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1. Introduction

Our perception of the world is the product of the human visual system’s complex
optical and physical process. When we open our eyes, light stimuli enter our pupils, which
are the gateway to our visual experience.

These incoming rays of light then pass through the various structures of the eye, such
as the cornea and lens, which help the light to focus onto the retina. The retina, located
at the back of the eye, is a crucial component in the process of perceiving the world. It
is composed of specialized cells called photoreceptors, namely rods and cones. Rods are
responsible for vision in low-light conditions and help us perceive shades of gray, while
cones enable us to see colors and function best in bright light.

As light reaches the retina, the photoreceptors initiate a remarkable transformation.
They convert the incoming light into electrochemical signals that can be transmitted to
the brain through the optic nerve. This process involves the absorption of light by pig-
ments in the photoreceptor cells, triggering a cascade of chemical reactions that generate
electrical impulses.

The transmitted electrical signals, laden with visual information, travel along the optic
nerve to the visual cortex in the brain. Here, the incoming data undergo a complex process
that allows us to organize, interpret, and analyze the information received. The brain
seamlessly integrates this visual input with other sensory cues, such as auditory and tactile
information, to create a coherent and multi-dimensional perceived reality. It is important to
note that perception is not a direct replication of the external world but rather a constructed
representation based on the available sensory input. Factors like individual differences
in perception, attention, and previous experiences can shape how we interpret and make
sense of the visual information received.

The process underlying humans’ perception of the world involves intricate interplay
between the eye’s optical components, the retina’s photoreceptors, and the brain’s com-
plex neural networks. Together, they transform light into meaningful visual experiences,
allowing us to navigate and interact with the world around us.

In a similar way to the intricate optical and physical processes of human vision, ma-
chine vision serves as the “eyes” of cybernetic systems. Machine vision refers to technology
that enables machines to process and interpret visual information, much like how human
eyes perceive and understand their surroundings, facilitating the coexistence of the virtual
and real world in our daily lives. Cybernetic systems are involved in multiple disciplines,
and they address the emerging challenges of managing the information provided from the
virtual and physical world to offer solutions that adhere to human needs and demands [1].
Machine vision, as a part of cybernetic systems, is vital for enabling these systems to
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navigate and interact within both virtual and real-world environments in diverse appli-
cations, including in smart cities, factories, and homes, via monitoring, analyzing, and
controlling machinery, devices, and objects based on end-to-end data collected by smart
sensors connected to the internet and a cloud network [2].

Machine vision systems are based on technologies that strive for seamless integration
into our lives, are driven by creativity and a global perspective, are enabled by the power
of the intelligent interconnectivity of several surrounding environments related to an
application [3], and are continuously evolving due to ongoing research and technological
innovations, including improvements in efficiency, accuracy, and the development of
novel information theories for computer vision and image processing models [4–6] and
applications like those based on collaborative multi-agent approaches applied mainly in
swarm robotics [7].

This remarkable collaboration between agents and the fusion of their information has
been made possible through the advancement of sensor technologies and sophisticated
systems that acquire and process vast amounts of information through the Internet of
Things [8–10]. Machine vision relies on a harmonious amalgamation of optoelectronics
devices, sensors, cameras, and technical vision systems. These components work together to
capture visual data, which form the foundation for subsequent analysis and interpretation.
In this era of big data, the main technological challenges are related to handling high-
throughput tasks that are both complex and efficient, which requires the development
of new materials, new operational principles, and new designs to fulfil the requirements.
These developments require the mimicking of the relationship between the structures
and functions found in the human visual system, demonstrating significant potential for
efficiently processing optical information while consuming minimal power [11].

The field of machine vision encompasses a diverse range of technologies and method-
ologies, including artificial intelligence algorithms like deep learning algorithms and neural
networks for recognizing [12] and classifying objects in images or videos [13], enhancing
image quality and reducing noise in images [14], and 3D vision and depth sensing [15].
These algorithms are robust and adaptable, and they are used in embedded systems [16],
robust control mechanisms [17], inertial navigation systems, robotics, interconnectivity,
big data applications, and cloud computing applications [18]. These elements are at the
core of machine vision advancements, enabling cyber–physical systems to collaborate with
humans in both their real and virtual environments and activities [19].

Sensors play a pivotal role in machine vision, acting as the first point of contact for
acquiring data from the environment. These carefully designed and calibrated sensors are
capable of detecting and measuring various physical properties, such as light, tempera-
ture, pressure, and motion. The acquired data are then processed through sophisticated
algorithms and computer vision techniques, which extract meaningful information and
patterns from the raw sensory input [20].

Artificial intelligence (AI) algorithms, a driving force behind machine vision, allow
systems to understand, interpret, and make decisions based on the captured data. These
algorithms leverage deep learning, neural networks, and pattern recognition to discern
objects, recognize faces, analyze scenes, and even predict future events. The integration of
AI algorithms empowers machine vision systems to adapt and learn from their interactions
with the environment, continuously improving their performance and enhancing their
ability to assist humans in diverse tasks [21].

Embedded systems and robust control mechanisms ensure the seamless integration
and synchronization of various components within machine vision systems. These systems
coordinate the operation of sensors, cameras, actuators, and other peripherals, ensuring precise
data acquisition and processing. By tightly controlling the system’s behavior, machine vision
can deliver accurate and reliable results, even in challenging and dynamic environments.

Interconnectivity, big data, and cloud computing further augment the capabilities
of machine vision systems. The ability to connect to the internet and share data allows
for real-time collaboration, remote monitoring, and the analysis of visual information.



Entropy 2024, 26, 114 3 of 9

With the integration of cloud computing, machine vision systems can access vast com-
puting resources and leverage sophisticated algorithms for complex tasks such as object
recognition, scene understanding, and predictive analytics. This interconnected ecosystem
facilitates seamless communication between cyber–physical systems, enabling humans to
simultaneously interact with the virtual and real worlds [22].

2. An Overview of Published Articles

This Special Issue collates articles on information theory, measurement methods,
data processing tools, and techniques for the design of machine vision systems and the
instrumentation used in machine vision systems via the application of computer vision
and image processing. Short summaries for each of the articles included within this Special
Issue are provided below.

In the article by Garcia-Gonzalez et al. (contribution 1), a novel signal processing
method is proposed for a technical vision system in order to deal with random fluctuations
in electrical voltages during data acquisition, specifically the acquisition of an optoelec-
trical signal. An information theory-based method centering around the use of Shannon
Entropy for extracting the features of optical patterns is presented to deal with the random
processes presented in the acquisition of the signal. It is implemented in structural health
monitoring to augment the accuracy of optoelectronic signal classifiers for a metrology
subsystem of the technical vision system in order to enhance the system’s spatial coordinate
measurement performance under real operation conditions in noisy electrical and optical
environments, as well as to better estimate structural displacement and for an improved
estimation of its health. In this study, five different machine learning (ML) techniques
were used to classify the optical patterns captured. Linear predictive coding (LPC) and
the autocorrelation function (ACC) were used for the extraction of optical patterns. The
Shannon entropy segmentation (SH) method was used to extract relevant information from
optical patterns, and the model’s performance was shown to be improved. The results
reveal that segmentation with Shannon entropy achieved over 95.33% accuracy. Without
Shannon entropy, the worst accuracy was 33.33%.

Wei et al. (contribution 2) propose a low-illumination image enhancement method
based on structural and detail layer images to improve an image’s brightness while effec-
tively maintaining the texture and details of the image, guaranteeing a high-quality image.
A network called the SRetinex-Net model was designed and subsequently divided into two
parts: a decomposition module and an enhancement module. The decomposition module
mainly adopts the SU-Net structure, which is an unsupervised network that decomposes
the input image into a structural layer image and detail layer image. The enhancement
module mainly adopts the SDE-Net structure, which is divided into two branches: the
SDE-S branch and the SDE-D branch. The SDE-S branch mainly enhances and adjusts the
brightness of the structural layer image through Ehnet and Adnet to prevent insufficient or
excessive enhancements of the brightness of the image. The SDE-D branch was denoised
and enhanced with textural details through the use of a denoising module. The results of
numerous experiments show that the proposed structure has a more significant impact on
the brightness and detail preservation of restored images.

Stasenko et al. (contribution 3) present a promising approach for food quality control
during the postharvest stage that leverages the power of Generative Adversarial Network
(GAN) and Convolutional Neural Network (CNN) techniques to use synthesized and
segmented Visible Near-infrared (VNIR) imaging data (“400–1100 nm”) collected under
various environmental conditions (temperature and humidity) for early postharvest decay
and fungal zone predictions, as well as for assessing the quality of stored food. Synthesized
images were obtained via the pairing of Visible (V) “380–700 nm” images and Near-infrared
(NIR) “780–2500 nm” images. By achieving accurate predictions and segmenting the decay
and fungal zones, this approach offers significant advantages over traditional methods.
NIR imagery provides detailed information about the diseased areas in stored fruits, which
is why the hyperspectral cameras containing thousands of bands are used for food quality
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monitoring at postharvest stages. However, hyperspectral devices are expensive and are not
suitable for use among farmers and sellers. Future research directions may include further
comparisons with existing methodologies, exploring its applicability to different crops
and storage conditions, and evaluating scalability for larger and more diverse datasets.
The authors concluded that by harnessing deep learning (DL) and computer vision (CV)
techniques in precision agriculture, significant strides forward in reducing food losses and
ensuring a sustainable and secure food supply chain can be made.

Haipeng et al. (contribution 4) asserted that infrared and visible image fusion meth-
ods can be used to address the challenges of low-light scenes. This paper addresses the
challenges of weak textural details, low-contrast infrared targets, and poor visual percep-
tion in existing deep learning fusion algorithms for low-light visible images to generate
high-quality fused images under the conditions for such scenes. The authors propose
a novel fusion method that exploits the characteristics of infrared and visible images to
generate high-quality fused images under such conditions. The methodology followed
consisted of the design of a Multi-Scale Edge Gradient Module (MEGB), which extracts
texture information from both infrared and visible images. Additionally, they employed the
Salient Dense Residual Module (SRDB) to extract salient features through pre-training with
salient loss. The saliency map obtained from the SRDB was incorporated into the overall
network training process. To fuse global and local information, the authors proposed the
Spatial Bias Module (SBM). Extensive comparison experiments with existing methods
were conducted to validate the effectiveness of the proposed approach in describing target
features and global scenes. The results of the ablation experiments demonstrate the efficacy
of the proposed modules. Furthermore, the authors evaluated the method’s facilitation
for high-level vision tasks, specifically semantic segmentation in diverse low-light scene
images. The proposed method was evaluated qualitatively and quantitatively on three
datasets: TNO, MSRS, and M3FD. The authors compared their method with seven other
fusion algorithms to demonstrate its superiority. The evaluation metrics used include
Standard Deviation (SD), Visual Information Fidelity (VIF), Average Gradient (AG), Dif-
ference Correlation Sum (DCS), Entropy (EN), and Structure Fidelity (SF). However, the
authors acknowledge that their method has limitations, including its inability to remove the
overexposure effect caused by strong light interference. The results of the comprehensive
evaluation and comparison experiments validate the proposed method’s superiority over
existing algorithms.

Yichun et al. (contribution 5) aimed to reconstruct high-frequency details in the
images of a scene by applying the thermal infrared image super-resolution method. They
proposed an improved thermal infrared image super-resolution reconstruction method
to solve the problem of poor image quality caused by the imaging mechanisms related
to imaging sensors, such as motion blur, optical blur, and electronic noise, which lead to
degradation in the quality of infrared images. The proposed method is based on multi-
modal sensor fusion; as inputs, it uses low-resolution (LR) versions of infrared images,
visible light images as the reference images, and high-resolution (HR) versions of infrared
images to obtain a super-resolution (SR) image. Primary feature encoding, super-resolution
reconstruction, and high-frequency detail fusion subnetworks were also included in this
study. The network incorporates hierarchical dilated distillation modules and a cross-
attention transformation module to extract and transmit image features effectively. A
hybrid loss function was introduced to guide the network in extracting salient features
from both thermal infrared and reference images while maintaining accurate thermal
information. Additionally, a learning strategy is proposed to ensure high-quality super-
resolution reconstruction performance, even in the absence of reference images.

The identification of text clusters under the sparsity of feature points derived from char-
acters was achieved by Huei-Yung Lin and Chin-Yu Hsu in contribution 6. The proposed
method was applied to invoices and banknotes for text region detection. The proposed
approach involves the distillation of local image features combined with clustering analysis
to identify meaningful regions of interest. This approach incorporates application-specific
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reference images for feature learning and extraction, enabling the identification of text
clusters even in the presence of sparse character features. The method involves calculating
clusters with high feature density and iteratively expanding the regions of interest for
complete text coverage (feature extraction, clustering analysis, and region selection), en-
abling the detection of text clusters despite sparse feature points in real-world applications
(adaptability to various application scenarios, including regions with different orientations,
size changes, or perspective distortions), as it can achieve fast detection using limited
computational resources. Unlike deep neural network approaches, it does not require
extensive model training or high computational power, making it easily implementable
with hardware-oriented acceleration. Additionally, a multi-stage algorithm with a robust
receptor descriptor is presented for character recognition. The technique offers fast region
detection and can be implemented with hardware acceleration. However, one limitation of
the proposed approach is that its detection capability is limited to man-made structures.
The authors state that their future work will center around investigating structural patterns
in natural scenes, specifically for agriculture applications.

In contribution 7, Zheng, Siming, Mingyu Zhu, and Mingliang Chen propose a method
called the hybrid multi-dimensional attention U-Net (HMDAU-Net) for reconstructing
hyperspectral images from a single-shot 2D measurement in the context of spectral snap-
shot compressive imaging (SCI). The traditional methods for capturing spatial–spectral
information involve scanning-based techniques, while SCI utilizes compressive sensing
to capture 3D spatial–spectral data efficiently in a single measurement. However, the
reconstruction process of retrieving the 3D cube from the 2D measurement is a challenging
problem. The HMDAU-Net addresses this challenge by integrating 3D and 2D convolu-
tions in an encoder–decoder structure, striking a balance between computational cost and
performance. The network incorporates attention gates to highlight important features and
suppress noise from skip connections. The authors observe that, for SCI reconstruction
tasks, the depth of the backbone network (e.g., U-Net) is not as crucial as its width (number
of kernels in each layer) in achieving good results. This observation is attributed to the
difference in tasks between image reconstruction and image classification. Additionally,
the attention gate is employed to extract essential correlations in the spectral data cube and
improve the reconstruction performance of the network. Furthermore, the authors sug-
gest that the HMDAU-Net could potentially be applied in tasks related to other domains,
such as medical imaging, image compression, temporal compressive coherent diffraction
imaging, and video compressive sensing.

As described by Pang, Xiyu, Yilong Yin, and Yanli Zheng in contribution 8, vehicle
re-identification across multiple cameras is one of the main problems of intelligent trans-
portation systems (ITSs) due to the small differences in appearance between vehicles of
the same model and the significant changes in appearance that arise when viewing from
different viewpoints. In this study, a model called multi-receptive field soft attention part
learning (MRF-SAPL) was established by learning semantically diverse vehicle part-level
features under different receptive fields through multiple local branches. In this model,
soft attention is used to adaptively locate the positions of the vehicle parts on the final
feature map, ensuring alignment and maintaining internal semantics. In particular, the
soft-attention part learning module (SAPL) in this model does not require any part-related
labels and can adaptively learn to localize the locations of the parts on the feature map to
suppress severe spatial misalignments in vehicle Re-ID. A new loss function is proposed
to obtain parts with different semantic patterns by penalizing overlapping regions. The
main contributions of MRF-SAPL are flexible part-level feature learning, adaptive part
localization using soft attention, and the use of multiple local branches with different
receptive fields. The authors show that the model outperforms previous methods on
vehicle re-identification datasets, demonstrating its effectiveness in learning fine-grained
local features at multiple semantic levels to effectively distinguish different vehicles with
similar appearances.
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Junqing et al. (contribution 9) introduced an encryption scheme designed specifically
for high-pixel-density images for ensuring the security of data transmission. The proposed
scheme leverages the quantum random walk algorithm in combination with the long
short-term memory (LSTM) model to address the efficiency- and statistical property-based
challenges of generating large-scale pseudorandom matrices. The LSTM was divided into
columns and utilized for training purposes. However, due to the random nature of the
input matrix, effective training of the LSTM was not possible. To overcome this, the output
matrix was predicted to possess a high level of randomness. This LSTM prediction matrix,
matching the size of the key matrix, was generated based on the pixel density of the en-
crypted image, effectively facilitating image encryption. In terms of statistical performance,
the proposed encryption scheme demonstrates an average information entropy of 7.9992,
an average number of pixels changed rate (NPCR) of 99.6231%, an average uniform average
change intensity (UACI) of 33.6029%, and an average correlation of 0.0032. Additionally,
various noise simulation tests were conducted to evaluate the scheme’s robustness against
common noise and attack interference in real-world applications. This approach harnesses
the nearly infinite key space provided by the quantum random walk algorithm while
addressing its low generation efficiency. Furthermore, the permutation and obfuscation
processes in the proposed scheme make use of the key space of the quantum random walk,
avoiding limitations related to the key space in a specific process.

Lei et al. (contribution 10) propose a novel method named NMYOLO for detecting
infusion containers using the You Only Look Once version 4 (YOLOv4) approach to support
medical staff in complex clinical environment by alleviating the pressure they face. The
proposed method introduces several improvements to enhance the detection of infusion
containers. First, a coordinate attention module was added after establishing YOLOv4 as the
backbone to improve the model’s perception of direction and location of information. Next,
the spatial pyramid pooling (SPP) module was replaced with the cross-stage partial spatial
pyramid pooling (CSP-SPP) module, allowing for the reuse of input information features.
Additionally, an adaptively spatial feature fusion (ASFF) module was added after the path
aggregation network (PANet) to facilitate the fusion of feature maps at different scales.
The method also utilizes the EIoU (Enhanced Intersection over Union) as a loss function
to address the anchor frame aspect ratio problem, resulting in more stable and accurate
detection. The experimental results reported in this article demonstrate the advantages of
the proposed method in terms of recall, timeliness, and mean average precision (mAP).
Although the proposed NMYOLO method achieved the desired detection performance,
it has the drawback of reduced frame rate compared to YOLOv4. The authors suggest
possible future improvements, such as using a lightweight backbone or removing the
non-essential convolution modules to reduce the model’s parameters. They also mention
the possibility of replacing modules or modifying the architecture to reduce the model’s
size while maintaining its detection accuracy.

Shengping et al. (contribution 11) discuss the limitations of the Magnetic Flux Leak-
age (MFL) visualization technique used in the surface defect inspection of ferromagnetic
materials when detecting complex defects, particularly cracks, and the loss of information
during unidirectional magnetization. To address this problem, they propose a novel image
registration method for MFL visualization that aligns images captured under different
magnetization orientations. The method utilizes mutual information and Particle Swarm
Optimization (PSO) to optimize the registration process. In this study, the design of a
new registration method for MFL images under different magnetization orientations was
achieved, a solenoid model was utilized in MFL image registration, and higher accuracy
compared to traditional methods was demonstrated through comparative experiments,
suggesting that the proposed method has the potential to enhance crack detection in
MFL testing.

Jian et al. (contribution 12) introduce a one-stage scale enhancement pyramid network
(SEPNet) to address the challenges of object detection in large-scale images captured by
unmanned aerial vehicles (UAVs), particularly when detecting small objects with signif-
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icant scale variation. The proposed SEPNet consists of two core modules: the context
enhancement module (CEM) and the feature alignment module (FAM). The CEM module
produces more salient context information by combining multi-scale atrous convolution
and multi-branch grouped convolution to model global relationships and enhance object
feature representation at different scales. It prevents the flow of features with lost spa-
tial information into the feature pyramid network (FPN). The FAM module learns the
transformation offsets of pixels to preserve aggregate feature space translation invariance,
addressing feature inconsistency issues in the FPN. It also adaptively adjusts the location
of sampling points in the convolutional kernel to preserve feature consistency and alleviate
information conflict caused by the fusion of adjacent features. This module ensures that
small objects are not drowned in feature conflicts. Additionally, this paper introduces
channel attention to refine pre-aggregated features, allowing the network to focus on the
target area rather than the background. Looking ahead, the authors of this paper suggest
that designing lightweight structures for deployment on embedded devices could be a
valuable topic to explore in future research. This implies a focus on optimizing the model’s
efficiency without compromising its performance.

In conclusion, the application of information theory to computer vision and image
processing represents a convergence of advanced technologies that bridge the gap between
the virtual and real world. Through the integration of optoelectronic devices, sensors,
artificial intelligence algorithms, embedded systems, robust control mechanisms, intercon-
nectivity, big data, and cloud computing, machine vision empowers cyber–physical systems
to collaborate with humans in their daily activities. As this field continues to evolve, we
can anticipate a future where machine vision seamlessly integrates into our lives, unlocking
new possibilities and transforming the way we perceive, interact with, and navigate both
the physical and digital realms. The Guest Editors hope that after exploring the articles
published in this Special Issue, entitled “Application of Information Theory to Computer
Vision and Image Processing” (https://www.mdpi.com/journal/entropy/special_issues/
MWI13854O7)—from the Information Theory, Probability and Statistics section of the
Entropy journal—readers can take inspiration for their future research and publications.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Acknowledgments: The Guest Editors of this Special Issue acknowledge the authors and reviewers
that contributed to the successful organization of the Special Issue. We would like to express our
appreciation to the Universidad Autónoma de Baja California, to the Tecnológico Nacional de
México/IT de Mexicali, and to the journal Entropy and MDPI for their constant and valuable support
during this project.

Conflicts of Interest: The authors declare no conflicts of interest.

List of Contributions

1. Garcia-González, W.; Flores-Fuentes, W.; Sergiyenko, O.; Rodríguez-Quiñonez, J.C.;
Miranda-Vega, J.E.; Hernán-dez-Balbuena, D. Shannon Entropy Used for Feature
Extractions of Optical Patterns in the Context of Structural Health Monitoring. En-
tropy 2023, 25, 1207. https://doi.org/10.3390/e25081207.

2. Ge, W.; Zhang, L.; Zhan, W.; Wang, J.; Zhu, D.; Hong, Y. A Low-Illumination Enhance-
ment Method Based on Structural Layer and Detail Layer. Entropy 2023, 25, 1201.
https://doi.org/10.3390/e25081201.

3. Stasenko, N.; Shukhratov, I.; Savinov, M.; Shadrin, D.; Somov, A. Deep Learning in
Precision Agriculture: Artificially Generated VNIR Images Segmentation for Early
Postharvest Decay Prediction in Apples. Entropy 2023, 25, 987. https://doi.org/10.3
390/e25070987.

https://www.mdpi.com/journal/entropy/special_issues/MWI13854O7
https://www.mdpi.com/journal/entropy/special_issues/MWI13854O7
https://doi.org/10.3390/e25081207
https://doi.org/10.3390/e25081201
https://doi.org/10.3390/e25070987
https://doi.org/10.3390/e25070987


Entropy 2024, 26, 114 8 of 9

4. Liu, H.; Ma, M.; Wang, M.; Chen, Z.; Zhao, Y. SCFusion: Infrared and Visible Fusion
Based on Salient Compensation. Entropy 2023, 25, 985. https://doi.org/10.3390/e250
70985.

5. Jiang, Y.; Liu, Y.; Zhan, W.; Zhu, D. Improved Thermal Infrared Image Super-Resolution
Reconstruction Method Base on Multimodal Sensor Fusion. Entropy 2023, 25, 914.
https://doi.org/10.3390/e25060914.

6. Lin, H.Y.; Hsu, C.Y. Structured Cluster Detection from Local Feature Learning for Text
Region Extraction. Entropy 2023, 25, 658. https://doi.org/10.3390/e25040658.

7. Zheng, S.; Zhu, M.; Chen, M. Hybrid Multi-Dimensional Attention U-Net for Hy-
perspectral Snapshot Compressive Imaging Reconstruction. Entropy 2023, 25, 649.
https://doi.org/10.3390/e25040649.

8. Pang, X.; Yin, Y.; Zheng, Y. Multi-receptive field soft attention part learning for vehicle
re-identification. Entropy 2023, 25, 594. https://doi.org/10.3390/e25040594.

9. Liang, J.; Song, Z.; Sun, Z.; Lv, M.; Ma, H. Coupling Quantum Random Walks
with Long-and Short-Term Memory for High Pixel Image Encryption Schemes. En-
tropy 2023, 25, 353. https://doi.org/10.3390/e25020353.

10. Ju, L.; Zou, X.; Zhang, X.; Xiong, X.; Liu, X.; Zhou, L. An Infusion Containers Detection
Method Based on YOLOv4 with Enhanced Image Feature Fusion. Entropy 2023, 25,
275. https://doi.org/10.3390/e25020275.

11. Li, S.; Zhang, J.; Liu, G.; Chen, N.; Tian, L.; Bai, L.; Chen, C. Image Registration for
Visualizing Magnetic Flux Leakage Testing under Different Orientations of Magneti-
zation. Entropy 2023, 25, 167. https://doi.org/10.3390/e25010167.

12. Sun, J.; Gao, H.; Wang, X.; Yu, J. Scale Enhancement Pyramid Network for Small
Object Detection from UAV Images. Entropy 2022, 24, 1699. https://doi.org/10.3390/
e24111699.

References
1. Yang, B.; Serrano, J.V.; Launer, M.A.; Wang, L.; Rabiei, K. A comprehensive and systematic study on the cybernetics management

systems. Syst. Pract. Action Res. 2023, 36, 479–504. [CrossRef]
2. Mudhivarthi, B.R.; Shah, P.; Sekhar, R.; Murugesan, D.; Bhole, K. Cybernetic Technologies in Industry 4.0. In Proceedings of

the 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India,
6–8 July 2023; pp. 1–6.

3. Sergiyenko, O.; Flores-Fuentes, W.; Mercorelli, P. (Eds.) Machine Vision and Navigation; Springer: Berlin/Heidelberg, Germany,
2020; pp. 5–30.

4. Fusiello, A. Computer Vision: Three-Dimensional Reconstruction Techniques; Springer Nature: Cham, Switzerland, 2024.
5. Yuille, A. An information theory perspective on computational vision. Front. Electr. Electron. Eng. China 2010, 5, 329–346.

[CrossRef]
6. Ruiz, F.E.; Pérez, P.S.; Bonev, B.I. Information Theory in Computer Vision and Pattern Recognition; Springer Science & Business Media:

Berlin, Germany, 2009.
7. Podpora, M.; Kawala-Sterniuk, A.; Kovalchuk, V.; Bialic, G.; Piekielny, P. A distributed cognitive approach in cybernetic modelling

of human vision in a robotic swarm. Bio-Algorithms Med-Syst. 2020, 16, 20200025. [CrossRef]
8. Han, H.; Tang, J.; Jing, Z. Wireless sensor network routing optimization based on improved ant colony algorithm in the Internet

of Things. Heliyon 2023, 10, e23577. [CrossRef] [PubMed]
9. Hallyburton, R.S.; Zelter, N.; Hunt, D.; Angell, K.; Pajic, M. A Modular Platform For Collaborative, Distributed Sensor Fusion. In

Proceedings of the ACM/IEEE 14th International Conference on Cyber-Physical Systems (with CPS-IoT Week 2023), San Antonio,
TX, USA, 9–12 May 2023; pp. 268–269.

10. Souli, N.; Kolios, P.; Ellinas, G. Online Distributed Relative Positioning Utilizing Multiple Cooperative Autonomous Agents.
J. Intell. Robot. Syst. 2023, 109, 87. [CrossRef]

11. Chen, W.; Liu, G. Intelligent Optoelectronic Devices for Next-Generation Artificial Machine Vision. Adv. Electron. Mater. 2022,
8, 2200668. [CrossRef]

12. Sirimewan, D.; Bazli, M.; Raman, S.; Mohandes, S.R.; Kineber, A.F.; Arashpour, M. Deep learning-based models for environmental
management: Recognizing construction, renovation, and demolition waste in-the-wild. J. Environ. Manag. 2024, 351, 119908.
[CrossRef] [PubMed]

13. Lee, J.W.; Kang, H.S. Three-Stage Deep Learning Framework for Video Surveillance. Appl. Sci. 2024, 14, 408. [CrossRef]
14. Liang, Z.; Wei, H.; Liu, G.; Cheng, M.; Gao, J.; Li, S.; Tian, X. Leveraging GAN-based CBCT-to-CT translation models for enhanced

image quality and accurate photon and proton dose calculation in adaptive radiotherapy. J. Radiat. Res. Appl. Sci. 2024, 17, 100809.
[CrossRef]

https://doi.org/10.3390/e25070985
https://doi.org/10.3390/e25070985
https://doi.org/10.3390/e25060914
https://doi.org/10.3390/e25040658
https://doi.org/10.3390/e25040649
https://doi.org/10.3390/e25040594
https://doi.org/10.3390/e25020353
https://doi.org/10.3390/e25020275
https://doi.org/10.3390/e25010167
https://doi.org/10.3390/e24111699
https://doi.org/10.3390/e24111699
https://doi.org/10.1007/s11213-022-09610-2
https://doi.org/10.1007/s11460-010-0107-x
https://doi.org/10.1515/bams-2020-0025
https://doi.org/10.1016/j.heliyon.2023.e23577
https://www.ncbi.nlm.nih.gov/pubmed/38187274
https://doi.org/10.1007/s10846-023-01992-2
https://doi.org/10.1002/aelm.202200668
https://doi.org/10.1016/j.jenvman.2023.119908
https://www.ncbi.nlm.nih.gov/pubmed/38169254
https://doi.org/10.3390/app14010408
https://doi.org/10.1016/j.jrras.2023.100809


Entropy 2024, 26, 114 9 of 9

15. Clemente, C.; Chambel, G.; Silva, D.C.; Montes, A.M.; Pinto, J.F.; Silva, H.P.D. Feasibility of 3D Body Tracking from Monocular 2D
Video Feeds in Musculoskeletal Telerehabilitation. Sensors 2023, 24, 206. [CrossRef] [PubMed]

16. Meribout, M.; Baobaid, A.; Khaoua, M.O.; Tiwari, V.K.; Pena, J.P. State of art IoT and Edge embedded systems for real-time
machine vision applications. IEEE Access 2022, 10, 58287–58301. [CrossRef]

17. Kitchatr, S.; Sirimangkalalo, A.; Chaichaowarat, R. Visual Servo Control for Ball-on-Plate Balancing: Effect of PID Controller Gain
on Tracking Performance. In Proceedings of the 2023 IEEE International Conference on Robotics and Biomimetics (ROBIO), Koh
Samui, Thailand, 4–9 December 2023; pp. 1–6.

18. Malik JJ, S.; Saxena, G.D.; Mukkapati, N.; Chacko, S.; Thirumoorthy, P.; Dilip, R. A Review on Augmented Reality Application in
Industrial 4.0. NeuroQuantology 2023, 21, 278.

19. Wang, P.; Yang, L.T.; Li, J.; Chen, J.; Hu, S. Data fusion in cyber-physical-social systems: State-of-the-art and perspectives. Inf.
Fusion 2019, 51, 42–57. [CrossRef]

20. Sergiyenko, O.; Flores-Fuentes, W.; Mercorelli, P.; Rodriguez-Quinonez, J.C.; Kawabe, T. Guest editorial special issue on sensors
in machine vision of automated systems. IEEE Sens. J. 2021, 21, 11242–11243. [CrossRef]

21. Real-Moreno, O.; Rodríguez-Quiñonez, J.C.; Sergiyenko, O.; Flores-Fuentes, W.; Mercorelli, P.; Ramírez-Hernández, L.R. Obtaining
object information from stereo vision system for autonomous vehicles. In Proceedings of the 2021 IEEE 30th International
Symposium on Industrial Electronics (ISIE), Kyoto, Japan, 20–23 June 2021.

22. Nikishina, L.B. Industry 4.0: History of emergence, development, prospects of transformation into Industry 5.0. E3S Web Conf.
2023, 458, 06023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s24010206
https://www.ncbi.nlm.nih.gov/pubmed/38203068
https://doi.org/10.1109/ACCESS.2022.3175496
https://doi.org/10.1016/j.inffus.2018.11.002
https://doi.org/10.1109/JSEN.2021.3065724
https://doi.org/10.1051/e3sconf/202345806023

	Introduction 
	An Overview of Published Articles 
	References

