complexity and
variability inherent in multi-sequence MRI brain tumor images.

After traversing the MFP paths, the feature maps are extracted and forwarded to their
corresponding encoder modules. These feature maps are subsequently concatenated with
the down-sampled feature maps acquired from the encoder path. Similarly, the features
extracted through the encoder path are propagated to their corresponding decoder modules
and then concatenated with the up-sampled features generated within the decoder path.
Ultimately, the model reconstructs the segmented output with a resolution equivalent to
that of the input images.
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Figure 2. N-LiNet Architecture Overview.

MFP paths serve as a feature extraction mechanism, leveraging a set of CNNs to
produce a feature pyramid that captures multi-scale information. The encoder component
further processes the extracted features, encoding them into a concise representation that
retains significant semantic information. Subsequently, the decoder component utilizes the
encoded features to reconstruct the desired output. Notably, the presence of horizontal
skip connections facilitates the seamless flow of information across the various compo-
nents, allowing for the fusion of high-level and low-level features and promoting effective
information propagation throughout the network.

In summary, Algorithm 1 represents the overall algorithm flow design of N-LiNet.

Algorithm 1 N-LiNet: A novel deep learning model for multi-sequence MRI brain tumor
segmentation

Require: Input Feature Maps: Finput[B, C, H, W, D] B: Batch size, C: Channel (MRI sequences), H: Height, W:
Width, D: Depth
Ground Truth Labels: Y[B, C, H, W, D] C: Classes
Initialized Weight Dictionary: Θ{θinput, θoutput, . . . }

Ensure: Output Predictions: P[B, C, H, W, D]
1: Module Input Layer
2: input Finput
3: F′ ← GroupNorm(Conv(θinput, F))
4: F0 ← ELU(Add(F, F′))
5: return F0
6:
7: Module MFP {Multiple Feature Pyramid}
8: input Finput
9: for i = 1, ..., 5 do

10: FMFP
i ←MFP-i(θMFP

i , Finput) {See Algorithm 2 for details}
11: end for
12: return list[FMFP

i ]
13:
14: Module ENC {Encoder}
15: input F0, list[FMFP

i ]
16: for i = 1, ..., 5 do
17: F′ ← DownSampling(F0 if i == 1 else FENC

i−1 , 1/2)
18: F′MFP

i ← ChannelAttention(θAttention
channel , FMFP

i ))
19: FENC

i ← DSPC(θDSPC, Concatenate(F′, F′MFP
i )) {See Algorithm 3 for details}

20: end for
21: return list[FENC

i ]
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Algorithm 1 Cont.
22:
23: Module DEC {Decoder}
24: input F0, list[FENC

i ]
25: for i = 5, ..., 1 do
26: F′ ← UpSampling(FENC

5 if i == 5 else FDEC
i+1 , 2)

27: F′′ ← ChannelAttention(θAttention
channel , F0 if i == 1 else FENC

i−1 ))
28: FDEC

i ← DSPC(θDSPC, Concatenate(F′, F′′))
29: end for
30: return FDEC

5
31:
32: Module Output Layer
33: input FDEC

5
34: P← Discrete(Sigmoid(Conv(θoutput, FDEC

5 )), 0.5)
35: return P

Algorithm 2 MFP-i: The ith Multiple Feature Pyramid Path

Require: Input Feature Maps: Finput[B, C, H, W, D] B: Batch size, C: Channel (MRI sequences), H: Height,
W: Width, D: Depth
Initialized Weight Dictionary: Θ{θDSPC

i,1 , ..., θDSPC
i,i }

Ensure: the ith Feature Pyramid: FMFP
i

1: Fi,0 ← TrilinearInterpolation(Finput, 1/2i)
2: for j = 1, ..., i do
3: Fi,j ← DSPCij(θ

DSPC
i,j , Fi,j−1) {See Algorithm 3 for details}

4: end for
5: return Fi,i as FMFP

i

Algorithm 3 DSPC Module: Depth-wise separable convolution with hybrid attention
module
Require: Intermediate Feature Map: Fin[B, C, H, W, D]

Initialized Weight Dictionary: Θ{θConv
depth, θConv

point , θAtt
s , θAtt

c }
Ensure: DSPC’s Output Feature Map: Foutv[B, C′, H, W, D]

1: F′ ← GroupNorm(DepthwiseConv(θConv
depth, Fin))

2: F′ ← ELU(SpatialAttention(θAtt
s , F′))

3: F′ ← GroupNorm(PointwiseConv(θConv
point , F′))

4: F′ ← Add(Fin, ELU(F′))
5: F′ ← ChannelAttention(θAtt

c , F′)
6: return F′ as Fout

3.2. Multiple Feature Pyramid Paths

As depicted in Figure 3, the MFP paths in N-LiNet adopt a multi-path CNN approach
to construct a feature pyramid, where each MFP path is denoted as MFP-i. At the on-
set of each path, the input data undergo down-sampling using trilinear interpolation,
reducing the resolution by a power of 2 corresponding to the path index (i). This down-
sampling technique ensures a smooth and continuous approximation of the input data,
effectively preserving the spatial relationships and structural information inherent in the
original image.

Following the down-sampling step, the data proceed through a series of i sets of
DSPC basic convolutional modules. These modules efficiently capture and encode local
spatial patterns, thereby enhancing the discriminating capabilities of the extracted features.
Through this hierarchical processing, the MFP-i path generates a feature pyramid that
encompasses multi-scale information, enabling the network to capture both fine-grained
details and high-level contextual information.
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Subsequently, the resulting feature pyramid is fed into the encoder component of
N-LiNet for further processing. The details of MFP-i are outlined in Algorithm 2.

By leveraging the MFP paths and their associated feature pyramids, N-LiNet ef-
fectively integrates multi-scale information and facilitates the extraction of informative
features for accurate and robust analysis. This integration of multi-scale features from the
MFP paths into the encoder allows for the model to leverage a rich representation that
encompasses both local details and global contextual information.

3.3. Depth-Wise Separable Convolution with Hybrid Attention module

To achieve harmonious synergy between exceptional segmentation performance and
reducing model parameter size and computational complexity, we propose the DSPC
module depicted in Figure 4. This module combines the principles of depth-wise separable
convolution [19] and fusion attention mechanisms.
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In practical applications, we observed that simply tailing various attention mech-
anisms after depth-wise separable convolution did not yield the desired results. This
limitation arises from the fact that depth-wise convolution extracts features solely in the
spatial dimensions of the feature maps, while point-wise convolution focuses on channel-
wise feature extraction. To address this challenge, we devised a novel module that follows
a sequential order of depth-wise convolution, spatial attention, point-wise convolution,
and channel attention. By integrating these components in a specific order, we capitalized
on the strengths of each operation. The depth-wise convolution captures spatial details
efficiently, while the spatial attention mechanism enhances the discriminating power of
the extracted features by highlighting salient spatial regions. The subsequent point-wise
convolution extracts channel-wise features, and the channel attention mechanism further



Entropy 2024, 26, 166 10 of 22

refines the feature representation by emphasizing important channels and suppressing
irrelevant ones. Algorithm 3 offers the implementation details and the design flow of the
DSPC module.

This novel design enables the extraction of both spatial and channel information while
effectively reducing the parameter size and computational complexity of the model. In
the N-LiNet architecture, incorporating the DSPC module results in a reduction in the
parameter size by a factor of 0.24 and a decrease in multiply accumulate computations
(MACs) by a factor of 0.52 compared to the original configuration.

3.4. Horizontal Skip Connection with Channel Attention

The skip connections in N-LiNet facilitate the horizontal propagation of feature maps
between corresponding levels in the MFP paths, encoder, and decoder. This interconnection
plays a crucial role in the network’s ability to capture both local and global contextual
information, as well as to fuse features from different scales. Incorporating attention
mechanisms within skip connections is a commonly used optimization technique [29].
However, conventional attention gates may not always yield the most suitable results. This
is because attention gates typically focus on capturing spatial dependencies but may not
adequately capture channel-wise dependencies, which are crucial for feature representation.

Through experimental investigations, we discovered that the most effective attention
mechanism to be integrated into skip connections is the channel attention mechanism. This
choice is driven by channel attention’s ability to effectively capture the inter-dependencies
between channels within the feature maps, enabling the model to emphasize informative
channels while suppressing less relevant ones. By incorporating channel attention within
skip connections, N-LiNet can dynamically adapt its feature representation, enhancing its
ability to capture discriminating information and improving its segmentation performance.

3.5. Combo Loss with Weighted Cross-Entropy and Dice Loss

In the task of brain tumor image segmentation, three specific tumor sub-regions need
to be considered: the Enhancing Tumor (ET), the Tumor Core (TC), and the Whole Tumor
(WT). The ET typically represents the active portion of the tumor and may consist of highly
invasive tumor cells. The TC describes the main part of the tumor, which often corresponds
to the region that is surgically removed and includes the ET as well as the Necrotic Region
(NCR). The WT encompasses the overall extent of the tumor, including both the TC and
the Edema (ED) region. Two types of label imbalance issues need to be addressed. Firstly,
there is an imbalance among different sub-regions within the brain tumor. Secondly, there
is an imbalance between the tumor region and the background, where the background is
typically much larger than the tumor region.

To tackle these imbalance problems, N-LiNet employs a combo loss function of
weighted cross-entropy loss [22] and Dice loss [23], formulated as follows:

LCombo = LDice + LWCE, (1)

LDice = 1− 2
|K| ∑

k∈K

∑i∈N yi pk
i

∑i∈N yi + ∑i∈N pk
i

, (2)

LWCE = − 1
|N| ∑

i∈N
∑
k∈K

wkyiln(pk
i ), (3)

where pk
i represents the probability of predicting the ith voxel as belonging to tumor sub-

region k, while yi represents the corresponding ground truth label. The set of all voxels in the
brain tumor image is denoted as N, and the set of tumor sub-regions is denoted as K. Function
ln denotes the natural logarithm. wk represents the weight assigned to tumor sub-region k,
and its formula is

wk =
|WT|
|k| , (4)
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where |k| represents the voxel count in the tumor sub-region, while |WT| represents the
voxel count in the WT region. In this study, the voxel count of the tumor sub-region is used
instead of that of the segmentation label to calculate the weight because tumor sub-regions
are composed of nested segmentation labels, allowing for a more appropriate balancing of
the weights assigned to each tumor sub-region.

4. Experiment Settings
4.1. Datasets

This study evaluates the segmentation performance using four different brain tumor
segmentation datasets: UCSF-PDGM, BraTS2021, BraTS2019, and MSD’s Task-01.

The UCSF-PDGM dataset is a publicly available dataset released by the University
of California, San Francisco (UCSF) [33]. It comprises MRI images of 501 patients with
histopathologically confirmed diffuse glioma. Each patient has skull-stripped co-registered
3D images from 11 different MRI sequences, along with three-compartment tumor segmen-
tation. Figure 5 showcases two sets of representative MRI images and their corresponding
segmentation labels obtained from the UCSF-PDGM dataset. The images are viewed from
axial, coronal, and sagittal perspectives.

Axial Coronal Sagittal

Case 1

Case 2

Figure 5. Two sets of MRI images and corresponding segmentation labels from UCSF-PDGM dataset,
including axial, coronal, and sagittal views. In this figure, ET is labeled yellow, TC is the union of
yellow and red, and WT includes all the colored (yellow, red, and green) labels.

The BraTS dataset series is part of the Brain Tumor Segmentation Challenge and is
a publicly available dataset [34]. It consists of multi-modal MRI image data from brain
tumor patients collected from multiple institutions. The BraTS 2019 version provides
335 publicly available sets of brain tumor MRI images, while the BraTS 2021 version offers
1251 sets. Each patient’s images include T1-weighted, T1-weighted contrast-enhanced,
T2-weighted, and FLAIR sequences. Additionally, the dataset provides expert-labeled
tumor segmentation masks.

The MSD dataset is a publicly available medical image segmentation dataset aimed
at fostering research and comparison of medical image segmentation algorithms [35]. It
comprises medical image data from ten different tasks, each focusing on a distinct organ or
pathology. Task-01 within the MSD dataset specifically addresses brain tumor segmentation.
This task provides multi-modal MRI image data from patients with High-Grade Gliomas
(HGG) and Low-Grade Gliomas (LGG), totaling 484 sets of images. The MRI sequences of
this task are the same as those of the BraTS dataset.

Public datasets provide ground truth annotations for brain tumor segmentation, which
have been expertly labeled by medical professionals. The annotations specifically delineate
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the enhanced tumor region (ET), the necrotic and non-enhancing tumor core region (NCR),
and the edema region (ED). The ET and NCR regions collectively form the tumor core region
(TC), while the TC and ED regions combined constitute the whole tumor region (WT).

The aforementioned datasets were divided into training, validation, and testing sets
in a ratio of 7:1:2, respectively. The training set was subjected to the following data
preprocessing techniques: first, z-score normalization was applied to standardize the
training data and reduce scale differences between samples. Subsequently, random flipping,
random rotation, and random cropping were performed to enhance the diversity of the
training samples while ensuring a unified image resolution of 192× 192× 128. Lastly,
Gaussian noise was added to the images to simulate real-world noise and variations in
image quality, facilitating the model’s adaptation to different noise conditions.

4.2. Evaluation Metrics

This study evaluates the segmentation performance of different methods on the test set
using three commonly used metrics for brain tumor segmentation tasks: mean Intersection
over Union (mIoU), Dice Similarity Coefficient (DICE), and 95th percentile of Hausdorff
Distance (HD95).

The mIoU quantifies the similarity between predicted and ground truth regions. It is
calculated as the ratio of the intersection to the union of the predicted and true regions:

mIoU = TP/(TP + FP + FN), (5)

where TP represents the number of true positive samples, FP represents the number of
false positive samples, and FN represents the number of false negative samples. Each voxel
is considered as an individual sample. The closer the mIoU value is to 1, the greater the
similarity between the predicted and true regions.

The DICE measures the overlap between the predicted and ground truth regions.
It emphasizes the accuracy of positive samples in the segmentation result. The DICE is
calculated using the following formula:

DICE = 2TP/(2TP + FP + FN). (6)

where a higher DICE value indicates a higher degree of overlap between the predicted and
true regions.

The Hausdorff Distance (HD) is a metric used to quantify the surface shape differences
between the segmentation result and ground truth labels. It measures the maximum unidi-
rectional surface distance between the predicted and true regions. The HD is calculated
using the following formula:

HD(P, Y) = max(h(P, Y), h(Y, P)), (7)

h(P, Y) = max
p∈P

(min
y∈Y

(|p− y|)), (8)

where h(P, Y) represents the maximum single-directional surface distance from the pre-
dicted region set P to the ground truth label set Y. Term |p− y| denotes the Euclidean
spatial distance between two points p and y. In practice, to mitigate the impact of outliers
on the evaluation metrics, the 95th percentile of the surface distances denoted as HD95
is often used. A smaller HD95 value indicates a smaller shape difference between the
segmentation result and ground truth labels.

4.3. Other Details

All experiments in this study were conducted under a unified environment config-
uration. The hardware platform consisted of an Intel Xeon Gold 6248R processor with
72 GB of memory and an NVIDIA A100 graphics card with 80 GB of GPU memory. The
implementation and training of models were carried out using the PyTorch 2.0.1 deep
learning framework and the Python 3.8 programming language. The CUDA 11.8 backend
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acceleration library was employed. The experimental procedures were executed on the
Ubuntu 20.04 operating system. During model training, a batch size of 1 was employed
due to the GPU memory constraint while the training epochs were set to 200. For better
brain tumor segmentation performance [52] and fair comparison, we chose AdamW [53]
as the optimizer, with an initial learning rate of 1× 10−4 and a weight decay coefficient
of 1× 10−5.

5. Experimental Evaluation and Discussion

For the collection tables in this section, individual metrics for ET, TC, and WT tumor
subregions, as well as their respective mean values were recorded for each method. The
representation of the metrics was rounded to two decimal places.

5.1. Segmentation Performance Comparison

In this section, a comprehensive comparison was conducted between N-LiNet and
other state-of-the-art segmentation models on four brain tumor datasets. The segmentation
metrics were collected, and the results are presented in Table 1, Table 2, Table 3, and Table 4,
respectively. In Figure 6, the parameter sizes and computational complexities of different
segmentation methods are presented.

Table 1. Segmentation performance on the UCSF-PDGM dataset.

Models
mIoU (%) ↑ DICE (%) ↑ HD95 ↓

ET TC WT Mean ET TC WT Mean ET TC WT Mean

UNETR [30] 70.93 70.80 77.33 73.02 81.02 79.58 86.08 82.23 8.65 12.93 23.48 15.02
U-Net [24] 71.17 76.41 78.25 75.27 82.45 83.21 86.59 84.08 6.79 8.29 14.59 9.89

AttUNet [29] 73.25 76.50 80.54 76.76 83.47 83.98 88.55 85.33 4.84 8.64 11.78 8.42
DynUNet [27] 74.34 79.44 81.46 78.41 83.39 85.27 88.84 85.84 4.91 7.88 12.94 8.58
SegResNet [26] 73.33 78.55 81.09 77.66 83.59 85.31 88.88 85.93 5.88 7.00 10.37 7.75

SwinUNETR [28] 75.31 79.33 81.77 78.80 84.48 85.76 89.06 86.43 4.87 7.32 12.19 8.13
nnFormer [32] 76.44 80.15 81.97 79.52 85.19 86.07 89.57 86.94 4.81 7.16 12.11 8.03
UNet++ [25] 77.23 82.02 81.94 80.39 85.61 87.16 89.09 87.29 3.57 6.48 10.57 6.88
MS-Net [31] 76.57 81.82 83.09 80.49 85.19 87.18 89.58 87.32 5.35 5.96 9.46 6.92

N-LiNet 77.36 82.11 83.59 81.02 85.78 87.49 90.38 87.89 4.80 4.99 8.83 6.21

↑ denotes that higher values of the metrics are better, and ↓ denotes that lower values are better.

Table 2. Segmentation performance on the BRATS 2021 dataset.

Models
mIoU (%) ↑ DICE (%) ↑ HD95 ↓

ET TC WT Mean ET TC WT Mean ET TC WT Mean

UNETR [30] 73.62 76.41 81.62 77.22 82.49 84.67 89.02 85.39 8.78 10.22 14.42 11.14
AttUNet [29] 75.78 80.58 84.41 80.26 84.05 86.89 90.98 87.31 5.30 6.57 8.99 6.95

U-Net [24] 77.39 83.27 85.43 82.03 85.38 89.16 91.59 88.71 4.92 5.31 7.94 6.06
DynUNet [27] 77.65 83.35 85.53 82.18 85.52 89.29 91.60 88.80 4.82 5.61 7.88 6.10
SegResNet [26] 78.00 83.75 85.44 82.39 86.12 89.57 91.65 89.11 5.42 5.79 6.11 5.78

SwinUNETR [28] 78.50 83.57 85.87 82.65 86.12 89.26 91.75 89.04 4.96 5.32 7.19 5.82
nnFormer [32] 78.69 83.72 85.93 82.78 86.22 89.51 91.84 89.19 4.83 5.29 7.08 5.74
UNet++ [25] 78.40 84.19 85.82 82.80 86.15 89.85 91.82 89.27 4.98 5.37 7.51 5.95
MS-Net [31] 78.84 84.33 86.41 83.19 86.25 89.79 91.99 89.34 5.03 5.63 6.49 5.71

N-LiNet 79.80 85.78 87.10 84.23 87.17 91.13 92.60 90.30 4.00 4.48 6.03 4.84

↑ denotes that higher values of the metrics are better, and ↓ denotes that lower values are better.
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Table 3. Segmentation performance on the BRATS 2019 dataset.

Models mIoU (%) ↑ DICE (%) ↑ HD95 ↓
ET TC WT Mean ET TC WT Mean ET TC WT Mean

U-Net [24] 62.56 68.02 73.98 68.18 73.61 77.79 83.07 78.15 8.79 10.29 16.59 11.89
AttUNet [29] 65.36 62.24 78.78 68.79 76.71 74.20 87.64 79.52 7.21 14.24 9.60 10.35
UNETR [30] 68.19 62.60 77.65 69.48 78.34 74.59 86.69 79.87 9.33 17.08 14.95 13.79

DynUNet [27] 70.01 73.31 79.84 74.39 79.70 82.54 88.24 83.49 5.97 9.63 19.27 11.62
SwinUNETR [28] 72.06 73.10 81.85 75.67 81.28 82.39 89.50 84.39 5.49 8.67 16.05 10.07
SegResNet [26] 69.19 77.10 80.91 75.73 79.59 85.20 89.00 84.60 7.12 6.88 7.22 7.07
nnFormer [32] 71.15 74.26 81.93 75.78 81.33 82.56 89.67 84.52 6.55 8.32 13.42 9.43
UNet++ [25] 70.95 76.01 81.72 76.23 80.33 84.55 89.54 84.81 7.10 9.35 12.59 9.68
MS-Net [31] 71.76 75.25 82.12 76.38 81.37 83.72 89.84 84.98 5.95 8.59 9.57 8.04

N-LiNet 72.62 77.41 83.54 77.86 81.91 86.16 90.65 86.24 5.91 6.21 7.58 6.57

↑ denotes that higher values of the metrics are better, and ↓ denotes that lower values are better.

Table 4. Segmentation performance on the MSD Task 01 dataset.

Models
mIoU (%) ↑ DICE (%) ↑ HD95 ↓

ET TC WT Mean ET TC WT Mean ET TC WT Mean

UNETR [30] 67.76 64.10 76.78 69.55 78.62 76.34 86.28 80.41 10.06 14.17 19.57 14.60
U-Net [24] 68.01 69.71 78.77 72.17 78.72 80.17 87.02 81.93 7.01 10.96 12.97 10.31

AttUNet [29] 69.66 68.83 78.92 72.47 79.86 80.23 87.83 82.64 5.62 9.69 12.66 9.33
DynUNet [27] 70.12 71.31 79.98 73.80 80.80 82.05 88.45 83.76 5.50 9.94 13.44 9.63
UNet++ [25] 70.76 72.46 80.39 74.54 81.31 82.85 88.73 84.30 4.99 10.02 11.58 8.86

SegResNet [26] 69.82 72.79 81.01 74.54 80.48 83.02 89.17 84.23 5.22 7.93 9.14 7.43
SwinUNETR [28] 71.35 72.99 81.08 75.14 81.83 82.52 89.10 84.48 4.81 7.78 8.80 7.13

nnFormer [32] 71.36 73.03 81.15 75.18 81.94 82.65 89.27 84.62 4.79 7.73 8.75 7.09
MS-Net [31] 71.12 73.19 81.28 75.20 81.78 82.71 89.53 84.67 4.92 8.21 7.98 7.04

N-LiNet 71.99 72.97 82.23 75.73 82.46 82.98 89.89 85.11 4.53 7.70 7.87 6.70

↑ denotes that higher values of the metrics are better, and ↓ denotes that lower values are better.
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Figure 6. Comparison on the UCSF-PDGM dataset with (a) parameter size and (b) computational
complexity comparison over mIoU, Dice, and HD95.
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5.1.1. Segmentation Metrics Comparison

For the UCSF-PDGM dataset, N-LiNet exhibits notable superiority over other models
in terms of evaluation metrics. Specifically, for the mIoU metric, N-LiNet demonstrates the
most substantial improvement compared to UNETR, with an average increase of 11.0%. In
addition, the improvement relative to UNet++ is comparatively modest, with an average
increase of 0.8%. Regarding the DICE metric, N-LiNet shows an average improvement of
6.9% compared to UNETR and an average improvement of 0.7% compared to UNet++. It is
worth noting that N-LiNet demonstrates the most pronounced optimization in terms of
the HD95 metric. Compared to UNETR, N-LiNet achieves a significant reduction of 58.7%,
while compared to UNet++, it also achieves a reduction of 9.7%. There is only one special
case for N-LiNet, which exhibits a slightly inferior performance compared to UNet++ in
terms of HD95 for ET. On the remaining three datasets, N-LiNet exhibits similar superior
segmentation performance, although the detailed results are not explicitly described here.

Regarding the relatively inconspicuous improvement in mIOU and Dice metrics com-
pared to the substantial improvement in HD95, we acknowledge that the progress may
appear less pronounced. However, it is important to note that even among other state-of-
the-art models, the differences in mIOU and Dice metrics are not always significant. In this
context, our method still demonstrates a clear improvement in these metrics compared to
existing methods. The comparative experimental results mentioned above unequivocally
showcase the outstanding segmentation performance of N-LiNet in brain tumor segmen-
tation tasks. This highlights its remarkable superiority in terms of segmentation overlap,
tumor completeness, and shape correspondence within the segmented results.

5.1.2. Parameter Size and Computational Complexity Comparison

Without loss of generality, only the results of the UCSF-PDGM dataset are considered
in the experiments later in this paper.

In Figure 6a, the left-to-right arrangement of the three scatter plots illustrates the
corresponding distributions of parameter sizes and average segmentation metrics (mIoU,
DICE, and HD95) for different methods. The vertical axis represents the values of segmen-
tation metrics, while the horizontal axis represents parameter sizes, measured in millions.
Similarly, in Figure 6b, the left-to-right arrangement of the three scatter plots illustrates
the corresponding distributions of computational complexities and segmentation metrics.
Computational complexity is represented in terms of the number of TeraFLOPs (trillions of
floating-point operations) required for multiply-accumulate computations. To ensure clear
visualization without overcrowding, a logarithmic scale with a base of 2 is employed for
the horizontal axis in all subplots.

In comparison to UNet++, our method presents a trade-off between parameter size
and segmentation performance. However, it is worth noting that UNet++ employs a highly
complex nested and dense structure and relies on deep supervision techniques, making
the training process significantly more complex and time-consuming. As demonstrated
in Figure 6, although UNet++ has a relatively smaller parameter size, the computational
complexity is noticeably higher, providing evidence for this observation. In contrast, our
method utilizes a supervised training approach similar to U-Net, which is less computa-
tionally demanding. From the results depicted in Figure 6, it can be observed that N-LiNet
achieves excellent brain tumor segmentation performance while maintaining low parame-
ter size and computational complexity. This finding underscores the effectiveness of the
proposed method in this study.

5.2. Performance Comparison of the DSPC Module

As illustrated in Figure 4, the DSPC module consists of two attention modules, referred
to as Att_1 and Att_2. In this section, a series of comparative experiments were conducted
by substituting different attention mechanisms at these two positions to investigate the
impact of the DSPC module configuration on the performance of brain tumor segmentation.
The experimental results are presented in Table 5, where the symbol “×” indicates the
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absence of an attention mechanism at that specific position. The term “Coor” denotes the
utilization of coordinate attention, “SA” represents the incorporation of spatial attention,
“CA” signifies the adoption of channel attention, and “CBAM” indicates the incorporation
of CBAM attention.

We can observe that even by simply swapping the coordinate attention mechanism
from position Att_1 to Att_2, the segmentation performance of the network can be improved
to some extent. This highlights the importance of placing different attention mechanisms
in suitable positions to fully leverage their performance advantages. Additionally, it is
worth noting that although the combination of “SA” and “Coor” yields some benefits, the
improvement is not significant and even falls short compared to the introduction of “CA”
attention at position Att_2 alone. On the other hand, while using CBAM attention at the
Att_2 position can achieve relatively good segmentation performance, it is inferior to the
effect achieved by introducing “SA” at the Att_1 position and “CA” at the Att_2 position,
i.e., the DSPC module.

Thus, our experimental results demonstrate that the proposed structure of the DSPC
module, which involves integrating the hybrid attention module into the DSC module
rather than simply concatenating them in sequence, allows us achievement of optimal
segmentation performance.

Table 5. Performance comparison of the DSPC module on the UCSF-PDGM dataset.

Att_1 Att_2
mIoU (%) ↑ DICE (%) ↑ HD95 ↓

ET TC WT Mean ET TC WT Mean ET TC WT Mean

× × 72.49 75.23 81.29 76.33 82.49 83.05 88.79 84.78 6.09 8.48 11.63 8.73
Coor [37] × 75.55 79.21 82.86 79.20 84.27 85.15 89.52 86.31 4.65 6.11 9.36 6.71

× Coor [37] 75.99 81.13 82.77 79.96 85.03 86.95 90.09 87.36 5.32 6.27 7.88 6.49
SA [20] Coor [37] 76.22 80.78 82.97 79.99 85.28 86.91 90.16 87.45 5.47 6.04 8.97 6.83

× CA [21] 76.30 80.57 83.53 80.14 84.94 86.32 90.06 87.11 5.05 7.27 9.07 7.13
SA [20] × 76.06 80.77 82.75 79.86 84.40 86.09 89.35 86.62 4.89 6.25 9.03 6.72

× CBAM [36] 77.09 80.84 83.46 80.47 86.01 86.88 90.14 87.67 4.81 6.37 8.51 6.56
SA [20] CA [21] 77.36 82.11 83.59 81.02 85.78 87.49 90.38 87.89 4.80 4.99 8.83 6.21

↑ denotes that higher values of the metrics are better, and ↓ denotes that lower values are better.

5.3. Comparing Different Attention Mechanisms on Horizontal Skip Connections

Similarly, we conducted comparative experiments by adding different attention mech-
anisms to the skip connections in the horizontal direction. The experimental results sum-
marized in Table 6 provide insights into the impact of different attention mechanisms
on the performance of the network when applied to horizontal skip connections. In this
section, we selected the N-LiNet model, which consists of only the lightweight DSC mod-
ule without any additional attention mechanisms, as the “Basic” model. This choice was
made to eliminate the potential influence of other attention mechanisms on the model’s
segmentation performance.

Table 6. Comparing different attention mechanisms on horizontal skip connections on the UCSF-
PDGM dataset.

Configs
mIoU (%) ↑ DICE (%) ↑ HD95 ↓

ET TC WT Mean ET TC WT Mean ET TC WT Mean

Basic 72.49 75.23 81.29 76.33 82.49 83.05 88.79 84.78 6.09 8.48 11.63 8.73
+Coor [37] 74.34 78.70 80.29 77.77 83.44 84.84 87.88 85.38 5.78 6.56 10.61 7.65

+CBAM [36] 73.97 79.05 80.83 77.95 83.30 85.22 88.23 85.58 5.94 6.61 9.41 7.32
+SA [20] 74.60 79.62 81.24 78.48 83.54 85.42 88.39 85.78 6.11 6.79 8.65 7.18
+CA [21] 74.70 79.52 81.09 78.44 84.06 85.78 88.50 86.11 5.38 6.52 9.50 7.13

↑ denotes that higher values of the metrics are better, and ↓ denotes that lower values are better.
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Based on the experimental results, it is evident that both the coordinate attention
and CBAM attention, which are theoretically expected to exhibit stronger performance,
actually demonstrate inferior results compared to the individual spatial attention or channel
attention mechanisms. Meanwhile, the channel attention mechanism plays the most
prominent role in skip connections. This can be attributed to its ability to adaptively
assign importance to different channels, facilitating improved feature representation and
discrimination. By selectively emphasizing informative channels, the channel attention
mechanism enhances the discriminating power of the network and contributes to more
accurate tumor segmentation results.

Overall, these findings highlight the importance of selecting attention mechanisms that
are well-suited to the characteristics of the segmentation task to achieve optimal performance.

5.4. Abalation Experiments

To evaluate the impact of different optimization methods proposed in this study
on the performance of N-LiNet in brain tumor segmentation tasks, a series of ablation
experiments were conducted, and the results are collected in Table 7. Concise but without
loss of generality, we only experimented on the UCSF-PDGM dataset.

In Table 7, the “Basic” configuration represents the foundational 3D U-Net model
structure, while “MFP” denotes the Multi-Feature Pyramid module. The “DSC” mod-
ule corresponds to the standard f Separable Convolution, while “DSPC” represents the
Depth-wise convolution, Spatial attention, Point-wise convolution, and the Channel at-
tention module. Lastly, “HCA” signifies the Horizontal skip connections with Channel
Attention modules.

By comparing the results of the first two rows in Table 7, we can validate the significant
optimization of the MFP module on the segmentation performance. Specifically, the model
achieves an average improvement of 3.4% in mIoU, 2.0% in DICE, and a reduction of 14.7%
in HD95. However, from the results of the third row, it can be observed that the DSC
module degrades the model’s segmentation performance to a large extent. The results
from the fourth and fifth rows indicate that both HCA and DSPC effectively enhance
the model’s segmentation performance. However, the combination of “MFP+HCA+DSC”
does not outperform the sole “MFP” optimization method. Ultimately, the combination of
“MFP+HCA+DSPC”, which corresponds to the proposed N-LiNet structure in this study,
achieves the best segmentation performance overall. Compared to the “Basic” model,
the N-LiNet model achieves an average increase of 3.5% in mIoU, 2.4% in DICE, and a
reduction of 21.3% in HD95.

Table 7. Ablation experiments on the UCSF-PDGM dataset.

Configs
mIoU (%) ↑ DICE (%) ↑ HD95 ↓

ET TC WT Mean ET TC WT Mean ET TC WT Mean

Basic 74.18 79.41 81.26 78.28 83.54 85.32 88.69 85.85 4.79 6.29 12.59 7.89
+MFP 77.59 82.42 82.91 80.97 85.61 87.42 89.77 87.60 5.75 6.20 8.26 6.73

+MFP+DSC 72.49 75.23 81.29 76.33 82.49 83.05 88.79 84.78 6.09 8.48 11.63 8.73
+MFP+HCA+DSC 74.70 79.52 81.09 78.44 84.06 85.78 88.50 86.11 5.38 6.52 9.50 7.13
+MFP+HCA+DSPC 77.36 82.11 83.59 81.02 85.78 87.49 90.38 87.89 4.80 4.99 8.83 6.21

↑ denotes that higher values of the metrics are better, and ↓ denotes that lower values are better.

5.5. Combo Loss Function

Table 8 summarizes the performance of N-LiNet when trained with different loss
functions. It provides insights into the effectiveness of DiceWCE Loss in comparison to the
alternative loss functions commonly employed in medical image segmentation, such as
Dice Loss and Dice-CE Loss. From the results, it is evident that DiceWCE Loss outperforms
the other two loss functions across all three segmentation metrics.
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Table 8. Metrics of N-LiNet with different loss functions on the UCSF-PDGM dataset.

Loss
mIoU (%) ↑ DICE (%) ↑ HD95 ↓

ET TC WT Mean ET TC WT Mean ET TC WT Mean

Dice 76.27 80.72 81.95 79.65 84.09 85.77 88.38 86.08 5.93 8.25 9.47 7.88
DiceCE 77.21 81.32 82.97 80.50 85.65 86.99 89.59 87.41 5.23 7.30 8.22 6.92

DiceWCE 77.36 82.11 83.59 81.02 85.78 87.49 90.38 87.89 4.80 4.99 8.83 6.21

↑ denotes that higher values of the metrics are better, and ↓ denotes that lower values are better.

5.6. Discussion

Based on the experimental results presented above, we not only validated the supe-
rior performance of N-LiNet compared to other state-of-the-art models in brain tumor
segmentation, but also conducted comparative and ablation experiments to analyze the
effectiveness of different optimization methods proposed in this study. Ultimately, we
demonstrated the efficacy of these methods. Moving forward, we can further compare
N-LiNet with other segmentation models visually. In Figure 7, two sets of segmentation
examples are presented. In each set, from left to right, we show brain tumor MRI images
with the corresponding ground truth labels and the predicted results from four different
network models.
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Figure 7. Comparing the segmentation results of different networks visually based on the
two examples of UCSF-PDGM dataset from axial, coronal, and sagittal views, respectively. In this
figure, ET regions are labeled with yellow color, TC regions are the union of yellow and red areas,
and WT regions include all the three colored (yellow, red, and green) labels.



Entropy 2024, 26, 166 19 of 22

In Example 1, we can observe that the tumor region segmented by N-LiNet closely
resembles ground truth labels. The large NCR region colored in red is accurately delineated,
and the fragmented details of the central ET region colored in yellow are also captured
precisely. In contrast, UNETR almost fails to correctly segment the ET region and the
NCR region. DynUNet exhibits numerous false negatives and wrong labels in the central
TC areas. SegResNet, on the other hand, successfully segments the WT region relatively
well but shows incompleteness with the NCR region and loses significant details of the
ET region.

For Example 2, the tumor exhibits a more irregular shape; however, N-LiNet is still
able to accurately segment various regions of the tumor, with significantly fewer false
positive results. Conversely, the UNETR model exhibits noticeable mislabeling in the ET
and NCR regions and fails to accurately segment certain small tumor areas. DynNet and
SegResNet, on the other hand, produce a higher number of false positive regions.

6. Conclusions

We propose a novel N-LiNet model for brain tumor segmentation tasks. N-LiNet
combines the concepts of feature pyramids and U-Net, constructing an N-shaped neu-
ral network that incorporates multi-scale feature extraction pathways in addition to the
traditional encoder–decoder structure. Furthermore, N-LiNet integrates various atten-
tion mechanisms into depth-wise separable convolution modules and skip connections,
effectively improving segmentation performance while controlling model parameter size
and computational complexity at a lower level. Additionally, this study designs a combo
loss function of dice loss and weighted cross-entropy loss to address the issue of region
imbalance in the tumors.

The choice of N-LiNet over U-Net and other architectures is supported by experimen-
tal results obtained from multiple publicly available datasets. These results demonstrate
that the proposed N-LiNet model achieves superior performance in brain tumor segmenta-
tion compared to U-Net and other state-of-the-art architectures. Our evaluation metrics
and visual analysis of the results indicate that N-LiNet has clear advantages in brain tumor
segmentation. In particular, N-LiNet exhibits higher accuracy in segmenting tumor regions
and excels in capturing intricate details within these regions. Compared to other main-
stream models, such as U-Net and its variants, N-LiNet also demonstrates relatively good
performance in handling tumors with irregular shapes, resulting in a lower false positive
rate. These findings highlight the exceptional performance and potential of N-LiNet in
the realm of brain tumor segmentation. Additionally, a key consideration in choosing
N-LiNet is its favorable balance between model complexity and computational efficiency.
N-LiNet achieves state-of-the-art performance while maintaining a manageable model
size and computational requirements, making it practical for real-world deployment and
clinical applications.

In future work, we will further explore how the N-shaped neural network can achieve
model generalization across different datasets, thereby reducing the need for retraining
and fine-tuning on specific datasets.
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