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Abstract: The monogamy property of entanglement is an intriguing feature of multipartite quantum
entanglement. Most entanglement measures satisfying the monogamy inequality have turned out to
be convex. Whether nonconvex entanglement measures obey the monogamy inequalities remains
less known at present. As a well-known measure of entanglement, the logarithmic negativity is
not convex. We elucidate the constraints of multi-qubit entanglement based on the logarithmic
convex-roof extended negativity (LCREN) and the logarithmic convex-roof extended negativity of
assistance (LCRENoA). Using the Hamming weight derived from the binary vector associated with
the distribution of subsystems, we establish monogamy inequalities for multi-qubit entanglement in
terms of the αth-power (α ≥ 4 ln 2) of LCREN, and polygamy inequalities utilizing the αth-power
(0 ≤ α ≤ 2) of LCRENoA. We demonstrate that these inequalities give rise to tighter constraints than
the existing ones. Furthermore, our monogamy inequalities are shown to remain valid for the high-
dimensional states that violate the CKW monogamy inequality. Detailed examples are presented to
illustrate the effectiveness of our results in characterizing the multipartite entanglement distributions.

Keywords: monogamy; polygamy; LCREN; LCRENoA

1. Introduction

Quantum entanglement is vital in quantum mechanics, offering profound insights
into the essence of quantum correlations and serving pivotal functions in quantum infor-
mation processing. As the key resource in quantum tasks, quantum entanglement has been
used in many quantum communication protocols such as superdense coding [1], quantum
cryptography [2], quantum teleportation [3] and remote-state preparation [4]. One remark-
able feature of quantum entanglement, setting it apart from classical correlations, is its
inherent limitation in being shared among multipartite quantum systems, referred to as the
monogamy of entanglement (MoE) [5,6]. MoE’s restrictions on the information accessible
to potential eavesdroppers regarding secret key extraction play a pivotal role in the security
of many information-theoretic protocols such as quantum key distribution [7–9]. MoE has
been widely used in many areas of physics such as condensed-matter physics [10] and even
black-hole physics [11]. MoE may also help to investigate the efficiency of entanglement
used in quantum cryptography and in characterizations of the entanglement distributions.

Coffman, Kundu and Wootters (CKW) firstly characterized the monogamy of entan-
glement for three-qubit states ρABC,

τ
(

ρA|BC

)
≥ τ

(
ρA|B

)
+ τ

(
ρA|C

)
, (1)

where ρAB = trC(ρABC) and ρAC = trB(ρABC) are the reduced density matrices by tracing
over the subsystem C and B, respectively, with trB (trC) denoting the partial trace with
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respect to the subsystem B (C). τ
(

ρA|BC

)
is the tangle of ρABC between subsystems A

and BC, and τ
(

ρA|B

)
(τ
(

ρA|C

)
) is the tangle between A and B (A and C) [12]. The CKW

inequality illustrates the incompatibility of the two-qubit entanglement between τ
(

ρA|B

)
and τ

(
ρA|C

)
. Thus, the sum of the entanglement of the two-qubit systems cannot surpass

the collective entanglement between A and BC. The CKW inequality was expanded to
encompass different measures of bipartite entanglement, enabling its extension to multi-
qubit systems [13] and higher-dimensional quantum systems [14–17].

The entanglement of assistance, as a complementary quantity to bipartite entangle-
ment, holds immense significance too. It notably displays a dualistic monogamous nature
within multi-qubit quantum systems and gives rise to polygamous relationships. Whereas
MoE inequalities provide upper bounds on the shareability of entanglement among quan-
tum subsystems, the authors in Ref. [18] prove that this bound also acts as a lower bound
(conjectured in Ref. [19]) for the distribution of entanglement, the entanglement of assis-
tance, to a target pair of A and B [20–22]. This distribution of entanglement is established
by performing collective operations on the rest of the subsystems so as to maximize the
shared entanglement between A and B. The duality of entanglement shareability versus
entanglement of assistance is evident in that the upper bound for the former is the lower
bound for the latter. For a three-qubit state ρABC, the polygamy inequality is defined by

τa
(

ρA|BC

)
≤ τa

(
ρA|B

)
+ τa

(
ρA|C

)
,

where τa
(

ρA|BC

)
is the tangle of assistance [18,19]. The polygamy inequality was extended

to encompass multi-qubit systems and certain classes of higher-dimensional quantum
systems by using diverse entropic entanglement measures [16,23–26].

Lately, there have been noteworthy discussions on monogamy and polygamy inequal-
ities based on the αth-power of entanglement measures [27–29]. In Ref. [30], Kim derived
strict monogamy inequalities by using the Hamming weight. This approach effectively
captures the entangled nature of quantum states and offers a novel study of monogamy.
Subsequently, comprehensive sets of inequalities associated with the Hamming weight of
entanglement measures have been introduced [31,32].

It is generally acknowledged that monogamy inequalities are consistently fulfilled
by entanglement measures exhibiting convexity. The question of whether a nonconvex
measure of entanglement abides by the monogamy inequality remains less known presently.
The nonconvex nature of the logarithmic negativity is surprising, as it is generally con-
sidered that convexity describes the local physical process of losing information [33,34].
However, it should be noted that the convexity is primarily a mathematical requirement for
entanglement monotones and does not necessarily describe a physical process that involves
the loss of information about a quantum system [34]. Indeed, it is the combination of concav-
ity and the monotonicity of the logarithm that allows for the proof of the nonincreasing of
the logarithmic negativity under positive partial transpose (PPT)-preserving operations [34].
In addition, the logarithmic negativity, which possesses an operational interpretation, is an
entanglement monotone under both general local operations and classical communication
(LOCC) [35]. The measure is the upper bound on distillable entanglement [34,35] and is
related to the entanglement cost under PPT-preserving operations [35]. Therefore, comple-
mentary to those of the convex measures of entanglement, the monogamy of logarithmic
negativity is a key issue in the theory of quantum entanglement.

In this paper, we offer a more detailed characterization of multi-qubit entanglement by
using these nonconvex entanglement measures. Our research reveals that the monogamy
and polygamy inequalities we present are upheld in a tighter way compared to those
elucidated in Ref. [36]. Additionally, the newly proposed monogamy inequalities are
shown to be more effective in addressing counterexamples raised by the CKW monogamy
inequality in higher-dimensional systems.
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2. Preliminaries

Let us first review the conceptions of LCREN and LCRENoA, as well as the monogamy
and polygamy inequalities associated with them in multi-qubit systems. For a quantum
state ρAB on Hilbert space HA ⊗HB, the negativity N (ρAB) is defined as [33,34,37]

N (ρAB) = ∥ρ
TA
AB∥1 − 1,

where ρ
TA
AB denotes the partial transpose of ρAB with respect to the subsystem A, and the

trace norm ∥X∥1 of any X is defined by ∥X∥1 = tr
√

XX†. The logarithmic negativity is
defined as [33,34],

EN (ρAB) = log2 ∥ρ
TA
AB∥1 = log2[N (ρAB) + 1].

This measure serves as an entanglement monotone under both general local operation and
classical communication (LOCC), as well as positive partial transpose (PPT)-preserving
operations. It is also additive in nature but lacks convexity [34].

The convex-roof extended negativity (CREN) of a bipartite state ρAB is defined by [38],

Ñ (ρAB) = min
{pk ,|φk⟩AB}

∑
k

pkN (|φk⟩AB),

and the CREN of assistance (CRENoA) is defined by [14],

Ña(ρAB) = max
{pk ,|φk⟩AB}

∑
k

pkN (|φk⟩AB),

where the minimum and maximum are taken over all possible pure-state decompositions of
ρAB = ∑k pk|φk⟩AB⟨φk| with pk ≥ 0, and ∑

k
pk = 1. By definition, both CREN and CRENoA

of a pure state are equal to the negativity.
For any bipartite state ρAB, the LCREN is defined by

EÑ (ρAB) = log2[Ñ (ρAB) + 1]. (2)

LCREN is a bona fide measure of entanglement. It exhibits both a nonincrease under
LOCC and an average nonincrease under LOCC, which can be attributed to CREN’s entan-
glement monotonicity, logarithmic monotonicity and logarithm concavity. Nonetheless,
similar to the logarithmic negativity, LCREN lacks convexity.

For any (N + 1)-qubit state ρAB0···BN−1 , a monogamy inequality has been presented in
Ref. [36] for α ≥ 4 ln 2,

Eα
Ñ (ρA|B0···BN−1

) ≥
N−1

∑
i=0

Eα
Ñ (ρA|Bi

), (3)

where EÑ (ρA|B0···BN−1
) is the LCREN of ρAB0···BN−1 with respect to the bipartition A and

B0 · · · BN−1, and EÑ (ρA|Bi
) is the LCREN of the reduced density matrix ρABi ,

i = 0, · · · , N − 1.
Similar to LCREN, the LCRENoA is defined by

EÑa
(ρAB) = log2[Ña(ρAB) + 1]. (4)

For 0 ≤ α ≤ 2, we obtain the polygamy inequality [36],

Eα
Ña

(ρA|B0···BN−1
) ≤

N−1

∑
i=0

Eα
Ña

(ρA|Bi
), (5)
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where EÑa
(ρA|B0···BN−1

) is the LCRENoA of ρAB0···BN−1 with respect to the bipartition A
and B0 · · · BN−1, and EÑa

(ρA|Bi
) is the LCRENoA of the reduced density matrices ρABi ,

i = 0, · · · , N − 1.
The tighter monogamy relations give rise to a more refined characterization of the

entanglement distributions among the quantum systems, and significant applications such
as in the security of quantum cryptographic protocols based on entanglement by limiting
eavesdropper correlations with the honest parties. Therefore, new tighter monogamy
relations of entanglement provide better understanding and applications of quantum entan-
glement. In the forthcoming sections, we present improvements to the above inequalities,
achieving significantly tighter constraints on multi-qubit entanglement distribution under
specific conditions.

3. Tighter Monogamy Inequalities of Multi-Qubit LCREN

We first present a series of notations and definitions to assist in understanding the
subsequent discussion. For any nonnegative integer j with binary expansion j = ∑N−1

i=0 ji2i,
where log2 j ≤ N and ji ∈ {0, 1} for i = 0, · · · , N − 1, one defines a unique binary vector

associated with j,
−→
j = (j0, j1, · · · , jN−1). The Hamming weight ωH

(−→
j
)

of the binary

vector
−→
j is defined as the number of 1s in its coordinates [39]. Moreover, the Hamming

weight ωH

(−→
j
)

is bounded above by log2 j,

ωH

(−→
j
)
≤ log2 j ≤ j. (6)

We also require the subsequent lemma, which can be easily verified.

Lemma 1. For 0 ≤ x ≤ 1 and nonnegative real number α, we have

(1 + x)α ≥ 1 + αxα (7)

for α ≥ 1, and

(1 + x)α ≤ 1 + αxα (8)

for 0 ≤ α ≤ 1.

In the subsequent discussion, we present a new class of monogamy relations in terms
of the αth-power of LCREN by incorporating the concept of Hamming weight.

Theorem 1. For any (N + 1)-qubit state ρAB0 ...BN−1 , we have

[EÑ (ρA|B0B1 ...BN−1
)]α ≥

N−1

∑
j=0

( α

4 ln 2

)ωH (⃗j)
[EÑ (ρA|Bj

)]α, (9)

where α ≥ 4 ln 2,
−→
j = (j0, · · · , jN−1) is the vector from the binary representation of j, and ωH

(−→
j
)

is the Hamming weight of
−→
j .

Proof. From inequality (3), one has E4 ln 2
Ñ

(ρA|B0···BN−1
) ≥

N−1
∑

i=0
E4 ln 2
Ñ

(ρA|Bi
). Thus, it is

sufficient to show that[
N−1

∑
j=0

E4 ln 2
Ñ (ρA|Bj

)

] α
4 ln 2

≥
N−1

∑
j=0

( α

4 ln 2

)ωH (⃗j)
[EÑ (ρA|Bj

)]α. (10)
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We can assume, without loss of generality, that the qubit subsystems B0, . . . , BN−1 are
appropriately labeled such that

E4 ln 2
Ñ (ρA|Bj

) ≥ E4 ln 2
Ñ (ρA|Bj+1

) ≥ 0 (11)

for j = 0, 1, . . . , N − 2.
Initially, we demonstrate the validity of inequality (10) for the case of N = 2n. For

n = 1, we obtain

[E4 ln 2
Ñ (ρA|B0

) + E4 ln 2
Ñ (ρA|B1

)]
α

4 ln 2 = [EÑ (ρA|B0
)]α
(

1 +
E4 ln 2
Ñ

(ρA|B1
)

E4 ln 2
Ñ

(ρA|B0
)

) α
4 ln 2 . (12)

Combining (7) and (11), we have

(
1 +

E4 ln 2
Ñ

(ρA|B1
)

E4 ln 2
Ñ

(ρA|B0
)

) α
4 ln 2 ≥ 1 +

α

4 ln 2

(
EÑ (ρA|B1

)

EÑ (ρA|B0
)

)α

. (13)

From (12) and (13), we obtain

[E4 ln 2
Ñ (ρA|B0

) + E4 ln 2
Ñ (ρA|B1

)]
α

4 ln 2 ≥ [EÑ (ρA|B0
)]α +

α

4 ln 2
[EÑ (ρA|B1

)]α.

Therefore, inequality (10) holds for n = 1.
Assuming the validity of inequality (10) for N = 2n−1 (where n ≥ 2), we now proceed

to prove its applicability to the case of N = 2n. For an (N + 1)-qubit state ρAB0B1···BN−1 with
its two-qubit reduced density matrices ρABj with j = 0, · · · , N − 1, we have

(
N−1

∑
j=0

E4 ln 2
Ñ

(
ρA|Bj

)) α
4 ln 2

=

(
2n−1−1

∑
j=0

E4 ln 2
Ñ

(
ρA|Bj

)) α
4 ln 2
1 +

∑2n−1
j=2n−1 E4 ln 2

Ñ

(
ρA|Bj

)
∑2n−1−1

j=0 E4 ln 2
Ñ

(
ρA|Bj

)


α
4ln2

. (14)

Inequality (11) implies that

0 ≤
∑2n−1

j=2n−1 E4 ln 2
Ñ

(ρA|Bj
)

∑2n−1−1
j=0 E4 ln 2

Ñ
(ρA|Bj

)
≤ 1.

Thus, Equation (14) and inequality (7) lead to(
N−1

∑
j=0

E4 ln 2
Ñ

(
ρA|Bj

)) α
4 ln 2

≥
(

∑2n−1−1
j=0 E4 ln 2

Ñ (ρA|Bj
)

) α
4 ln 2

+
α

4 ln 2

(
∑2n−1

j=2n−1 E4 ln 2
Ñ (ρA|Bj

)

) α
4 ln 2

.

According to the induction hypothesis, we obtain(
∑2n−1−1

j=0 E4 ln 2
Ñ (ρA|Bj

)

) α
4 ln 2

≥ ∑2n−1−1
j=0

( α

4 ln 2

)ωH (⃗j)
[EÑ (ρA|Bj

)]α.

By relabeling the subsystems, the induction hypothesis leads to(
∑2n−1

j=2n−1 E4 ln 2
Ñ (ρA|Bj

)

) α
4 ln 2

≥ ∑2n−1
j=2n−1

( α

4 ln 2

)ωH (⃗j)−1
[EÑ (ρA|Bj

)]α.

Therefore, we have(
∑2n−1

j=0 E4 ln 2
Ñ (ρA|Bj

)

) α
4 ln 2

≥ ∑2n−1
j=0

( α

4 ln 2

)ωH (⃗j)
[EÑ (ρA|Bj

)]α.
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Considering the existence of a positive integer N satisfying the condition 0 ≤ N ≤
2n. Let us now contemplate a pure state consisting of (2n + 1) qubits, ΓAB0B1 ...B2n−1

=
ρAB0B1 ...BN−1 ⊗ σBN ...B2n−1

; the state can be precisely expressed as the tensor product of
ρAB0B1 ...BN−1 and σBN BN+1 ...B2n−1

, where σBN BN+1 ...B2n−1
represents an arbitrary (2n − N)-

qubit state. We have

[E4 ln 2
Ñ (ΓA|B0B1 ...B2n−1

)]
α

4 ln 2 ≥ ∑2n−1
j=0

( α

4 ln 2

)ωH (⃗j)
[EÑ (ΓA|Bj

)]α,

where ΓA|Bj
denotes the two-qubit reduced density matrix derived from ΓAB0B1 ...B2n−1

,
j = 0, 1, . . . , 2n − 1. Therefore,

[E4 ln 2
Ñ (ρA|B0B1 ...BN−1

)]
α

4 ln 2 =[E4 ln 2
Ñ (ΓA|B0B1 ...B2n−1

)]
α

4 ln 2

≥∑2n−1
j=0

( α

4 ln 2

)ωH (⃗j)
[EÑ (ΓA|Bj

)]α

=∑N−1
j=0

( α

4 ln 2

)ωH (⃗j)
[EÑ (ρA|Bj

)]α,

where ΓA|B0B1 ...B2n−1
denotes the state under bipartition AB0 . . . BN−1 and BN . . . B2n−1,

EÑ

(
ΓA|B0B1···B2n−1

)
= EÑ

(
ρA|B0B1···BN−1

)
, EÑ

(
ΓA|Bj

)
= 0 for j = N, · · · , 2n − 1, and

ΓA|Bj
= ρA|Bj

for each j = 0, · · · , N − 1, which completes the proof.

Remark 1. Since ( α
4 ln 2 )

ωH(
−→
j ) ⩾ 1 for any α ≥ 4 ln 2, for any (N + 1)-qubit state ρAB0B1···BN−1 ,

we can express it using the following relation,

[EÑ (ρA|B0B1 ...BN−1
)]α ≥ ∑N−1

j=0

( α

4 ln 2

)ωH (⃗j)
[EÑ (ρA|Bj

)]α ≥ ∑N−1
j=0 [EÑ (ρA|Bj

)]α.

Therefore, our inequality (9) in Theorem 1 is always tighter than the inequality (3) in Ref. [36].

Example 1. In the generalized Schmidt decomposition, the three-qubit state |ϕ⟩ABC can be ex-
pressed as [38,40],

|ϕ⟩ABC = λ0|000⟩+ λ1eiφ|100⟩+ λ2|101⟩+ λ3|110⟩+ λ4|111⟩, (15)

where λi ≥ 0, i = 0, 1, · · · , 4, and
4
∑

i=0
λ2

i = 1. One obtains Ñ (ρA|BC) = 2λ0

√
λ2

2 + λ2
3 + λ2

4,

Ñ (ρA|B) = 2λ0λ2 and Ñ (ρA|C) = 2λ0λ3. Setting λ0 = λ3 = λ4 = 1/
√

5, λ2 =
√

2/5

and λ1 = 0, we have Ñ (ρA|BC) = 4/5, Ñ (ρA|B) = 2
√

2/5 and Ñ (ρA|C) = 2/5. Using
relation (2) we have EÑ (ρA|BC) = log2

9
5 , EÑ (ρA|B) = log2(2

√
2/5 + 1) and EÑ (ρA|C) =

log2
7
5 . Thus, [EÑ (ρA|BC)]

α ≥ (log2(2
√

2/5 + 1))α + α
4 ln 2 (log2

7
5 )

α from our result (9),
and [EÑ (ρA|BC)]

α ≥ (log2(2
√

2/5 + 1))α + (log2
7
5 )

α from the result (3) given in Ref. [36].
One can see our inequality (9) is tighter than the result (3) in Ref. [36] for α ≥ 4 ln 2, see Figure 1.

Inequality (9) can be further enhanced under specific circumstances, resulting in a
significantly tightened form.

Theorem 2. For α ≥ 4 ln 2, any (N + 1)-qubit state ρAB0 ...BN−1 satisfies

[EÑ (ρA|B0B1 ...BN−1
)]α ≥ ∑N−1

j=0

( α

4 ln 2

)j
[EÑ (ρA|Bj

)]α, (16)

if
E4 ln 2
Ñ (ρA|Bi

) ≥ ∑N−1
j=i+1 E4 ln 2

Ñ (ρA|Bj
)
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for i = 0, 1, . . . , N − 2.

3.0 3.5 4.0 4.5 5.0 5.5 6.0
α

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ε
Ν


Figure 1. The red line is the exact values of EÑ (ρA|BC). The green and blue lines represent the lower
bounds from our result (9) and the result (3) in [36], respectively.

Proof. From inequality (3), we only need to prove[
N−1

∑
j=0

E4 ln 2
Ñ (ρA|Bj

)

] α
4 ln 2

≥
N−1

∑
j=0

( α

4 ln 2

)j
[EÑ (ρA|Bj

)]α. (17)

Here, we employ mathematical induction on N. It becomes evident that inequality (17)
is valid for N = 2, as derived from (9), assuming its validity for all positive integers smaller

than N. Since
∑N−1

j=i+1 E4 ln 2
Ñ

(ρA|Bj
)

E4 ln 2
Ñ

(ρA|Bi
)

⩽ 1, we have

[
N−1

∑
j=0

E4 ln 2
Ñ (ρA|Bj

)

] α
4 ln 2

= Eα
Ñ (ρA|B0

)

(
1 +

∑N−1
j=1 E4 ln 2

Ñ
(ρA|Bj

)

E4 ln 2
Ñ

(ρA|B0
)

) α
4 ln 2

⩾ Eα
Ñ (ρA|B0

)

[
1 +

α

4 ln 2

(
∑N−1

j=1 E4 ln 2
Ñ

(ρA|Bj
)

E4 ln 2
Ñ

(ρA|B0
)

) α
4 ln 2
]

= Eα
Ñ (ρA|B0

) +
α

4 ln 2

(
∑N−1

j=1 E4 ln 2
Ñ (ρA|Bj

)

) α
4 ln 2

⩾ Eα
Ñ (ρA|B0

) +
α

4 ln 2

N−1

∑
j=1

(
α

4 ln 2
)j−1Eα

Ñ (ρA|Bj
)

= ∑N−1
j=0

( α

4 ln 2

)j
[EÑ (ρA|Bj

)]α,

where the first inequality stems from Lemma 1, and the subsequent inequality relies on the
induction hypothesis.

Remark 2. According to (6), for any α ≥ 4 ln 2 one has

[EÑ (ρA|B0 ...BN−1
)]α ≥

N−1

∑
j=0

( α

4 ln 2

)j(
EÑ

(
ρA|Bj

))α

≥
N−1

∑
j=0

( α

4 ln 2

)ωH (⃗j)
[EÑ (ρA|Bj

)]α.
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Hence, within specific conditions, the inequality (16) derived from Theorem 2 exhibits as being
tighter compared to the inequality (9) established in Theorem 1.

Example 2. Let us consider the four-qubit entangled decoherence-free state [41], |Φ⟩ = a|Ψ0⟩+
b|Ψ1⟩, where |Ψi⟩ are logic basis states given by

|Ψ0⟩ABCD =
1
2
(|01⟩ − |10⟩)AB(|01⟩ − |10⟩)CD,

|Ψ1⟩ABCD =
1

2
√

3
(2|1100⟩+ 2|0011⟩ − |1010⟩ − |1001⟩

−|0101⟩ − |0110⟩)ABCD. (18)

When a = b = 1√
2
, we have Ñ (|Φ⟩A|BCD) = 1, Ñ (ρA|B) = 0.9107, Ñ (ρA|C) = 0.3333

and Ñ (ρA|D) = 0.244. Using relation (2), we have EÑ (ρA|BCD) = 1, EÑ (ρA|B) = 0.934101,
EÑ (ρA|C) = 0.415001 and EÑ (ρA|D) = 0.314986. Thus, [EÑ (ρA|BCD)]

α ≥ (0.934101)α +
α

4 ln 2 (0.415001)α +( α
4 ln 2 )

2(0.314986)α from inequality (16), and [EÑ (ρA|BCD)]
α ≥ (0.934101)α +

α
4 ln 2(0.415001)α + α

4 ln 2(0.314986)α from inequality (9). One can see that inequality (16) is better
than inequality (9) for α ≥ 4 ln 2, see Figure 2.

3.0 3.5 4.0 4.5 5.0 5.5 6.0
α

0.7

0.8

0.9

1.0

Ε
Ν


Figure 2. The red thin and green dotted lines depict the lower bounds from Equations (16) and (9),
respectively.

We can also use the different examples to show that inequality (16) is better than
inequality (9) for α ≥ 4 ln 2.

Example 3. Let us consider the 4-qubit generalized W-class state,

|W⟩ABCD = λ1|1000⟩+ λ2|0100⟩
+ λ3|0010⟩+ λ4|0001⟩, (19)

where ∑i λ2
i = 1. We have Ñ (ρA|B) = 2λ1λ2, Ñ (ρA|C) = 2λ1λ3 and Ñ (ρA|D) = 2λ1λ4.

Taking λ1 = 3
4 , λ2 =

√
2

2 , λ3 = 1
4 and λ4 = 1

4 , we obtain Ñ (ρA|B) = 3
√

2
4 , Ñ (ρA|C) = 3

8

and Ñ (ρA|D) = 3
8 . Using relation (2), we have EÑ (ρA|B) = 1.043, EÑ (ρA|C) = 0.459 and

EÑ (ρA|D) = 0.459. Thus, [EÑ (ρA|BCD)]
α ≥ (1.043)α + α

4 ln 2 (0.459)α + ( α
4 ln 2 )

2(0.459)α from
inequality (16), and [EÑ (ρA|BCD)]

α ≥ (1.043)α + α
4 ln 2 (0.459)α + α

4 ln 2 (0.459)α from inequal-
ity (9). One can see that inequality (16) is better than inequality (9) for α ≥ 4 ln 2, see Figure 3.
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3.0 3.5 4.0 4.5 5.0 5.5 6.0
α

1.31

1.32

1.33

1.34

1.35

1.36

Ε
N


Figure 3. The red and green lines depict the lower bounds from Equations (16) and (9), respectively.

The conditions (17) are not universally fulfilled; we derive the subsequent monogamy
inequality under alternate circumstances.

Theorem 3. For α ≥ 4 ln 2, any (N + 1)-qubit state ρAB0 ...BN−1 satisfies

[EÑ (ρA|B0 ...BN−1
)]α ⩾

t

∑
j=0

(
α

4 ln 2
)j[EÑ (ρA|Bj

)]α + (
α

4 ln 2
)t+2

N−2

∑
j=t+1

[EÑ (ρA|Bj
)]α

+(
α

4 ln 2
)t+1[EÑ (ρA|BN−1

)]α, (20)

on the condition that E4 ln 2
Ñ

(ρA|Bi
) ⩾ E4 ln 2

Ñ
(ρA|Bi+1···BN−1

) for i = 0, 1, · · · , t, and E4 ln 2
Ñ

(ρA|Bj
) ⩽

E4 ln 2
Ñ

(ρA|Bj+1···BN−1
) for j = t + 1, · · · , N − 2, 0 ⩽ t ⩽ N − 3, N ⩾ 3.

Proof. From Theorem 1 for the case N = 2, we have

[EÑ (ρA|B0 ...BN−1
)]α ⩾ [EÑ (ρA|B0

)]α +
α

4 ln 2
[EÑ (ρA|B1 ...BN−1

)]α

⩾ · · ·

⩾
t

∑
j=0

(
α

4 ln 2
)j[EÑ (ρA|Bj

)]α + (
α

4 ln 2
)t+1[EÑ (ρA|Bt+1...BN−1

)]α. (21)

Since E4 ln 2
Ñ

(ρA|Bj
) ⩽ E4 ln 2

Ñ
(ρA|Bj+1···BN−1

) for j = t + 1, · · · , N − 2, using Theorem 1
again, we have

[EÑ (ρA|Bt+1...BN−1
)]α ⩾

α

4 ln 2
[EÑ (ρA|Bt+1

)]α + [EÑ (ρA|Bt+2...BN−1
)]α

⩾ · · ·

⩾
α

4 ln 2

(
N−2

∑
j=t+1

[EÑ (ρA|Bj
)]α
)
+ [EÑ (ρA|BN−1

)]α. (22)

Combining (21) and (22), we obtain inequality (20).

Remark 3. From Theorem 3, if E4 ln 2
Ñ

(ρA|Bi
) ⩾ E4 ln 2

Ñ
(ρA|Bi+1···BN−1

) for all j = 0, 1, · · · , N − 2,
one has

[EÑ (ρA|B0B1 ...BN−1
)]α ≥ ∑N−1

j=0

( α

4 ln 2

)j
[EÑ (ρA|Bj

)]α.
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4. Tighter Polygamy Inequalities of Multi-Qubit LCRENoA

Here, we present refined polygamy inequalities by utilizing the αth-power of LCRENoA.

Theorem 4. For any (N + 1)-qubit state ρAB0 ...BN−1 , we have

[EÑa
(ρA|B0B1 ...BN−1

)]α ≤
N−1

∑
j=0

(α

2

)ωH (⃗j)
[EÑa

(ρA|Bj
)]α, (23)

where 0 ≤ α ≤ 2,
−→
j = (j0, · · · , jN−1) is the vector from the binary representation of j,

and ωH

(−→
j
)

is the Hamming weight of
−→
j .

Proof. From inequality (5), one has E2
Ña

(ρA|B0···BN−1
) ≤

N−1
∑

i=0
E2
Ña

(ρA|Bi
). Thus, it is suffi-

cient to show that [
N−1

∑
j=0

E2
Ña

(ρA|Bj
)

] α
2

≤
N−1

∑
j=0

(α

2

)ωH (⃗j)
[EÑa

(ρA|Bj
)]α. (24)

Assuming no loss of generality, we label the qubit subsystems B0, . . . , BN−1 in a manner
that preserves their intended order such that

E2
Ña

(ρA|Bj
) ≥ E2

Ña
(ρA|Bj+1

) ≥ 0 (25)

for j = 0, 1, . . . , N − 2.
Firstly, we demonstrate the validity of inequality (24) for the case of N = 2n. For n = 1,

we obtain

[E2
Ña

(ρA|B0
) + E2

Ña
(ρA|B1

)]
α
2 = [EÑa

(ρA|B0
)]α
(

1 +
E2
Ña

(ρA|B1
)

E2
Ña

(ρA|B0
)

) α
2
. (26)

Combining (8) and (25), we have

(
1 +

E2
Ña

(ρA|B1
)

E2
Ña

(ρA|B0
)

) α
2 ≤ 1 +

α

2

(
EÑa

(ρA|B1
)

EÑa
(ρA|B0

)

)α

. (27)

From (26) and (27), we obtain

[E2
Ña

(ρA|B0
) + E2

Ña
(ρA|B1

)]
α
2 ≤ [EÑa

(ρA|B0
)]α +

α

2
[EÑa

(ρA|B1
)]α.

Therefore, inequality (24) holds for n = 1.
Taking into consideration that inequality (24) has already been established for the case

where N = 2n−1, with n ≥ 2, we now proceed to demonstrate its validity for the case of
N = 2n, and we have(

N−1

∑
j=0

E2
Ña

(
ρA|Bj

)) α
2

=

(
2n−1−1

∑
j=0

E2
Ña

(
ρA|Bj

)) α
2
1 +

∑2n−1
j=2n−1 E2

Ña

(
ρA|Bj

)
∑2n−1−1

j=0 E2
Ña

(
ρA|Bj

)


α
2

. (28)

Because of the ordering of subsystems, inequality (25) implies

0 ≤
∑2n−1

j=2n−1 E2
Ña

(ρA|Bj
)

∑2n−1−1
j=0 E2

Ña
(ρA|Bj

)
≤ 1.
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Thus, Equation (28) and inequality (8) lead to(
N−1

∑
j=0

E2
Ña

(
ρA|Bj

)) α
2

≤
(

∑2n−1−1
j=0 E2

Ña
(ρA|Bj

)

) α
2

+
α

2

(
∑2n−1

j=2n−1 E2
Ña

(ρA|Bj
)

) α
2

.

By the induction hypothesis, we obtain(
∑2n−1−1

j=0 E2
Ña

(ρA|Bj
)

) α
2

≤ ∑2n−1−1
j=0

(α

2

)ωH (⃗j)
[EÑa

(ρA|Bj
)]α.

Through the process of reassigning labels to the subsystems, the induction hypothesis
offers the following outcome,(

∑2n−1
j=2n−1 E2

Ña
(ρA|Bj

)

) α
2

≤ ∑2n−1
j=2n−1

(α

2

)ωH (⃗j)−1
[EÑa

(ρA|Bj
)]α.

Thus, we have(
∑2n−1

j=0 E2
Ña

(ρA|Bj
)

) α
2

≤ ∑2n−1
j=0

(α

2

)ωH (⃗j)
[EÑa

(ρA|Bj
)]α.

Now, consider a (2n + 1)-qubit state ΓAB0B1 ...B2n−1
= ρAB0B1 ...BN−1 ⊗ σBN ...B2n−1

.
We have

[E2
Ña

(ΓA|B0B1 ...B2n−1
)]

α
2 ≤ ∑2n−1

j=0

(α

2

)ωH (⃗j)
[EÑa

(ΓA|Bj
)]α,

Therefore,

[E2
Ña

(ρA|B0B1 ...BN−1
)]

α
2 =[E2

Ña
(ΓA|B0B1 ...B2n−1

)]
α
2

≤∑2n−1
j=0

(α

2

)ωH (⃗j)
[EÑa

(ΓA|Bj
)]α

=∑N−1
j=0

(α

2

)ωH (⃗j)
[EÑa

(ρA|Bj
)]α,

where EÑa

(
ΓA|B0B1···B2n−1

)
= EÑa

(
ρA|B0B1···BN−1

)
, EÑa

(
ΓA|Bj

)
= 0 for j = N, · · · , 2n − 1,

and ΓA|Bj
= ρA|Bj

for each j = 0, · · · , N − 1, which completes the proof.

Remark 4. Since ( α
2 )

ωH(
−→
j ) ≤ 1 for any 0 ≤ α ≤ 2, for any (N + 1)-qubit state ρAB0B1···BN−1 ,

we have the following relation

[EÑa
(ρA|B0B1 ...BN−1

)]α ≤ ∑N−1
j=0

(α

2

)ωH (⃗j)
[EÑa

(ρA|Bj
)]α ≤ ∑N−1

j=0 [EÑa
(ρA|Bj

)]α.

Therefore, our inequality (23) in Theorem 4 is always tighter than inequality (5) in Ref. [36].

Example 4. Let us consider the 3-qubit generalized W state,

|W⟩ABC =
1√
3
(|100⟩+ |010⟩+ |001⟩).

We have Ña(ρA|BC) = 2
√

2/3, Ña(ρA|B) = 2/3 and Ña(ρA|C) = 2/3. Using relation (4)
we have EÑa

(ρA|BC) = log2(2
√

2/3 + 1), EÑa
(ρA|B) = log2

5
3 and EÑa

(ρA|C) = log2
5
3 .

Thus, [EÑa
(ρA|BC)]

α ≤ (log2
5
3 )

α + α
2 (log2

5
3 )

α from our result (23), and [EÑa
(ρA|BC)]

α ≤
(log2(log2

5
3 )

α + (log2
5
3 )

α from the result (5) given in Ref. [36]. One can see that our result (23)
is better than the result (5) in Ref. [36] for 0 ≤ α ≤ 2, see Figure 4.
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Figure 4. The red line is the exact value of EÑa
(ρA|BC). The green line represents the upper bound

from our result (23). The blue line represents the upper bound from the result (5) in [36].

Just as the transition from inequality (9) to inequality (16), we can likewise enhance
the polygamy inequality in Theorem 4. The proof is similar to Theorem 2.

Theorem 5. For 0 ≤ α ≤ 2, any (N + 1)-qubit state ρAB0 ...BN−1 satisfies

[EÑa
(ρA|B0B1 ...BN−1

)]α ≤ ∑N−1
j=0

(α

2

)j
[EÑa

(ρA|Bj
)]α, (29)

if
E2
Ña

(ρA|Bi
) ≥ ∑N−1

j=i+1 E2
Ña

(ρA|Bj
)

for i = 0, 1, . . . , N − 2.

Remark 5. In fact, according to relation (6), for any 0 ≤ α ≤ 2, one has

[EÑa
(ρA|B0 ...BN−1

)]α ≤
N−1

∑
j=0

(α

2

)j(
EÑa

(
ρA|Bj

))α

≤∑N−1
j=0

(α

2

)ωH (⃗j)
[EÑa

(ρA|Bj
)]α.

Therefore, inequality (29) in Theorem 6 is tighter than inequality (23) of Theorem 5 under
certain conditions.

Example 5. Let us consider the 4-qubit generalized W-class state again in Example 3. We have
Ña(ρA|B) = 2λ1λ2, Ña(ρA|C) = 2λ1λ3 and Ña(ρA|D) = 2λ1λ4. Taking λ1 = 3

4 , λ2 =
√

2
2 , λ3 = 1

4 and λ4 = 1
4 , we obtain Ña(ρA|B) = 3

√
2

4 , Ña(ρA|C) = 3
8 and Ña(ρA|D) =

3
8 . Using relation (4), we have EÑa

(ρA|B) = 1.043, EÑa
(ρA|C) = 0.459 and EÑa

(ρA|D) =

0.459. Thus, [EÑa
(ρA|BCD)]

α ≤ (1.043)α + α
2 (0.459)α + ( α

2 )
2(0.459)α from inequality (29),

and [EÑa
(ρA|BCD)]

α ≤ (1.043)α + α
2 (0.459)α + α

2 (0.459)α from inequality (23). One can see that
inequality (29) is better than inequality (23) for 0 ≤ α ≤ 2, see Figure 5.
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Figure 5. The red and green lines depict the lower bounds from Equations (29) and (23), respectively.

By modifying the conditions stated in Theorem 5, we are able to present more compre-
hensive results.

Theorem 6. For 0 ≤ α ≤ 2, any (N + 1)-qubit state ρAB0 ...BN−1 satisfies

[EÑa
(ρA|B0 ...BN−1

)]α ≤
t

∑
j=0

(
α

2
)j[EÑa

(ρA|Bj
)]α + (

α

2
)t+2

N−2

∑
j=t+1

[EÑa
(ρA|Bj

)]α

+(
α

2
)t+1[EÑa

(ρA|BN−1
)]α,

on the condition that E2
Ña

(ρA|Bi
) ⩾ E2

Ña
(ρA|Bi+1···BN−1

) for i = 0, 1, · · · , t and E2
Ña

(ρA|Bj
) ⩽

E2
Ña

(ρA|Bj+1···BN−1
) for j = t + 1, · · · , N − 2, 0 ⩽ t ⩽ N − 3, N ⩾ 3.

Remark 6. From Theorem 6, if E2
Ña

(ρA|Bi
) ⩾ E2

Ña
(ρA|Bi+1···BN−1

) for all j = 0, 1, · · · , N − 2,
we have

[EÑa
(ρA|B0B1 ...BN−1

)]α ≤ ∑N−1
j=0

(α

2

)j
[EÑa

(ρA|Bj
)]α.

5. Conclusions and Discussions

Monogamy and polygamy relations exemplify the fundamental properties displayed
in multi-qubit entanglement, exhibiting the intricate nature of quantum entanglement.
We elucidated the manifestations of multi-qubit monogamy and polygamy constraints by
utilizing the nonconvex entanglement measures LCREN and LCRENoA. We integrated the
Hamming weight and the LCREN (LCRENoA) for the first time, and presented new classes
of monogamy and polygamy relations. We also demonstrated that these new inequalities
impose finer constraints than the previous ones. Our approaches may be used in future
studies aimed at comprehending the entanglement distribution in multi-qubit systems.

We focused on multi-qubit systems. It is noteworthy that our tight monogamy inequal-
ity (9) remains applicable not only to such systems but also to certain higher-dimensional
quantum systems for which the CKW monogamy inequality (1) is violated. First, let us
recall the definition of tangle. The tangle of a bipartite pure state |ψ⟩AB is defined as
τ(|ψ⟩A|B) = 2(1 − trρ2

A), where ρA = trB|ψ⟩AB⟨ψ| [12]. The tangle of a bipartite mixed
state ρAB is defined by [12]

τ(ρA|B) =

[
min

{pk ,|ψk⟩}
∑
k

pk

√
τ(|ψk⟩A|B)

]2

,
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where the minimization is taken over all possible pure-state decompositions of ρAB =

∑k pk|ψk⟩AB⟨ψk| with pk ≥ 0, and ∑
k

pk = 1. For multi-qubit states, the tangle satisfies the

following monogamy inequality,

τ(ρA|B0B1···AN−1) ≥
N−1

∑
j=0

τ(ρA|Bj
). (30)

Nevertheless, the monogamy inequality (30) based on the tangle does not generally
hold for systems with higher dimensions [14,42,43]. Specifically, one can readily confirm
that the following 3 ⊗ 3 ⊗ 3 three-qutrit state violates the inequality (30),

|Ψ⟩A|BC =
1√
6
(|012⟩ − |021⟩+ |120⟩ − |102⟩+ |201⟩ − |210⟩). (31)

In addition, the following 3 ⊗ 2 ⊗ 2 state also violates the inequality (30),

|Ψ⟩ABC =
1√
6
(
√

2|010⟩+
√

2|101⟩+ |200⟩+ |211⟩). (32)

Concerning our LCREN-based monogamy inequality (9) for the quantum state (31),
we have Ñ (|Ψ⟩A|BC) = 2 and Ñ (ρA|B) = Ñ (ρA|C) = 1. Using relation (2), we have
EÑ (|Ψ⟩A|BC) = log2 3 and EÑ (ρA|B) = EÑ (ρA|C) = 1. Thus, we have

Eα
Ñ (|Ψ⟩A|BC) = (log2 3)α ≥ 1 +

α

4 ln 2
= Eα

Ñ (ρA|B) +
α

4 ln 2
Eα
Ñ (ρA|C)

for α ≥ 4 ln 2. Namely, our monogamy inequality (9) still holds for state (31), see Figure 6.

3.0 3.5 4.0 4.5 5.0
α

2

4

6

8

10

Ε
N


Figure 6. The red line is the exact value of EÑ (|Ψ⟩A|BC). The green line represents the lower bound
from our results (9).

Likewise, considering the quantum state (32), we have Ñ (|Ψ⟩A|BC) = 2 and Ñ (ρA|B) =

Ñ (ρA|C) = 2
√

2
3 . Using relation (2), we have EÑ (|Ψ⟩A|BC) = log2 3 and EÑ (ρA|B) =

EÑ (ρA|C) = log2(
2
√

2
3 + 1). Thus, we have

Eα
Ñ (|Ψ⟩A|BC) = (log2 3α) ≥ (1 +

α

4 ln 2
)(log2(

2
√

2
3

+ 1))α = Eα
Ñ (ρA|B) +

α

4 ln 2
Eα
Ñ (ρA|C)

for α ≥ 4 ln 2. In other words, The LCREN-based monogamy inequality (9) remains
applicable to high-dimensional states that violate the CKW monogamy inequality (1).
Our discoveries may shed light on further investigations on entanglement distribution in
high-dimensional systems.
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