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Abstract: We deal with absolutely continuous probability distributions with finite all-positive integer-
order moments. It is well known that any such distribution is either uniquely determined by
its moments (M-determinate), or it is non-unique (M-indeterminate). In this paper, we follow the
maximum entropy approach and establish a new criterion for the M-indeterminacy of distributions on
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1. Introduction

When studying probability distributions, one of the challenging questions we arrive
at comes from the classical moment problem. The question is whether or not a probability
distribution is uniquely determined by the sequence of all moments, assuming they are
finite. The answer can be given for the distribution itself; equivalently, for the associated
random variable X; its distribution function F; the density f = F′; or the bounded positive
measure µ = µF induced by F. Thus, if the answer is positive, we call the distribution (also
X, F, f , µ) M-determinate; otherwise, we call it M-indeterminate. (Here, ‘M’ stands for
‘Moment’.)

It is well known that if µ is M-indeterminate, then there are infinitely many absolutely
continuous distributions, infinitely many purely discrete distributions, and infinitely many
singular distributions, all having the same moments as µ.

It is important, from both the theoretical and applied points of view, to have criteria at
hand allowing to specify/identify the determinacy or indeterminacy property of a distri-
bution. The best is to work with conditions which are in the group ‘checkable conditions’;
comments and references are given at the end of our paper. There is another group of
‘non-checkable conditions’. Here are the well-known classical necessary and sufficient
conditions for the (in)determinacy of µ in terms of the limits of the smallest eigenvalues of
sequences of Hankel matrices. Our recent review paper [1] describes the whole spectrum,
called ‘a bunch’, of the fundamental results, old and recent. The reader will find in [1]
details about the great contributions of T. Stieltjes, H. Hamburger, N. Akhiezer, M. Krein,
C. Berg, K. Schmüdgen, M. Putinar, B. Simon, and others. Their works are widely known.

Developments over the last few decades have shown the efficiency of involving the
Principle of Maximum Entropy, see, for example, [2–4]. We also use the terms ‘maximum
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entropy approach’ and ‘maximum entropy method’. For ’maximum entropy’, we write the
traditional ’MaxEnt’.

The idea of the MaxEnt method consists in selecting a distribution which possesses
maximum uncertainty, and at the same time, fulfills the restrictions imposed by the
known information.

In general, it is more delicate to deal with M-indeterminate distributions, since we
need, for example, to know how to find, describe and work with an infinite family of
distributions all having the same moments. In any case, MaxEnt may help to shed light on
this ‘dark tunnel’.

In this paper, we follow the generally accepted terminology and notations as used
in probability theory. We write X ∼ F for a random variable X whose distribution func-
tion is F, with f = F′ being the density, and specify the range U of values of X, the
support of F, which is assumed to be unbounded. Only in this case can the ‘interest-
ing’ property of M-indeterminacy appear. We work with the moment sequence {mk}∞

k=0,
and if U = R = (−∞, ∞), this is a Hamburger case, while with U = R+ = [0, ∞), it is a
Stieltjes case.

For X being an absolutely continuous random variable with strictly positive den-
sity f , we are looking for conditions, or criteria, guaranteeing the M-determinacy or
M-indeterminacy of µ. We use the entropy (called also ‘differential entropy’), which is
denoted by h f and defined as follows:

h f := E[− ln f (X)] = −
∫

U
(ln f (x)) f (x)dx.

The idea is very natural: We start with the n-truncated moment set {mk}n
k=0, and

based on it, we find the MaxEnt approximant fn of f and study the limit of the entropy h fn

of fn as n → ∞.
There is a remarkable fact, namely, that there are only two possibilities for the ‘value’

of the limit limn→∞ h fn ; either it is a finite number, or it is ‘equal’ to −∞. Depending on this
limit, we decide that f is M-determinate or M-indeterminate.

It is relevant to mention one of the results proved in ([5], Theorem 1): if an absolutely
continuous distribution F with density f is M-determinate, then the sequence of MaxEnt
approximants is converging in entropy to f . One of our goals in this paper is to involve
additional arguments allowing to show that such a result on entropy convergence can be
extended to the case of M-indeterminate distributions.

The remainder of the paper is organized as follows. In Section 2, we recall briefly
what we need about Hankel matrices and introduce the MaxEnt setup. In Section 3, we
calculate the entropy of densities with the given n-truncated moment set, for fixed n, and
also for the entire moment sequence {mk}∞

k=0. In Section 4, we provide an M-indeterminacy
MaxEnt criterion in the Stieltjes case. In Section 5, we present corollaries related to the
M-indeterminacy in the Hamburger case. Discussed is the question: Among a family of
infinitely many densities all with the same moments, which density has the largest entropy?

2. Basics of Hankel Matrices and the MaxEnt Setup

When we tell that {mk}∞
k=0 with m0 = 1 is a moment sequence, it always means that

there is a probability measure µ = µF which is ‘behind’. Thus, think of a random variable
X defined in an underlying probability space (Ω,F ,P), taking values in a set U ⊂ R. If F is
its distribution function, F(x) := P[X ≤ x], x ∈ R, then µ = µF is a positive Borel measure
induced by F. We write just µ.

A basic assumption is that E[|X|k] < ∞ for all k = 1, 2, . . . . Thus, well defined are
the moments

mk = E[Xk] =
∫

Ω
Xk(ω)dP =

∫
U

xk dF(x) =
∫

U
xk f (x)dx =

∫
U

xk µ(dx), k = 1, 2, . . . ,
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and also the moment sequence {mk}∞
k=0. If U = R, we say that {mk}∞

k=0 is a Hamburger
moment sequence, while for U = R+, {mk}∞

k=0 is a Stieltjes moment sequence.
For any moment sequence {mk}∞

k=0, we define a few infinite sequences of Hankel
matrices, namely, {Hn}∞

n=1 and {Hn,p}∞
n=1, and their determinants , as follows:

Hn,p = (mi+j+p)
n
i,j=0, Dn,p := det (Hn,p), p = 0 or 1.

If p = 0, Hn := Hn,0 is the ‘basic’ Hankel matrix, Hn,p, for p = 1 is the ‘shifted’ Hankel
matrix: Hn,1 = (mi+j+1)

n
i,j=0 is based on the ‘shifted’ moment sequence {m1, m2, . . .}

generated by the measure µ1 with dµ1 = xdµ.
In what follows, we involve and use the entropy of the strictly positive density f

under the constraint of knowing only the n-truncated moment set {mk}n
k=0. We will see

that the MaxEnt formalism allows to study in parallel both the Hamburger and the Stieltjes
cases; hence, we assume that the distributions and their densities have support U = R or
U = R+.

Let us consider the Stieltjes case. For a density f with n-truncated moment set {mk}n
k=0,

there is a density, say fn, satisfying two properties:

(a) The ‘first’ n moments of fn are exactly {mk}n
k=0;

(b) fn maximizes the Shannon entropy.

It is well known, see [2], that

fn(x) = exp
(
−

n

∑
j=0

λjxj
)

, x ∈ R+,

where (λ0, ..., λn) are the Lagrange multipliers satisfying the constraints∫
R+

xj fn(x)dx = mj, j = 0, ..., n.

In this case, we use the simple notation h fn for the entropy of fn, and remember that
h fn depends on the moments {mk}n

k=0. It is easy to see that

h fn = −
∫
R+

(ln fn(x)) fn(x)dx =
n

∑
j=0

λjmj.

We would like the sequence of approximants { fn} and the entropy sequence {h fn} to
be well defined for any n = 1, 2, . . . . It may happen, see ([6], Theorem 1), that for given
f and {mk}n

k=0, the desired density fn does not exist, in which case the quantity h fn is
meaningless. However, in the cited paper, the following useful relation is established (the
class Dn is defined at the end of this section): sup f∈Dn

h f = h fn−1 , even if the MaxEnt
approach does not apply. Since the entropy is monotone and non-increasing as n increases,
the latter equality enables us to simply set h fn = h fn−1 , thus filling the ‘gap’ left by the
non-existing densities fn. This justifies the assumption made in the sequel, without loss of
generality, that all entries of the monotone non-increasing entropy sequence {h fn}∞

n=1 are
well defined.

In the non-symmetric Hamburger case, once the n-truncated moment set {mk}n
k=0 for

even n is assigned, the positivity of the Hankel determinant Dn,0 = Dn,0(m0, . . . , mn) guaran-
tees the existence of a MaxEnt solution, see ([6], Appendix A). As a consequence, the entire
entropy sequence {h fn}∞

n=1 is defined. In the symmetric Hamburger problem, the MaxEnt
density existence is guaranteed under conditions similar to those in the Stieltjes case.

Now suppose that {mk}n+1
k=0 is a moment set for which we ‘keep fixed’ (unchanged)

the moments {m0, m1, . . . , mn}, while we treat as ‘varying continuously’ the moment
mn+1. If letting b := mn+1, then the (n + 1)-truncated moment set can be written as
{m0, m1, . . . , mn, b}. Moreover, the existence conditions for a solution of the moment prob-
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lem require the Hankel determinants to be positive. This is guaranteed by imposing b to
have a lower bound, say b−p,n+1, which is the unique real number satisfying the equation

Dn,p(mp, . . . , mn, b−p,n+1) = 0, for p = 0 or 1.

As well, due to the MaxEnt machinery, see ([6], Appendix A), in the Stieltjes case, the
following value of b has to be considered:

b+n+1 =
∫
R+

xn+1 fn(x)dx.

Notice that in general, b+n+1 ̸= mn+1. Recall that we deal with the truncated (n + 1)-
moment set in which the parameter b stands for the (n + 1)th moment:

{m0, m1, . . . , mn, b}, where b−p,n+1 ≤ b ≤ b+n+1 for p = 0 or 1.

In the Stieltjes case, we introduce the following classes of densities:

Dn :=
{

f > 0 :
∫
R+

xj f (x)dx = mj, j = 1, . . . , n
}

,

D∞ :=
{

f > 0 :
∫
R+

xj f (x) dx = mj, j = 1, 2, . . .
}

.

Similar notions can be introduced also in the Hamburger case, just replacing R+

with R.
The class Dn is a convex set for each n, and then D∞ =

⋂∞
1 Dn is also convex. We

know that in the M-indeterminate case, D∞ contains ‘infinitely many’ densities, all being
solutions of the same moment problem.

For both the Hamburger and Stieltjes cases, we need to recall a few known facts which
will be essentially used later.

Fact 1. We are going to work the moment sequence {mk}∞
k=0 whose underlying density f

has entropy h f such that either h f is finite, or h f = −∞. To be precise, distributions with
h f = +∞ are not allowed. The reason for this is that once {mk}∞

k=0 is assigned, the ‘option’
h f = +∞ is not feasible since it is well known in the MaxEnt setup that h f ≤ h f2 , where
h f2 = 1

2 ln[2π e (m2 − (m1)
2)] is finite because of Lyapunov’s inequality m2 − (m1)

2 ≥ 0
(Hamburger case) and h f ≤ h f1 = 1 + ln m1 is finite for every m1 > 0 (Stieltjes case).

Fact 2. Once the moment set {mk}n
k=0 is given and fn is the corresponding MaxEnt density,

the entropy sequence {h fn}∞
n=1 is monotone non-increasing, and its limit is either finite or

−∞.

Fact 3. For consistency between the differential entropy of a continuous random variable
and the entropy of its discretization, the differential entropy of any discrete measure which
can be compared with Dirac’s deltas set is assumed to be −∞, see ([3], pp. 247–249).

Fact 4. If the density f is bounded, this is sufficient to eliminate the option h f = −∞.
Indeed, suppose that 0 < f (x) ≤ L < ∞ for all x. It follows that

−h f =
∫

U
(ln f (x)) f (x)dx <

∫
U
(ln L) f (x)dx = ln L ⇒ h f ≥ − ln L > −∞.

3. Entropy of Densities Which Are M-Indeterminate

The MaxEnt formalism allows to treat both Hamburger and Stieltjes cases in a similar
way. For the sake of brevity, we confine ourselves mainly to discussions on the Stieltjes
case. All arguments can then be easily extended to the Hamburger case. This possibility is
one of the advantages of involving the MaxEnt machinery.
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3.1. Entropy of Densities from the Class Dn

We start with the formulation and the proof of the following result.

Theorem 1. Suppose that {mk}∞
k=0, m0 = 1, is the full moment sequence of a given density f . For

fixed n, based on the n-truncated moment set {mk}n
k=0, we consider fn, the MaxEnt approximant of

f , and let h fn be the entropy of fn. Then, there are infinitely many densities g ∈ Dn whose entropy
hg is spanning an interval, namely

hg ∈
(
−∞, h fn

]
. (1)

Proof. We provide arguments in both cases, Stieltjes and Hamburger.
(a) Stieltjes case. Preliminarily, for fixed n, let us consider fn and the upper bound b+n+1

of its (n + 1)th order moment. It was mentioned that, in general, b+n+1 is different from
mn+1. Our goal is to specify the range of values of the entropy hg, where g is an arbitrary
density from the class Dn. For this, we introduce the following suitable subclass En ⊂ Dn :

En =
{

fn+1 = ( fn+1 | fixed m1, . . . , mn, b)}, where b ∈ (b−p,n+1, b+n+1]
}

, p = 0 or 1.

Notice that we rely here on the specific truncated moment set (m0, m1, ..., mn, b−p,n+1) ∈
∂(m(Dn+1)), the boundary of the moment space. Equivalently, the elements of En are MaxEnt
densities which are constrained by (m1, . . . , mn, b); they belong to Dn and, primarily, they
all have analytically tractable entropy. The latter property enables us to calculate the
entropy of all g ∈ Dn by evaluating the entropy of all g ∈ En.

Let us consider fn+1 for b varying in the interval (b−p,n+1, b+n+1] and calculate the values
spanned by the entropy h fn+1 .

Subcase a1. If b = b+n+1, the right-end point, it is easy to verify that fn+1 has a Lagrange
multiplier λn+1 = 0 and hence fn+1 coincides with fn; hence,

h fn+1 = h fn . (2)

Subcase a2. If b is ‘close’ to the left-end point, i.e., b → b−p,n+1, we look at the Hankel
determinants Dn,0 and Dn,1 and see that either Dn,0 → 0 or Dn,1 → 0. This implies that the
underlying measure µ is discrete; see, for example, ([7], Theorem 1.3, p. 6). Therefore, the
entropy quantity h fn+1 is approaching −∞:

lim
b→b−p,n+1

h fn+1 = −∞. (3)

It remains to mention an essential property of the entropy h fn+1 as a function of the

variable b. Since
dh fn+1

db = λn+1 > 0, see ([2], Equation (2.73), p. 47), or the arguments
below, we have that h fn+1 is monotone increasing with respect to b ∈ (b−p,n+1, b+n+1].

(b) Hamburger case. The arguments here are similar to those above. We need to replace
En by the following one with analogous meaning of all notations:

Ẽn = { fn+2 = ( fn+2 | fixed m1, . . . , mn, b+n+1, b)}, where b ∈ (b−0,n+2, b+n+2].

Here, b−0,n+2 and b+n+2 are such that

Dn,0(m0, . . . , mn+1, b−0,n+2) = 0, b+n+q =
∫
R

xn+q fn(x)dx, q = 1, 2.

In such a case, it is easy to see that

fn+2 = ( fn+2 | fixed m1, . . . , mn, b+n+1, b+n+2) ≡ fn,
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and hence, just as above, we conclude that fn+2 satisfies the entropy relation h fn+2 = h fn .
Joining together (2) and (3) (with obvious extension to the Hamburger case) with

fn+1 or fn+2 and referring to the monotone increasing of the entropy with respect to b,
we conclude that indeed there are infinitely many densities fn+1 and fn+2 ∈ En whose
entropy spans the interval in (1), with this property holding for all g ∈ Dn. Theorem 1
is proved.

3.2. Entropy of Densities from the Class D∞

Among the well-known properties of Shannon’s entropy, we use its concavity as a
functional, which implies that the entropy of all densities g ∈ D∞ can be calculated.

We start with the Stieltjes moment sequence {mk}∞
k=0 and calculate the entropy se-

quence {h fn}∞
n=1, which is monotone, non-increasing and convergent. Similarly, for a

Hamburger moment sequence {mk}∞
k=0, we calculate the entropy sequence {h fn}∞

n=2, being
also monotone, non-increasing and convergent.

Let us show first that there exists only one density, say, f ∗ ∈ D∞ such that f ∗ has the
largest entropy, i.e.,

h f ∗ = max
g∈D∞

hg.

Indeed, the set of solutions to the S-indeterminate moment problem includes infinitely
many densities, previously grouped in the convex set D∞. On the other hand, the con-
tinuous entropy functional h : g 7→ hg = −

∫
U(ln g(x))g(x)dx is strictly concave and,

over the convex set D∞, hg attains its maximum value. Hence, we have that the opti-
mization problem to maximize hg over g ∈ D∞ has indeed a unique solution f ∗ such that
h f ∗ := maxg∈D∞ hg.

Relying on Theorem 1, we are ready to calculate the entropy of all moment equivalent
densities g ∈ D∞. We keep in mind, all densities in the class D∞ have support R+ in the
Stieltjes case and R in the Hamburger case.

Theorem 2. Suppose that {mk}∞
k=0 is the full Stieltjes moment sequence of a density f and it is

known that f is M-indeterminate. We use fn and h fn as before. Then, there are infinitely many
densities g ∈ D∞ whose entropy hg is spanning an interval, namely,

hg ∈ (−∞, h∗], where h∗ := inf
n

h fn .

Proof. Note first that each g ∈ D∞ satisfies g ∈ ⋂∞
n=1 Dn; hence, according to Theorem 1, g

has entropy

hg ∈
∞⋂

n=1

(−∞, h fn ] = (−∞, h∗].

This implies that
h∗ ≥ h f ∗ (4)

which completes the proof.

We use below, for example, S-determinate or H-determinate, meaning that a density
is on R+ or on R, and it is M-determinate or H-determinate. This similarly applies for
S-indeterminacy and H-indeterminacy.

In general, it is not easy to establish the S-determinacy, and hence S-indeterminacy,
through known criteria based on necessary and sufficient conditions. The existence of the
density f ∗ with the largest entropy, see Theorem 1, indicates that there is some similarity
between the M-determinate and M-indeterminate cases. Consequently, since initially a
finite set of moments is involved, the technique of density reconstruction through the
MaxEnt approach can be applied without distinguishing these two cases.

With f , {m1, . . . , mn}, fn, h fn , all as above, we give here some details.
First, if f is S-determinate and H-determinate, the sequence of approximants { fn}∞

n=1
converges in entropy to a unique underlying density f , see ([5], Section 3), that is,
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{h fn}∞
n=1 → h f as n → ∞ with infn h fn all being finite. However, from the used pro-

cedure, relying on the geometrical meaning of Theorem 2.19, p. 72 in [7], it is immediate to
deduce that the statement of convergence in entropy is equally extended to the case where
h f = −∞, from which infn h fn = −∞.

Second, if f is S-indeterminate, the entropy sequence {h fn}∞
n=1 is monotone non-

increasing and hence convergent with lower bound h∗, i.e.

h fn → inf
n

h fn ≥ h f ∗ .

It is useful to mention that Theorem 2 and the comments completely agree with the
rationale of the MaxEnt approach: when all known information has been taken into account,
a system with maximum entropy is the most probable state because it is the system in
which the least amount of information has been defined.

Moreover, Theorem 2 justifies the approach of reconstruction of the density f , starting
from a finite set of moments and passing to the full moment sequence, regardless of the
M-determinacy or M-indeterminacy of f . In any case, that issue is not really of great
practical significance. In fact, a full set of moments will ‘never’ be available; hence, for
practical purposes, we deal only with finite n, which is perhaps ‘big enough’. Nevertheless,
fn is a valuable approximation of f ∗ since both fn and f ∗ have the same first n moments
and h fn > h f ∗ . This fact also corresponds well to the MaxEnt rationale. Thus, the question
of moment (in)determinacy of the density f is not essential for the procedure we follow.

4. Stieltjes Case: MaxEnt Criterion for M-Indeterminacy

We deal with a random variable X on R+, X ∼ F, f = F′ with finite all moments
{mk}∞

k=1. Recall that m0 = 1. We mentioned in the Introduction one fundamental fact: if
the distribution F is M-indeterminate, then there are infinitely many distributions of any
kind, all having the same moments as F.

Recall that a Stieltjes moment sequence {mk}∞
k=1 can also be considered a Hamburger

moment sequence, i.e., it is coming from a random variable in R. We always have to
make a distinction between M-determinacy and M-indeterminacy by specifying that it is
in the sense of Stieltjes, or in the sense of Hamburger. We use below the obvious terms,
S-determinate, S-indeterminate, H-determinate and H-indeterminate, in their short forms,
S-det, S-indet, H-det and H-indet. Let us list the possibilities for the distribution F:

• If F is S-indet, it is also H-indet. If F is H-det, it is also S-det.
• If F is H-indet, then either F is also S-indet, or, it may look a little ‘surprising’, F is

S-det.

Thus, we have three cases; they will be discussed below. Relying on the results in
Section 3, we provide now a MaxEnt criterion for M-indeterminacy in the Stieltjes case.

Theorem 3. (Main result.) Let f be a probability density with finite all moments. Denote by
m := {mk}∞

k=1 its full moment sequence and mn := {mk}n
k=1 its nth truncated set. If m is

considered as a Stieltjes moment sequence, we write f (S)n for the MaxEnt approximant of f based on
mn. Similarly, f (H)

n will stand for the MaxEnt approximant of f based on mn if considering m as a
Hamburger moment sequence. For the entropy, we use the notations h

f (S)n
and h

f (H)
n

.

The Stieltjes moment sequence {mk}∞
k=1 corresponds to the moments of infinitely many

distributions on R+; equivalently, the distribution F is M-indeterminate, if and only if the
following relation holds:

inf
n

h
f (H)
n

> inf
n

h
f (S)n

> −∞.

Proof. First, we recall the well-known result according to which if n is odd, the estimator
f (H)
n does not exist. Since the entropy is monotone and non-increasing as n increases, it is

proved in [6] (Section 3.2) that the entropy quantity h
f (H)
n−1

can be associated with f (H)
n in the



Entropy 2024, 26, 121 8 of 10

sense that h
f (H)
n

= h
f (H)
n−1

. Thus, the sequence {h
f (H)
n

} will be well defined for each n, filling

up the ‘initial’ gap left by the odd moments. Furthermore, the inequality h
f (H)
n

> h
f (S)n

is meaningful for any n since both f (H)
n and f (S)n are based on the same constraints, the

moment set {mk}n
k=1, whilst f (S)n has an additional constraint, namely, the support is

U = R+ ⊂ R.
Now we consider the three possibilities mentioned above. In brackets, we write what

is F first, and what is second.
Case 1. [F is S-indet and H-indet] We refer to relation (4) from which it follows that

infn h
f (H)
n

> infn h
f (S)n

> −∞ holds.

Case 2. [F is H-indet and S-det] We recall that the unique solution, a measure, with
positive support is a Nevanlinna extremal solution whose spectrum contains 0 and is a
discrete unbounded subset of [0, ∞), see ([8], Remark 2.2.2, p. 178). Then, as quoted before,
infn h

f (H)
n

is finite and infn h
f (S)n

= −∞.

Case 3. [F is H-det and S-det] Clearly, one solution solely supported on [0, ∞) exists. As
a consequence, for the limit L := infn h

f (H)
n

= infn h
f (S)n

, we have that either L is finite or L is

‘equal’ to −∞. If L is finite, the distribution F is absolutely continuous with either bounded
or unbounded density. If L = −∞, F is either absolutely continuous with unbounded
density, or it is discrete.

It remains to show that the converse statements, call them Case 1c, Case 2c, and
Case 3c, are also true. We show this by contradiction.

Indeed, in Case 1c, if infn h
f (H)
n

> infn h
f (S)n

> −∞ holds true, then both cases ‘H-indet

with S-det’ and ‘H-det with S-det’ are not possible. This is because they respectively require
both infn h

f (S)n
= −∞ and infn h

f (H)
n

= infn h
f (S)n

. These arguments show that F is H-indet

and S-indet. The arguments to prove Case 2c and Case 3c are similar.

It is worth mentioning that the criterion for M-indeterminacy established in Theorem 3,
the Stieltjes case, cannot be extended to the Hamburger case. Indeed, from both Case 2
[H-indet with S-det] and Case 3 [H-det with S-det], the condition ‘finite lower bound
infn h

f (H)
n

’ does not distinguish the H-indeterminate case from the H-determinate case.

Nevertheless, from Theorem 3, some useful corollaries concerning Stieltjes or Hamburger
easily follow.

Corollary 1. A necessary condition for the distribution F to be S-indeterminate with H-indeterminacy
is for both quantities infn h

f (S)n
and infn h

f (H)
n

to be finite.

Corollary 2. A sufficient condition for the distribution F to be H-determinate is that the quantity
infn h

f (H)
n

is ‘equal’ to −∞.

Notice that in the Stieltjes case, Theorem 3 provides also a sufficient condition to
guarantee the existence of a density, which is equivalent to the absolute continuity property
of the distribution F. Similarly, such a condition can be extended to the Hamburger case.

Corollary 3. Let {mk}∞
k=0 be a strictly positive definite Stieltjes moment sequence which corre-

sponds to the moments of exactly one distribution F. If infn h
f (S)n

= infn h
f (H)
n

is finite, then F is

absolutely continuous with either bounded or unbounded density.

5. Comments on M-Indeterminate Distributions on R
Here, we cite a result from ([9], Theorem 1 and Corollary 1, pp. 100–101); see also ([10],

Examples 11.12 and 11.13) for a general family of distributions.
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General Statement. Suppose that F is a distribution function on R with moment sequence
{m0, 0, m2, 0, m4, ...} (Hamburger case). Then, if F is M-indeterminate, symmetric and non-
symmetric solutions exist.

Besides the above sources, we can also refer to the notion Stieltjes class, S( f , h), intro-
duced for any M-indeterminate distribution, see [11]. Recall that

S( f , h) = { fε(x) = f (x)[1 + εp(x)], x ∈ R, ε ∈ [−1, 1]},

where f = F′ is the density of the M-indeterminate distribution F, and p(x), x ∈ R, called
a ‘perturbation function’, is a sign function with norm ||p|| = 1, satisfying the ‘vanishing
moments’ property,

∫
xk f (x)p(x)dx = 0, k = 0, 1, 2, . . . Another related recent work is [12].

It turns out that the MaxEnt technique enables us to make a further refinement of what
we know about the symmetric solutions, also of the measures, which are M-indeterminate.

Theorem 4. Suppose that F is an arbitrary distribution on R with finite moments and moment
sequence {m0, 0, m2, 0, m4, ...} (Hamburger case) and that F is M-indeterminate. Then, the density
f ∗, see Section 3.2, with the largest entropy, is symmetric.

Proof. Consider an arbitrary non-symmetric g = (g(x), x ∈ R) ∈ D∞. It is easy to verify
that g̃ = (g(−x), x ∈ R) is such that g̃ ∈ D∞. Moreover, g and g̃ have the same entropy, i.e.,
hg̃ = hg. Consider the densities g̃∗ and g∗ for which the entropies hg̃ and hg are maximal.
They are both in the set D∞. Combining the above general statement with the uniqueness
of the MaxEnt density g∗, it follows that g̃∗ ≡ g∗; hence, g∗ is symmetric.

6. Brief Conclusions

In this paper, we establish a new criterion for the M-indeterminacy of a probability
density on the positive half-line (Stieltjes case) by involving the MaxEnt approach. Inter-
esting corollaries are derived for probability densities on the whole real line (Hamburger
case). The obtained results are new and they can be considered a valuable addition to the
results based on two groups of conditions called ‘checkable’ or ‘uncheckable’ for either the
M-determinacy or M-indeterminacy of distributions.

The recent review paper [1] contains a comprehensive description of significant results
based on ‘uncheckable conditions’, including two illustrations of how to use this kind of
condition as an indication for a specific property of a distribution in terms of its moments.
However, from the applied point of view, most useful are the results involving ‘check-
able conditions’. The reader is referred to the following sources: [10,13,14]. The property
‘M-indeterminacy’, besides its non-triviality as a mathematical phenomenon, arises in im-
portant applied areas. Among them are atmospheric studies, gravity theory and quantum
mechanics, see, for example, [15–17]. The involvement of the MaxEnt technique may lead
to challenging theoretical problems; however, the answers, when available, would shed
additional light on the analysis of applied problems.
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