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Abstract: We extend Ziv and Lempel’s model of finite-state encoders to the realm of lossy com-
pression of individual sequences. In particular, the model of the encoder includes a finite-state
reconstruction codebook followed by an information lossless finite-state encoder that compresses the
reconstruction codeword with no additional distortion. We first derive two different lower bounds to
the compression ratio, which depend on the number of states of the lossless encoder. Both bounds
are asymptotically achievable by conceptually simple coding schemes. We then show that when
the number of states of the lossless encoder is large enough in terms of the reconstruction block
length, the performance can be improved, sometimes significantly so. In particular, the improved
performance is achievable using a random-coding ensemble that is universal, not only in terms of the
source sequence but also in terms of the distortion measure.

Keywords: rate-distortion; source coding; finite-state encoders; random coding; code ensemble; lossy
compression; universal coding; universal distribution; LZ algorithm

1. Introduction

We revisit the classical domain of rate-distortion coding applied to finite-alphabet se-
quences, focusing on a prescribed distortion function [1,2], (Chapter 10), [3] (Chapter 9), [4,5],
(Chapters 7, 8). Specifically, our attention is directed toward encoders comprising finite-state
reproduction encoders followed by information-lossless finite-state encoders that compress
reproduction sequences without introducing additional distortion (see Figure 1). In essence,
our principal findings are in establishing two asymptotically achievable lower bounds for
the optimal compression ratio of an individual source sequence of length n, utilizing any
finite-state encoder with the aforementioned structure, where the lossless encoder possesses q
states. These lower bounds can both be conceptualized as the individual-sequence coun-
terparts to the rate-distortion function of the given source sequence, akin to the lossless
finite-state compressibility of a source sequence serving as the individual-sequence analog
of entropy. However, before delving into the intricacies of our results, a brief overview of
the background is warranted.

Figure 1. Finite-state reproduction encoder followed by a finite-state lossless encoder.
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Over the past several decades, numerous research endeavors have been spurred
by the realization that source statistics are seldom, if ever, known in practical scenarios.
Consequently, these efforts have been dedicated to the pursuit of universal coding strategies
that remain independent of unknown statistics while asymptotically approaching lower
bounds, such as entropy in lossless compression or the rate-distortion function in the case
of lossy compression, as the block length extends indefinitely. Here, we offer a succinct and
non-exhaustive overview of some pertinent earlier works.

In the realm of lossless compression, the field of universal source coding has achieved a
high level of sophistication and maturity. Davisson’s seminal work [6] on universal-coding
redundancies has introduced the pivotal concepts of weak universality and strong univer-
sality, characterized by vanishing maximin and minimax redundancies, respectively. This
work has also elucidated the link between these notions and the capacity of the ’channel’
defined by the family of conditional distributions of the data to be compressed, given
the index or parameter of the source in the class [7–9]. For numerous parametric source
classes encountered in practice, the minimum achievable redundancy of universal codes is
well-established as being dominated by k log n

2n , where k denotes the number of degrees of
freedom of the parameter, and n is the block length [10–13]. Davisson’s theory gives rise to
a central idea of constructing a Shannon code based on the probability distribution of the
data vector with respect to a mixture, incorporating a certain prior function, of all sources
within the class. Rissanen, credited with the invention of the minimum description length
(MDL) principle [14], established a converse to a coding theorem in [15]. This theorem
asserts that, asymptotically, no universal code can achieve redundancy below (1 − ϵ)

k log n
2n ,

with a possible exception of sources from a subset of the parameter space, the volume of
which diminishes as n → ∞ for every positive ϵ. Merhav and Feder [16] generalized this
result to more extensive classes of sources, substituting the term k log n

2n with the capacity
of the aforementioned ’channel’. Subsequent studies have further refined redundancy
analyses and contributed to ongoing developments in the field.

In the broader domain of universal lossy compression, the theoretical landscape is
regrettably not as sharply defined and well-developed as in the lossless counterpart. In this
study, we narrow our focus to a specific class known as d-semifaithful codes [17] codes that
fulfill the distortion requirement with probability one. Zhang, Yang, and Wei [18] have
demonstrated a notable contrast with lossless compression, establishing that, even when
source statistics are perfectly known, achieving redundancy below log n

2n in the lossy case is
impossible, although log n

n is attainable. The absence of source knowledge imposes a cost
in terms of enlarging the multiplicative constant associated with log n

n . Yu and Speed [19]
established weak universality, introducing a constant that grows with the cardinalities of
the source and reconstruction alphabets [20]. Ornstein and Shields [17] delved into uni-
versal d-semifaithful coding for stationary and ergodic sources concerning the Hamming
distortion measure, demonstrating convergence to the rate-distortion function with the
probability one. Kontoyiannis [21] made several noteworthy contributions: Firstly, a central
limit theorem (CLT) with a O(1/

√
n) redundancy term, featuring a limiting Gaussian

random variable with constant variance. Secondly, the law of iterated logarithm (LIL) with
redundancy proportional to

√
log(log n)/n infinitely often with probability one. A coun-

terintuitive conclusion from [21] is the priceless nature of universality under these CLT and
LIL criteria. In [22], optimal compression is characterized by the negative logarithm of the
probability of a sphere of radius nD around the source vector with respect to the distortion
measure, where D denotes the allowed per-letter distortion. The article also introduces the
concept of a random coding ensemble with a probability distribution given by a mixture of
all distributions in a specific class. In two recent articles, Mahmood and Wagner [23,24]
delved into the study of d-semifaithful codes that are strongly universal concerning both the
source and the distortion function. The redundancy rates in [23] behave like log n

n but with
different multiplicative constants. Other illuminating results regarding a special distortion
measure are found in [25].
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A parallel path of research in the field of universal lossless and lossy compression,
spearheaded by Ziv, revolves around the individual-sequence approach. In this paradigm,
no assumptions are made about the statistical properties of the source. The source sequence
to be compressed is treated as an arbitrary deterministic (individual) sequence, but in-
stead, limitations are imposed on the implementability of the encoder and/or decoder
using finite-state machines. This approach notably encompasses the widely celebrated
Lempel–Ziv (LZ) algorithm [26–28], along with subsequent advancements broadening
its scope to both lossy compression with and without side information [29,30], as well as
joint source-channel coding [31,32]. In the lossless context, the work in [33] establishes an
individual-sequence analog akin to Rissanen’s result, where the expression k log n

2n continues
to denote the best achievable redundancy. However, the primary term in the compression
ratio is the empirical entropy of the source vector, deviating from the conventional entropy
in the probabilistic setting. The converse bound presented in [33] is applicable to the vast
majority of source sequences within each type, echoing the analogy with Rissanen’s frame-
work concerning the majority of the parameter space. It is noteworthy that this converse
result retains a semblance of the probabilistic setting, as asserting the relatively small num-
ber of exceptional typical sequences is equivalent to assuming a uniform distribution across
the type and asserting a low probability of violating the bound. Conversely, the achievabil-
ity result in [33] holds pointwise for every sequence. A similar observation applies to [34],
where asymptotically pointwise lossy compression was established concerning first-order
statistics (i.e., “memoryless” statistics), emphasizing distortion-universality, akin to the
focus in [23,24]. A similar fusion of the individual-sequence setting and the probabilistic
framework is evident in [35] concerning universal rate-distortion coding. However, akin
to the approach in [34], there is no constraint on finite-state encoders/decoders as in [33].
Notably, the converse theorem in [35] states that for any variable-rate code and any distor-
tion function within a broad class, the vast majority of reproduction vectors representing
source sequences of a given type (of any fixed order) must exhibit a code length essentially
no smaller than the negative logarithm of the probability of a ball with a normalized radius
D (where D denotes the allowed per-letter distortion). This ball is centered at the specified
source sequence, and the probability is computed with respect to a universal distribution
proportional to 2−LZ(x̂), where LZ(x̂) denotes the code length of the LZ encoding of the
reproduction vector x̂.

The emphasis on the term “majority” in the preceding paragraph, as highlighted earlier,
necessitates clarification. It should be noted that in the absence of constraints on encoding
memory resources, such as the finite-state machine model mentioned earlier, there cannot
exist any meaningful lower bound that universally applies to every individual sequence.
The rationale is straightforward: for any specific individual source sequence, it is always
possible to devise an encoder compressing that sequence to a single bit (even losslessly).
For instance, by designating the bit ‘0’ as the compressed representation of the given
sequence and appending the bit ‘1’ as a header to the uncompressed binary representation
of any other source sequence. In this scenario, the compression ratio for the given individual
sequence would be 1/n, dwindling to zero as n grows indefinitely. Therefore, it is clear that
any non-trivial lower bound that universally applies to every individual source sequence
at the same time necessitates reference to a class of encoders/decoders equipped with
constrained resources, such as those featuring a finite number of states.

In this work, we consider lossy compression of individual source sequences using
finite-state encoders whose structure is as follows: Owing to the fact that, without loss of
optimality, every lossy encoder can be represented as a cascade of a reproduction encoder
and a lossless (or “noiseless”) encoder (see, e.g., [36], particularly the discussion around
Figure 1), we consider a class of lossy encoders that can be implemented as a cascade of a
finite-state reproduction encoder and a finite-state lossless encoder; see Figure 1. The finite-
state reproduction encoder model is a generalization of the well-known finite-state vector
quantizer (FSVQ), see, e.g., [37], [38] (Chapter 14). It is designed to produce reproduction
vectors of dimension k in response to source vectors of dimension k, while complying with
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the distortion constraint for every such vector. The finite-state lossless encoder is the same
as in [27]. The number of states of the reproduction encoder can be assumed to be very
large (large enough to store many recent input blocks). Both the dimension, k, and the
number of states, q, of the lossless encoder are assumed to be small compared to the total
length, n, of the source sequence to be compressed, similar to [27] (and other related works),
where the regime q ≪ n is also assumed.

One of our main messages in this work is that the relationship between q and k is
important, not only with how they both relate to n. If q is large in terms of k, one can do
much better than if it is small. Accordingly, we first derive two different lower bounds to
the compression ratio under the assumption that q ≪ k, which are both asymptotically
achievable by conceptually simple schemes that, within each k-block, seek the most com-
pressible k-vector within a ball of ‘radius’ kD around the source block. The motivation
for deriving two different bounds is that each one of them has its own strengths and it
is not apparent that any one of them always dominates the other (see the details in the
sequel, and in particular, the third paragraph of the discussion in Section 3). We compare
the performance of the achievability scheme to the ensemble performance of a universal
coding scheme that can be implemented when q is exponential in k. The improvement can
sometimes be considerably large. The universality of the coding scheme is two-fold: both
in the source sequence to be compressed and in the distortion measure in the sense that
the order of codewords within the typical codebook (which affects the encoding of their
indices) is asymptotically optimal no matter which distortion measure is used (see [35]
for a discussion of this property). The intuition behind this improvement is that when q
is exponential in k, the memory of the lossless encoder is large enough to store the entire
input blocks and thereby exploit the sparseness of the reproduction codebook in the space
of k-dimensional vectors with components in the reproduction alphabet. The asymptotic
achievability of the lower bound will rely on the direct coding theorem of [35].

Bounds on both lossless and lossy compression of individual sequences using finite-
state encoders and decoders have been explored in previous works, necessitating a contex-
tualization of the present work. As previously mentioned, the cases of (almost) lossless
compression were examined in [26,27,30]. In [32], the lossy case was considered, incorpo-
rating both a finite-state encoder and a finite-state decoder in the defined model. However,
in the proof of the converse part, the assumption of a finite-state encoder was not essential;
only a finite number of states of the decoder was required. In a subsequent work, [31], the fi-
nite number of states for both the encoder and decoder were indeed utilized. This holds
true for [29] as well, where the individual-sequence analog of the Wyner–Ziv problem was
investigated with more restrictive assumptions on the structure of the finite-state encoder.
In contrast, the current work restricts only the encoder to be a finite-state machine, pre-
senting a natural generalization of [27] to the lossy case. Specifically, one of our achievable
lower bounds can be regarded as an extension of the compressibility bound found in [27]
Corollary 1 to the lossy scenario. It is crucial to note that, particularly in the lossy case,
it is more imperative to impose limitations on the encoder than the decoder, as encoding
complexity serves as the practical bottleneck. Conversely, for deriving converse bounds, it
is stronger and more general not to impose any constraints on the decoder.

The outline of this paper is as follows. In Section 2, we establish notation, as well as
definitions, and spell out the objectives. In Section 3, we derive the main results and discuss
them. Finally, in Section 4, we summarize the main contributions of this work and make
some concluding remarks.

2. Notation, Definitions, and Objectives

Throughout the paper, random variables will be denoted by capital letters; specific
values they may take will be denoted by the corresponding lowercase letters, and their
alphabets will be denoted by calligraphic letters. Random vectors and their realizations will
be denoted, respectively, by capital letters and the corresponding lowercase letters, both in
the boldface font. Their alphabets will be superscript by their dimensions. The source vector
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of length n, (x1, x2, . . . , xn), with components, xi, i = 1, 2, . . . , n, from a finite alphabet, X ,
will be denoted by xn. The set of all such n-vectors will be denoted by X n, which is the
n-th order Cartesian power of X . Likewise, a reproduction vector of length n, (x̂1, . . . , x̂n),
with components, x̂i, i = 1, . . . , n, from a finite alphabet, X̂ , will be denoted by x̂n ∈ X̂ n.
The notation X̂ ∗ will be used to designate the set of all finite-length strings of symbols
from X̂ .

For i ≤ j, the notation xj
i will be used to denote the substring (xi, xi+1, . . . , xj).

For i = 1, subscript ‘1’ will be omitted, and so, the shorthand notation of (x1, x2, . . . , xn)
will be xn. Similar conventions will apply to other sequences. Probability distributions
will be denoted by the letter P or Q with possible subscripts, depending on the context.
The probability of an event A will be denoted by Pr{A}, and the expectation operator
with respect to (w.r.t.) a probability distribution P will be denoted by E{·}. The logarith-
mic function, log x, will be understood to refer to base 2. Logarithms to base e will be
denoted by ln. Let d : X × X̂ → R be a given distortion function between source symbols
and reproduction symbols. The distortion between vectors will be defined additively as
d(xn, x̂n) = ∑n

i=1 d(xi, x̂i) for every positive integer, n, and every xn ∈ X n, x̂n ∈ X̂ n.
Consider the encoder model depicted in Figure 1, which is a cascade of a finite-state

reproduction encoder (FSRE) and a finite-state lossless encoder (FSLE). This encoder is fully
determined by the set E = (X , X̂ ,S ,Z , u, v, f , g, k), where X is the source input alphabet
of size α, X̂ is the reproduction alphabet of size β, S is a set of FSRE states, Z is a set of
FSLE states of size q, u, and v are functions that define the FSRE, f and g are functions that
define the FSLE (both to be defined shortly), and k is a positive integer that designates the
basic block length within which the distortion constraint must be kept, as will be described
shortly. The number of states, |S|, of the FSRE may be assumed arbitrarily large (as the
lower bounds to be derived will actually be independent of this number). In particular, it
can be assumed to be large enough to store several recent input k-blocks.

According to this encoder model, the input, xt ∈ X , t = 1, 2, . . ., is fed sequentially
into the FSRE, which goes through a sequence of states st ∈ S , and produces an output
sequence, yt ∈ X̂ ∗ of variable-length strings of symbols from X̂ , with the possible inclusion
of the empty symbol, λ, of length zero. Referring to Figure 1, the FSRE is defined by the
recursive equations:

yt = u(xt, st) (1)

st+1 = v(xt, st), (2)

for t = 1, 2, . . ., where the initial state, s1, is assumed to be some fixed member of S .

Remark 1. The above-defined model of the FSRE has some resemblance to the well-known model of
the finite-state vector quantizer (FSVQ) [37], [38] (Chapter 14), but it is in fact, considerably more
general than the FSVQ. Specifically, the FSVQ works as follows. At each time instant t, it receives
a source vector xt and outputs a finite-alphabet variable, ut, while updating its internal state, st.
The encoding function is ut = a(xt, st) and the next-state function is st+1 = ϕ(ut, st). Note that
the state evolves in response to {ut} (and not xt), so that the decoder will be able to maintain its
own copy of {st}. At the decoder, the reproduction is generated according to x̂t = b(ut, st), and the
state is updated again using st+1 = ϕ(ut, st). By cascading the FSVQ encoder and its decoder, one
obtains a system with input xt and output x̂t, which is basically a special case of our FSRE with the
functions u and v being given by u(x, s) = b(a(x, s), s) and v(x, s) = ϕ(a(x, s), s).

As described above, given an input block of length k, (x1, x2, . . . , xk), the FSRE gen-
erates a corresponding output block, (y1, y2, . . . , yk), while traversing a sequence of states
(s1, . . . , sn). The FSRE must be designed in such a way that the total length of the con-
catenation of the (non-empty) variable-length strings, y1, y2, . . . , yk, is equal to k as well.
Accordingly, given (y1, y2, . . . , yk), let (x̂1, x̂2, . . . , x̂k) denote the corresponding vector of
reproduction symbols from X̂ , which forms the output of the FSRE. This formal transfor-
mation from yk to x̂k is designated by the expression yt ⇒ x̂t in Figure 1.
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Example 1. Let X = X̂ = {a, b, c}, and suppose that the FSRE is a block code of length k = 5.
Suppose also that x5 = (a, a, b, c, c) and y5 = (λ, λ, λ, λ, ’aabbc’). Then, x̂5 = (a, a, b, b, c).
The current state, in this case, is simply the contents of the input, starting from the beginning of the
current block and ending at the current input symbol. Accordingly, the encoder idles until the end
of the input block, and then it produces the full output block.

The parameter k of the encoder E is the length of the basic block that is associated
with the distortion constraint. For a given input alphabet X , reconstruction alphabet X̂ ,
and distortion function d, we denote by E(q, k, D) the class of all finite-state encoders with
the above-described structure; in this class, the number of FSLE states is q, the dimension
of the FSRE is k, and d(xk, x̂k) ≤ kD for every above-described xk ∈ X k. For future use, we
also define the ‘ball’

B(xk, D) = {x̂k : d(xk, x̂k) ≤ kD}. (3)

Remark 2. Note that the role of the state variable, st, might not be only to store information from
the past of the input, but possibly also to maintain the distortion budget within each k-block. At each
time instant, t, the state can be used to update the remaining distortion allowed until the end of the
current k-block. For example, if the entire allowed distortion budget, kD, has already been exhausted
before the current k-block has ended, then in the remaining part of the current block, the encoder
must carry on losslessly, that is, it must produce reproduction symbols that incur zero distortion
relative to the corresponding source symbols.

The FSLE is defined similarly to the description provided in [27]. Specifically, the out-
put of the FSRE, x̂t ∈ X̂ , t = 1, 2, . . ., is fed sequentially into the FSLE, which in turn goes
through a sequence of states zt ∈ Z , and produces an output sequence, bt ∈ {0, 1}∗ of
variable-length binary strings, with the possible inclusion of the empty symbol, λ, of length
zero. Accordingly, the FSLE implements the recursive equations,

bt = f (x̂t, zt) (4)

zt+1 = g(x̂t, zt), (5)

for t = 1, 2, . . ., where the initial state, z1, is assumed to be some fixed member of Z .
With a slight abuse of notation, we adopt the extended use of encoder functions u,

v, f , and g, to designate output sequences and final states, which result from the corre-
sponding initial states and inputs. We use the notations u(s1, xn), v(s1, xn), f (z1, u(s1, xn)),
and g(z1, u(s1, xn)) for x̂n, sn+1, bn, and zn+1, respectively. We assume the FSLE to be
information lossless, and define it similarly to the description provided in [27], as fol-
lows. For every (z1, s1) ∈ Z × S , every positive integer n, and every xn ∈ X n, the triple
(z1, f (z1, u(s1, xn)), g(z1, u(s1, xn))) uniquely determines x̂n.

Given an encoder E = (X , X̂ ,S ,Z , u, v, f , g, k) ∈ E(q, k, D), and a source string xn,
where n is divisible by k, the compression ratio of xn by E is defined as

ρ(xn; E) =
L(bn)

n
, (6)

where L(bn) = ∑n
t=1 ℓ(bt), ℓ(bt) being the length (in bits) of the binary string bt. Next, define

ρ(xn; E(q, k, D)) = min
E∈E(q,k,D)

ρ(xn; E). (7)

Our main objective is to derive bounds for ρ(xn; E(q, k, D)) for large k and n ≫ k,
with special interest in the case where q is large enough (in terms of k), but still fixed and
independent of n, so that the FSLE could take advantage of the fact that not necessarily
every x̂n ∈ X̂ n can be obtained as an output of the given FSRE. In particular, a good FSLE
with long memory should exploit the sparseness of the reproduction codebook relative to
the entire space of k-vectors in X̂ k.
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3. Lower Bounds

To present both the lower bounds and the achievability, we briefly review a few
terms and facts concerning the 1978 version of the Lempel–Ziv algorithm (a.k.a. the LZ78
algorithm) [27]. The incremental parsing procedure of the LZ78 algorithm is a procedure
of sequentially parsing a vector, x̂k ∈ X̂ k, such that each new phrase is the shortest string
that has not been encountered before as a parsed phrase, with the possible exception of the
last phrase, which might be incomplete. For example, the incremental parsing of the vector
x̂15 = abbabaabbaaabaa is a,b,ba,baa,bb,aa,ab,aa. Let c(x̂k) denote the number of phrases
in x̂k resulting from the incremental parsing procedure (in the above example, c(x̂15) = 8).
Let LZ(x̂k) denote the length of the LZ78 binary compressed code for x̂k. According to [27]
Theorem 2,

LZ(x̂k) ≤ [c(x̂k) + 1] log{2β[c(x̂k) + 1]}
= c(x̂k) log[c(x̂k) + 1] + c(x̂k) log(2β) + log{2β[c(x̂k) + 1]}

= c(x̂k) log c(x̂k) + c(x̂k) log
[

1 +
1

c(x̂k)

]
+ c(x̂k) log(2β) + log{2β[c(x̂k) + 1]} (8)

≤ c(x̂k) log c(x̂k) + log e +
k(log β) log(2β)

(1 − ϵk) log k
+ log[2β(k + 1)]

△
= c(x̂k) log c(x̂k) + k · ε(k),

where we note that β is the cardinality of X̂ , and where ϵk and ε(k) tend to zero as k → ∞.
Our first lower bound is given in the following theorem.

Theorem 1. Consider the setting formulated in Section 2. Then, for every xn ∈ X n,

ρ(xn; E(q, k, D)) ≥ 1
n

n/k−1

∑
i=0

min
x̂k∈B(xik+k

ik+1,D)
c(x̂k) log c(x̂k)− (log β) log(4q2)

(1 − ϵk) log k
− q2 log(4q2)

k
. (9)

Proof of Theorem 1. The proof is conceptually simple. Since each k-block, x̂ik+k
ik+1,

i = 0, 1, . . . , n/k − 1, of the reconstruction vector, x̂n, is compressed using a finite-state
machine with q states, then, according to [27] Theorem 1, its compression ratio is lower
bounded by

c(x̂ik+k
ik+1) + q2

k
log

c(x̂ik+k
ik+1) + q2

4q2 ≥
c(x̂ik+k

ik+1)

k
log c(x̂ik+k

ik+1)−
c(x̂ik+k

ik+1) + q2

k
log(4q2)

≥
c(x̂ik+k

ik+1)

k
log c(x̂ik+k

ik+1)−
(log β) log(4q2)

(1 − ϵk) log k
− q2 log(4q2)

k
, (10)

where the second inequality follows from [27] Equation (6). Since each k-block must comply
with the distortion constraint, this quantity is further lower bounded by

min
x̂k∈B(xik+k

ik+1,D)

c(x̂k)

k
log c(x̂k)− (log β) log(4q2)

(1 − ϵk) log k
− q2 log(4q2)

k
,

and so, for the entire source vector xn, we have

ρ(xn; E(q, k, D)) ≥ 1
n

n/k−1

∑
i=0

min
x̂k∈B(xik+k

ik+1,D)
c(x̂k) log c(x̂k)− (log β) log(4q2)

(1 − ϵk) log k
− q2 log(4q2)

k
. (11)

This completes the proof of Theorem 1.

For large enough k, the last two terms can be made arbitrarily small, provided that
log q ≪ log k. Clearly, this lower bound can be asymptotically attained by seeking the
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vector x̂k ∈ X̂ k that minimizes c(x̂k) log c(x̂k) across B(xik+k
ik+1, D) within each k-block and

compressing it by the LZ78 compression algorithm.
In order to state our second lower bound, we next define the joint empirical distribution

of ℓ-blocks of x̂ik+k
ik+1. Specifically, let ℓ divide k, which in turn divides n, and consider the

empirical distribution, P̂i = {P̂i(x̂ℓ), x̂ℓ ∈ X̂ ℓ}, of ℓ-vectors along the i-th k-block of x̂n,
which is x̂ik+k

ik+1, i = 0, 1, . . . , n/k − 1, that is,

P̂i(x̂ℓ) =
ℓ

k

k/ℓ−1

∑
j=0

I{x̂ik+jℓ+ℓ
ik+jℓ+1 = x̂ℓ}, x̂ℓ ∈ X̂ ℓ. (12)

Let Ĥ(X̂ℓ
i ) denote the empirical entropy of an auxiliary random ℓ-vector, X̂ℓ

i , induced
by P̂i, that is,

Ĥ(X̂ℓ
i ) = − ∑

x̂ℓ∈X̂ ℓ

P̂i(x̂ℓ) log P̂i(x̂ℓ). (13)

Now, our second lower bound is given in the following theorem.

Theorem 2. Consider the setting formulated in Section 2. Then, for every xn ∈ X n,

ρ(xn; E(q, k, D)) ≥ k
n

n/k−1

∑
i=0

min
x̂ik+k

ik+1∈B(xik+k
ik+1,D)

Ĥ(X̂ℓ
i )

ℓ
− 1

ℓ
log

{
q2

(
1 + log

[
1 +

βℓ

q2

])}
. (14)

Discussion.
Note that both lower bounds depend on the number of states, q, of the FSLE, but not

on the number of states, |S|, of the FSRE. In this sense, no matter how large the number
of states of the FSRE may be, none of these bounds is affected. For the purpose of lower
bounds, which establish fundamental limitations, we wish to consider a class of encoders
that is as broad as possible, for the sake of generality. Therefore, we assume that S is
arbitrarily large.

The second term on the right-hand side of (14) is small when log q is small, relative
to ℓ, which is in turn smaller than k. This requirement is less restrictive than the parallel
one in the first bound, which was log q ≪ log k. The bound is asymptotically achievable by
the universal lossless coding of the vector x̂ik+k

ik+1 that minimizes Ĥ(X̂ℓ
i ) within B(xik+k

ik+1, D)
using a universal lossless code that is based on two-part coding: the first part is a header
that indicates the type class P̂i using a logarithmic number of bits as a function of k and the
second part is the index of the vector within the type class.

The main term of the second bound is essentially tighter than the main term of the
first bound since Ĥ(X̂ℓ

i ) can be lower bounded by c(x̂ik+k
ik+1) log c(x̂ik+k

ik+1), minus some small
terms (see, e.g., [35] Equation (26)). On the other hand, the second bound is somewhat
more complicated due to the introduction of the additional parameter ℓ. It is not clear
whether any one of the bounds completely dominates the other one for any xn. It is always
possible to choose the larger bound between the two.

Proof of Theorem 2. According to [27] Lemma 2, since the FSLE is an information lossless
encoder with q states, it must obey the following generalized Kraft inequality:

∑
x̂ℓ∈X̂ ℓ

2−minz∈Z L[ f (z,x̂ℓ)] ≤ q2

(
1 + log

[
1 +

βℓ

q2

])
. (15)
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This implies that the description length at the output of the encoder is lower bounded
as follows:

L(bn) =
n

∑
t=1

L[ f (zt, x̂t)]

=
n/k−1

∑
i=0

k/ℓ−1

∑
m=0

ℓ

∑
j=1

L[ f (zik+mℓ+j, x̂ik+mℓ+j)]

=
n/k−1

∑
i=0

k/ℓ−1

∑
m=0

L[ f (zik+mℓ+1, x̂ik+mℓ+ℓ
ik+mℓ+1)] (16)

≥
n/k−1

∑
i=0

k/ℓ−1

∑
m=0

min
z∈Z

L[ f (z, x̂ik+mℓ+ℓ
ik+mℓ+1)]

=
n/k−1

∑
i=0

k
ℓ ∑

x̂ℓ∈X̂ ℓ

P̂i(x̂ℓ) · min
z∈Z

L[ f (z, x̂ℓ)],

Clearly,
L(bn)

n
≥ k

n

n/k−1

∑
i=0

1
ℓ ∑

x̂ℓ∈X̂ ℓ

P̂i(x̂ℓ) · min
z∈Z

L[ f (z, x̂ℓ)]. (17)

Now, by the generalized Kraft inequality above,

q2

(
1 + log

[
1 +

βℓ

q2

])
≥ ∑

x̂ℓ∈X̂ ℓ

2−minz∈Z L[ f (z,x̂ℓ)]

≥ ∑
x̂ℓ∈X̂ ℓ

P̂i(x̂ℓ) · 2−minz∈Z L[ f (z,x̂ℓ)−log P̂i(x̂ℓ) (18)

≥ exp2

{
− ∑

x̂ℓ∈X̂ ℓ

P̂i(x̂ℓ) · min
z∈Z

L[ f (z, x̂ℓ) + Ĥ(X̂ℓ
i )

}
,

where the last inequality follows from the convexity of the exponential function and Jensen’s
inequality. This yields

log

{
q2

(
1 + log

[
1 +

βℓ

q2

])}
≥ Ĥ(X̂ℓ

i )− ∑
x̂ℓ∈X̂ ℓ

P̂i(x̂ℓ) · min
z∈Z

L[ f (z, x̂ℓ)], (19)

implying that

L(bn)

n
≥ k

n

n/k−1

∑
i=0

1
ℓ ∑

x̂ℓ∈X̂ ℓ

P̂i(x̂ℓ) · min
z∈Z

L[ f (z, x̂ℓ)]

≥ k
n

n/k−1

∑
i=0

Ĥ(X̂ℓ
i )

ℓ
− 1

ℓ
log

{
q2

(
1 + log

[
1 +

βℓ

q2

])}
, (20)

and since each x̂ik+k
ik+1 must be in B(xik+k

ik+1), D), the summand of the first term on the left-hand
side cannot be smaller than minx̂k∈B(xik+k

ik+1),D)
Ĥ(X̂ℓ

i )/ℓ. Since this lower bound on L(bn)/n

holds for every E ∈ E(q, k, D), it holds also for ρ(xn; E(q, k, D)). This completes the proof
of Theorem 2.
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Returning now to the first lower bound, consider the following chain of inequalities:

n/k−1

∑
i=0

min
x̂k∈B(xik+k

ik+1,D)
c(x̂k) log c(x̂k) ≥

n/k−1

∑
i=0

min
x̂k∈B(xik+k

ik+1,D)
LZ(x̂k)− kε(k)

= −
n/k−1

∑
i=0

log

[
max

x̂k∈B(xik+k
ik+1,D)

2−LZ(x̂k)

]
− kε(k) (21)

≥ −
n/k−1

∑
i=0

log

 ∑
x̂k∈B(xik+k

ik+1,D)

2−LZ(x̂k)

− kε(k).

It is conceivable that the last inequality may contribute to most of the gap between the
left-most side and the right-most side of the chain (21), since we pass from a single term in
B(xik+k

ik+1, D) to the sum of all terms in B(xik+k
ik+1, D). Since

max
x̂k∈B(xik+k

ik+1,D)
2−LZ(x̂k) ≤ ∑

x̂k∈B(xik+k
ik+1,D)

2−LZ(x̂k) ≤ |B(xik+k
ik+1, D)| · max

x̂k∈B(xik+k
ik+1,D)

2−LZ(x̂k), (22)

the gap between the left-most side of (21) and the right-most side of (21) might take any
positive value that does not exceed log |B((xik+k

ik+1, D)|, which is in turn approximately
proportional to k as |B(xik+k

ik+1, D)| is asymptotically exponential in k. Thus, the right-most
side of (21), corresponds to a coding rate, which might be strictly smaller than that of the
left-most side. Yet, we argue that the right-most side of (21) can still be asymptotically
attained by a finite-state encoder. But to this end, its FSLE component should possess
q = βk states, as it is actually a block code of length k. In order to see this, we need to define
the following universal probability distribution (see also [35] and references therein):

U(x̂k) =
2−LZ(x̂k)

∑x̃k∈X̂ k 2−LZ(x̃k)

△
=

2−LZ(x̂k)

Z
, x̂k ∈ X̂ k, (23)

and accordingly, also define

U[B(xk, D)] = ∑
x̂k∈B(xk ,D)

U(x̂k). (24)

Now, the first term on the right-most side of (21) can be further manipulated as follows:

−
n/k−1

∑
i=0

log

 ∑
x̂k∈B(xik+k

ik+1,D)

2−LZ(x̂k)

 = −
n/k−1

∑
i=0

log

 ∑
x̂k∈B(xik+k

ik+1,D)

U(x̂k) · Z


≥ −

n/k−1

∑
i=0

log U[B(xik+k
ik+1, D)], (25)

where the last inequality is due to the fact that − log Z ≥ 0, thanks to Kraft’s inequality
applied to the code-length function LZ(·).

Now, the last expression in (25) suggests achievability using the universal distribution,
U, for the independent random selection of various codewords. The basic idea is quite
standard and simple: The quantity, U[B(xik+k

ik+1, D)], is the probability that a single randomly
chosen reproduction vector, drawn under U, would fall within distance kD from the source
vector, xik+k

ik+1. If all reproduction codewords are drawn independently under U, then the
typical number of random selections required before one sees the first one in B(xik+k

ik+1, D) is
of the exponential order of 1/U[B(xik+k

ik+1, D)]. Given that the codebook is revealed to both
the encoder and decoder, once it has been selected, the encoder merely needs to transmit the
index of the first reproduction vector within the codebook, and the description length of that
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index can be made essentially as small as log{1/U[B(xik+k
ik+1, D)]} = − log(U[B(xik+k

ik+1, D)]).
In [35], we use this simple idea to prove achievability for an arbitrary distortion measure.
More precisely, the following theorem is stated and proved in [35] with some adjustments
to the notation:

Theorem 3 ([35] Theorem 2). Let d : X k × X̂ k → R+ be an arbitrary distortion function. Then,
for every ϵ > 0, there exists a sequence of d-semifaithful, variable-length block codes of block length
k, such that for every xk ∈ X k, the code length for xk is upper bounded by

L(xik+k
ik+1) ≤ − log(U[B(xik+k

ik+1, D)]) + (2 + ϵ) log k + c + δk, (26)

where c > 0 is a constant and δk = O(kβke−k1+ϵ
).

Through the repeated application of this code for each one of the n/k blocks of length
k, the lower bound of the last line of (25) is asymptotically attained. As elaborated on
in [35], the ensemble of codebooks selected under the universal distribution, U, exhibits
universality in both the source sequence slated for encoding and the chosen distortion
measure. This stands in contrast to the classical random coding distribution, which typically
relies on both the statistics of the source and the characteristics of the distortion measure.
Discussion.

A natural question that may arise is whether this performance is the best that can be
attained given that the number of FSLE states, q, is as large as βk. For now, this question
remains open, but it is conjectured that the answer is affirmative, in view of the matching
converse theorem of [35] Theorem 1, which applies to the vast majority of source sequences
in every type class of any order, even without the limitation of finite-state encoders.

It is natural to think of the memory resource used by a finite-state encoder in terms
of the number of bits (or equivalently, the size of a register) needed in order to store the
current state at each time instant, namely, the base 2 logarithm of the total number of states.
Indeed, both lower bounds derived earlier contain terms that are proportional to log q, the
memory size pertaining to the FSLE. Since the memory size, log |S|, of the FSRE is assumed
arbitrarily large, as discussed earlier, the total size of the encoder memory, log |S|+ log q,
is dominated by log |S|, and so, the contribution of log q to the total memory volume can
be considered negligibly small. Therefore, one of our main messages in this work is that,
as far as the total memory size goes, it makes very little difference if we allow log q to be as
large as k log β and, thereby, achieve better performance, rather than keeping log q smaller
and ending up with the inferior compression performance of minimizing LZ(x̂ik+k

ik+1) within
B(xik+k

ik+1, D) for each block.

4. Conclusions

In this paper, we revisited the paradigm of lossy compression of individual sequences
using finite-state machines, as a natural extension of the same paradigm in the lossless
case, as established by Ziv and Lempel in [27] and other related works. This work can also
be viewed as a revisit of [35] from the perspective of finite-state encoding of individual
sequences. Our model of a finite-state encoder is that of a cascade of the finite-state
k-dimensional reproduction encoder (with an arbitrarily large number of states) and a
finite-state lossless encoder, acting on the reproduction sequence. Our main contributions
to this work are as follows:

1. We proposed a model of a finite-state lossy encoder, composed of a cascade of an
FSRE and an FSLE.

2. We derived two different lower bounds to the compression ratio.
3. We showed that both bounds depend on the number of states, q, of the lossless encoder,

but not on the number of states of the reproduction encoder.
4. We showed that for relatively small q, one cannot do better than seeking the most

compressible reproduction sequence within the ’sphere’ of radius, kD, around the
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source vector. Nonetheless, if we allow q = βk, we can improve performance signif-
icantly by using a good code from the ensemble of codes, where each codeword is
selected independently at random under the universal distribution, U. The resulting
code is universal, not only in the sense of the source sequence, as in [27], but also in
the distortion function, in the sense discussed in [35]. This passage from small q to
large q will not increase the total memory resources of the entire encoder significantly,
considering the large memory that may be used by the reproduction encoder anyway.

5. We suggested the conjecture that the performance achieved, as described in item 3, is
the best performance achievable for large q.

Finally, our derivations can be extended to incorporate side information, un =
(u1, u2, . . . , un), available to both the encoder and decoder. In the model of the finite-
state encoder, this amounts to allowing both the FSRE and the FSLE sequential access to
ut, t = 1, 2, . . .. The decoder, of course, should also have access to un. Another modifica-
tion needed is to replace the LZ algorithm with its conditional version in all places (see,
e.g., [31,39]).
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