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Abstract: We give a bilocal field theory description of a composite scalar with an extended binding
potential that reduces to the Nambu–Jona-Lasinio (NJL) model in the pointlike limit. This provides a
description of the internal dynamics of the bound state and features a static internal wave function,
ϕ(⃗r), in the center-of-mass frame that satisfies a Schrödinger–Klein–Gordon equation with eigenvalues
m2. We analyze the “coloron” model (single perturbative massive gluon exchange) which yields a UV
completion of the NJL model. This has a BCS-like enhancement of its interaction, ∝ Nc the number of
colors, and is classically critical with gcritical remarkably close to the NJL quantum critical coupling.
Negative eigenvalues for m2 lead to spontaneous symmetry breaking, and the Yukawa coupling of
the bound state to constituent fermions is emergent.
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1. Introduction

Many years ago, Yukawa proposed a multilocal field theory for the description of rela-
tivistic bound states [1–3]. For a composite scalar field, consisting of a pair of constituents,
he introduced a complex bilocal field, Φ(x, y). This is factorized, Φ(x, y) → χ(X)ϕ(r)
where Xµ = (xµ+yµ)/2 where rµ = (xµ−yµ)/2, and χ(X) describes the center-of-mass
motion like any conventional point-like field. Then, ϕ(r) describes the internal structure of
the bound state. The formalism preserves Lorentz covariance, though we typically “gauge
fix” to the center-of-mass frame, and Lorentz covariance is then not manifested. Here, we
must confront the issue of “relative time”.

Each of the constituent particles in a relativistic bound state carries its own local
clock, e.g., x0 and y0. These are, in principle, independent; so, the question “how can a
description of a multi-particle bound state be given in a quantum theory with a single time
variable, X0?” arises. To answer this, Yukawa introduced an imaginary “relative time”
r0 = (x0 − y0)/2, but this did not seem to be effective and is an element of his construction
we will abandon.

A bilocal field theory formalism can be constructed in an action by considering general
properties of free field bilocal actions. However, we can “derive” the bilocal theory from a
local constituent field theory by matching the conserved currents of the composite theory
with those of the constituent theory. This leads to the removal of relative time, which
then becomes associated with canonical normalization of the constituent fields χ and ϕ. In
the center-of-mass frame, the internal wave function reduces to a static field, ϕ(⃗r), where
r⃗ = (x⃗ − y⃗)/2. The approach yields a fairly simple solution to the problem of relative
time, matching the conclusions one obtains from the elegant Dirac Hamiltonian constraint
theory [4–10]. The resulting ϕ(⃗r) then appears as a straightforward result.

After first considering a bosonic construction, we apply this to a theory of chiral
fermions with an extended interaction mediated by a perturbative massive gluon, i.e., the
“coloron model” [11–16]. This provides a UV completion for the Nambu–Jona-Lasinio
(NJL) model [17,18], which is recovered in the point-like limit, r⃗ → 0. This leads to an
effective (mass)2 Yukawa potential with coupling g. We form bound states with mass m2,
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determined as the eigenvalue of a static Schrödinger–Klein–Gordon (SKG) equation for the
internal wave function ϕ(⃗r).

A key result of this analysis leads to a departure from the usual NJL model: the coloron
model has a nontrivial classical critical behavior, g > gc, leading to a bound state with a
negative m2. The classical interaction is analogous to the Fröhlich Hamiltonian interaction
in a superconductor and has a BCS-like enhancement of the coupling by a factor of Nc
(number of colors) [19,20]. Remarkably, we find the classical gc is numerically close to the
NJL critical coupling constant which arises in fermion loops.

The scalar bound state develops an effective Yukawa coupling to its constituent
fermions, distinct from g, that is emergent in the theory. In the point-like limit this matches
the NJL coupling when near criticality. However, in general, this depends in detail upon
the internal wave function ϕ(⃗r) and potential. In the point-like limit this is determined by
ϕ(0) and we recover the NJL model. However, if we are far from the point-like limit in an
extended wave function ϕ(⃗r) might suppress the emergent Yukawa coupling, even though
the coloron coupling g is large.

The description of a relativistic bound state in the rest frame is similar to the eigen-
value problem of the nonrelativistic Schrödinger equation and some intuition carries over.
However, the eigenvalue of the static Schrödinger–Klein–Gordon (SKG) equation is m2

rather than energy. Hence, a bound state with positive m2 is a resonance that can decay to
its constituents and has a Lorentz line-shape in m2, and thus has a large distance radiative
component to its solution that represents incoming and outgoing open scattering states.

If the eigenvalue for m2 is negative or tachyonic; contrary to the non-relativistic case,
the bound state represents a chiral vacuum instability. This then requires consideration of a
quartic interaction of the composite field, ∼λΦ4, which is expected to be generated by the
loops in the underlying theory. We treat this phenomenologically in the present paper. In
the broken symmetry phase, the composite field Φ(x, y) acquires a vacuum expectation
value (VEV), ⟨Φ⟩ = v. In the perturbative quartic coupling limit (λ), in the broken phase,
ϕ(⃗r) remains localized and the Nambu–Goldstone modes and Brout–Englert–Higgs (BEH)
boson retain the common localized solution for their internal wave functions.

2. Constructing a Bilocal Composite Theory
2.1. Brief Review of the NJL Model

The Nambu–Jona-Lasinio model (NJL) [17,18] is the simplest field theory of a compos-
ite scalar boson, consisting of a pair of chiral fermions. A bound state emerges from an
assumed point-like four-fermion interaction and is described by local effective field, Φ(x).
The effective field arises as an auxiliary field from the factorization of the four-fermion
interaction. In the usual formulation of the NJL model, chiral fermions induce loop effects
in a leading large Nc limit which, through the renormalization group, leads to interesting
dynamic phenomena at low energies. We present a brief review of this.

We assume chiral fermions, each with Nc “colors” labeled by (a, b, . . .). A non-
confining, point-like chirally invariant U(1)L × U(1)R interaction then takes the form:

SNJL =
∫

d4x
(

iψa
L(x)∂/ ψaL(x) + iψa

R(x)∂/ ψaR(x)

+
g2

M2
0

ψ
a
L(x)ψaR(x) ψ

b
R(x)ψbL(x)

)
(1)

This can be readily generalized to a GL ×GR chiral symmetry. We then factorize Equation (1)
by introducing the local auxiliary field Φ(x) and write for the interaction:∫

d4x
(

gψ
a
L(x)ψaR(x)Φ(x) + h.c. − M2

0Φ†(x)Φ(x)
)

(2)

We view Equation (2) as the action defined at the high scale µ∼M. Then, following [21], we
integrate out the fermions to obtain the effective action for the composite field Φ at a lower
scale µ << M.



Entropy 2024, 26, 146 3 of 22

The calculation in the large-Nc limit and full renormalization group is discussed in
detail in [22–24]. The leading Nc fermion loop yields the result:

LM → Lµ = g[ψRψL]Φ + h.c + Z∂µΦ†∂µΦ

−m2Φ†Φ − λ

2
(Φ†Φ)2 (3)

where

m2 = M2
0−

Ncg2

8π2 (M2
0 − µ2)

Z =
Ncg2

8π2 ln(M0/µ), λ =
Ncg4

4π2 ln(M0/µ). (4)

Here, M2
0 is the UV loop momentum cut-off, and we include the induced kinetic and quartic

interaction terms. The one-loop result can be improved by using the full renormalization
group [22–24]. Hence, the NJL model is driven by fermion loops, which are ∝ h̄ intrinsically
quantum effects.

Note the behavior of the composite scalar boson mass, m2, of Equation (4) in the
UV. The −Ncg2M2

0/8π2 term arises from the negative quadratic divergence in the loop
involving the pair (ψR, ψL) of Figure 1, with UV cut-off M2

0. Therefore, the NJL model has
a critical value of its coupling defined by the cancellation of the large M2

0 terms for µ2 = 0

g2
c0 =

8π2

Nc
+O

(
µ2

M2

)
(5)

Note that µ is the running RG mass and comes from the lower limit of the loop integrals and
breaks scale invariance and can, in principle, be small. For super-critical coupling, g > g′c,
we see that m2 < 0 and there will be a vacuum instability. The effective action, with a λ|Φ|4
term, is then the usual sombrero potential. The chiral symmetry is spontaneously broken,
the chiral fermions acquire mass, and the theory generates Nambu–Goldstone bosons.
Fine-tuning of g2 ≈ g2

c is possible if we want a theory with a hierarchy, |m2| << M2
0.

Figure 1. Diagrams contributing to the point-like NJL model effective Lagrangian,
Equations (2) and (4). External lines are Φ and internal lines are fermions.

2.2. Construction of Bilocal Compositeness in a Local Scalar Field Theory

Presently, we obtain a theory of bound states by bilocal fields in a Lorentz invariant
model, consisting of a point-like complex scalar field and an interaction mediated by a
point-like real field (in Section 3, we extend this to a chiral fermion interaction via a massive
gauge field, analogous to a heavy gluon, aka “coloron”; in Appendix A we give a summary
of notation and formulas). Our present treatment will be semi-classical.

Consider local scalar fields φ(x) (complex) and A(x) (real) and action:

S =
∫

x

(
|∂φ|2+ 1

2
(∂A)2− 1

2
M2 A2−gM|φ|2 A− λ

2
|φ|4

)
(6)

where we abbreviate |∂φ|2 = ∂µ φ†∂µ φ and (∂A)2 = ∂µ A∂µ A. Here, g is dimensionless and
we refer all mass scales to the single scale M. We will discuss the quartic term separately
below, and presently set it aside, λ = 0.
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If we integrate out A, we obtain an effective, attractive, bilocal potential interaction
term at leading order in g2,

S =
∫

x
|∂φ|2 + g2 M2

2

∫
xy
φ†(y)φ(y)DF(y−x)φ†(x)ϕ(x) (7)

where the two-point function is given by (i)× the Feynman propagator,

DF(x − y) = −
∫ eiqµ(xµ−yµ)

(q2 − M2)

d4q
(2π)4 (8)

The equation of motion of φ is therefore

∂2 φ(x)− g2 M2
∫

y
φ†(y)φ(x)DF(x − y)φ(y) = 0 (9)

(note we have transposed φ†(y) and φ(y) under the integral). In the action in Equation (7),
the kinetic term is still local while the interaction is bilocal, and the theory is still classical
in that this only involved a tree diagram that is O(h̄0).

We now define a bilocal field of mass dimension d = 1

Φ(y, x) = M−1 φ(y)φ(x). (10)

The free particle states described by the bilocal field trivially satisfy an equation of motion
and a symmetry

∂2
xΦ(x, y) = 0 Φ(x, y) = Φ(y, x) (11)

and this is generated by a bilocal action

S = M4
∫

xy
Z|∂xΦ(x, y)|2 (12)

where we will specify the normalization, Z, and scale M subsequently (we discuss the
general properties of the bilocal fields and actions in Appendices B.2 and B.3). With the
bilocal field the interaction of Equation (7), it becomes

g2 M4

2

∫
xy
Φ†(x, y)DF(x−y)Φ(x, y) (13)

We can therefore postulate a bilocalized action as a free particle part plus the interaction

S =
∫

xy

(
ZM4|∂xΦ(x, y)|2+ 1

2
g2 M4Φ†(x, y)DF(x − y)Φ(x, y)

)
(14)

In the limit g = 0, the field Φ(x, y) and the action faithfully represents two-particle kine-
matics, and we have the equation of motion

0 = Z∂2
xΦ(x, y)− 1

2
g2DF(x − y)Φ(x, y) (15)

We see that a U(1) conserved Noether current is generated by Φ(x, y) → eiθ(x)Φ(x, y)

JΦµ(x) = iZ
∫

d4y
(

Φ†(x, y)
↔
∂

∂xµ Φ(x, y)
)

(16)

where A
↔
∂ B = A∂B − (∂A)B. This must match the conserved U(1) current in the

constituent theory

Jφµ(x) = iφ†(x)
↔
∂

∂xµ φ(x) (17)
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Substituting Equation (10) into JΦµ(x), we see that the matching requires

JΦµ(x) = Jφµ(x) ZM2
∫

d4y|φ(y)|2 (18)

Hence

1 = ZM2
∫

d4y |φ(y)|2 (19)

This is a required constraint for the bound state sector of the theory. Note that the square of
the constraint is the four-normalization of Φ

1 = Z2 M4
∫

d4y d4y |φ(y)|2|φ(x)|2

= Z2 M6
∫

d4y d4y |Φ(x, y)|2 (20)

This implies that the presence of a correlation in the two-particle sector, Φ(x, y), acts as a
constraint on the single particle action in that sector. We can now see how the underlying φ
action of Equation (7) leads to the Φ action by inserting the constraint of Equation (19) into
the kinetic term of Equation (7) and rearranging to obtain

S =
∫

xy

(
ZM2|φ(y)∂x φ(x)|2

+
g2 M2

2
φ†(y)φ(x)DF(x − y)φ†(x)φ(y)

)
(21)

and S remains dimensionless. With the bilocal field of Equation (10) the bilocalized action
Equation (21) becomes Equation (14).

Following Yukawa, we go to barycentric coordinates (X, r)

X =
1
2
(x + y), r =

1
2
(x − y). (22)

where rµ = (r0, r⃗), where r⃗ is the radius and r0 is the relative time (Yukawa preferred to
write things in terms of ρ = 2r, which has the advantage of a unit Jacobian,

∫
d4xd4y =

J
∫

d4Xd4ρ with J = 1. We find that the radius, r, is more convenient in loop calculations
and derivatives are symmetrical, ∂X,r = (∂x ± ∂y)/2 vs. = 1

2 ∂X + ∂ρ, but require the
Jacobian. See Appendix A for a summary of notation).

Hence, we write

Φ(x, y) = Φ(X+r, X−r) ≡ Φ(X, r) (23)

Let S = SK + SP and we can then rewrite the kinetic term, SK, using the derivative
∂x = 1

2 (∂X+∂r)

SK =
JM4

4

∫
Xr

Z|(∂X+∂r)Φ(X, r)|2

=
JM4

4

∫
Xr

(
Z|∂XΦ|2+Z|∂rΦ|2+Z(∂XΦ†∂rΦ + h.c.)

)
(24)

Note the Jacobian J = 16

J−1 =

∣∣∣∣ ∂(X, r)
∂(x, y)

∣∣∣∣ = (
1
2

)4

. (25)

Likewise, the potential term is

SP =
JM4

2

∫
Xr

g2DF(2r)|Φ(X, r)|2. (26)
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We will treat the latter term in Equation (24) Z(∂XΦ†∂rΦ + h.c.), as a constraint, with
its contribution to the equation of motion

∂

∂Xµ

∂

∂rµ
Φ = 0 (27)

We can redefine this term in the action as a Lagrange multiplier while preserving Lorentz
invariance

→
∫

Xr
η

(
∂Φ†

∂Xµ

∂Φ
∂rµ

+ h.c.
)2

hence, δS/δη = 0 (28)

which also enforces the constraint on a path integral in analogy to gauge fixing. In the
following, we assume the constraint is present in the total action but not written explicitly.
We therefore have the bilocal action with the constraint understood:

S = SK + SP =

JM4

4

∫
Xr
(Z|∂XΦ|2 + Z|∂rΦ|2+ 2g2DF(2r)|Φ(X, r)|2) (29)

Following Yukawa, we factorize Φ (these factorized solutions form a complete set of basis
functions) √

J/4 Φ(X, r) = χ(X)ϕ(r) (30)

where ϕ is the internal wave function which we define to be dimensionless, d = 0, while χ
is an ordinary local field with mass dimension d = 1. χ(X) determines the center-of-mass
motion of the composite state. The full action for the factorized field takes the form

S = M4
∫

Xr

(
Z|∂Xχ|2|ϕ2|

+|χ|2(Z|∂rϕ|2+ 2g2DF(2r)|ϕ(r)|2)
)

(31)

The matching of the U(1) current generated by χ → eiθ(X)χ (or to have a canonical normal-
ization of χ(X)), where we see that the normalization of the world-scalar four-integral is

1 = ZM4
∫

d4r |ϕ(r)|2 (32)

where ϕ replaces φ in Equation (19).
We can then represent S in terms of two “nested” actions. For the field χ

S =
∫

X

(
|∂Xχ|2 − m2|χ|2

)
where m2 = −Sϕ (33)

and Sϕ is an action for the internal wave function

Sϕ = M4
∫

r0 ,⃗r

(
Z|∂rϕ(rµ)|2+ 2g2DF(2rµ)|ϕ(rµ)|2

)
(34)

Equation (33) then implies

∂2
Xχ = −m2χ hence, χ ∼ exp(iPµXµ) (35)

χ(X) has free plane wave solutions with P2 = m2.
In the center-of-mass frame of the bound state, we can choose χ to have four-momentum

Pµ = (m, 0, 0, 0) where we then have

Φ(X, r) = χ(X)ϕ(rµ) ∝ exp(imX0)ϕ(rµ). (36)
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ϕ(r) must then satisfy the Lagrange multiplier constraint

Pµ ∂

∂rµ ϕ(rµ) = 0 (37)

and therefore becomes a static function of rµ = (0, r⃗).
While we have specified Z in Equation (32), we still have the option of normalizing

the internal wave function ϕ(⃗r). This can be conveniently normalized in the center-of-mass
frame as

M3
∫

d3r |ϕ(⃗r)|2 = 1 (38)

Note that in Equation (38), we have implicitly defined the static internal wave function ϕ(⃗r)
to be dimensionless, d = 0.

We see that the relative time now emerges in the four-integral over |ϕ(r)|2 of Equation (32)
together with Equation (38)

1 = ZM4
∫

d4r|ϕ(r)|2 = ZM4
∫

dr0
∫

d3r|ϕ(⃗r)|2 = ZMT (39)

where
∫

dr0 =
∫

drµPµ/m ≡ T. Then, from Equation (39), we have

TZ = M−1 (40)

With static ϕ(r) → ϕ(⃗r), the internal action of Equation (34) becomes

Sϕ = M4
∫

r0 ,⃗r

(
−Z|∇⃗rϕ(⃗r)|2+ 2g2DF(2rµ)|ϕ(⃗r)|2

)
(41)

where |∇r⃗ϕ(⃗r)|2 = ∇r⃗ϕ† · ∇r⃗ϕ. Note that ∇r⃗ϕ is spacelike, and the arguments of the
constrained ϕ(⃗r) are now three-vector; however, DF(2rµ) still depends upon the four-
vector rµ.

There remains the integral over relative time r0 in the action. For the potential, we
have the residues

−V(r) = 2
∫

dr0DF(2r) =
∫ e2i⃗q·⃗r

q⃗2 + M2
d3q

(2π)3 =
e−2M|⃗r|

8π |⃗r| (42)

and the potential term in the action becomes the static Yukawa potential

SP = −M3
∫

r⃗
g2 MV (⃗r)|ϕ(⃗r)|2, V (⃗r) = − e−2M|⃗r|

8π |⃗r| (43)

The ϕ(⃗r) kinetic term in Equation (41) becomes

SK = −M4
∫

r0 ,⃗r
Z|∇⃗rϕ(⃗r)|2 = −M4ZT

∫
r⃗
|∇r⃗ϕ(⃗r)|2

= −M3
∫

r⃗
|∇⃗rϕ(⃗r)|2 (44)

where we use Equation (40). The action Sϕ thus becomes

m2 = −Sϕ = M3
∫

r⃗

(
|∇⃗rϕ|2 + g2 MV(r)|ϕ(⃗r)|2

)
(45)

Note that Sϕ has dimension d = 2, as it must for m2. We thus see, as previously mentioned,
that the combination ZT occurs in the theory, and the relative time has disappeared into
normalization constraints; see Equations (32) and (38).

The radicalization of Sϕ leads to the Schrödinger–Klein–Gordon (SKG) equation in the
center-of-mass frame

−∇2
r ϕ(r)− g2 M

e−2M|⃗r|

8π |⃗r| ϕ(r) = m2ϕ(r). (46)
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where, for spherical symmetry in a ground state,

∇2
r = ∂2

r +
2
r

∂r (47)

We see that the induced mass2 of the bound state, m2, is the eigenvalue of the SKG equation.
We can compare this to a non-relativistic Schrödinger equation (NRSE)

− 1
2M

∇2
r ϕ(x)− g2 e−2Mr

16πr
ϕ = Eϕ(⃗r) (48)

In the next section, we will obtain similar results for a bound state of chiral fermions and
use the known results for the Yukawa potential in the NRSE to obtain the critical coupling.
The negative eigenvalue of E in the NRSE, which signals binding, presently implies a
vacuum instability.

Integrating both parts, we then have, from Equation (45)

m2 = M3
∫

r⃗

(
ϕ†(−∇2

r ϕ + g2 MV(r)ϕ(⃗r))
)

(49)

Note the consistency, using Equation (48), and the normalization of the dimensionless field
ϕ of Equation (38).

More generally, by promoting χ to a (1 + 3) time-dependent field while maintaining a
static ϕ, we have the full joint action:

S =M3
∫

X⃗r

(
|ϕ|2

∣∣∣∣ ∂χ

∂X

∣∣∣∣2−|χ|2
(
|∇rϕ|2+g2 MV(r)|ϕ(r)|2

))
(50)

In summary, we have constructed, by “bilocalization” of a local field theory, a bilocal
field description Φ(x, y) for the dynamics of binding a pair of particles. The dynamics
implies that, in barycentric coordinates, Φ(x, y)∼Φ(X, r)∼χ(X)ϕ(⃗r), where the internal
wave function, ϕ(⃗r), is a static function of r⃗ and satisfies an SKG equation with eigenvalue
m2, which determines the squared-mass of a bound state. This illustrates the removal
of relative time in an action formalism, which is usually framed in the context of Dirac
Hamiltonian constraints [4,5].

2.3. Simplified Normalization
The normalization system we have thus far used is awkward. We can facilitate this by

defining a new integral over the internal wave function three-space r⃗:

∫ ′

r
≡

∫ d3r
V

where V = M−3 (51)

We then have the key elements of the theory in this notation:

S =
∫

d4X
(
|∂Xχ|2 − m2|χ|2

)
1 =

∫ ′

r
|ϕ(⃗r)|2 =

∫ d3r
V

|ϕ(⃗r)|2

m2 = −Sϕ

Sϕ =
∫ ′

r

(
−|∂⃗rϕ|2 − g2 MV(r)|ϕ(⃗r)|2

)
V(r) = − e−2M|⃗r|

8π |⃗r| (52)

Our general notation is summarized in Appendix A.
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3. The Coloron Model
3.1. Boundstate and Nc-Enhanced Coupling

The point-like NJL model can be viewed as the limit of a physical theory with a bilocal
interaction. An example that motivates the origin of the NJL interaction is an analogue of
QCD, with a massive and perturbatively coupled gluon. We call this a “coloron model”,
and it has been extensively deployed to describe chiral constituent and heavy–light quark
models [13,25,26], the possibility of the BEH boson composed of top quarks, and as a
generic model for experimental search strategies [11,12,14–16,27].

Consider a nonconfining SU(Nc) gauge Theory with a broken global SU(Nc), where
the coloron gauge fields AA

µ acquire mass M and have a fixed coupling constant g. We as-
sume chiral fermions, each with Nc “colors” labeled by (a, b, . . .) with the local Dirac action

SF =
∫

x

(
iψa

L(x)D/ ψaL(x) + iψa
R(x)D/ ψaR(x)

)
(53)

where the covariant derivative is

Dµ = ∂µ − igAA
µ (x)TA (54)

and TA are the adjoint representation generators of SU(Nc). We assume the colorons have
a common mass M.

The single coloron exchange interaction then takes a bilocal current-current form:

SC = −g2
∫

xy
ψL(x)γµTAψL(x)Dµν(x − y)ψR(y)γνTAψR(y) (55)

where TA are generators of SU(Nc). The coloron propagator in a Feynman gauge yields:

Dµν(x − y) =
∫ −igµν

q2 − M2 eiq(x−y) d4q
(2π)4 (56)

A Fierz rearrangement of the interaction to leading order in 1/Nc leads to an attractive
potential [11,12]:

SC = g2
∫

xy
ψ

a
L(x)ψaR(y) DF(x − y) ψ

b
R(y)ψbL(x) (57)

where DF is defined in Equation (8). Note that if we suppress the q2 term in the denominator
of Equation (56)

DF(x − y) → 1
M2 δ4(x − y) (58)

and we immediately recover the point-like NJL model interaction.
Consider spin-0 fermion pairs of a given color [ab] ψ

a
R(x)ψbL(y). We will have free

fermionic scattering states, : ψ
a
R(x)ψbL(y) : coexisting in the action with bound states

∼ Φ(x, y)

ψ
a
R(x)ψbL(y)→ M2 : ψ

a
R(x)ψbL(y) :+M2Φa

b(x, y), (59)

The normal ordering : . . . : signifies that we have subtracted the bound state from the
product. These will be eigenstates of the equation of motion and will be orthogonal wave
functions.

We see that Φa
b(X, r) is an Nc × Nc complex matrix that transforms as a product of

SU(Nc) representations, Nc × Nc, and therefore decomposes into a singlet plus an adjoint
representation of SU(Nc). We write Φa

b it as a matrix Φ̃ by introducing the N2
c − 1 adjoint
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matrices, TA, where Tr(TATB) = 1
2 δAB. The unit matrix is T0 ≡ diag(1, 1, 1, . . .)/

√
2Nc,

and Tr(T0)2 = 1/2, hence we have

Φ̃ =
√

2
(

T0Φ0 + ∑
A

TAΦA
)

(60)

The
√

2 is present because Φ0 and ΦA form complex representations since they also repre-
sent the U(1)L × U(1)R chiral symmetry.

For the bilocal fields, we have a bosonic kinetic term with the constraint

SK =
JZM4

2

∫
Xr

Tr
(
|∂XΦ̃|2 + |∂rΦ̃|2+η|∂XΦ̃†∂rΦ̃|2

)
(61)

Note the numerical factor differs from the scalar case by treating (x, y) symmetrically as in
Equation (A15). For the singlet representations this takes the form

SK =
JZM4

2

∫
Xr

(
|∂XΦ0|2 + |∂rΦ0|2+η|∂XΦ0†∂rΦ0|2

)
(62)

We assume the constraint in the barycentric frame, and integrate out relative time with
ZMT = 1.

SK = (J/2)
∫

X

∫ ′

r⃗

(
|∂XΦ0(X, r⃗)|2 − |∂⃗rΦ0(X, r⃗)|2

)
(63)

(where
∫ ′

r⃗ = M3
∫

d3r). Factorizing Φ0

√
J/2 Φ0(X, r) = χ(X)ϕ(r) (64)

then the kinetic term action becomes identical to the bosonic case

SK =
∫

X

(
|∂Xχ(X)|2 − |χ(X)|2

∫ ′

r⃗
|∂⃗rϕ(⃗r)|2

)
(65)

with ∫ ′

r⃗
|ϕ(⃗r)|2 = 1 (66)

If we include the free fermion scattering states, the full bound state interaction of
Equation (57) becomes

SC → g2
∫

xy
: ψ

a
L(x)ψaR(y) : DF(x − y) : ψ

b
R(y)ψbL(x) :

+g2 JM2√Nc

∫
X,r

: ψ
a
L(X−r)ψaR(X+r) : DF(2r) Φ0+h.c.

+g2 JM4Nc

∫
X,r

Φ0†(X, r) DF(2r) Φ0(X, r) (67)

where

DF(2r) = −
∫ 1

(q2 − M2)
e2iqµrµ d4q

(2π)4 (68)

The leading term SC of Equation (69) is just a free four-fermion scattering state interac-
tion and has the structure of an NJL interaction in the limit of Equation (58). This identifies
g2 as the NJL coupling constant. This is best treated separately by the local interaction of
Equation (57). We therefore omit this term in the discussion of the bound states.

The second term∼Tr(ψ†ψ)Φ0 + h.c. in Equation (69) determines the Yukawa inter-
action between the bound state Φ0 and the free fermion scattering states. We will treat
this below.
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Note that the third term is the binding interaction and it involves only the singlet,
Tr Φ̃ =

√
NcΦ0. It can then be written in Equation (42) as

SC → g2 JM4Nc

∫
X,r

Φ0†(X, r) DF(2r) Φ0(X, r)

= g2Nc

∫
X
|χ(X)|2

∫ ′

r⃗
|ϕ(⃗r)|2 M

e−2M|⃗r|

8π |⃗r| (69)

We see that adjoint representation ΦA is decoupled from the interaction and remain as two-
body massless scattering states. Hence, they do not form bound states by the interaction.

We also see that the singlet Φ0 singlet field has an enhanced interaction by a factor of
Nc. This is analogous to a BCS superconductor, where the Nc color pairs are analogues of
N Cooper pairs and the weak four-fermion Fröhlich Hamiltonian interaction is enhanced
by a factor of NCooper [19,20]. The color enhancement also occurs in the NJL model, but at
loop level. Here, we see that the color enhancement is occurring in the semi-classical (no
loop) coloron theory by this coherent mechanism.

Hence, the removal of relative time is then the identical procedure as in the previous
model (and absorbs away Z and T as in Equations (32), (39) and (40)), and leads to the
same action, S = SK + SC, in the compact notation of Equation (52) with the interaction
enhanced by Nc.

The radicalization of ϕ then leads to the SKG equation

−∇2
r ϕ(⃗r)− g2Nc M

e−2M|⃗r|

8π |⃗r| ϕ(⃗r) = m2ϕ(⃗r). (70)

3.2. Classical Criticality of the Coloron Model

The coloron model furnishes a direct UV completion of the NJL model. However,
in the coloron model, we do not need to invoke large-Nc quantum loops to have a critical
theory. Rather, it leads to an SKG potential of the Yukawa form which has a classical critical
coupling, gc. For g < gc, the theory is subcritical and produces resonant bound states
that decay into chiral fermions. For g > gc, the theory produces a tachyonic bound state
which implies a chiral instability and Φ must develop a VEV. This requires stabilization by,
e.g., quartic interactions and a sombrero potential. All of this is treated bosonically in our
present formalism.

The criticality of the Yukawa potential in the nonrelativistic Schrödinger equation is
discussed in the literature in the context of “screening”. The nonrelativistic Schrödinger
equation r = |⃗r| is:

−∇2ψ − 2mα
e−µr

r
ψ = 2mE (71)

and criticality (eigenvalue E = 0) occurs for µ = µc where a numerical analysis yields [28,29]

µc = 1.19αm (72)

For us, the spherical SKG equation is now r = |⃗r|

−∇2
r ϕ(r)− g2Nc M

e−2Mr

8πr
ϕ(r) = 0 (73)

Comparing, gives us a critical value of the coupling constant, when µc → 2M, m → M/2
and α → g2Nc/8π, then:

2M = (1.19)
(

M
2

)(
g2Nc

8π

)
, hence: g2/4π = 6.72/Nc (74)

We can compare the NJL critical value of Equation (4)

g2
cNJL/4π = 2π/Nc = 6.28/Nc. (75)
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Hence, the NJL quantum criticality is a comparable effect, with a remarkably similar
numerical value for the critical coupling.

Note that we can rewrite Equation (73) with dimensionless coordinates, u⃗ = M⃗r,
u = M|⃗r|

M2
(
−∇2

uϕ(u)− g2Nc
e−2u

8πu
ϕ(u)

)
= 0 (76)

and then M2 only appears as an overall scale factor. Hence, we see that critical coupling
is determined by Equation (76), and the scale M cancels out at criticality. The mass scale
M is dictated in the exponential e−2Mr of the particular Yukawa potential, together with
canonical normalization of ϕ. In general, we can start with the dimensionless coordinate
form of the SKG equation and infer the scale M by matching it to the potential. In this way,
solutions may exist where the scale in the potential is driven by the renormalization group.
This will be investigated elsewhere.

However, it is important to realize that the NJL model involves Yukawa coupling,
gNJL, while the present criticality involves the coloron coupling constant. The NJL coupling
is emergent in the coloron model, and we need to compute it.

3.3. Yukawa Interaction
The second term in Equation (67) is the induced Yukawa interaction SY, and can be

written with the factorized field as:

SY = g2(
√

2JNc)M2 ×∫
Xr

: ψ
a
L(X − r)ψaR(X + r) : DF(2r)χ(X)ϕ(⃗r)+h.c. (77)

This is the effective Yukawa interaction between the bound state Φ0 and the free fermion
scattering states.

We cannot simply integrate the relative time here. However, we can first connect
this to the point-like limit by suppressing the q2 term in the denominator of D(2r) with
z → 0 in:

DF(2r) →
∫ 1

M2 e2iqµrµ d4q
(2π)4 → 1

JM2 δ4(r) (78)

where δ4(2r) = J−1δ4(r), hence with J−1 = 1/16

SY = g2(
√

Nc/8)
∫

X
ψ

a
L(X)ψaR(X)χ(X)ϕ(0)+h.c. (79)

This gives a value of the Yukawa coupling

gY = g2(
√

Nc/8)ϕ(0) (80)

The wave function at the origin, ϕ(0), in the NJL limit is somewhat undefined. However,
if we consider a spherical cavity of radius R, where MR = π/2, with a confined and
dimensionless ϕ(r), then ϕ(0) is obtained (see [30] Equation (B58))

ϕ(0) =
1
π

. (81)

Plugging this into the expression for gY in Equation (80) gives

gY = g2
√

Nc/8π2 = g2/gcNJL (82)

where g2
cNJL = (8π2/Nc) is the critical coupling of the NJL model, as seen in Equation (4).

Hence, if the coloron coupling constant, g2, is critical, as in Equations (74) and (75), we
have seen that g2 ≈ g2

cNJL, and the induced Yukawa coupling from Equation (82) is then
gY ≈ gcNJL. The coloron model is then consistent with the NJL model in the point-like limit
where the NJL model coupling is the Yukawa coupling, as seen in Equation (2).
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However, the induced Yukawa coupling in the bound state, gY, may be significantly
different than the coloron coupling g in realistic extended r⃗ models. The result we just
obtained applies when we assume the strict point-like limit of DF(2r)∼δ3(r), while in
reality, as the potential becomes more extended, the

∫
V (⃗r)ϕ(⃗r) may become smaller, even

if the coloron coupling g may be supercritical. We anticipate this could have implications for
a composite Higgs model, which will be investigated elsewhere (together with loop effects
including the extended wave function). There may also be additional new effects that occur
at the loop level in extended potentials, such as the infall of zero modes, as suggested
in [31].

3.4. Spontaneous Symmetry Breaking

For subcritical Coupling, there are resonance solutions with positive m2 that have
large distance tails of external incoming and outgoing radiation, representing a steady state
of resonant production and decay. The portion of the wave function localized within the
potential can be viewed as the resonant bound state for normalization purposes, while the
large distance tail is non-normalizable radiation.

With super-critical coupling, g > gc, the bilocal field Φ(X, r) has a negative squared
mass eigenvalue (tachyonic), with a well-defined localized wave function. In the region
external to the potential (forbidden zone), the field is exponentially damped. At exact
criticality with g = gc − ϵ, there is a 1/r (quasi-radiative) tail that switches to exponential
damping for g = gc + ϵ. The supercritical solutions are localized and normalizable over
the entire space r⃗, but with m2 < 0, they lead to exponential runaway in time of the field
χ(X0), and must be stabilized, typically with a |Φ|4 interaction.

We then treat the supercritical case as resulting in spontaneous symmetry breaking.
In the point-like limit, Φ(X)∼Φ(X, 0), the theory has the “sombrero potential”,

V(Φ) = −|M2Φ2|+ λ

2
|Φ|4 (83)

The point-like field develops a VEV, ⟨Φ⟩ = |M|/
√

λ. In this way, the bound state theory
will drive the usual chiral symmetry breaking from the underlying dynamics of a potential
induced by new physics.

A quartic potential generally exists in a local field theory, Equation (6), and would be in-
duced by free loops in the coloron model. We can introduce a bilocalized quartic interaction
as a model by presently introducing another world scalar factor with coefficient Z′

λ0
2

∫
d4x|φ|4 → λ0

2

∫
d4y Z′|φ(y)|4

∫
d4x|φ|4

=
Z′MTλ̂

2

∫
X

∫ ′

r
|χ(X)ϕ(⃗r)|4 (84)

and Z′MT = 1 to absorb relative time.
The simplest sombrero potential can therefore be modeled as

S =
∫ ′

X⃗r

(
|ϕ|2

∣∣∣∣ ∂χ

∂X

∣∣∣∣2−|χ|2(|∇rϕ|2+g2Nc MV(r)|ϕ(r)|2)

−|χ|4 λ̂

2
|ϕ(⃗r)|4

)
(85)

In the case of a perturbatively small λ, we expect the eigensolution of ϕ to be essentially
unaffected ∫ ′

r

(
|∇⃗rϕ|2+g2NcMV(r)|ϕ(⃗r)|2

)
≈ m2 (86)

The effective quartic coupling is then further renormalized by the internal wave function

λ̂

2
|χ|4

∫ ′

r
|ϕ(⃗r)|4 = |χ|4 λ̃

2
(87)
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In this case, we see that χ develops a VEV in the usual way:

⟨|χ|2⟩ = |m2|/λ̃ = v2 (88)

This is a consequence of ϕ(⃗r) remaining localized in its potential.
The external scattering state fermions, ψa(X), will then acquire mass through the emer-

gent Yukawa interaction described in the previous section, ∼gY⟨|χ|⟩. However, an issue we
have yet to resolve is whether the induced fermion masses back-react with the VEV solution
itself. We segregated the free fermions from the bound state wave function, Φ, by shifting,
so we are presently arguing that Φ forms a VEV as described above, and the scattering state
fermions independently acquire mass as spectators, but this may require a more detailed
analysis, and for general large λ̃ (as in a nonlinear sigma model), the situation is potentially
more complicated.

4. Summary and Conclusions
In the present paper, we have given a formulation of bilocal field theory, Φ(x, y),

as a variation on Yukawa’s original multilocal field theory of composite particles [1–3].
In particular, we focus on two-particle-bound states consisting of bosons or chiral fermions
and scattering states. There are many foreseeable extensions of the present work. Here,
we construct bilocal field theories from an underlying local interacting field theory via the
introduction of “world-scalars”. We then go to barycentric coordinates, and the bilocal field
is “factorized”

X =
1
2
(x + y), r =

1
2
(x − y)

Φ(x, y) → Φ(X, r) = χ(X)ϕ(r) (89)

Here, χ(X) describes center-of-mass motion like any pointlike scalar field, while ϕ(r) is the
internal wave function of the bound state.

This procedure enables the removal of the relative time, r0, in the bilocalized theory,
essentially by canonical renormalization. The bilocal kinetic term contains a constraint that
leads to a static internal field, ϕ(r) → ϕ(⃗r), in the center-of-mass frame. Hence, we obtain
a static Schrödinger–Klein–Gordon (SKG) equation for the internal wave function. The
eigenvalue of this equation is the m2 of the bound state.

The SKG equation likewise contains a static potential that comes from the Feynman
propagator of the exchanged particle in the parent theory. Typically we have a Yukawa
potential, ∼g2Me−2Mr/8πr, though the formalism can in principle accommodate any
desired phenomenological potential. Here, g is the exchanged particle coupling constant,
such as the coloron coupling (massive perturbative gluon) for fermions. This is not the
scalar–fermion Yukawa coupling, gY, which is subsequently emergent.

We find that the Yukawa potential is classically critical with coupling gc. If the
coupling is sub-critical, g < gc, then m2 is positive, and the bound state is therefore a
resonance. It will decay to its constituents if kinematically allowed. ϕ(⃗r) is then a localized
“lump”, with a radiative tail representing the two body decay and production by external
free particles.

If the coupling is supercritical, g > gc, then m2 < 0 is tachyonic and Φ will acquire a
VEV. We require an interaction, such as ∼λ|Φ|4, to stabilize the vacuum and we therefore
have spontaneous symmetry breaking. ϕ(r) is expected to be localized in its potential
and χ(X) acquires the VEV. If ϕ(r) becomes delocalized, both χ(X) and ϕ(r) acquire
VEVs, which is an analogue of a Bose–Einstein condensate, e.g., in a slightly heated
superconductor; however, we have not produced solutions to the SKG equation that
demonstrates this behavior.

We consider a bound state of chiral fermions in the coloron model, where a coloron is a
massive gluon with coupling g, such as in “topcolor” models [11,12] and chiral constituent
quark models [13]. Fierz’s rearrangement of the non-local, color-current-current, interaction
yields a leading large Nc interaction in ψ(x)Lψ(y)R ∼ Φ(x, y). For the color singlet, Φ, the
coupling g2 is enhanced by Nc in analogy to a BCS superconductor [19,20].
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As our main result, we find that the coloron model can be classically critical. The
critical coupling, g2

c , extracted from [28,29], is astonishingly close to the critical value of
the Yukawa coupling in the NJL model. While in the NJL model the critical behavior
is O(h̄) coming from fermion loops, in the bilocal model this is a semiclassical result,
and the essential factor of Nc comes from the coherent BCS-like enhancement of the four-
fermion scattering amplitudes. It is therefore unclear what happens when we include the
fermion loops in addition to the classical behavior in the large Nc limit. Is criticality further
enhanced by the additional loop contribution? Is there an additional Nc enhancement of
the underlying coupling due to the

√
Nc factor in the emergent Yukawa interaction? These

are interesting issues we will address elsewhere.
The induced Yukawa coupling of the bound state to fermions, gYψ(x)Lψ(y)RΦ(x, y),

is extended and emergent in the composite models. We derive the coupling and find
gY ∝

∫
V(r)ϕ(r) ∼ g2ϕ(0) in the point-like limit. For ϕ(0), in a tiny spherical cavity, we

obtain gY = g2/gcNJL. Hence, the critical value of g2 implies the critical value of gY = gcNJL
in the point-like limit NJL model, which is consistent.

However, the
∫

V(r)ϕ(r) could in principle be reduced to an extended potential as
the wave function spreads out, even if g2 is critical. This is an intriguing possibility: the
BEH–Yukawa coupling of the top quark is gtop ∼ 1, which is perturbative and is insufficient
to drive the formation of a composite, negative m2, Brout–Englert–Higgs (BEH) boson
at low energies in, e.g., a top condensation model. However, the present result suggests
that perhaps

∫
V(r)ϕ(r) is small suppressing gtop, even though the underlying coloron

coupling, g2Nc, is super-critical and leads to the composite BEH mechanism. In this picture,
the BEH boson may be a large object, e.g., a “balloon” of size ∼m−1

top (see [31]).
While we have an eye to a composite BEH boson for the standard model, as in top

condensation theories [22–24,32,33], our present analysis is more general, but does not yet
include many details, e.g., gauge interactions and gravity. We think the emphasis on a
bosonic field description, the treatment of the coloron model and its classical criticality, its
linkage the NJL model as UV completion, and our treatment of relative time renormalization
comprises a novel perspective.
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Appendix A. Summary of Notation
Two body kinematics:

p1x + p2y = (p1 + p2)X + (p1 − p2)r (A1)

p2
1 = p2

2 = µ2 P = (p1 + p2) Q = (p1 − p2)

P2 + Q2 = 4µ2; rest frame: P0 = 2p0
1; Q⃗ = 2p⃗1;

P2 = (p1 + p2)
2, though commonly referred to as the “invariant mass” of a pair,

is not a scale breaking mass in that it involves fields with a traceless stress tensor.

Barycentric coordinates:

X =
1
2
(x + y) ρ = (x − y) r =

1
2
(x − y)

∂x =
1
2
(∂X + ∂r) =

1
2

∂X + ∂ρ

∂y =
1
2
(∂X − ∂r) =

1
2

∂X − ∂ρ (A2)
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Two-body scattering states

Φ(x, y) = exp(ip1x + ip2y) = exp(iPµXµ + iQµrµ)

(∂2
x + ∂2

y)Φ(x, y) = (p2
1 + p2

2)Φ(x, y) = 2µ2Φ(x, y)

=
1
2

(
∂2

∂Xµ∂Xµ
+

∂2

∂rµ∂rµ

)
Φ(X, r) = 2µ2Φ(x, y)

→
(

∂2

∂Xµ∂Xµ
+

∂2

∂rµ∂rµ

)
Φ(X, r) = 4µ2

(∂2
x − ∂2

y)Φ(x, y) =
∂2

∂Xµ∂rµ
Φ(X, r) = 0

dx2 + dy2 = 2dX2 +
1
2

dρ2 = 2dX2 + 2dr2

∂2
x + ∂2

y =
1
2

∂2
X +

1
2

∂r2 =
1
2

∂2
X + 2∂2

ρ

∂2
x − ∂2

y = ∂
µ
X∂µr = 2∂

µ
X∂µρ (A3)

Integration measures ∫
u...v

=
∫

d4u. . .d4v
∫

x⃗...⃗y
=

∫
d3x. . .d3y∫

u...v;⃗x...⃗y
=

∫
d4u..d4v d3x. . .d3y∫ ′

u...v;⃗x...⃗y
=

∫
M4d4u..M4d4v M3d3x. . .M3d3y∫

d4xd4y =
∫

d4Xd4ρ = J
∫

d4Xd4r;

Jacobian J = (2)4∫
d4xd4y

(
|∂xϕ|2 + |∂yϕ|2 − µ2|ϕ|2

)
= J

∫
d4Xd4r

(
1
2
|∂Xϕ|2 + 1

2
|∂rϕ|2 − µ2|ϕ|2

)
=

∫
d4Xd4ρ

(
1
2
|∂Xϕ|2 + 2|∂ρϕ|2 − µ2|ϕ|2

)
Hermitian operator : W + W† = W+h.c. (A4)

Appendix B. Bilocal Field Theory

Here, we give a general discussion of our “revisited” bilocal field theory for a pair of
particles, as inspired by Yukawa [1–3]. We begin with the “bilocalization” and subsequently
construct the generic actions for bilocal fields containing free particles.

Appendix B.1. Free Fields
Let us examine the bilocalization procedure in Section 2.2 for free particle states.

Consider a pair of local scalar fields φi(x) (complex):

S =
∫

x

(
|∂φ1|2 + |∂φ2|2 − µ2(|φ1|2 + |φ2|2) (A5)

with independent free particle equations of motion

∂2 φ1 + µ2 φ1 = 0 ∂2 φ2 + µ2 φ2 = 0 (A6)

We want to describe a pair of particles by a bilocal field of mass dimesion 1:

Φ(x, y) = M−1 φ1(x)φ2(y) (A7)
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We therefore have the two equations of motion for Φ

(∂2
x + ∂2

y)Φ(x, y) + 2µ2Φ(x, y) = 0 (A8)

(∂2
x − ∂2

y)Φ(x, y) = 0. (A9)

Appendix B.2. Bilocalization of Scattering States
We can obtain the action for Φ as follows. We multiply the kinetic and mass terms of

Equation (A5) by world scalars:

Wi = ZM2
∫

d4y |φi(y)|2 (A10)

and hence,

S =
∫

x

(
W2|∂φ1|2 + W1|∂φ2|2 − µ2(W2|φ1|2 + W1|φ2|2)

)
= ZM2

∫
xy

(
|φ2(y)∂x φ1(x)|2 + |φ1(y)∂x φ2(x)|2

−2µ2|φ1(y)φ2(x)|2
)

(A11)

At this stage, we can still vary with respect to either φ1 of φ2, and the equations are modified.
In terms of the bilocal field, we have

= ZM4
∫

xy

(
|∂xΦ(x, y)|2 + |∂yΦ(x, y)|2 − 2µ2|Φ(x, y)|2

)
(A12)

We go to barycentric coordinates and note the derivatives:

X = (x + y)/2 r = (x − y)/2

∂x = (∂X + ∂r)/2 ∂y = (∂X − ∂r)/2

Φ(x, y) → Φ(X, r) (A13)

The factor of M is superfluous at this point, and in what follows we can set M = 1 (we’ll
restore it below). Hence:

S = JZ
∫

Xr

(
1
4
|(∂X + ∂r)Φ(X, r)|2 + 1

4
|(∂X − ∂r)Φ(X, r)|2

−2µ2|Φ(X, r)|2
)

(A14)

which yields the action

S =
JZ
2

∫
Xr

(
|∂XΦ(X, r)|2 + |∂rΦ(X, r)|2 − 4µ2|Φ(X, r)|2

)
(A15)

If we vary δΦ(x′, y′) = δ4(x − x′)δ4(y − y′), we obtain one equation of motion:

∂2
XΦ(X, r) + ∂2

r Φ(X, r) + 4µ2Φ(X, r) = 0 (A16)

We see that this is consistent with Equation (A8)

∂2
x + ∂2

y =
1
2
(∂2

X + ∂2
r ). (A17)

However, Equation (A9) is missing. We see using

(∂2
x − ∂2

y) =
∂

∂Xµ

∂

∂rµ (A18)
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that Equation (A9) takes the form

∂

∂Xµ

∂

∂rµ Φ(X, r) = 0 (A19)

As before, this can be viewed as a constraint, and we can treat it as a Lagrange multiplier
as in Equation (28) to supply the second equation.

We factorize Φ in barycentric coordinates as√
J/2 Φ(X, r) = χ(X)ϕ(r) (A20)

The action Equation (A15) becomes

S = Z
∫

Xr

(
|ϕ(r)|2|∂Xχ(X)|2

+|χ(X)|2(|∂rϕ(r)|2 − 4µ2|ϕ(r)|2)
)

(A21)

We then define

1 = Z
∫

d4r|ϕ(r)|2 (A22)

The Schrödinger–Klein–Gordon equation has eigenvalue m2

∂2
r ϕ(r) + 4µ2ϕ(r) = m2ϕ(r)

m2
∫

r
|ϕ(r)|2 =

∫
r
(|∂rϕ(r)|2 + 4µ2|ϕ(r)|2) (A23)

Then, the χ equation becomes

∂2
Xχ(X) + m2χ(X) = 0 (A24)

The constraint then takes the form

∂χ(X)

∂Xµ

∂ϕ(r)
∂rµ = 0 (A25)

In the barycentric (rest) frame, we can choose χ to have four-momentum Pµ = (m, 0, 0, 0).
The constraint becomes Pµ∂

µ
r ϕ(r) = 0, Therefore, ϕ becomes a static function of rµ = (0, r⃗).

The Schrödinger–Klein–Gordon equation is then a static equation

−∇2
r⃗ ϕ(⃗r) + 4µ2ϕ(⃗r) = m2χ(⃗r) (A26)

We define the static internal wave function ϕ(⃗r) to be dimensionless, d = 0, and we
normalize the dimensionless static wave function (restoring M)

(M3)
∫

d3⃗r |ϕ(⃗r)|2 = 1 (A27)

We then have

1 = Z(M4)
∫

r
|ϕ(r)|2 = Z(M4)

∫
dr0

∫
d3⃗r|ϕ(⃗r)|2 = ZT(M) (A28)

where an integral over relative time has appeared leading to an overall factor ZT(M) = 1
in the action for χ. The action becomes two nested parts

S =
∫

X

(
|∂Xχ(X)|2 − m2|χ(X)|2

)
m2

∫
r⃗
d3⃗r |ϕ(⃗r)|2 =

∫
r⃗
(|∇r⃗ϕ(r)|2 + 4µ2|ϕ(r)|2) (A29)

with Equation (A27).
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Appendix B.3. Kinematics of Scattering States
We can more directly construct the bilocal fields, without appealing to world scalars,

by considering simple free particle kinematics. For free particles of four-momenta pi, we
see that Φ describes a scattering state

Φ(x, y) ∼ exp(ip1µxµ + ip2µyµ) = exp(iPµXµ + iQµrµ)

(A30)

where

Pµ = p1µ + p2µ Qµ = p1µ − p2µ (A31)

For massive particles, p2
1 = p2

2 = µ2, Φ satisfies(
∂2

∂Xµ∂Xµ
+

∂2

∂rµ∂rµ
+4µ2

)
Φ(X, r) = 0 (A32)

The constraint is the second equation

(∂2
x − ∂2

y)Φ(x, y) =
∂2

∂Xµ∂rµ
Φ(X, r) = 0 (A33)

and forces Φ(X, r⃗) to have r0 = 0 in the center-of-mass frame; hence, PµQµ = 0 and
Q = (0, q⃗).

Constant Positive m2
0 = 4µ2:

In the center-of-mass frame, p0
1 = p0

2, Q0 = 0,

Q2 = (p1 − p2)
2 = −( p⃗1 − p⃗2)

2 = −q⃗ 2 (A34)

Hence, from Equations (A32) and (A33)

P2 = 4µ2 + q⃗ 2

∂2

∂Xµ∂Xµ
Φ(X, r⃗) = (m2

0 + q⃗ 2)Φ(X, r⃗) (A35)

Therefore, if we were to try to interpret Φ as a “bound state”, we see that is has continuum
of invariant “masses” m2 = m2

0 + q⃗ 2. This is evidently an “unparticle” [34]. This implies it
is not localized and is a scattering state of asymptotic free particles each of mass µ = m0/2.

With the constraint of Equation (A33), we can choose rµ = (0, r⃗) and Xµ = (X0, 0). We
factorize Φ = χ(X)ϕ(r) and the factor field ϕ(r) then satisfies the static SKG equation with
eigenvalue M2

−∇2
r⃗ ϕ(⃗r) + m2

0ϕ(⃗r) = m2ϕ(⃗r) (A36)

the solutions of the factorized field ϕ(r) are static, box normalized, plane waves, with
eigenvalues m2 ≡ m2

q⃗ = m2
0 + q⃗ 2

ϕ(⃗r) =
1√
V

exp(i⃗q · r⃗) m2
q⃗ = q⃗ 2 + m2

0 (A37)

χ(X) then satisfies the KG equation with X0 = t and X⃗ = 0

∂2
t χ(t) + m2

q⃗χ(t) = 0 t = X0 (A38)

and the χ(X) solution becomes

χ(X) ∝ exp(imq⃗t) (A39)
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This is just the spectrum of the two body states of µ-massive particles in the barycen-
tric frame.

Constant Negative m2
0:

If we suppose m2
0 < 0 then the solutions for Φ(t, r) for small q⃗ are runaway exponen-

tials, Φ ∼ exp(|m0|t). The eigenvalues are

m2
q⃗ = q⃗ 2 − |m0|2 (A40)

This analogous to a “Dirac sea” of negative mass eigenvalues extending from q⃗ 2 = 0 to
q⃗ 2 = |m0|2, where the lowest mass state has q⃗ = 0 and eigenvalue −|m0|2.

This would therefore be a tachyonic instability of unparticles, and we then require
higher field theoretic interactions, such as λ|Φ|4, to stabilize the vacuum. This represents a
spontaneous breaking of the chiral symmetry, and the constituent fermions will dynamically
acquire masses and the instability is halted.

However, a constant negative m2
0 does not give a Higgs-like spontaneous symmetry

breaking mechanism. If the potential is

V = −m2
0|Φ|2 + λ

2
|Φ|4 (A41)

where we have constant −m2
0 rather than a localized potential. Then, indeed, the field

develops a constant VEV:

⟨Φ⟩ = V + Φ0 m2
0 = v2λ (A42)

Then, Φ0 indeed becomes a massive BEH mode, but with the continuous spectrum
m2 = |m0|2 + q⃗ 2. To have an acceptable BEH mechanism, with a well-defined BEH
boson, we therefore require a localized potential in r⃗ where ⟨Φ⟩ = ⟨χ⟩ϕ(⃗r) and ϕ(⃗r) is a
localized eigenmode.

Appendix B.4. Removal of Relative Time and Generic Potential
A point-like interaction in the underlying theory may produce an effective action with

a potential term that is a function of rµ

S =
JM4

2

∫
Xr
(Z|∂XΦ|2 + Z|∂rΦ|2− U(2rµ)|Φ(X, r)|2) (A43)

and we assume the constraint:

S =
∫

Xr
η

(
∂Φ†

∂Xµ

∂Φ
∂rµ

+ h.c.
)2

. (A44)

We factorize Φ √
J/2 Φ(X, r) = χ(X)ϕ(r) (A45)

In the center-of-mass frame we impose the constraint, Φ(X, r) → χ(X0)ϕ(⃗r). We can then
integrate over relative time

S = M3
∫

X⃗r

(
ZTM|∂Xχ|2|ϕ(⃗r)|2 − ZTM|χ(X)|2|∇⃗rϕ|2

−V (⃗r)|χ(X)|2|ϕ(⃗r)|2
)

(A46)

where

V (⃗r) = M
∫

dr0U(2rµ) (A47)
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and V (⃗r) has dimensions of M2. We now define the normalizations,

ZTM = 1 1 = M3
∫

d3r|ϕ(⃗r)|2. (A48)

The purpose of these normalizations is to have a canonically normalized χ field in the
center-of-mass frame, even in the limit g = 0. It also defines the conserved χ current to
have unit charge (one boundstate pair) to match the underlying theory’s conserved current.

Hence, we obtain the actions:

S =
∫

X

(
|∂Xχ(X)| − m2|χ(X)|2

)
m2

∫
r⃗
d3⃗r |ϕ(⃗r)|2 =

∫
r⃗
(|∇⃗rϕ(r)|2 + V(r)|ϕ(r)|2) (A49)

with Equation (A48).
An attractive (repulsive) potential is V < 0 (V > 0). The main point is that the field

χ(X) must have canonical normalization of its kinetic term, which dictates the introduction
of Z. The kinetic term of χ is seen to be extensive in T, and this is absorbed by normalizing
Z, as ZMT = 1. The potential is determined by the integral over relative time of the
interaction and is not extensive in T.

From the factorization Φ = χ(X)ϕ(⃗r) with normalized ϕ(r), as in Equation (38), the
eigenvalue m2 is computed in the rest frame

m2 = m2
∫

r⃗
|ϕ(⃗r)|2 =

∫
r⃗

(
−ϕ†∇2ϕ + V (⃗r)|ϕ(⃗r)|2

)
(A50)

From this, we obtain a normalized effective action for χ in any frame

Sχ =
∫

d4X
(

∂χ†

∂Xµ

∂χ

∂Xµ
− m2|χ|2

)
(A51)

The mass of the bound state is determined by the eigenvalue of the static Schrödinger–
Klein–Gordan (SKG) equation in the center-of-mass frame:

−∇2ϕ + V (⃗r)ϕ(⃗r) = m2ϕ(⃗r). (A52)
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