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Abstract: The paradigm of stochastic antiresonance is considered for a class of nonlinear systems with
sector bounded nonlinearities. Such systems arise in a variety of situations such as in engineering
applications, in physics, in biology, and in systems with more general nonlinearities, approximated
by a wide neural network of a single hidden layer, such as the error equation of Hopfield networks
with respect to equilibria or visuo-motor tasks. It is shown that driving such systems with a certain
amount of state-multiplicative noise, one can stabilize noise-free unstable systems. Linear-Matrix-
Inequality-based stabilization conditions are derived, utilizing a novel non-quadratic Lyapunov
functional and a numerical example where state-multiplicative noise stabilizes a nonlinear system
exhibiting chaotic behavior is demonstrated.

Keywords: stochastic antiresonance; sector-bounded nonlinearities; stochastic systems with
state-dependent noise; stability analysis; infinitesimal generator

1. Introduction

Stochastic Antiresonance (SAR) is an intriguing paradigm, wherein nonlinear dynamic
systems that are unstable or just marginally so can be stabilized by driving them with
state-multiplicative noise. The reverse phenomenon, Stochastic Resonance (SR), has been
studied in the context of periodic occurrences of ice ages [1]. A few examples of SR were
described and analyzed in [1,2], such as particle in a double well, animal behavior, sensory
neurons and ionic channels in biological cells, optical systems, electronic devices, and so
on. In one of these studies [2], SAR in laser systems was also analyzed. All these examples
exhibit a bell-shaped Signal-to-Noise Ratio (SNR) as a function of the applied noise level.
The action of SAR has also been studied (e.g., [3]) in the context of squid giant axons and the
potential for therapeutic neurological applications was pointed out. Other antiresonance
applications may also be found, for instance, in electronics and in mechanical engineering
(e.g., [4–6]) for the vibration-suppression of certain components of the system. One may
even consider the option of applying SAR as an alternative to deterministic adaptive
controllers for neuromodulation (e.g., [7]). While many such paradigms can be analyzed
using numerical simulations of the relevant dynamic models, the development of stochastic
stability analysis tools may contribute to the reliability in applying SAR. Examples of such
models are Hopfield networks [8], which are symmetric recurrent neural networks that
exhibit motions in the state space converging to minima of energy. Such networks are
mentioned in the context of practical complex problems such as the implementation of
associative memory, linear programming, and so on, and also play an important role in
understanding human motor tasks involving visual feedback (e.g., [9,10]).

The aim of the present paper, is to analyze the SAR phenomenon for a class of sys-
tems with sector-bounded nonlinearities, in order to explore the potential application
of state-multiplicative noise to control and stabilize such systems. The considered type
of nonlinearities have been widely used in the context of the absolute stability concept
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introduced by Lur’e [11] and further studied in, for instance [12–14], to mention only a few
major developments. The interest in sector-bounded nonlinearities is due to the wide area
of practical applications in which the physical plants include control saturations, modeling
uncertainties, time-delays, and measurements quantizations.

The main results presented in this paper provide conditions for the occurrence of SAR,
and they are derived using specific methods for the stability analysis of stochastic nonlinear
systems. The theoretical developments are illustrated by numerical examples.

Throughout the paper, Rn denotes the n dimensional Euclidean space, Rn×m is the set
of all n × m real matrices, and the notation X>0, (respectively, X≥0) for X ∈ Rn×n means
that X is symmetric and positive definite (respectively, semi-definite). Tr{A} denotes
the trace of the matrix A and λ(A) denotes its eigenvalue, whereas, λ̄(A) and λ(A),
respectively, denote the maximum and minimum eigenvalues of a symmetric matrix A.

Furthermore, |w| for w ∈ Rn will denote (wTw)
1
2 . Throughout the paper, (Ω,F , P) is

a given probability space. Expectation is denoted by E{·} .

2. Preliminaries

In the present paper, we deal with stochastic systems that involve state-multiplicative
noise represented using Itô type stochastic differential equations (SDEs) as follows:

dx(t) = f (x(t), t)dt + g(x(t), t)dβ(t), (1)

where β(t) is a zero mean r-dimensional Wiener process adapted to an increasing family of
Ft≥0 of σ-algebras Ft ⊂ F , with E{dβ(t)dβT(t)} = Qdt. The state vector x(t) ∈ Rn and it
is assumed that the functions f (x(t), t) and g(x(t), t) satisfy the existence conditions for
a unique solution of the above stochastic differential equation (see, e.g., [15–17]). For an
initial condition x0 at t = t0 independent of the σ-algebra generated by β(t), t ≥ 0, this
solution will be denoted by x(t, t0, x0). Assume that f (0, t) = 0 and g(0, t) = 0, ∀t ≥ 0.
Then, according to [18], the trivial solution x(t) ≡ 0 of Equation (1) is called stable in
probability for t ≥ 0 if for any t0 ≥ 0 and ϵ ≥ 0,

lim
x0→0

P

{
sup
t≥0

|x(t, t0, x0)| > ϵ

}
= 0.

Moreover, the solution x(t) ≡ 0 is called asymptotically stable in probability if it is stable
in probability and if

lim
x0→0

P
{

lim
t→∞

x(t, t0, x0) = 0
}

= 1.

One can prove (see, e.g., [18]) that x(t) ≡ 0 is asymptotically stable in probability
if there exists a twice continuously differentiable positive definite function V(x, t) such that
LV < 0, where the infinitesimal generator LV has the expression [16,17]

LV := Vt + VT
x f (x(t), t) +

1
2

Tr{g(x(t), t)QgT(x(t), t)Vxx}, (2)

in which Vt and Vx denote the first-order partial derivatives of V(x, t) with respect to t
and x, respectively, and Vxx is its second partial derivative with respect to x. This result
represents a generalization of the well-known Lyapunov’s theorem on asymptotic stability
from the deterministic framework. Although this type of a stability is weaker than mean
square exponential stability (see, e.g., [19]), it is still of practical value as we will see in
the sequel.
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3. Motivation

Consider the following linear continuous-time scalar stochastic system [20]

dx(t) = ax(t)dt + σx(t)dβ(t), (3)

where a > 0 and β(t) is a Wiener process with E{β2(t)} = dt. This system is clearly
unstable for σ = 0. However, for σ ̸= 0, we choose [18,21] the positive definite function
V(x) = |x|ν, ν ∈ (0, 1) and calculate

LV = Vxax +
1
2

Vxxσ2x2 = |x|νν

(
a +

σ2

2
(ν − 1)

)
.

Taking σ > 0 such that σ2 > 2a, it follows that for ν < 1 − 2a
σ2 , the infinitesimal generator

LV < 0 and, therefore, the origin is asymptotically stable in probability. We next see in
Figure 1 a case of σ2 < 2a (Figure 1 top) and a case of σ2 > 2a (Figure 1 bottom).
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Figure 1. A scalar system that is unstable without state-multiplicative noise, (top) σ2 < 2a SAR not
attained, (bottom) σ2 > 2a SAR attained.

The SAR phenomenon seems, at first sight, to be counter-intuitive. Indeed, it often
happens, e.g., in stable systems, that multiplicative noise can even drive a system to insta-
bility. However, the reverse phenomenon of SAR is even more intriguing. A somewhat
similar phenomenon is well known to control practitioners where dither (high-frequency
periodical excitation) added to a control signal can eliminate limit cycles, by a sort of
linearization, e.g., in the case of systems with dead-zone nonlinearities that are smoothed
by the dither. In such cases, practitioners apply classical frequency-domain approximate
analysis, i.e., describing-function-based analysis, in order to determine the dither char-
acteristics, to eliminate the unwanted limit cycle. In SAR, the exciting noise is a white
state-multiplicative noise rather than a periodic one, and the white multiplicative noise
seems to have a balancing effect, which can push the system back towards the origin upon
large deviations. In our example of System (3), the noise-free equilibrium is x = 0; however,
due to a > 0, the system diverges. For non-zero x, the multiplicative noise term randomly
provides corrections that either drive the system to zero, or away from zero, depending on
the sign. Larger values of |x| result in larger convergence rates to the origin. However, once
the state x passes through x = 0, it stays there, since both the so-called drift term ax(t)dt
and the diffusion term σx(t)dβ(t) are then nulled.
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Our aim in the present paper is to demonstrate this intriguing phenomenon and
provide an analysis tool that can determine an intensity of noise that can stabilize the
system, such as the describing function does, in the case of dither.

4. Problem Formulation

Consider the following system:

dx(t) = Ax(t)dt + F f (y(t))dt + Dx(t)dβ(t)
y(t) = Cx(t)
x(0) = x0

(4)

where x ∈ Rn is the state vector, y ∈ Rn is the measured system output, and β(t) ∈ R is a
standard Wiener process with E{β2(t)} = dt on the given probability space, which is also
independent of x0. The elements of y are yi = Cix ∈ R, i = 1, ..., n, where Ci is the i’th row
vector of C, namely yi = ∑n

j=1 Cijxj, and the components fi(yi) of f (y) satisfy the sector
conditions 0 ≤ yi fi(yi) ≤ siy2

i [11,22,23], which are equivalent to

fi(yi)( fi(yi)− siyi) ≤ 0, i = 1, ..., n. (5)

Let us define, for the sequel, S = diag{s1, s2, ..., sn}. We note that the model of System (4) is
relevant also in cases where f (y(t)) in the model is not a priori sector-bounded. In such
cases, one may invoke the universal approximation theorem [24] to systems where a single
hidden layer, with, e.g., a tanh activation function and a linear output layer, provides an
approximation with arbitrarily small error for an arbitrarily wide hidden layer. In such
cases, the model of System (4) readily becomes relevant, as the approximate function is
now sector-bounded. However, one should be very careful, as systems exhibiting chaotic
behaviors may require a very high degree of approximation to maintain their chaotic nature.

5. Stability in Probability Analysis in the Absence of Nonlinearities

Consider first the simpler case where F = 0 in System (4). The main result of this
section is the following theorem.

Theorem 1. If the following condition holds

λ̄(A + AT) < σ2, (6)

then the solution x(t) ≡ 0 of System (4) with F = 0 and D = σ2 I is asymptotically stable in
probability.

Proof. Consider the positive definite function

V(x) = (xTx)ν/2, ν ∈ (0, 1)

for which, one readily obtains that

Vx(x) = ν
(

xTx
) ν

2 −1
x.

We next denote

ρ := 1 − ν/2 ∈ (1/2, 1) (7)

and obtain also

Vxx(x) = ν
1

(xTx)ρ

(
I − 2ρ

xTx
xxT

)
.
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Plugging Vx and Vxx into Expression (2) of the infinitesimal generator, we obtain

LV = VT
x (x)Ax +

1
2

Tr
{

DxxT DTVxx(x)
}

, (8)

and using the above expressions derived above for Vx and Vxx, the results show that

LV =
ν

2(xTx)ρ
xT(A + AT + DT D)x − 2ρν

(xTx)ρ+1 xT(DxxT DT)x.

If we focus on the case D = σI, we obtain that

LV =
ν

2(xTx)ρ
xT(A + AT + σ2 I − 2ρσ2 I)x.

From Equation (7), it follows that 1 − 2ρ = ν − 1 and, therefore,

LV =
ν

2(xTx)ρ
xT

[
A + AT − σ2(1 − ν)I

]
x. (9)

Taking into account the condition (6) from the statement, it follows that there exists a small
enough ν ∈ (0, 1) such that

A + AT − σ2(1 − ν)I < 0

and, therefore, from Equation (9) it follows that LV < 0, concluding, thus, that the solution
x(t) ≡ 0 of System (4) with F = 0 is asymptotically stable in probability.

6. Stability in Probability Analysis in the Presence of Nonlinearities

We consider now the case of F ̸= 0 in System (4). Assume that the following conditions
are accomplished.

Hypothesis 1 (H1). The derivatives of the nonlinearities are bounded, namely, there exist
δi > 0, i = 1, . . . , n, such that d fi(yi)

dyi
< δi, and

Hypothesis 2 (H2). The matrix C satisfies the condition CTC = I.

Remark 1. The assumption CTC = I may be fulfilled if the matrix CTC is nonsingular, performing
the similarity transformation x̂ = T̂x with T̂ := ΣUT , where Σ and U are obtained from the
singular value decomposition CTC = UΣ2UT . In the case when CTC is not invertible, one may
add fictitious new outputs such that C becomes invertible. The effect of these new added outputs
may be vanished setting si = 0 for their corresponding indices i.

Then, the following result provides asymptotic stability conditions for System (4).

Theorem 2. Assume that the assumptions H1 and H2 hold. If there exist ν ∈ (0, 1), Λ =
diag(λ1, . . . , λn), λi ≥ 0, i = 1, . . . , n, and T = diag(τ1, · · · , τn), τi ≥ 0, i = 1, . . . , n,
such that [

N11(ν, Λ) N12(ν, Λ, T )
N T

12(ν, Λ, T ) N22(Λ, T )

]
< 0 (10)

where ∆ := diag(δ1, . . . , δn) and

N11(ν, Λ) := ν
[
AT + A − σ2(1 − ν)I

]
+ σ2CTΛ∆C

N12(ν, Λ, T ) := νF +
[

A − σ2

2
(
1 − ν

2
)

I
]T

CTΛ + SCTT
N22(Λ, T ) := −2T + ΛCF + FTCTΛ

(11)
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then the solution x(t) ≡ 0 of the stochastic system, System (4), with D = σI is asymptotically stable
in probability for any sector-type nonlinearities fi(yi), satisfying the conditions 0 ≤ yi fi(yi) ≤ siy2

i

and d fi(yi)
dyi

< δi, i = 1, . . . , n.

Proof. Consider the positive definite function

V(x) = (xTx)ν/2 + Σn
k=1λk

∫ yk

0
s−2ρ fk(s)ds, (12)

with λk ≥ 0, k = 1, ..., n, ν ∈ (0, 1) and ρ defined in Equation (7).
Then, direct computations give that

Vx(x) = ν(xTx)−ρx +
(

xTCTCx
)−ρ

CTΛ f

and

Vxx(x) = ν
(xT x)ρ

(
I − 2ρ

xT x xxT
)
− ρ

(
xTCTCx

)−ρ−1CTΛ f xTCTC

+
(
xTCTCx

)−ρCTΛ fyC

where Λ was defined in the statement and the following notations have been used

f := [ f1, . . . , fn]
T and fy := diag

(
d f1
dy1

, . . . , d fn
dyn

)
. (13)

Further, define
−F0 := VT

x (Ax + F f ) +
1
2

xT DTVxxDx (14)

and the nonlinearities constraints

−Fi := (xTx)−ρ fi(yi)( fi(yi)− siyi) ≤ 0, (15)

i = 1, ..., n. Then, in accordance with the S-procedure technique (see, e.g., [23]), the stability
condition

LV = VT
x (Ax + F f ) +

1
2

xT DTVxxDx < 0

is accomplished together with Constraints (15), if there exist τ1, . . . , τn ≥ 0, such that

F0 −
n

∑
i=1

τiFi > 0. (16)

Using the expressions of Vx(x) and of Vxx(x) derived above, it follows that Equation (16) is
equivalent to [

ν(xTx)−ρxT + (xTCTCx)−ρ f TΛC
]
(Ax + F f )

+ 1
2 xT DT

[
ν(xTx)−ρ

(
I − 2ρ

xT x xxT
)

−ρ(xTCTCx)−ρ−1CTΛ f xTCTC
+(xTCTCx)−ρCTΛ fyC

]
Dx

−(xTx)−ρ
(

f TT f − 1
2 f TT CSx − 1

2 xTSCTT f
)
< 0

(17)

where T was defined in the statement.
Multiplying (17) by (xTx)ρ, one obtains for CTC = I,(

νxT + f TΛC
)
(Ax + F f )

+ 1
2 xT DT

[
ν
(

I − 2ρ

xT x xxT
)
− ρ

xT x CTΛ f xT + CTΛ fyC
]

Dx

− f TT f + 1
2 f TT CSx + 1

2 xTSCTT f < 0.

(18)
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Taking as in the previous case, D = σI, Inequality (18) becomes(
νxT + f TΛC

)
(Ax + F f ) + νσ2

2 (1 − 2ρ)xTx
− 1

2 σ2ρxTCTΛ f + 1
2 σ2xTCTΛ fyCx

− f TT f + 1
2 f TT CSx + 1

2 xTSCTT f < 0,
(19)

which may be rewritten in the equivalent form

[
xT f T ][ M11 M12

M12
T M22

][
x
f

]
< 0, (20)

where the following notations have been introduced

M11 := ν
2
(

AT + A
)
+ νσ2

2 (1 − 2ρ)I + σ2

2 CTΛ∆C

M12 := ν
2 F + 1

2 ATCTΛ − σ2ρ
4 CTΛ + 1

2 SCTT
M22 := −T + 1

2
(
ΛCF + FTCTΛ

)
.

Using the definition of ∆ from the statement, it follows that if Condition (10) is accom-
plished, then Inequality (20) holds for any [xT f T ] ̸= 0. Thus, one concludes that LV < 0
together with the sector constraints fi(yi)( fi(yi)− siyi) ≤ 0, i = 1, ..., n are fulfilled and,
therefore, the solution x(t) ≡ 0 of System (4) is asymptotically stable in probability. Thus,
the proof ends.

Remark 2. The above result may be extended to the more general case of a non-scalar matrix
D > 0. Thus, using the fact that λ(D)xTx ≤ xT Dx ≤ λ̄(D)xTx and −2xT DCTΛ f ≤
xT D2x + f TΛCCTΛ f , one obtains that, if there exist ν ∈ (0, 1), Λ = diag(λ1, . . . , λn), λi ≥ 0,
i = 1, . . . , n and T = diag(τ1, · · · , τn), τi ≥ 0, i = 1, . . . , n, such that P11(ν, Λ) P12(ν, Λ, T ) 0

PT
12(ν, Λ, T ) P22(Λ, T ) P23(ν, Λ)

0 PT
23(ν, Λ) −I

 < 0,

where

P11(ν, Λ) := ν
[

AT + A + D2 − 2ρλ2(D)I
]
+ ρλ̄(D)

2 D2 + DCTΛ∆CD
P12(ν, Λ, T ) := νF + ATCTΛ + SCTT
P22(Λ, T ) := −2T + ΛCF + FTCTΛ

P23(ν, Λ) :=
√

ρλ̄(D)
2 ΛC,

with ρ = 1 − ν
2 , then the solution x(t) ≡ 0 of the stochastic system, System (4), is asymptotically

stable in probability. The proof is similar to that of Theorem 2 and, therefore, it is omitted.

Remark 3. Note that Conditions (10) and (11) of Theorem 2, are convex in the system matrices
A, F and also in the noise intensity σ2. These facts allow verification of the SAR condition not only
in fixed values of A, F, and σ2 but also within a convex hull of those parameters, allowing a merit
beyond the one provided by numerical simulations. Note that the conservatism in the conditions of
Theorem 2 can be reduced by expanding Condition (10) using Schur complements as Ñ11 N12 N13

N T
12 N22 0

N T
13 0 N33

 < 0
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where

Ñ11(ν) := ν
[
AT + A − σ2(1 − ν)I

]
,

N13(Λ) := ασCTΛ∆,
N33(Λ) := −α2∆Λ

and α is a scalar that can be found using line search.

Remark 4. Note that if the conditions of Theorem 2 are fulfilled, then the solution x(t) ≡ 0 is also
exponentially p-stable for p = ν, as detailed in the Appendix A.

7. Numerical Examples

In this section, two numerical examples illustrating the previous theoretical results
will be presented. The first corresponds to the case when no nonlinearity is present in
System (4). The second is an application to a chaos model of the form System (4) with
a nonlinearity.

Example 1. Consider an open-loop unstable system of the form System (4) with F = 0, with a
natural frequency of 5 rad/s and damping coefficient of ζ = −0.01. The dynamic matrix of this
system is

A =

[
0.1 −6.25
4 0

]
One can see that in this case, λ̄(A + AT) = 2.3522. We consider a couple of values of the driving
noise intensity, corresponding to σ = 0.5 and σ = 2. For σ = 2, Condition (6) from Theorem 1 is
fulfilled and therefore the solution x(t) ≡ 0 is asymptotically stable in probability. This conclusion
is illustrated in Figure 2, which presents the time responses of the states of the system. It can be
shown that the case with too small σ fails to achieve SAR whereas the case with large enough σ
achieves SAR.
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Figure 2. Second-order system subject to state-multiplicative noises of different intensities,
(top) For σ = 0.5, λ̄(A + AT) > σ2, SAR not attained, (bottom) For σ = 2, λ̄(A + AT) < σ2,
SAR attained.



Entropy 2024, 26, 115 9 of 12

Example 2. We next consider a slightly modified version of the third-order chaos generator model
of [25] with a single nonlinearity, described by System (4) and

A =

 −ϵ 1 0
0 −ϵ 1
a1 a2 a3

, F1 =

 0
0

10

, CT
1 =

 β
0
0

,

D = σI3,

(21)

where a1 = −2, a2 = −1.48, a3 = −1, ϵ = 0.01, and β = 1. The nonlinearity is f (y1) = tanh(y1).
In order to apply the result of Theorem 2 together with its assumptions, one defined F =

[
F1 03×2

]
,

C = I3, S = diag(1, 0, 0), and ∆ = diag(1, 0, 0). Checking for different values of ν ∈ (0, 1) and
σ > 0, the feasibility of Inequality (10), which is linear with respect to the variables Λ and T , one
obtains that, for instance, for ν = 0.2 and σ = 3, the conditions of Theorem 2 for asymptotic stability
in probability of the considered system are accomplished by Λ = diag(0.0333, 0.1279, 0.0803) and
T = diag(1.0018, 0.6471, 0.6388), in which we used [26] to solve the linear matrix inequalities
from the statement of Theorem 2.

Next, we simulate the above system for 1000 s with an integration step of 0.001 s
with σ = 0 for t ≤ 500 s and σ = 3 for the rest of the time. The results are given in
Figures 3 and 4. The phase-plane (i.e., x1 versus x2) trajectories are depicted in Figure 3,
and the components xi, i = 1, 2, 3 of the state vector as a function of time are depicted in
Figure 4. It can be seen from these figures that the chaotic behavior characterizing the
system without the state-multiplicative noise is replaced by a stable trajectory at t ≥ 500 s,
in which SAR is attained. Thus, the feasibility of stabilization by multiplicative noise is
demonstrated, using the stochastic control input u(t)dt := σx(t)dβ(t).

Figure 3. x1 vs. x2 : Chaos stabilization using multiplicative noise, the original σ = 0 jumps to σ = 3
at t = 500 s.
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Figure 4. States time responses before and after applying the state-multiplicative noise.

8. Conclusions

The phenomenon of Stochastic Antiresonance (SAR) for a class of systems with sector-
bounded nonlinearities has been considered. The stochastic stability is analyzed using
a specific non-quadratic version of a Lur’e-type function for the considered application.
This analysis leads to sufficient conditions for stability that are expressed as Linear Matrix
Inequalities (LMIs), which, in turn, can be solved using standard convex optimization pack-
ages. Using those LMIs, one can determine the intensity of the state-multiplicative noise
that stabilizes a noise-free unstable system, including systems that exhibit a chaotic behavior.
One such system has been numerically simulated in which it has been shown that stability
is attained (i.e., oscillations decay) shortly after the onset of the state-multiplicative noise,
namely achieving SAR. The intensity of the applied noise that achieves SAR is in accordance
to the LMI conditions. The considered class of systems with sector-bounded nonlinearities
correspond to a large number of practical applications. However, although the presented
developments do not yet comply with biological neuron models, the success in stability
analysis and SAR demonstration encourages further research to treat more general models,
such as [3], and more complex ones, on the way of using noise in neuromodulation and
other applications, serving as a means of control rather than as a destructive effect. The
possible modeling approach for such systems, may apply approximate replacement of
continuous nonlinearities not complying with the sector conditions with function-fitting
neural networks of a single hidden layer through a sector-bounded activation function and
a linear output layer. The latter modeling approach is left as a topic for future research.
One may also consider exploring possible SAR in other fields, e.g., aero-elastic systems,
where Stochastic Resonance emerges as a response to additive noise [27]. Subsequent
developments may be dedicated to the case when the linear terms of System (4) are re-
placed by nonlinear functions satisfying some smoothness, boundedness, and commutation
assumptions, as considered in [28]. Furthermore, alternative stability analysis approaches
can be used, using, for instance, the almost global stochastic stability conditions derived
in [29].
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Appendix A

In the following, we will prove that if the conditions of Theorem 2 are fulfilled, then
the solution x(t) ≡ 0 is also exponentially p-stable for p = ν. To this end, the following
definition is recalled (see, e.g., [18]).

Definition A1. The solution x(t) ≡ 0 of the system (4) is called:

(a) p-stable for t ≥ 0 if sup|x0|<δ E[|x(t, x0)|p] → 0 for δ → 0, in which x(t, x0) denotes the
solution of the system (4) with the initial condition x0 at t = 0;

(b) Asymptotically p-stable, if it is p-stable and if E[x(t, x0)|p] → 0 for t → ∞;
(c) Exponentially p-stable, if there exist α, β > 0, such that E[x(t, x0)|p] ≤ α|x0|pe−βt.

The following result (e.g., [16,18]) provides the condition for exponential p-stability of
the solution x(t) ≡ 0.

Proposition A1. The solution x(t) ≡ 0 of System (4) is exponentially p-stable if V(x) exists in
C2, such that

k1|x|p ≤ V(x) ≤ k2|x|p, and (A1)

LV ≤ −k3|x|p (A2)

for some k1, k2, k3 > 0.

It will be shown that the conditions of Proposition A1 are fulfilled for p = ν. Indeed,
consider the function V(x) defined by Equation (12). Since V(x) ≥ (xTx)

ν
2 , the results

show that k1 = 1.
Furthermore, using the fact that 0 ≤ fi(yi)yi ≤ siy2

i and that CTC = I, the following
inequalities hold

V(x) = (xTx)
ν
2 + ∑n

k=1 λk
∫ yk

0 s−2ρ−1s fk(s)ds
≤ (xTx)

ν
2 + ∑n

k=1 λksk
∫ yk

0 s−2ρ+1ds
= (xTx)

ν
2

(
1 + 1

ν ∑n
k=1 λksk

)
from which one deduces that k2 = 1 + 1

ν ∑n
k=1 λksk and, therefore, the conditions (A1)

are fulfilled. In order to prove condition (A2), one notices that a small enough k3 > 0
may be taken such that if M11 is replaced by M11 + k3 In, the inequality (20) holds for
any [xT f T ] ̸= 0. Therefore, the inequality of form (19) with the additional term k3xTx
in the left-hand-side is also true. After multiplying this latest inequality by (xTx)−ρ,
following the same steps as in the proof of Theorem 2 but in reverse order, it follows
that LV < −k3(xTx)

ν
2 − ∑n

i=1 τiFi. and, therefore, taking into account that, τi > 0 and
Condition (15), one concludes that Condition (A2) is also accomplished for p = ν.

The above developments are concluded in the following result.
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Corollary A1. If the conditions of Theorem 2 are accomplished, then the solution x(t) ≡ 0 of
the stochastic system, System (4), with D = σI is exponentially p-stable where p = ν, for any
sector-type nonlinearities fi(yi), satisfying the conditions 0 ≤ yi fi(yi) ≤ siy2

i and d fi(yi)
dyi

< δi,
i = 1, . . . , n.
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