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Abstract: Emergence and causality are two fundamental concepts for understanding complex systems.
They are interconnected. On one hand, emergence refers to the phenomenon where macroscopic
properties cannot be solely attributed to the cause of individual properties. On the other hand,
causality can exhibit emergence, meaning that new causal laws may arise as we increase the level
of abstraction. Causal emergence (CE) theory aims to bridge these two concepts and even employs
measures of causality to quantify emergence. This paper provides a comprehensive review of recent
advancements in quantitative theories and applications of CE. It focuses on two primary challenges:
quantifying CE and identifying it from data. The latter task requires the integration of machine
learning and neural network techniques, establishing a significant link between causal emergence
and machine learning. We highlight two problem categories: CE with machine learning and CE for
machine learning, both of which emphasize the crucial role of effective information (EI) as a measure
of causal emergence. The final section of this review explores potential applications and provides
insights into future perspectives.

Keywords: causality; emergence; causal emergence; causal emergence identification; effective information;
machine learning

1. Introduction

Economic growth, environmental protection, sustainable development, the global
climate crisis, social inequality, and many other issues are all intertwined with complex
systems [1,2]. Therefore, gaining a deep understanding of how complex systems operate,
evolve, grow, stabilize, and collapse is of paramount importance. However, this task is
exceptionally challenging due to the fact that complex systems consist of diverse and
heterogeneous agents that interact through complex nonlinear relationships [3]. Moreover,
they all exhibit emergent phenomena, which are highly common in complex systems but
carry a sense of mystery [4].

How did the first living cell emerge from the collisions between various molecules
in the Earth’s early environment [5]? How does the cognitive concept of “I” emerge from
the intricate interactions among countless neurons in our brain [6]? How do large neural
language models suddenly exhibit emergent abilities [7]? These fundamental questions
revolve around the concept of emergence in complex living, cognitive, and artificial systems.
Emergence refers to the phenomenon where macroscopic properties and phenomena cannot
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be solely attributed to or explained by the properties of individual components [4,8–10].
This presents a formidable challenge to the traditional reductionist perspective while also
shedding light on the underlying reasons for the enigmatic nature of emergent phenomena.

However, as elucidated by Bedau’s theory of weak emergence [10], many emergent
phenomena can be comprehended through the interactions among the individuals within
the system [4]. Complex systems, in fact, consist of extensive networks of interacting
components [11]. Within these networks, even a minor cause, such as a perturbation of a
single unit, can propagate through the interconnected network, resulting in a collective
effect. The phenomenon described is commonly known as the butterfly effect [12], which
provides an explanation for the occurrence of emergence. On the other hand, emergent
properties, such as homeostasis [13], can stabilize the system itself, thereby preserving
the locality of causal effects and preventing the observation of macro-level effects. These
phenomena demonstrate that complex systems achieve interactions through causal laws,
where numerous local causal laws form interconnected causal networks as a whole. And
this whole possesses unique causal characteristics.

Causality, or causation, refers to the connection between a cause and its resulting
effect [14–16]. It describes the phenomenon in which an event, known as the cause, leads to
another event, known as the effect. Traditional studies of causality have typically focused on
the causal relationship between two or a few variables. However, the unique characteristics
of causality in complex systems present new challenges to classical causal science due to the
vast number of variables involved and the presence of emergent phenomena. In complex
systems, it is possible for one cause to have multiple effects, and conversely, one effect may
be influenced by a multitude of causes. Furthermore, in complex systems, causality often
exhibits cross-level properties, which are closely associated with emergence.

Emergence and causation interconnect with each other. On one hand, emergence is
the causal effect of complex and nonlinear interactions between components in complex
systems [8,9]. On the other hand, emergent properties may have causal effects on individu-
als in complex systems [4,17]. For example, the price of fossil fuel is the emerging result of
the interactions between buyers and sellers in the market. At the same time, the price may
also provide feedback to the market: it can affect the decision making of each individual.

Furthermore, we can understand emergence through the perspective of causation.
What emergence means is that some phenomena and properties on the macroscopic level
can not be attributed to the microscopic properties [18]. Thus, emergent properties or
phenomena lose their direct explanations as usual but may be attributed to the causes on
the macro-level, as pointed out by [19]. Therefore, new causalities can be observed on
larger scales.

In conclusion, gaining a deep understanding of emergence is crucial in the field
of complex system studies. Specifically, the development of a quantitative theory of
emergence is on the verge of emerging. Such a theory holds the potential to address
significant challenges, including the origins of life [20], the emergence of novel capabilities
in large neural network models [7], and the potential for intelligence, consciousness, and
free will to arise in artificial systems [21]. Causality not only exhibits a profound connection
with emergence but is also considered by many researchers as one of the most crucial
perspectives for quantitatively comprehending emergence [18,19,22,23].

Two primary challenges take precedence in understanding emergence from a causal
perspective. The first is establishing a quantitative definition of emergence, whereas the
second involves identifying emergent behaviors or phenomena through data analysis.

To address the first challenge, two prominent quantitative theories of emergence have
emerged in the past decade. The first is Erik Hoel et al.’s theory of causal emergence [19],
whereas the second is Fernando E. Rosas et al.’s theory of emergence based on partial
information decomposition [24].

Hoel et al.’s theory of causal emergence specifically addresses complex systems that
are modeled using Markov chains. It employs the concept of effective information (EI) to
quantify the extent of causal influence within Markov chains and enables comparisons
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of EI values across different scales [19,25]. Causal emergence is defined by the difference
in the EI values between the macro-level and micro-level. Several examples of discrete
Markov chains have been shown to exhibit causal emergence if their EI values of macro-
level dynamics are larger than those of micro-level dynamics. Hoel and other researchers
further extended the measures of effective information and causal emergence for dynamical
systems with continuous variables [26] and complex networks [27]. Other measures are
also possible for quantifying causal effects and, consequently, causal emergence. In [28],
Comolatti and Hoel systematically compared several causal effect measures and concluded
that causal emergence is independent of the selection of the measure.

However, in Hoel’s theory of causal emergence, it is essential to establish a coarse-
graining strategy beforehand. Alternatively, the strategy can be derived by maximizing the
effective information (EI) [19]. However, this task becomes challenging for large-scale sys-
tems due to the computational complexity involved. To address these problems, Rosas et al.
introduced a new quantitative definition of causal emergence [24] that does not depend on
coarse-graining methods, drawing from partial information decomposition (PID)-related
theory. PID is an approach developed by Williams et al., which seeks to decompose the mu-
tual information between a target and source variables into non-overlapping information
atoms: unique, redundant, and synergistic information [29]. Based on this groundwork,
Rosas further developed the concept and introduced a theory called ϕID to decompose the
mutual information between multiple target and source variables [30]. This framework
provides a quantitative definition of causal emergence by measuring the positive synergy
information between the source and target variables based on the inherent characteristics
of the system.

The second challenge pertains to the identification of emergence from data. In an
effort to address this issue, Rosas et al. derived a numerical method [24]. However, it is
important to acknowledge that this method offers only a sufficient condition for emergence
and is an approximate approach. Another limitation is that a coarse-grained macro-state
variable should be given beforehand to apply this method. Hence, there is a need for the
development of new methods.

Recently, artificial intelligence, propelled by the rapid advancements in machine
learning and deep neural network technology, has witnessed significant progress. In
the context of causal emergence, there are two key aspects to consider. Firstly, machine
learning and neural network technology can be employed to address the challenge of
identifying causal emergence. By leveraging these tools, we can develop approaches to
effectively detect and analyze causal emergence phenomena. Secondly, the concepts and
techniques from causal emergence can be introduced into machine learning to enhance the
generalization capabilities of models. This integration can potentially improve the ability of
machine learning algorithms to generalize well beyond the training data, leading to more
robust and adaptable systems.

In a recent study by Zhang et al. [31], a machine learning framework named the
Neural Information Squeezer (NIS) was introduced to address the challenge of identifying
causal emergence using Hoel et al.’s framework. Remarkably, the NIS neural network,
functioning as a “machine observer” equipped with an internal model, exhibits a remark-
able ability to identify causal emergence across various types of data. In the latest updated
version of this work, the Neural Information Squeezer Plus (NIS+) has been developed
to directly maximize the critical measure of causal emergence theory, namely effective
information (EI) [32]. Through extensive experiments conducted on both simulated data
and real brain data, the NIS+ has demonstrated its ability to automatically find emergent
macro-variables and macro-dynamics. Consequently, the NIS+ enables quantifying causal
emergence in data with the learned macro-dynamics. The results of these experiments
highlight the effectiveness and potential of the NIS+ in capturing and analyzing causal
emergence phenomena.

Furthermore, the NIS+ showcases superior performance in terms of generalization
ability by directly maximizing effective information (EI). This brings forth a second question:



Entropy 2024, 26, 108 4 of 56

can we leverage the measure of causation, EI, in the context of causal emergence, to enhance
the generalization capability of neural networks for out-of-distribution scenarios? This
concept is referred to as causal emergence for machine learning. By exploring this idea,
we aim to bridge the gap between causal emergence and machine learning, potentially
unlocking new avenues for improving the generalization abilities of machine learning.

Finally, in Section 5, we address several important and related issues. Firstly, we
explore the similarities and differences between two emerging fields: causal emergence and
causal representation learning [33]. This comparison sheds light on the interplay between
these two domains. Secondly, we delve into a philosophical problem concerning ontological
or epistemological causality and emergence, providing insights into the underlying philo-
sophical implications. Lastly, we discuss the potential applications of causal emergence in
complex systems and how it contributes to our understanding of complex systems from a
causal emergence perspective. These discussions broaden the scope of this paper and offer
intriguing avenues for future research.

This paper aims to provide a comprehensive review of the latest research on the quan-
titative theory and applications of causal emergence and related works. It also explores
the connections between causal emergence, machine learning, and complex systems. The
subsequent section delves into the background of causal emergence, with a particular
focus on the interplay between causation and emergence in complex systems. In Section 3,
various quantitative theoretical frameworks are introduced, including Crutchfield et al.’s
computational mechanics [22], Seth et al.’s Granger causal emergence [23], Hoel et al.’s
causal emergence theory, and Rosas et al.’s theory of emergence based on information de-
composition. Additionally, related concepts such as the coarse-graining strategy, measures
of effective information, and partial information decomposition are discussed, and a com-
parative analysis of these theories is presented. Section 4 addresses the connection between
causal emergence theory and machine learning. It explores the use of machine learning
and neural network techniques for identifying causal emergence and extends the measure
of effective information (EI) to machine learning problems. Finally, this paper delves into
other important topics and potential applications in the fields of machine learning and
complex systems.

2. Background: From Causality to Emergence
2.1. Causality

Causality, which is a fundamental concept in many fields, including philosophy,
natural science, and social science, refers to the relationship between a pair of events,
where the first event (cause) can influence the second one (effect) [14–16]. The relationship
between cause and effect can exhibit either deterministic or probabilistic characteristics.
In deterministic causality, the cause will always produce the same effect, whereas in
probabilistic causality, the cause will only produce the effect with a certain probability.

In most physical systems governed by differential equations or Markovian dynamics,
whether deterministic or probabilistic, causality is inherent. This arises from the fact
that manipulating a variable within the system can result in observable changes in other
variables, albeit with probabilistic outcomes. As pointed out by Y. Iwasaki and H. A.
Simon [34], one physical mechanism may correspond to several possible causal structures
because causal graphs describe local causal interactions, whereas mechanisms are the
global constraints for all variables. We further discuss the relationship between Markovian
dynamics and causal models in detail below.

If we do not know the physical mechanism of a system, how can we model the causal-
ity behind the system? There are several parallel theoretical frameworks that can be used to
do this. For example, Judea Pearl utilized probabilistic graphic models (e.g., Bayesian net-
work, causal graph, and structural causal model) to characterize causal interactions [15,16].
In these models, nodes represent random variables and acyclic links represent causal inter-
actions. Pearl distinguished and quantified three levels of causality in different models. The
first level is association, i.e., the correlation between variables, which can be modeled using
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Bayesian networks [35]. The second level is intervention, which can be characterized using
causal graph models [16]. The difference between a causal graph and a Bayesian network
is that the former enables defining a special operator, called a “do” operator, to simulate
the interventions performed by the experimenter. The last level is counterfactual, which
can be quantified using structural causal models [15]. The distinguishing characteristic of a
structural causal model is that all interactions within a causal graph can be described by a
set of deterministic functions that involve the input variables and unknown components,
thereby introducing uncertainty. Counterfactual causal inferences, that is, inferences under
an imaginary scenario, can be conducted only on structural causal models. The different
types of causal models and the corresponding causal hierarchy in Pearl’s theory are shown
in Figure 1.

Figure 1. The causal models (left) column and the corresponding causal hierarchy (right) column.

Another quantitative framework for causal inference is Donald B Rubin’s “potential
outcome” theory, which operates at the counterfactual level [36]. According to this theory,
each individual has two potential outcomes: the outcome that would be observed if the
individual receives the treatment, and the outcome that would be observed if the individual
does not receive the treatment. Rubin’s theory suggests that the causal effect of a treatment
can be estimated by comparing the difference between the observed outcome and the
unobserved potential outcome for each individual.

Researchers have also developed a bundle of methods, named causal discovery al-
gorithms [37], to automatically discover the causal relations between variables merely
from data. For example, constraint-based algorithms [38] and score-based algorithms [39]
for causal discovery are two typical representations. Causal discovery has emerged as an
interdisciplinary area at the intersection of machine learning, causal inference, and statistics.

Due to the uncertainty and ambiguity behind the discovered causal relations, mea-
suring the degree of causal effect between two variables is another important problem.
Numerous independent historical studies have addressed the issue of causation measure-



Entropy 2024, 26, 108 6 of 56

ment. These include Hume’s concept of constant conjunction [40], Eells’ and Suppes’
measures of causation as probability raising [41,42], and Judea Pearl’s measures of cau-
sation [16]. Effective information (EI) in the framework for causal emergence is also an
indicator for measuring causal effect, and we explain this point in Section 3.5.3. All these
measures can be roughly decomposed into two causal primitives, which characterize the
necessary causation and sufficient causation, respectively [43].

It is crucial to differentiate between Markovian dynamics or dynamical mechanism
models and the causal models introduced above. In current causal emergence theories [19,24],
Markovian dynamics, rather than causal models, including causal graphs and structural
causal models, play a central role. There are several distinctions between Markovian
dynamics and these causal models.

Firstly, in Markovian dynamics, the temporal evolution of one or multiple variables
is typically described, with causal relationships between these variables extending across
different points in time. Consequently, all variables are dependent on time, and a variable at
one time step can causally impact another variable at the subsequent time step. Conversely,
the aforementioned causal models do not explicitly incorporate the element of time. In
these models, neither the variables nor the causal relationships are explicitly defined as
functions of time.

Secondly, it is worth noting that circular interaction structures, including self-looped
interactions, may exist in Markovian dynamics. However, such circular structures are
typically not permitted in the causal models we introduced. This distinction arises from
the fact that both causal graph models and structural causal models are constructed based
on directed acyclic graphs (DAGs) [16]. However, this issue can be resolved by converting
Markovian dynamics into DAGs. The initial step involves introducing static causal vari-
ables at each time step. Consequently, the same variable in Markovian dynamics can be
transformed into a set of different variables at different time steps. This expansion allows
for causal relationships across time steps while eliminating circular structures in causal
graphs [44].

Given the limitations of conventional causal models based on directed acyclic graphs
(DAGs) [45], there is a need for new representation methods. For instance, Richardson [46]
expanded the causal modeling approach to include DAGs. Spirtes [47] discussed DAG
representations of feedback models and applied them to economic processes. Lacerda et
al. also developed a method utilizing independent components analysis to discover cyclic
causal models [48]. Furthermore, Forré and Mooij introduced a novel causal discovery
method for nonlinear structural causal models with cycles and latent confounders [49].
George T.H. Ellison proposed a methodology that leverages domain knowledge to extract
DAGs from temporal relationships among multiple variables [50]. Causal discovery meth-
ods can also be extended to temporal data by segregating various temporal data analysis
tasks, such as classification, clustering, and prediction. Recently, Gong et al. provided a
comprehensive review of these techniques in [51]. These advancements have the potential
to broaden the range of available causal models.

In summary, causality is a fascinating interdisciplinary topic spanning several subjects.
Numerous quantitative frameworks and measures have been developed in recent decades.

2.2. Emergence

Emergence, known as “the whole is greater than the sum of parts” [52], is a central
concept in many philosophical and theoretical discussions about the nature of complexity
and the relationship between micro- and macro-levels of organization. Therefore, the scale
of a system (micro or macro) and the cross-level interactions must be considered when we
discuss emergence. This may increase the complexity of the study of emergence [53–59].

Although many examples of emergence have been pointed out in various fields [4,59],
including the herding behaviors of birds [60], collective behaviors of simple computer
programs [61], and emerging ability of large language models [7], a unifying understanding
of this phenomenon does not exist right now. People try to understand emergence from



Entropy 2024, 26, 108 7 of 56

different aspects, including self-organization [62], order out of disorder [63], and causality.
In this review, we mainly focus on the last point of view.

Emergence has deep connections with causation [10,18,64,65]. First, emergence em-
phasizes the new properties arising from the interactions between the components in the
system, rather than the components themselves. Consequently, all emergent properties and
processes at the macro-level can, in principle, be comprehended as the causal effects result-
ing from interactions between individuals at the micro-level. This is what the philosophical
notion of “supervenience” tries to describe.

However, this does not mean that all emergent phenomena at the macro-level can be
easily attributed to micro-level individuals and their interactions. Two major reasons can
account for this. The first reason is due to the principle of computational irreducibility
proposed by Wolfram [66], which claims that although we know emergent properties arise
from a set of simple rules, there is no shortcut, in principle, to predict the results other than
implementing the rules. For example, the complex behaviors (e.g., herding and aligning) of
the Boid model are the results of simple rules, but these behaviors cannot be reduced to
individual behaviors simply without simulating them [60].

The second reason is that emergent behaviors may be determined by other emergent
properties at the macro-level [19,24]. For example, although the price of rice in the market
is determined by all the interactions (bargaining) between buyers and sellers, it is also
the causal effect of the price of fossil oil because severe shortages of fossil oil can cause
inflation. Therefore, the cause of one emergent property (rice price) is another emergent
macro-level coarse-grained variable. This means new causation can be observed between
macro-level coarse-grained variables, as pointed out by the theory of causal emergence.
Interestingly, the causation at different levels must be consistent to explain the micro-level
event of fluctuating rice prices. Otherwise, a double causation [67] fallacy may appear. This
consistency between causality at different scales is called the causal equivalence principle
in Yurchenko’s latest article [68].

In order to better understand emergence, Bedau et al. [10,65] classified emergence into
three categories according to the causal interactions between the micro- and macro-levels:
nominal emergence [69,70], weak emergence [10,71], and strong emergence [17,72].

Of these categories, the notion of nominal emergence is the least controversial. It
can be described as a kind of property that can be possessed by macro-level patterns or
processes but not by their micro-level components [69,70]. For example, pixel patterns on a
screen are nominal emergent properties. We can consider such nominal emergent patterns
as “supervenient” because all macro-level properties derive from individuals.

Weak emergence refers to macro-level properties or processes that derive through
interactions between individual components in a complicated way such that they can-
not be easily reduced to micro-level properties due to the principle of computational
irreducibility [10,71]. For weak emergent patterns or processes, the causes may come
from both the micro- and macro-levels; therefore, emergent causation may coexist with
micro-level causation.

In the discourse surrounding emergence, weak emergence is generally more widely
accepted than strong emergence. However, there are some concepts and descriptions
that remain somewhat ambiguous [73]. For instance, in Bedeau’s original definition,
a property is considered weakly emergent if and only if it can be derived from micro-
dynamics through simulation. Nevertheless, the term “simulation” itself can be interpreted
in different ways—whether it refers to digital simulations or analog simulations is not
explicitly implied. Bedeau further elaborated on this concept by stating that if a macro-
level property can, in principle, be simulated without requiring an actual simulation,
then it can be considered weakly emergent [10]. However, even this explanation is not
entirely clear-cut.

There are more debates on strong emergence, which refers to properties or processes
at the macro-level that cannot, in principle, be reduced to micro-level properties, including
the interactions of individuals [17,72]. Thus, Boid’s collective behaviors are not strongly
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emergent because they are the result of interactions within the Boid model. This notion
is controversial because it rejects any mechanistic explanations for strong emergent prop-
erties, which cannot be explained by micro-level variables. Furthermore, it raises some
long-standing philosophical debates about “causal fundamentalism” [74] and “superve-
nience” [75], and the existence of strong emergence remains an open problem due to the
scarcity of concrete examples.

Jochen Fromm further explained strong emergence as the causal effect of downward
causation [18]. Consider a system that contains three different scales: micro, meso, and
macro. Downward causation refers to the causal power from the macro-level to the meso-
level or from the meso-level to the micro-level. Consequently, although the strong emergent
properties or processes at the meso-level are supervenient to micro-level properties and
interactions, their causes derive from the macro-level and, therefore, second-order patterns
or processes. However, there are many debates on the notion of downward causation itself,
e.g., [64,68].

In summary, there are three types of causation based on their cross-level properties,
which are associated with emergence, as depicted in Figure 2:

1. Upward causation: This involves the supervenience relation, where macro-level effects
can be attributed to micro-level variables.

2. Intra-level causation: This refers to causal effects occurring within the same scale
or level.

3. Downward causation: Here, macro-level properties influence micro-level properties.

Figure 2. The various types of causation that exist within multi-scale complex systems. In this figure,
solid arrows represent common causation, which is generally accepted without much controversy.
Dotted arrowed lines indicate a form of “causation” driven by supervenience, whereas dashed
arrowed lines represent emergent causation, occurring either at an intra-level or downward.

In Figure 2, the black solid lines represent causation without controversy. However,
according to a recent paper by Yurchenko [68], the causation represented by the dashed and
dotted lines (except the intra-level ones in the meso-level) may not actually be causality
but rather reasons or explanations. Yurchenko introduced the term “reason” to distinguish
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it from the conventional understanding of causality, as cross-level causal effects may not
possess causal powers. Instead, they serve as reasons or explanations from the perspective
of an observer. Yurchenko accepted intra-level causation at the meso- or macro-level as
“real”, similar to causation at the micro-level. He even coined the term “causal equivalent
principle” to represent the idea that all intra-level causations, except those that are cross-
level, should be accepted and are equivalent to each other.

However, other scholars think that compared to the causal relationship at the micro-
level, the intra-level causation at the meso- or macro-level is problematic because the
coarse-graining strategy is relevant [76–78]. As demonstrated in the numeric example in
Section 3.5.4, the causation measured by EI is dependent on the coarse-graining method.
Hoel et al. tried to avoid this problem by introducing EI maximization. Indeed, EI maxi-
mization serves as an objective standard for selecting coarse-graining and macro-dynamics;
however, a unique solution is required. We discuss this problem further in Section 5.2.

3. Quantifying Emergence by Causality

Since causality and emergence have a strong connection and causality has multiple
quantitative frameworks and measures, it becomes natural to use causality to quantify
emergence. In this section, we review several frameworks used to quantify multi-scale
causality and emergence.

3.1. Early Related Works

Before the theory of causal emergence was proposed by Hoel et al., some works
introduced very similar ideas to causal emergence theory. For example, Crutchfield et al.’s
computational mechanics theory considered causal states, which are the partitions of the
state space and may have good predictions. Furthermore, Seth et al. proposed G-causality
to quantify emergence using Granger’s causality. We discuss them in detail below.

3.2. Computational Mechanics

The theory of computational mechanics proposed by Crutchfield, Shalizi, and Feldman
et al. tried to formulate this kind of emergent causation in a quantitative framework [22].
In some sense, computational mechanics can be understood as the inverse of statistical
mechanics. This is because statistical mechanics derives macro-level consequences from
micro-dynamics, whereas the inverse process is performed by computational mechanics,
which constructs a minimal causal model from the observations of a stochastic process that
can generate the observed time series.

Let us assume that the stochastic process under consideration can be represented as
←→s . We can divide it into two segments beginning from time step t: the history before t,
denoted as←−st , and the future after t, denoted as −→st . If the process is stationary, we can
remove the denotation of t. Thus, all possible histories←−s form a set, denoted as

←−
S , and all

futures −→s form a set, denoted as
−→
S .

We aim to establish a model that can reconstruct and predict observed random se-
quences, with a higher accuracy being desirable. However, the randomness of the sequences
prevents us from achieving a perfect reconstruction unless we record every randomly occur-
ring character. This would make the model excessively long. To preserve useful information
as concisely as possible, we need a coarse-grained mapping that captures the ordered struc-
ture in the random sequences, known as patterns [63]. We can partition

←−
S into mutually

exclusive and jointly comprehensive subsets that form a setR. Any subset R ∈ R is called
a “state”. We define a function from histories to states as η :

←−S → R. Thus, η is a method
that can partition the history into mutually exclusive and jointly comprehensive subsets.

For a set of states R, we can measure its simplicity using a complexity metric. Intu-
itively, the larger the cardinality of R, the more complex it is. Additionally, we need to
consider its distribution. For example, if one state occurs frequently while others occur
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rarely, it is less complex compared to a situation with a uniform distribution. Therefore, we
can define the statistical complexity Cµ of a set of states using Shannon entropy [79]:

Cµ(R) ≜ − ∑
ρ∈R

P(R = ρ) log2 P(R = ρ). (1)

When constructing predictive models using a set of states, the statistical complexity refers
to the size of the model.

What kind of state set can achieve the best balance between predictiveness and par-
simony? We can introduce an equivalent relationship called causal equivalence [63].
Concretely, we say←−s and←−s ′ are causally equivalent if and only if:

P(−→s |←−s ) = P(−→s |←−s ′)

This equivalent relationship can partition all the histories into equivalent classes, and
they are defined as causal states. We denote all the causal states of a history←−s as ϵ(←−s ),

where ϵ :
←−S → 2

←−S is a function that can map a history←−s to the causal state ϵ(←−s ) ∈ 2
←−S ,

which is a subset of the histories.
For any two causal states Si and Sj, we can define causal transitions as a set of labeled

probabilities T(s)
ij that represent the transition from the causal state Si to the causal state Sj

while emitting the symbol s ∈ A [63]:

T(s)
ij ≡ P(S ′ = Sj,

−→
S ′ L=1 = s|S = Si),

where S is the current causal state, S ′ is its successor, and
−→
S ′ L=1 = s denotes all the

sequences of length L = 1, in which the first symbol emitted is s (we use slightly different

symbols from those in [79]). Hence, by combining: S ′ = Sj and
−→
S ′ L=1 = s, we ensure that

all subsequent causal states will have the identical initial emitted symbol s. We denote the
set {T(s)

ij : s ∈ A} by T. The definition of causal transitions leads to a direct conclusion:

T(s)
ij = P(←−s s ∈ Sj|←−s ∈ Si) =

P(←−s ∈Si ,
←−s s∈Sj)

P(←−s ∈Si)
, where ←−s s is read as the semi-infinite

sequence obtained by concatenating the history←−s and the symbol s [79].
The ϵ-machine of a process is defined as the ordered pair {ϵ, T}, where ϵ is the causal

state function (which can map a state s to the partition ϵ(s)), and T is the set of the transition
matrices (the dynamics) for the states defined by ϵ.

Up until now, we have defined ϵ-machine, which is a pattern discovery machine where
the patterns are unraveled from the set of histories. The remaining task is to show that it
is, in some sense, optimal. It has the important properties of being minimally predictive,
maximally statistically complex, and minimally stochastic [79].

We compare the causal state S to any state R ∈ 2
←−S to show that for the purpose of pre-

dicting the future, the causal states do a better job, i.e., they provide more information. This
property can be formulated as a mathematical theorem, called the maximal predictability
theorem. It is stated as follows: if S is the causal state given by ϵ, then for any other state

R ∈ 2
←−S and all L ∈ Z+, we have:

H[
−→S

L
|R] ≥ H[

−→S
L
|S ].

where H(·|·) is the conditional entropy, and
−→S L is the L-length sequences for future. Thus,

the inequality shows that the uncertainty of
−→S L given the causal state S is less than all

other states.
After achieving optimal predictiveness, the causal state set remains the one with

minimal statistical complexity. We first introduce the notion of prescient rivals denoted
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as R̂, which are the states that are as predictive as the causal states; viz., for all L ∈ Z+,

H[
−→S

L
|R̂] = H[

−→S
L
|S ].

Next, we present the minimum statistical complexity theorem: for all prescient rivals R̂,

Cµ(R̂) ≥ Cµ(S) (2)

Next, we show that the causal states are minimally stochastic. That is to say, compared
with other competitors with the same ability to predict the future, the causal states and their
transition dynamics have the least uncertainty. Then, we have the minimal stochasticity
theorem, which is expressed as follows: for all prescient rivals R̂,

H[R̂′|R̂] ≥ H[S ′|S ].

where S ′ and R̂′ are the next causal state of the process and the next state, respectively.
This means that the causal state and ϵ-machine provide the best intrinsic determinism.

Since the causal state set is considered the best, how can we compute the causal states
and ϵ-machine from the observed data? The authors of [63] introduced a hierarchical
machine reconstruction algorithm; however, the details are not reiterated here.

Although this algorithm may not be applicable to all operational scenarios, the authors
presented numerical computational results and corresponding machine reconstruction
pathways for chaotic dynamics, hidden Markov models, and cellular automata as exam-
ples [63,79].

It is interesting to compare the theory of computational mechanics with causal emer-
gence. Indeed, we can understand that all the histories←−s are micro-level states, and all the
states R ∈ R are macro-states. Thus the function η that can map a history←−s to a state R is
a possible coarse-graining strategy.

It is worth pointing out that the causal state ϵ(←−s ) is the special state that can have
at least the same predictive power as the micro-state←−s , i.e., the full history. Therefore, ϵ
is similar to the notion in the effective coarse-graining strategy in [31] (see Section 3.6.5),
and the causal transitions T represent the corresponding effective macro-level dynam-
ics. The feature of minimal stochasticity characterizes the deterministic property of the
macro-dynamic. This property is characterized by effective information (EI) in causal
emergence theory.

Although a clear definition and quantitative theory of emergence were not pro-
vided, the authors discussed the relationship between computational mechanics and emer-
gence [63,80]. In [63], the authors explained that emergence can be conceptualized as a
dynamic process in which a pattern acquires the ability to predictably adapt to different en-
vironments, as observed by an external observer. Additionally, they differentiated intrinsic
emergence from emergence itself, as intrinsic emergence goes beyond the mere production
of patterns and encompasses the formation of an embedded observer within the system
through these patterns.

3.3. G-Emergence Theory

G-emergence theory, proposed by Seth in 2008 [23], is one of the earliest works on a
quantitative measure of emergence. His basic idea is to use nonlinear Granger causality to
measure weak emergence in complex systems.

Granger causality (G-causality) is formally defined as follows: Given two time series
A and B, if the past values of B can help predict the future values of A, beyond what can
be forecasted using the past values of A, then B is said to be “Granger-cause” of A. This
implies the existence of Granger causality between A and B.

When applying a bivariate autoregressive model for predictions, residual terms are
included in the equations of the two variables. Then, the residuals can be utilized to
quantify the extent of the causal effect in G-causality. The degree of B being the G-cause of
A is quantified by the logarithmic of the ratio of the two variances of residuals. One is the
residual of the autoregression model of A if all the terms of B are omitted, and the other
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is the residual of the full prediction model, as shown in Figure 3. In addition, in [23], the
author also defined G-autonomous as the ability of past values in a time series to predict
its own future values. And the degree of G-autonomous can be measured in a similar way
as G-causality.

Figure 3. G-causality and G-autonomous.

With these two basic notions in G-causality, as shown in Figure 4, the author defined
G-emergence on macro-variables as follows: a macro-variable M is G-emergent from a set
of micro-variables {m} if and only if (i) M is G-autonomous with respect to {m}, and (ii)
{m} is G-cause of M. The degree of G-emergence can also be quantitatively measured by
multiplying the degree of G-autonomous of M and the average of G-causes of {m} on M.

Figure 4. G-autonomous.

The author tested the G-emergence theory on the Boid model. This model is a famous
artificial life model that simulates the flocking behavior of birds using three simple rules:
cohesion, alignment, and separation [60]. These basic rules are realized by the virtual forces
exerted on each bird, and the strength of each force can be controlled. The author found that
by increasing the strength of cohesion, the G-emergence of the entire flock also increased.
Here, the macro-variable is selected as the center of the flock (center of mass), and each
bird is a micro-variable. The author also discovered a downward causality phenomenon in
this simple model: the center of mass can be used to predict each individual bird. However,
the author did not distinguish downward causation from other common causality in their
work because Granger’s causality is not a real causal relationship.

Seth’s G-emergence theory was the first attempt to quantify the emergence phe-
nomenon via a causality measure. However, the causality measure that the author used
was Granger causality, which is not a strict causal measure, and it also depends on the
regression method to be used. Furthermore, the measure is defined on variables but not
dynamics, which means the result depends on the selection of variables.

3.4. Other Quantitative Theories of Emergence

There are alternative means of measuring emergence that do not require relying on
causality. Two different methods have been discussed by the scholars. One is to understand
emergence as a process from disorder to order, and the other is to understand emergence
from the perspective that “the whole is greater than the sum of parts”.

For example, Moez Mnif and Christian Müller-Schloer used Shannon entropy [81] to
measure order and disorder. In a self-organized process, emergence occurs when there is
an increase in order. This increase can be quantified by measuring the Shannon entropy



Entropy 2024, 26, 108 13 of 56

difference between the initial state and the final state, denoted as Hstart − Hend. However,
this definition has two limitations. Firstly, the measurement of entropy, denoted as H, is
dependent on the abstract level of observation. Therefore, it is necessary to account for
the entropy increase resulting from a change in the observer’s abstract level. Secondly, the
choice of the initial condition of the system is arbitrary. To address this limitation, one
approach is to measure the relative level of Shannon entropy compared to the maximum
entropy distribution. Finally, emergence can be quantified by:

Emergence = Hmax − H − ∆Hview, (3)

where Hmax is the maximized entropy of the system. If no prior information is available,
the maximum entropy, denoted as Hmax, corresponds to the Shannon entropy of an equal
probability distribution. On the other hand, H represents the Shannon entropy of the system
at the final moment of a self-organization process. Additionally, ∆Hview represents the
entropy increase during this process resulting from a change in the observer’s abstraction
level. It should be noted that if the observer does not alter their abstraction level, this term
would be zero. We can also normalize this quantity by dividing Hmax such that different
features can be compared by the normalized quality. For a multivariate system, the authors
suggested employing a radar plot to visualize the emergence fingerprint of the dynamical
process, which showcases the normalized emergence measure across various variables.
Then, the authors applied this method to a simulated system of chickens. M. Tang and X.
Mao applied this indicator to artificial society models [82].

Inspired by Moez Mnif and Christian Müller-Schloer’s work, ref. [83] suggested using
the divergence measure between two probability distributions to better quantify emer-
gence. They understood emergence as being an unexpected or unpredictable change of the
distribution underlying the observed samples. However, this method suffers from computa-
tional complexity and estimation accuracy. To address these problems, ref. [84] further
proposed an approximating method using the Gaussian mixture model to estimate the
density and introduced Mahalanobis distance to characterize the divergence between data
and Gaussian components, leading to better results. In [85], the authors systematically
compared the three aforementioned methods and applied them to a simple test example.
Another Shannon entropy-based emergence measure was proposed by Holzer and de Meer
et al. [86,87]. They considered a complex system as a self-organization process in which
different individuals interact with communications. Emergence can then be measured
based on a ratio between the Shannon entropy measure on all communications between
agents and the total summation of the Shannon entropy for each communication as a
separate source.

Unlike the aforementioned methods, refs. [88,89] proposed a method to quantify
emergence based on the idea that “the whole is greater than the sum of its parts”, defining
emergence from the interaction rules and states of agents instead of the overall statistical
measure of the whole system. Specifically, this measure consists of two terms that are
subtracted from each other. The first term characterizes the collective states of the entire
system, whereas the second term represents the summation of the individual states of all its
constituent parts. This measure emphasizes the emergence that arises from the interactions
and collective behavior of the system. This method was then tested on the example of bird
flock simulation.

3.5. Erik Hoel’s Causal Emergence Theory
3.5.1. Basic Idea

The first quantitative emergence theory based on Markov dynamics and causality
measures through intervention was Erik Hoel’s causal emergence theory.

In this framework, system properties can be characterized at various levels, ranging
from micro to macro. If a system exhibits stronger causality at the macro-level than at the
micro-level, it demonstrates causal emergence. Causality is reflected between successive
states during the system’s evolution. The strength of a system’s causality reveals the extent
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to which its future state is influenced by its current state. The basic idea of causal emergence
is illustrated in Figure 5.

Figure 5. The basic idea of Erik Hoel’s causal emergence theory. The colored circles represent
micro-states, whereas the colored squares represent macro-states.

For example, statistical mechanics is a typical theory of causal emergence. At the
micro-level, a huge number of molecules collide and exhibit random behaviors such that
probabilistic language must be used to describe them. However, if we coarse-grain the
whole system into several thermodynamic physical variables like pressure, temperature,
etc., we can use very concise and exact thermodynamic equations to describe their be-
haviors. Therefore, thermodynamic laws have a stronger causal effect than micro-level
molecular dynamics.

Formal tools are used to describe the elements in Hoel’s causal emergence theory.
Typically, it employs discrete Markov models to describe the micro-dynamics of systems,
and the corresponding macro-level systems with different Markov dynamics can be derived
by coarse-graining the micro-systems. Additionally, the inherent strength of the causal
effect of the Markov model can be measured with effective information (EI), indicating how
effectively a particular state influences the future state of a system.

EI is an intrinsic property of a system’s dynamics and can be quantified by the transi-
tional probability matrix (TPM). A coarse-graining strategy is a function that maps a set
of micro-states into a particular macro-state, allowing for the derivation of a new dynami-
cal model described by TPM from the micro-level TPM. The effective information of the
coarse-grained model can also be computed. The phenomenon of causal emergence implies
that as we coarse-grain microscopic states, the amount of effective information transmitted
from the current state to the next state can possibly increase. At a certain macroscopic scale
of coarse-graining, the effective information reaches a maximum; this scale represents the
point at which the system state has the maximum causal power to predict future states in
the most reliable and effective way.

To illustrate causal emergence, let us look at a particular Markov chain model with
four possible states, whose transition probability matrix (TPM) is:

Sm =


1/3 1/3 1/3 0
1/3 1/3 1/3 0
1/3 1/3 1/3 0

0 0 0 1

 (4)
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In this model, if we take the first three states as group 1 and the last state as group 2,
anyone in group 1 can transition to any of the three states in the same group with equal
probability at the next moment. However, because there is only one state in group 2, so
the fourth state will always stay in its position. Intuitively, we can conclude that the future
states are not fully determined by the current states, and uncertainty mainly arises from
group 1.

However, if we merge the first three states in group 1 into one new state and keep the
fourth state in group 2 as it is, we obtain a coarse-grained Markov model with two states,
represented by the following TPM:

SM =

[
1 0
0 1

]
(5)

Now, the future states of the new system can be fully determined by the current
states. This shows that we can eliminate the uncertainty of a nondeterministic system by
performing coarse-graining over the system states.

3.5.2. About Coarse-Graining

The example above illustrates how a system’s determinism can increase as it is coarse-
grained. Coarse-graining is a process that simplifies the description of a system by grouping
its components into larger, more slowly varying units. It is often used to identify the
essential features of a system that determine its macroscopic behavior, without being
burdened by the details of micro-scale interactions. Unlike dimension reduction techniques,
such as PCA and SVD, coarse-graining takes into account the system’s features at different
spatial and temporal scales. Coarse-graining also differs from renormalization. In physics,
the renormalization group method was invented to eliminate infinities in integrals. It is also
used to coarse-grain a system such that the Hamiltonian or partition functions are similar
between micro- and macro-levels [90,91]. However, the coarse-graining method does not
have this requirement in general. Although both techniques are designed to describe
a system from a coarse-grained level, coarse-graining focuses more on the states of the
system, whereas renormalization cares about dynamics, system rules, partition functions,
etc. Renormalization is frequently used in physics and the study of phase transitions to
explore critical phenomena and symmetry breaking. These are aspects that coarse-graining
typically does not consider.

Given a transitional probability matrix (TPM), there are many ways to partition the
state space for coarse-graining the system. What kind of coarse-graining strategies are
more reasonable? In [19,25], the authors suggested selecting an appropriate coarse-graining
method by maximizing the effective information of the coarse TPM. In the literature, there
is another criterion for selecting a coarse-graining strategy called lumpability, where the
lumpability of a TPM refers to the coarse-grained TPM exhibiting similar dynamics and
observation statistics [92]. Commutativity is another requirement that requires the opera-
tions of coarse-graining and state transitions to be commutative [93]. There are also other
discussions or reasonable model reductions of Markov or hidden Markov models [94–96].

3.5.3. About Effective Information

In order to quantify emergence, a widely used method is to calculate the mutual
information between the past states and future states of a system. This mutual information
defines the upper limit of the information being transferred from the past to the future. If
the mutual information is high, it suggests that a significant amount of information about
the past is retained in the future.

I(Xt; Xt+1) = ∑ P(Xt, Xt+1) log
P(Xt, Xt+1)

P(Xt)P(Xt+1)
(6)
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One limitation of utilizing mutual information is that the resulting value may fluctuate
in response to changes in the joint probability of data. This can make it difficult to obtain a
consistent outcome if the system is exposed to different inputs.

Effective Information (EI)

To address this limitation, Hoel introduced the concept of effective information to
measure the causal effect of the current state on the future state of a system. Effective
information is a scoring metric based on mutual information and can be calculated from
the system’s transition probability matrix (TPM), which is invariant to the input data.

By “intervening” in the current state distribution to follow the uniform distribution
(the distribution of maximum entropy), denoted as ID, the TPM enables the prediction of
the future state distribution ED at the next moment. The effective information (EI) of the
system is defined as the mutual information between ID and ED, which can be expressed as

EI ≡ I(ID; ED) = I(Xt; Xt+1)|do(Xt)∼U (7)

The probability distribution of the random variable Xt, representing the initial state, is
denoted as do(Xt) ∼ U, indicating that it follows a uniform distribution. Hoel adopted the
notion of the “do” operator from Judea Pearl’s causal analysis framework [25]. It is worth
noting that in Pearl’s context, the do operator is typically used to assign a specific value to
the intervened variable rather than applying a distribution [16].

Another point that needs clarification is that the “do” operator used here is purely a
mathematical construct that specifies the distribution of Xt. It does not imply the need for
actual intervention in the system. However, the imaginary “do” operation is equivalent
to a real intervention in the context of this scenario, given that the dynamical mechanism
(TPM) is provided. Consequently, we can perform any desired intervention on the system,
just as in computer simulations.

The second issue pertains to why we apply the “do” operator to a uniform distribu-
tion. In [19], Hoel et al. claimed that the distribution should be the maximum entropy
distribution, which is the most reasonable selection for the input variable Xt if we have no
prior information about the input variable [97]. As we know, uniform distribution can be
derived by maximizing entropy if there is no constraint.

The authors of this review believe that applying the “do” operator to a uniform distri-
bution ensures that the objective measured by EI solely reflects the dynamical mechanism
itself, i.e., the TPM, and is independent of any input data.

This point can be clearer if we re-express EI as a function of the TPM of the system
(see Appendix A for the detailed derivation):

EI =
1
N ∑

i,j
TPM(i, j) log2

(N × TPM(i, j)
∑k TPM(k, j)

)
, (8)

where TPM(i, j) represents the transitional probability of the system from the state i to the
state j.

Therefore, effective information offers a solution to the aforementioned limitation of
mutual information. Given that the TPM can capture the inherent nature of a system, EI is
likewise an intrinsic property of the system.

However, if we apply the “do” operator to the system using different distributions,
EI will depend on the chosen distribution, and certain transition probabilities of specific
rows may carry greater weight in the average calculation. Consequently, deriving a simple
expression solely based on the transitional probability matrix (TPM) may not be possible.
Furthermore, if there is no “do” operator, the effects of the dynamical mechanism and
the input distribution in EI would not be distinguishable or separated, as the mutual
information is a function of the input distribution p(Xt).
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The Derived Measures of EI

Furthermore, we can calculate the EIs for the TPMs of both macro- and micro-
dynamics, and their difference is defined as the measure of causal emergence, that is,

CE = EI(TPMM)− EI(TPMm), (9)

where TPMM represents the TPM of macro-level dynamics, and TPMm represents the TPM
of micro-level dynamics. CE measures the degree of causal emergence. If CE > 0, then
causal emergence occurs; otherwise, it does not occur.

However, there is a limitation for EI and CE when comparing two dynamics that differ
significantly in size. This is because the value of effective information relies on the number
of possible states within the system, denoted as N, with an upper bound of log2(N). To
facilitate comparisons between different coarse-graining strategies and scales, effective
information is often normalized, resulting in a metric known as the effect coefficient E f f .

E f f =
EI

log2(N)
(10)

The value of the effect coefficient is always between 0 and 1, representing the propor-
tion of effective information being transferred from current states to future states. If the
information is fully transferred, the effect coefficient is 1.

In addition to characterizing causal emergence, the effect coefficient can be further
broken down into two meaningful components: “Determinism”, which represents the
certainty of a current state evolving into a certain state or diverging into multiple states in
the next moment, and “Degeneracy”, which represents the possibility of multiple current
states converging into one state in the next moment.

E f f = Determinism− Degeneracy (11)

where both “Determinism” and “Degeneracy” can be defined in terms of the TPM (refer to
Equations (8) and (10)):

Determinism =
1

N log2(N)∑i,j
TPM(i, j) log2(N × TPM(i, j))

Degeneracy =
1

N log2(N)∑i,j
TPM(i, j) log2(∑

k
TPM(k, j))

(12)

It should be noted that the determinism of a system is always greater than its degener-
acy, as the lower bound of the effect coefficient is 0. The following examples illustrate what
determinism and degeneracy look like in systems with varying TPMs.

In Figure 6, the square cells represent the elements of the TPM, and the grayscale areas
represent the values of the TPM elements. Example (a) is a bijective system, meaning that
all information from current states can be transferred to future states without loss. It is fully
deterministic with zero degeneracy. Example (b) is an extreme case where all current states
lead to only one future state, illustrating that high determinism does not necessarily imply
a high effect coefficient. Systems (c) and (d) differ but have the same effect coefficients.
Finally, system (e) is a coarse-grained version of either system (c) or (d), demonstrating two
important points: first, different microscopic systems can be coarse-grained to the same
macroscopic system, and second, causal emergence can be quantitatively captured from
coarse-graining by the increased effect coefficient.

One limitation of EI is its global nature, as highlighted by the fact that the summation
of additional terms encompasses the entire state space, as defined in Equation (8). Therefore,
ref. [98] proposed the concept of flickering emergence, which decomposes EI into each
term added in Equation (8). This new feature can characterize the local properties of
Markov dynamics.
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Figure 6. Examples of effect coefficient, determinism, degeneration, and how coarse-graining can
change them. (a) Deterministic system with zero degeneracy; (b) Deterministic system with zero
effect coefficient due to high degeneracy; (c) Partially deterministic system; (d) Deterministic system
with low effect coefficient; (e) Coarse-grained system from (c) or (d), resulting in a fully deterministic
system with a high effect coefficient.

Comparison with Other Measures of Causation

Hoel’s theory of causal emergence is based on effective information, however, is the
selection of EI necessary for measuring causation? Is causal emergence a phenomenon
that depends on the selection of the measure of causation? To address this problem, in
Comolatti and Hoel’s work [28], a systematic comparison was conducted between effective
information (EI) and other measures of causation that are widely applied in various fields,
ranging from philosophy to genetics.

The findings of this comparison revealed that causal emergence is not merely a peculiar
phenomenon limited to a specific measure. Instead, it exhibits commonalities and shared
characteristics across different measures and fields of study. EI is not the sole measure for
capturing causal emergence; there are other measures of causation that can also reveal the
phenomenon of causal emergence. This suggests that the concept of causal emergence has
broader applicability and relevance. We introduce this work in detail below.

Firstly, Hoel highlighted that causation is not merely a singular relationship between a
cause and an effect. Instead, it encompasses two fundamental dimensions known as causal
primitives: sufficiency and necessity.

The sufficiency aspect of causation refers to the scenario where the occurrence of the
cause guarantees the occurrence of the effect. In other words, whenever the cause happens,
the effect is also observed. This sufficiency dimension, denoted as su f f , can be formally
defined as the probability of the effect e occurring given the condition that the cause c
has occurred:

su f f (e, c) = P(e|c). (13)

In addition, a necessary (nec) relation in causation refers to the absence of the effect
implying the absence of the cause. In other words, when the effect does not occur, it
indicates that the cause also does not occur. This can be understood as a kind of causal
effect measure for the counterfactual. This necessary dimension, denoted as nec, can be
quantitatively defined as the probability that the effect e does not occur when the condition
that the cause c has not occurred is given by:

nec(e, c) = 1− P(e|C/c), (14)
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where C/c represents the set of all possible causes in C but with the particular cause c
being excluded. Therefore, P(e|C/c) represents the probability that e occurs if other causes
except c occur.

With these causal primitives defined, Hoel compared different measures of causation,
including Hume’s constant conjunction [40], Cheng’s causal attribution [99], Eells’s measure
of causation as probability raising [41], Suppes’s measure of causation as probability
raising [42], and Judea Pearl’s measures of causation [16]. The finding was that all of these
measures can be expressed as the two causal primitives.

For example, Cheng’s causal attribution can be expressed as:

CScheng =
su f f (e, c) + nec(e, c)− 1

nec(e, c)
(15)

With this understanding, a natural question arises: Can effective information (EI) be
expressed using causal primitives? The answer is affirmative. However, to clarify this
point, two important distinctions need to be made. Firstly, in most measures of causation,
the causal variables are binary, whereas EI is defined for variables with multiple values.
Secondly, EI is an information-theoretic measure, whereas others are probabilistic measures.
Despite these distinctions, EI can still be expressed using causal primitives.

To understand this, let us examine the equivalent measure of EI: normalized effective
information (E f f ) in Equation (11). This measure contains two terms. The first term is
determinism, and the second one is degeneracy. These two terms can be expressed as su f f
and nec:

determinism = 1− ∑c∈C P(c)H(e|c)
log2 N

, (16)

where H(e|c) ≡ −∑e∈E P(e|c) log2 P(e|c) is the Shannon entropy of the conditional proba-
bility P(e|c), which is su f f (e, c), and P(c), ∀c ∈ C is the distribution of all causes. In the
definition of EI (Equation (7)), this distribution is intervened as a uniform distribution
such that equal weights are assigned to causes c ∈ C. It is not hard to see that determinism
is an information metric for su f f (e, c) and is averaged for all causes. Furthermore, as
su f f (e, c) = P(e|c) increases and approaches one, indicating the emergence of causal
effect, the value of H decreases, whereas determinism concurrently increases. Thus, the
determinism term in EI plays a similar role to that of su f f in causal primitives.

Another term is degeneracy, which can be re-written as:

degeneracy = 1− H(e|C)
log2 N

, (17)

where H(e|C) ≡ −∑e∈E P(e|C) log2 P(e|C) is also the Shannon entropy of the conditional
probability P(e|C), which is calculated by averaging the causal effect for all elements in
C as P(e|C) = ∑c∈C P(c)P(e|c). The entropy H(e|C) serves as a measure of the average
causal effect for counterfactuals, as P(e|C) can be interpreted as P(e|C/c). This is due to the
approximation P(e|C) ≈ P(e|C/c) when the number of elements in C is significantly large,
and C certainly encompasses C/c. Consequently, degeneracy in EI acts as the counterpart
to nec in causal primitives.

Therefore, EI or e f f is a valuable measure of causation, particularly in cases where the
cause and effect variables are not limited to binary values.

Comolatti and Hoel [28] conducted additional experiments to investigate the phe-
nomenon of causal emergence using various Markovian dynamics, employing different
measures of causation, as discussed above. Their findings revealed the widespread occur-
rence of causal emergence, regardless of the specific measure of causation employed.

3.5.4. Examples of Causal Emergence

The example above demonstrates a coarse-graining strategy that is intuitive, as it
involves aggregation at the state level. However, in reality, coarse-graining often occurs
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among variables, and the combination of these variables produces different states. Let us
look at a more complicated example of a boolean network, given in [19], and inspect the
causal emergence when coarse-graining its state transition mechanism. A, B, C, and D are
four binary variables whose state transition relations are shown in Figure 7a.

Figure 7. The mechanism and transition probability matrix of a boolean network. Each variable’s
next state is determined by the combination of the current states of two other variables, as shown
in the boolean network (a). If we examine an atomic subsystem with two inputs and one output,
such as AB →C, the next state of C depends on the present states of A and B. If A = 0 and B = 0,
the probability of C being 1 is 70%, whereas the probability of it being 0 is 30%, as indicated in
the table (b). This same microscopic dynamics applies to other atomic subsystems such as AB→D,
CD→A, and CD→B. When we expand to a subsystem of two inputs and two outputs, AB→ CD
and CD→AB, we obtain the transition probability matrix (TPM), as demonstrated in the table (c).
Finally, we extend to the dynamics of the entire system ABCD→ABCD, whose TPM is represented
as a heatmap (d). The effective information and relative metrics of the entire system are as follows:
EImi = 1.1486, E f f = 0.2871, Determinism = 0.3390, Degeneracy = 0.0519

In order to demonstrate how different coarse-graining strategies can impact effective
information, we can combine two micro-states into a single macro-state. For example, we
can define α = (A, B) and β = (C, D) as coarse-grained variables at the macro-level, where
their values can be either ‘off’ or ‘on’. Using various aggregation strategies, as illustrated in
(a)/(b) and (d)/(e) in Figure 8, we can construct the TPMs for the resulting coarse-grained
systems. The TPM and the corresponding metrics are presented in Figure 8c,f, respectively.

The effective information values for the two macroscopic systems are EIma1 = 1.55
and EIma2 = 0.18, respectively. It is evident that the effective information has increased in
the first coarse-graining scenario (EIma1(1.55) > EImi(1.15)), whereas it has decreased in
the second case (EIma2(0.18) < EImi(1.15)). Thus, causal emergence is observed in the first
coarse-graining scenario. This implies that (1) proper coarse-graining can lead to causal
emergence in a macroscopic system, and (2) not all coarse-graining approaches result in
higher effective information. This example illustrates that coarse-graining can play an
important role in emergence, and effective information is a well-defined quantification
method. This gives us the opportunity to identify causal emergence in a given system. This
raises the following question: What coarse-graining strategy can generate the maximum
effective information? We address this question in Section 4.
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Figure 8. An example showing how different coarse-graining strategies applied to the same boolean
network, shown in Figure 7, can lead to different boolean dynamics. (a) Coarse-graining strategy 1.
(b) Macro-dynamics resulting from strategy 1. (c) The corresponding heatmap of the TPM and the
effective information metrics of the macroscopic system using method 1. (d) Coarse-graining strategy
2. (e,f) The macro-dynamics and TPM corresponding to coarse-graining strategy 2 in (d), respectively.

3.5.5. Extensions to Continuous Systems

Effective information and its associated metrics have been shown to be useful in
quantifying causal emergence. However, there are some limitations to be aware of. First,
the method is only applicable to discrete-state systems. Second, knowledge of the system’s
transition probability matrix (TPM) is required to calculate the effective information met-
rics. Efforts have been made to apply or extend the concepts of effective information to
continuous systems [26,31,100].

Ordinal Partition Network

One approach to incorporating effective information in continuous systems is to
transform the continuous variables into discrete ones using the ordinal partition network
(OPN) method [100]. The basic idea is to transform the time-series data generated by
a continuous dynamical system into a sub-time series of dimensionality d with discrete
values and then establish a transition probability matrix (TPM) between these discrete
series. This approach involves three steps: firstly, sampling the original time series with a
specified time interval τ to create sub-time series of dimensionality d; secondly, ranking
these sub-series based on their values; and finally, utilizing the d-dimensional vectors of
rank orders to represent the original sub-series. By employing rank orders, this method
ensures that the values are restricted to integers within a certain range.

In [100], the author applied the OPN method to the Rossler chaotic attractor system.
By quantifying effective information, he noticed that effective information (such as deter-
minism and degeneracy) was sensitive to the critical phase transition between period and
chaos [100].

Causal Geometry

Alternatively, Pavel Chvykov and Erik Hoel extended the causal emergence framework
to continuous systems and proposed the concept of causal geometry [26].

To understand the basic idea of this work, we suppose the continuous system con-
sidered is a continuous functional map and assume that the uncertainties are small distur-
bances added to this deterministic function, that is,
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y = f (x) + ε, (18)

where x is the input variable defined on the interval [−L/2, L/2], L is a very large constant,
y is the output variable, and ε is a Gaussian noise with a zero mean and standard deviation
ϵ ≪ L. Then, an approximate form of the effective information for such a continuous
system can be obtained using the Gaussian integral.

EI ≈ ln(
L√
2πe

) +
1

2L

∫ L/2

−L/2
ln
(

f ′(x)
ϵ

)2

dx. (19)

The reason we set the domain of x to [−L/2, L/2] is to guarantee that the Gaussian integral
can be implemented and to simplify the definition of a uniform distribution on it.

This form can be easily generalized to a dynamical system with discrete time steps once
we replace x and y with x(t) and x(t + 1), respectively. The formula can also be extended
to higher dimensions, with x and y represented in bold. Suppose x ∈ [−L/2, L/2]n ⊂ Rn

and y ∈ Rm, where n and m are positive integers. Equation (19) can be generalized to the
following form:

EI ≈ ln(
Ln

(2πe)m/2 ) +
1
2
Ex∼U([− L

2 , L
2 ]

n) ln
∣∣∣∣det

(
∂x f (x)
Σ1/2

)∣∣∣∣2, (20)

where Σ is the covariance matrix of the Gaussian noise ε, U([−L, L]n) represents the uniform
distribution on the hypercube [−L, L]n, | · | is the absolute value operation, and det is the
determinant.

Note that the conditional distribution of y given x is a Gaussian distribution, that is,
p(y|x) = N ( f (x), Σ). Thus, the term in the expectation in Equation (20) can be written as:∣∣∣∣det

(
∂x f (x)
Σ1/2

)∣∣∣∣2 =
∣∣∣det

(
Ey|x

[
∂µ∂ν ln p(y|x)

])∣∣∣, (21)

and this corresponds to the determinant of the negative Fisher information metric for the
distribution p(y|x):

gµν ≡ −Ey|x
[
∂µ∂ν ln p(y|x)

]
, (22)

which measures the sensitivity of the logarithmic p(y|x) to changes in x, where ∂µ ≡ ∂
∂xµ

represents the partial derivative with respect to the µth component of x. Therefore, we have
defined a distance metric for the Riemann manifoldM = {p(y|x)} on the parameter space
x ∈ [−L/2, L/2]n, encompassing all possible distributions of p(y|x). This is the origin of
the term “geometry” in this framework.

Finally, we can obtain an expression for EI with the Fisher information metric:

EI ≈ ln
Ln

(2πe)m/2 −
1
2
Ex∼U([− L

2 , L
2 ]

n) ln |det(gµν)|. (23)

This formula can be generalized to cases where p(y|x) is a non-Gaussian distribution. Once
the distribution function is known, we can obtain its Fisher information metric, and then EI
can be calculated using Equation (23). The reason behind this is that the whole manifold
p(y|x) for any x can be understood as a concatenation of local Gaussian distributions.

In [26], the authors considered a more general case in which intervention noise is
added to the input (intervention) variable x in Equation (19). The intervention noise is
denoted as ξ ∼ N (0, δ2), where δ is the standard deviation of ξ. In contrast, ε is called
observational noise distinguishing it from ξ, and is added to the output (observational)
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variable y according to Equation (19). Finally, if two kinds of noise are both considered and
if L = 1 and ϵ≪ 1, Equation (19) becomes:

EI ≈ −1
2

∫ 1/2

−1/2
ln

[(
ϵ

f ′(x)

)2
+ δ2

]
dx. (24)

This is the formula for EI for the continuous mapping function (Equation (18)) given by [26].
Using this equation and a logistic function for f (x), the authors compared the EIs of a more
continuous map (Equation (18)) and a more discrete map with an adjustable parameter in
the logistic function. They discovered that when the noise level is low, the continuous map
can exhibit higher EI compared to the discrete map. However, as the noise level increases,
discretizing the mapping function can lead to a model with higher EI. This phenomenon
helps explain why digital circuits eventually outperform analog circuits in mitigating noise
interference; the binarization and coarse-graining strategy of digital circuits suppresses the
propagation and diffusion of noise.

To generalize the information geometry to the case with intervention noise and obser-
vational noise, let us introduce a new intermediate variable θ ∈ Θ ⊂ Rl with dimensionality
l such that we cannot control y by directly intervening x. Instead, we can intervene x to
influence θ and indirectly affect y. Therefore, the three variables form a Markov chain:
x→ θ → y.

In this case, two manifolds can be obtained: the effect manifoldME = {p(y|θ)}θ∈Θ
with metric gµν = −Ep(y|θ)∂µ∂ν ln p(y|θ) and the intervention manifoldMI = {q̃(x|θ)}θ∈Θ

with metric hµν = −Eq̃(x|θ)∂µ∂ν ln q̃(x|θ), where q̃ ≡ q(θ|x)∫
q(θ|x)dx and ∂µ = ∂/∂θµ. These two

manifolds together are called causal geometry.
Finally, the EI calculation formula for causal geometry is:

EIg = ln
VI

(2πe)n/2 −
1

2VI

∫
Θ

√
|det(hµν)| ln

∣∣∣∣det
(

In +
hµν

gµν

)∣∣∣∣dlθ, (25)

where we have set L = 1 and m = l = n to reduce the number of free parameters, and In is

the identity matrix with size n, VI =
∫

Θ

√
|det(hµν)|dlθ.

EI Calculation for Neural Networks

One of the application areas for continuous EI is neural networks. In [101], the authors
applied EI to analyze the causal effects for different layers of neural networks and compared
the results with the information bottleneck theory. The method they used to calculate EI
was to convert continuous variables into discrete ones by dividing the domains of the input
and output variables into small regions. However, this method has high computational
complexity and is challenging to extend to high dimensions.

In [31], the authors proposed a new numeric method for calculating EI on neural
networks. The basic idea behind this method is to understand a well-trained feed-forward
neural network as a stochastic mapping, following:

y = f (x) + ε, (26)

where x ∈ Rn is the input variable, y ∈ Rm is the output variable, and f : Rn → Rm is the
deterministic map of the neural network. Additionally, ε is a Gaussian noise with a mean
of zero and a covariance matrix Σ = diag(σ2

1 , σ2
2 , · · ·, σ2

m), where σi is the mean square error
on dimension i across the entire training dataset. In this way, the neural network can be
regarded as a Gaussian distribution p(y|x) = N ( f (x), Σ).

Therefore, Equation (20) can be used on this neural network to calculate EI. In [31],
the authors used the Monte Carlo integration method to estimate the expectation in
Equation (20). This technique significantly reduces the computational complexity.
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However, when the authors compared the results calculated using Equation (20) for
various neural networks with different dimensions, they obtained unreasonable results:
EI increased with the number of dimensions. Thus, causal emergence was not always
observed because micro-dynamics exhibited unreasonably larger EI. Another drawback of
Equation (20) is that the parameter L always dominates the value of the expression and
should be removed from the equation. One way to solve this issue is to use Eff instead of
EI (see Equation (10)). However, not all Ls in Equation (20) can be eliminated. Therefore,
the authors introduced the notion of dimension-averaged EI, defined as

dEI ≡ EI
m

(27)

which simply divides EI by the dimension of the output variable y. By using dimension-
averaged EI, L can be removed when calculating dimension-averaged causal emergence
for the neural networks fM and fm representing macro- and micro-dynamics, respectively,
given by

dCE( fM, fm) ≡
EI( fM)

nM
− EI( fm)

nm
, (28)

where dCE is the dimension-averaged causal emergence measure. If we incorporate
Equation (20) into Equation (28), we obtain:

dCE ≈
ExM log |det(∂xM fM)|+ ∑xM

i=1 log σ2
i,M

nM
−

Exm log |det(∂xm fm)|+ ∑xm
i=1 log σ2

i,m

nm
, (29)

in which L is eliminated.

3.5.6. Causal Emergence in Complex Networks

Many complex systems can be represented by networks; therefore, applying the
framework for causal emergence to networks is necessary. However, two problems should
be solved in advance to apply Hoel’s framework: one is to assign dynamics to the studied
network because networks are static structures without any dynamical properties and the
other is to coarse-grain the network.

Klein and Hoel [27] addressed the first problem by considering random walks on
complex networks. Subsequently, the TPM of the system was defined based on the transfer
probabilities between nodes of a large number of random walkers. Due to the good
mathematical properties of the random walk dynamics on graphs, the authors established
an explicit expression for EI on networks, and the final form only relied on the weighted
normalized adjacency matrix wij(∑j wij = 1) of the network. The expression is as follows:

EI = H(⟨Wout
i ⟩)− ⟨H(Wout

i )⟩. (30)

where H(⟨Wout
i ⟩) represents the Shannon entropy calculated from the distribution of the

averaged out-weights across all nodes (Wout
i ≡ {wij|j = 1, 2, . . . , N}), which characterizes

the determinism of the random walk dynamics; ⟨H(Wout
i )⟩ is the average Shannon entropy

for all nodes, which characterizes the degeneracy of the dynamics; and H(Wout
i ) is the

uncertainty of node i.
To address the second problem, in [27], the greedy algorithm was used to group

nodes to form a macro-network. It is worth noting that when merging micro-nodes into
macro-nodes, the TPM of the resulting macro-network can be derived by merging the
probabilities from the TPM of the micro-level. To ensure that the grouped macro-network
maintains the same random walk dynamics as the original one, a dynamic consistency test
is implemented.

In the experimental section, the aforementioned paper explored the application of
a greedy search for identifying causal emergence in complex networks. Experiments
were conducted on artificial networks as well as four types of real networks. In the case
of ER random networks, the size of effective information was solely dependent on the
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connection probability p and converged to − log2 p with the increase in network size.
Additionally, a significant finding was the presence of a phase transition point, where
the average degree of the network reached approximately log2 N. Beyond this point, the
random network structure did not contain additional information with increasing size. In
the case of preferential attachment (PA) networks, when α < 1.0 (α represents the degree of
preferential attachment), the effective information of the network increased as the network
size expanded. Conversely, when α > 1.0, the opposite was observed. The scale-free
network corresponding to α = 1.0 represented the critical boundary of growth. Regarding
real networks, the authors found that biological networks exhibited the lowest EI due to the
presence of significant noise, which can be removed through effective coarse-graining, and
causal emergence was the most significant compared to other types of networks. However,
technical networks exhibited sparsity and non-degeneracy, resulting in higher average
efficiency and more specific node relationships. Consequently, they exhibited the highest
EIs among the studied networks.

The network coarse-graining method mentioned above is the greedy algorithm. How-
ever, when the network is very large, the efficiency of this method remains considerably
low. Following that, Griebenow et al. [102] introduced a spectral clustering-based approach
for identifying causal emergence within networks. More specifically, the method involved
performing eigenvalue decomposition of the TPM, followed by constructing a similarity
matrix using the eigenvectors of the nodes. The OPTICS algorithm was employed to cluster
the nodes, and nodes belonging to the same cluster were aggregated into a macro-node.
Subsequently, the maximum value of EI was selected by utilizing the linear search distance
hyperparameter ϵ. In their paper, the authors additionally proposed a gradient descent
algorithm based on deep learning. This approach encompassed several steps, beginning
with the random initialization of a grouping matrix. Then, this matrix was used to construct
a macro-network by combining the micro-networks. Finally, the grouping strategies were
automatically learned through the process of maximizing effective information within the
macro-network. However, this method often falls into the local optimal solution.

3.5.7. Other Applications

Once the method for quantifying causal emergence in complex systems is developed,
it can be applied across various fields that possess abundant network data. The first type of
network studied was biological networks.

As previously discussed, biological networks are full of noise, which poses challenges
in comprehending their internal operating principles. On one hand, such noise arises
from inherent fluctuations within the system itself, whereas on the other hand, it can be
introduced through measurement or observation processes. Consequently, Klein et al. [103]
further explored the relationship between noise, degeneracy, and certainty in biological
networks and their specific meanings. For instance, in gene expression networks, highly
deterministic relationships indicate that the expression of one gene almost invariably leads
to the expression of another gene. Simultaneously, degeneracy is a prevalent phenomenon
in the evolutionary processes of biological systems. Due to these two factors, it remains un-
clear at which scale biological systems should be analyzed to gain a deeper understanding
of their functions.

To address this, Klein et al. [104] conducted an analysis of protein interaction networks
across more than 1800 species. They employed EI as a measure for assessing the levels of
noise and uncertainty in protein interactions. The findings revealed that the macro-scale
network exhibited lower levels of noise and degeneracy. Additionally, the nodes within the
macro-scale interaction group demonstrated greater resilience compared to the nodes that
were not part of the macro-scale interaction group. Through robust analysis, the authors
demonstrated that eukaryotes exhibited a stronger degree of causal emergence compared
to archaea. Additionally, to address the ’deterministic paradox,’ the authors introduced
the concepts of the neutral process and the selection process in biological evolution. The
neutral process operates at the micro-scale, leveraging mutations to promote interactions
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and enhance species diversity. On the other hand, the selection process operates at the
macro-scale, effectively eliminating noise that hampers system operation and efficiency.
Therefore, in order to adapt to the demands of evolution, it becomes essential for evolved
biological systems to function across multiple scales.

Hoel et al. [43] conducted further research on the causal emergence within biological
systems. The authors elaborated that macro- and micro-systems exist widely in biological
systems. For example, the micro-scale of a group of cells can involve potential ion channel
changes, whereas the macro-scale corresponds to the membrane potential changes of cells.
Furthermore, the authors utilized EI to analyze gene regulatory networks, aiming to identify
the most informative models for controlling mammalian heart development. By quantifying
the causal emergence within the largest component of the gene network of Saccharomyces
cerevisia, it was revealed that informative macro-scale structures were prevalent across
biological systems. Additionally, the authors emphasized the importance of evolutionary
systems operating at multiple scales due to the significant advantages they offer. Natural
selection requires variation between populations, and degradation observed in biological
systems serves as a crucial factor for evolution. Degradation provides the conditions for
the evolutionary process. However, organisms also need to maintain predicted consistency
in phenotype, behavior, and structure to ensure survival and reproduction. Consequently,
evolved systems need to operate at multiple scales, and the function of multi-scale systems
is malleable in changing environments.

Swain et al. [105] conducted an investigation into the impact of ant colony interaction
history on task assignment and task switching. They employed effective information to
examine how noise information propagates among ants and explored the relationship
between EI and the proportion of ants assigned to different tasks within ant colonies. The
study revealed that the extent of historical interaction between ant colonies influenced
task assignment. Additionally, the specific type of ant colony involved in an interaction
determined the level of noise present within that interaction. For example, the interactions
between foragers displayed significantly higher levels of noise when contrasted with
interactions between nurses or cleaners. Furthermore, even when ants switched functional
groups, the cohesion within ant colonies ensured the stability of the overall colony, and
different functional ant colonies also played different roles in maintaining group cohesion.

The EI indicator and causal emergence theoretic framework can also be applied to
artificial systems. For example, Marrow et al. [101] quantified and monitored the changes
in the causal structure of neural networks during training, in which EI was employed to
evaluate the degree of causal influence of nodes and edges on downstream tasks at each
layer. By observing the changes in EI, including determinism (sensitivity) and degeneracy,
throughout model training, the generalization ability of the model could be determined,
thus helping better understand and explain the working principle of neural networks.

Varley et al. [100] attempted to apply the causal emergence framework to both discrete
cellular automata and continuous Rossler systems. In the case of cellular automata systems,
the authors select 88 unique rules corresponding to four types: static, periodic, chaotic, and
complex. By considering each state as a node, where each state determines the subsequent
state, a directed state transition graph is constructed. The analysis revealed that rules 1,
2, and 4 correspond to the strongest causal emergence of dynamics. Notably, the network
constructed by these three rules exhibited a significant presence of star and spoke motifs.
In addition, the authors also draw some quantitative conclusions, for example, among
the 17 rules belonging to the third and fourth categories, 30% exist causal emergence, 70%
show causal degradation, and the CE of cellular automata with the same rules remained
relatively consistent across different sizes.

Furthermore, the authors employed the OPN algorithm to transform the continuous
system into a discrete-state transition graph for comparative analysis (see Section 3.5.5).
They found that chaos dynamics demonstrated a correlation with low determinism, and the
variations in the degeneracy and efficiency coefficients aligned with the changes observed
in the determinism curve.
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3.5.8. Critiques

In the extensive literature on causality and emergence, Hoel’s theory has attracted
attention for linking emergence and causality through interventionism, introducing the
concept of causal emergence in a quantitative manner. However, Dewhurst [77] provided
a philosophical clarification of Hoel’s theory, arguing that it was epistemological rather
than metaphysical. This suggests that Hoel’s macroscopic causality is merely a causal
explanation based on information theory, rather than involving “genuinely novel causal
powers”. This also raises concerns about the assumption of a uniform distribution, as there
is no empirical basis to favor it over other distributions.

The computation of Hoel’s effective information relies on two premises: (1) knowledge
of the system’s microscopic dynamics, and (2) knowledge of the coarse-graining scheme.
However, in practice, it is rare for both conditions to be simultaneously satisfied, especially
in observational studies where both are unknown. This limitation hinders the practical
applicability of Hoel’s theory.

It has been pointed out that Hoel’s theory neglects the constraints on coarse-graining
methods, and certain coarse-graining methods can lead to ambiguity [78]. Additionally,
the combination of some coarse-graining operations over states and coarse-graining op-
erations over time does not exhibit commutativity. For instance, by assuming Am×n is a
coarse-graining operation over states (merging n states into m states), and (·)× (·) is a
coarse-graining operation over time (combining two time steps into one), the equation
Am×n(TPMn×n)× Am×n(TPMn×n) = Am×n(TPMn×n × TPMn×n) does not always hold.
This indicates that certain coarse-graining operations can result in a discrepancy between
the evolution of macroscopic states and the coarse-grained states of the evolved microscopic
systems. It implies the need for consistent constraints on coarse-graining strategies.

This means that solely maximizing EI may raise some problems, and further con-
straints must be added to the framework. We discuss this problem in Section 4.1.1.

3.6. Fernando E. Rosas’s Quantification of Causal Emergence
3.6.1. Basic Idea

In Hoel’s framework, it is essential to find a coarse-graining strategy in order to
determine the occurrence of causal emergence, and the outcome is influenced by the
choice of the coarse-graining method. Although it has been suggested by Hoel [19,25]
that an optimal strategy can be identified by maximizing EI, certain issues have been
raised by Dewhurst [77]. EI is a global measure because it requires the input variable
X to be a uniform distribution over the whole domain [24]. However, many regions are
not observable from the data. Consequently, there is a pressing need for an alternative
theoretical framework for causal emergence that does not rely on a coarse-graining method.

In response, Fernando E. Rosas took an approach that did not require a coarse-graining
strategy as a prerequisite, attempting to break down excess entropy—the mutual infor-
mation between a system’s past and future states—into non-overlapping parts to identify
the information components most relevant to causal emergence. To accomplish this, he
relied on the partial information decomposition (PID) framework proposed by Williams
and Beer, which provides a method for the non-overlapping decomposition of joint mutual
information [29]. Below, we introduce Williams and Beer’s theoretical framework.

3.6.2. Partial Information Decomposition

The partial information decomposition (PID) framework investigates the general
informational relationship between source variables and a target variable. To simplify
the problem description without sacrificing generality, let us consider a system with two
input variables (X1, X2) and one output variable (Y) as an example, as depicted in the Venn
diagram below.

The mutual information between the target variable and individual source variables,
I(X1; Y) and I(X2; Y), as well as the mutual information between the target variable and
the joint source variable, I(X1, X2; Y), exhibits a complex relationship. Intuitively, one
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cannot be converted to another. Nonetheless, it is an intuitive notion that the overlapped
circular plates of I(X1; Y) and I(X2; Y) divide the oval region of I(X1, X2; Y) into four
adjacent non-overlapping regions, representing the three types of information components
of I(X1, X2; Y):

I(X1, X2; Y) = Red(X1, X2; Y) + Un(X1; Y|X2) + Un(X2; Y|X1) + Syn(X1, X2; Y) (31)

Specifically:

• Red: Redundant information refers to the information held by both sources;
• Un: Unique information refers to the information held by one source but not the other;
• Syn: Synergistic information is the information held by all sources together, but not

any individual one.

If we can identify variable representations corresponding to these information compo-
nents, the non-overlapping feature in the Venn diagram indicates their independence from
one another.

For a more intuitive understanding, let us consider a few simple toy examples.
Case 1, Y = X1 = X2: This is a scenario in which a single source variable can predict

the target variable, and the addition of another source variable does not enhance the
prediction of the target variable. In this case, we have I(X1, X2; Y) = Red(X1, X2; Y), as
depicted in Figure 9b.

Case 2, Y = X1 ⊕ X2, X1 ⊥ X2: In another scenario, neither of the source variables can
predict the target variable individually, but together, they can predict the target variable
synergistically. In this case, I(X1, X2; Y) = Syn(X1, X2; Y), as depicted in Figure 9c.

Case 3, Y = X1, X1 ⊥ X2: In this scenario, the target variable can be predicted by one
of the source variables but not the other, which implies I(X1, X2; Y) = Un(X1; Y|X2), as
depicted in Figure 9d.

Figure 9. Venn diagram of PID. (a) Relationship of mutual information between Y and X1, X2. (b–d)
Examples showing that joint mutual information is solely contributed by redundant, synergistic, and
unique information. (e) Redundancy lattice representation of (a).

For general cases, Williams and Beer presented a method for calculating redundant
information, defined as Redmin. This method reflects the concept of redundancy, identifying
it as the shared information across all sources, which is equivalent to the minimum amount
of information contributed by any single source:

Redmin(X1, X2; Y) ∑
y∈Y

P(Y = y)min
Xi

I(Y = y; Xi) (32)

Figure 9e presents an alternative way of visualizing the PID framework, known as the
redundancy lattice [29]. In this representation, {12} denotes synergistic information, {1}
and {2} denote unique information, and {1}{2} denotes redundant information. In the
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subsequent sections, we demonstrate that the ϕID framework employs the notation of the
redundancy lattice.

Although the PID framework remains compatible with scenarios involving more
than two source variables, it should be noted that the corresponding Venn diagrams and
redundancy lattices for these scenarios can become substantially more complicated and
difficult to decipher, as discussed in [29].

3.6.3. Integrated Information Decomposition

The PID framework provides a useful framework for analyzing the non-overlapping
information composition in a multivariate system. However, its application to causal
analysis of dynamic systems is limited by the fact that it only allows for a single target
variable. This limitation prevents the framework from fully capturing the transitions of
multiple states across time steps. To address this challenge, Fernando E. Rosas developed
Integrated Information Decomposition (ϕID) [30], which takes its name from Integrated
Information Theory (IIT) [21]. This extension of PID provides a more comprehensive
method for analyzing dynamic systems.

To introduce Rosas’s framework clearly, we consider a system with only two variables.
All the definitions and calculations can be generalized to systems with more variables.

The objective of the ϕID framework is to decompose excess entropy into non-overlapping
information components. In a two-variable Markovian system, excess entropy is given by
E = I(X1

t , X2
t ; X1

t+1, X2
t+1), where X1

t and X2
t represent the current states, and X1

t+1, X2
t+1

represent the future states. From a causation perspective, X1
t and X2

t represent causes,
whereas X1

t+1 and X2
t+1 represent effects.

Rosas first noted that mathematically, the PID framework is symmetric with respect
to the source and target variables. There are two viewpoints for analyzing the above
Markovian system with PID. One viewpoint takes X1

t+1 and X2
t+1 together as the target

variable (aiming to decompose the “cause” to elements), whereas the other viewpoint
takes X1

t and X2
t together as the target variable (aiming to decompose the “effect” to

elements). The redundancy lattices of these perspectives are illustrated in Figure 10a,b, and
respectively, are referred to as “forward PID” and “ PID”.

Figure 10. (a) Redundancy lattice of “forward PID” and its target variable X1
t+1X2

t+1. (b) Redundancy
lattice of “backward PID” and its target variable X1

t X2
t .

Next, Rosas introduced the ϕID framework, consolidating forward PID and backward
PID into a single framework. In this framework, the one-to-many relationship in PID was
expanded to include many-to-many relationships. He built full connections between the
elements of the redundancy lattices of forward PID and backward PID. This approach
generates 16 relations between the source and target, as depicted by the colored lines in
Figure 11a (each color corresponds to a specific source element of Xt). These relations
are referred to as “ϕID atoms” and can be represented as vertices in a lattice, as shown
in Figure 11b. This more complex lattice is referred to as the double-redundancy lattice
because it is a “product” of two redundancy lattices (of forward PID and backward PID).
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Figure 11. (a) Relationships between redundancy lattices of forward PID and backward PID.
(b) Double-redundancy lattice, whose vertices correspond to the edges in (a). Distinct colors of
dots and lines are employed to distinguish the source elements of Xt.

In the double-redundancy lattice, each vertex is defined as a “ϕID atom”, denoted
as Iα→β

∂ , α, β ∈ A, where A = {{{1}{2}}, {1}, {2}, {12}}. For instance, the ϕID atom of

the vertice {12} → {12} is denoted as I{12}→{12}
∂ . The ϕID atom represents the broken-

down information transmitted from the cause elements to the effect elements, and their
cumulative sum amounts to the excess entropy of the entire system. Consequently, the
formal definition of Integrated Information Decomposition (ϕID) is:

E = I(Xt; Xt+1) = ∑
α,β∈A

Iα→β
∂ (33)

The main advantage of ϕID is that it can provide a more fine-grained analysis of
complex systems compared to PID by introducing the temporal dynamic. By decomposing
the mutual information of the system at different times, ϕID provides another approach for
the quantitative study of causal emergence.

3.6.4. Reconciling Emergences

Building upon the concept of synergistic information in the PID framework, Rosas
introduced a quantitative definition of causal emergence using the ϕID framework to tackle
the challenge of identifying an appropriate coarse-graining strategy. The definition includes
two aspects: firstly, determining whether the system has the capacity to generate causal
emergence, and secondly, assessing the occurrence of causal emergence given a specific
macroscopic feature.

Regarding a system’s capacity to exhibit causal emergence, this definition establishes a
connection between causal emergence and synergistic relationships among variables across
different time points. Consequently, a system denoted as Xt is said to possess the capacity
for causally emergent features if and only if:

Syn(Xt; Xt+1) > 0 (34)

In this context, causal emergence is understood as the synergistic effect between variables
at preceding and subsequent moments within a Markovian dynamics system.

Then, Rosas further divided causal emergence into two parts in the ϕID framework,
downward causality and causal decoupling, based on the distinct characteristics of the
information atoms. Among the sixteen ϕID atoms obtained by decomposing the mutual
information I(Xt; Xt+1) using ϕID, there are four information atoms corresponding to the
synergistic effect, which is regarded as the composition of causal emergence. These atoms
are denoted as I{12}→α

∂ (Xt, Xt+1), α ∈ A = {{{1}{2}}, {1}, {2}, {12}}.
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Downward causality is denoted as D(Xt, Xt+1), encapsulating the information atoms
that exclusively manifest a synergistic effect in forward PID, as shown in Figures 12 and 13:

D(Xt, Xt+1) := ∑
α∈A/{12}

I{12}→α
∂ (Xt, Xt+1) (35)

While causal decoupling is denoted as G(Xt, Xt+1), pinpointing the specific informa-
tion atom where both forward and backward PID exhibit synergy:

G(Xt, Xt+1) := I{12}→{12}
∂ (Xt, Xt+1) (36)

Since ϕID is a non-overlapping decomposition of all information, this classification
takes into account all cases of causal emergence, that is,

Syn(Xt; Xt+1) = G(Xt, Xt+1) +D(Xt, Xt+1). (37)

Figure 12. Causal decoupling (G) and downward causation (D) are represented by a double-
redundancy lattice. Distinct colors of dots are employed to distinguish the source elements of Xt, (colors
are corresponding to Figure 11).

In addition to that, Rosas also provided an approach to quantify the causal emergence
of a specific macro-variable, i.e., a coarse-graining strategy. If a system has the capacity
to generate causal emergence, there can be some macroscopic features that exhibit causal
emergence. A feature variable V is said to be supervenient on the underlying system if it
does not provide any predictive power for future states at times t + 1 when the complete
state X of the system at time t is known with perfect precision. This is equivalent to Vt
being statistically independent of Xt+1 given Xt. Then, for a system described by Xt, a
supervenient feature Vt is said to exhibit causal causation if:

Un(Vt; Xt+1|Xt) > 0. (38)

For this definition, the system’s capacity of causal emergence is required, where Syn(Xt; Xt+1) > 0,
since Un(Vt; Xt+1|Xt) ≤ Syn(Xt; Xt+1) holds for any supervenient feature Vt. Correspond-
ing to the classification of the system’s capacity, the downward causation (as indicated by
the red dotted line in Figure 13) of a feature variable V exists when

Un(Vt;X1
t+1|Xt) > 0

or

Un(Vt;X2
t+1|Xt) > 0

(39)

and causal decoupling (as indicated by the blue dotted line in Figure 13) exists when

Un(Vt; Vt+1|Xt, Xt+1) > 0, (40)
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which also depends on the capacity of the system. Furthermore, Vt is said to have pure
causal decoupling if Un(Vt; Xα

t+1|Xt) = 0 and Un(Vt; Xt+1|Xt) > 0. If all the emergent
features exhibit pure causal decoupling, the system is said to be perfectly decoupled.

Figure 13. Synergistic causes can be further divided into causal decoupling and downward causation.

Although a rigorous quantitative definition for causal emergence was proposed, the
mathematical formulations used in ϕID can be complex and computationally demanding,
making it difficult to apply the method to real-world systems. Also, In addition, the
inconsistency in PID calculation causes the definition of causal emergence to depend on a
specific PID calculation. To address these problems, Rosas relaxed the calculation of causal
emergence and established a identification criteria based one the sufficient conditions of
causal decoupling and downward causation.

Specifically, to avoid exploring the specific quantitative methods of synergistic and
redundant information, this criteria repeatedly subtracts redundant information, making
the result a sufficient condition for causal emergence, which lose some of its generality but
improves the reliability. The three indicators to be used are:

Ψt,t+1(V) := I(Vt; Vt+1)−∑
j

I(X j
t ; Vt+1), (41)

which measures the mutual information between macro-variables across two time steps
minus the mutual information between each micro-state and macro-state.

∆t,t+1(V) := max
j

(
I(Vt; X j

t+1)−∑
i

I(Xi
t; X j

t+1))

)
, (42)

which is the maximum of the difference between mutual information of Vt and X j
t+1 and

the summation of the mutual information of Xi
t and X j

t+1.

Γt,t+1(V) := max
j

I(Vt; X j
t+1), (43)

which is the maximum mutual information between Vt and X j
t+1. For the above indicators,

V is a predefined macro-variable, but the specific method for finding such a macro-variable
is not discussed in [24].

The specific usage of the indicators are as follows: Firstly, Ψt,t+1(V) > 0 is a sufficient
condition for the causal emergence of Vt. Secondly, ∆t,t+1(V) > 0 is a sufficient condition
for Vt to show downward causation. Thirdly, Ψt,t+1(V) > 0 and Γt,t+1(V) = 0 together
constitute a sufficient condition for causal decoupling.

In summary, Rosas proposed an approach to quantitatively characterize and classified
causal emergence based on ϕID by establishing the relationship between causal emergence
and the synergistic effect of variables at different time points and further categorized
causal emergence. The definition not only provides an objective assessment of a system’s



Entropy 2024, 26, 108 33 of 56

capacity for causal emergence but also enables the measurement the causal emergence
associated with a specific macro-feature. His significant contributions include bridging the
gap between the study of causal emergence and quantitative empirical research, classifying
the different types of causal emergence, and complementing philosophical discussions on
the topic.

The PID and ϕID frameworks hold the potential for explaining data in various ap-
plications. For instance, Luppi et al. recently employed the ϕID method to analyze brain
BOLD signals [106], aiming to identify the synergistic core of the brain. Their findings
revealed that synergistic information facilitates the integration of different brain regions,
whereas redundancy contributes to robustness. This study offers valuable insights into
understanding the underlying mechanisms of the brain.

The advancement of partial information decomposition techniques allows for further
analysis of the mutual information between variables, enabling a deeper understanding of
system properties from multiple perspectives. In a study by Varley et al. [107], the authors
applied partial information decomposition to decompose the mutual information of a
system. They calculated an indicator of synergy bias to assess how synergistic information is
distributed across different levels of the system using the method proposed by Williams and
Beer [29]. A higher synergy bias indicated a greater amount of partial information involved
in synergistic relationships. Subsequently, the authors observed that in certain systems
exhibiting causal emergence, when the system is simplified or reduced, the synergy bias
increases. This suggests that as we coarse-grain the system, partial information undergoes
a transformation from redundancy to synergy. The overall conclusion drawn was that
emergence can be understood as a form of information conversion.

3.6.5. Causal Emergence Identification from Data

In the previous sections, we introduced several works on quantifying emergence
through causality and other information-theoretic concepts. All of these works tried to
propose quantitative measures, conceptual frameworks, and numeric examples based
on Markovian dynamics for causal emergence. However, in practical applications, for
a theoretical framework to be implemented, we need to automatically identify causal
emergence from real data, especially time-series data of dynamic systems, and provide
explanations for the results.

The first method for causal emergence identification was introduced in Rosas’s paper
on causal emergence [24] and involves the three indicators defined by Equations (41)–(43),
as mentioned in Section 3.6.4. The identification criteria were exemplified in three case
studies, leading to the following conclusions: particle collisions emerge as a distinctive
feature within Conway’s Game of Life, flock dynamics emerge as a characteristic feature in
simulated bird behavior, and the representation of motor behavior in the cortex emerges
from neural activity.

Although these three indicators avoid the problem of redundant information calcula-
tion, it is important to note that they serve as sufficient conditions, rather than as definitive
proof of emergence. In other words, indicators greater than 0 can suggest the presence of
emergence, but indicators less than 0 do not necessarily imply the absence of emergence.
The construction of this indicator faces challenges in identifying emergence in systems with
significant redundant information or a large number of variables, which is often the case in
many real-world systems. Additionally, a limitation of this method is the requirement of a
predetermined coarse-grained variable V, and different choices of this variable can signif-
icantly impact the results. As a result, the development of an automatic coarse-graining
strategy based on data remains an unresolved issue.

As a result, the current theoretical frameworks for causal emergence lack a practical
and effective identification algorithm. Although previous studies have proposed methods
based on static network structures and approximations for information decomposition,
there is still a need for a comprehensive approach that can be applied to general Markovian
dynamic systems. One of the main challenges is the necessity to search for all possible
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functions of coarse-graining or decomposing subsets within the data to identify causal
emergence in complex systems. However, conventional numerical methods are unable to
handle the computational costs associated with such an extensive search in a vast functional
space. Therefore, the development of new methods is imperative to address these issues.

In Section 4, we explore the application of machine learning techniques to address the
challenge of identifying causal emergence within time-series data.

3.6.6. Comparison with Hoel’s Framework

When comparing Hoel’s framework to Rosas’s quantification framework for causal
emergence, several clear advantages can be observed in the latter. Firstly, Rosas’s theory
does not require a predetermined coarse-graining method, making it more mathematically
rigorous and formal. Secondly, it offers a detailed decomposition of causal emergence,
specifically downward causation and causal decoupling. Lastly, it effectively avoids cases
of fake causal emergence, where the macro-variable depends solely on unique or redundant
information from the micro-variables.

However, there are also some disadvantages to consider. Firstly, in order to obtain
the full information lattice, a systematic iteration of all variable compositions is required.
Additionally, despite the use of Formula (38), it is necessary to define a macro-variable.
Unfortunately, the authors do not provide any method to identify such a variable. Secondly,
all the mutual information and its decomposition are based on correlations rather than
causality. It is crucial to discuss how to incorporate causal elements, such as intervention
and counterfactuals, into the framework.

Finally, the issue of identifying whether causal emergence occurs in a system based
on the given time-series data of its behaviors has not been addressed in the preceding
discussion. To address this problem, the application of emerging technologies in machine
learning and artificial intelligence is required. These technologies can provide valuable
tools and techniques for detecting and analyzing causal emergence.

4. Causal Emergence and Machine Learning

Recently, newly emerging machine learning technologies have made significant break-
throughs in addressing a range of important and challenging problems [108–116]. Examples
include defeating human champions in complex games like Go [108,109], predicting the
intricate structures of protein folding [110], and generating human language using large lan-
guage models [117]. These achievements have been made possible through the application
of machine learning methods, which leverage well-designed neural network architectures
and automatic differentiation techniques.

However, there is a crucial limitation of conventional machine learning: it can only
capture the information or associations within the data, without being able to uncover
the underlying causal relationships. According to the theory of causal hierarchy by Judea
Pearl [15,16,118], causality is very different from association because the former always
represents a more stable relationship that is invariant in different environments, whereas
the latter may be more dependent on contexts and reflects the limitation of the data.
Therefore, it is necessary to develop new machine learning frameworks to incorporate
the consideration of causality [33,118,119]. Numerous studies have provided evidence
to show that incorporating aspects of causality can lead to improved performance in
machine learning tasks, including out-of-distribution generalization, adaptation to diverse
environments, and handling interventions [118,120,121].

Machine learning and causal inference are also connected to causal emergence in two
aspects, which we call “causal emergence with machine learning” and “causal emergence
for machine learning”. On one hand, machine learning can be employed to address the
challenge of identifying causal emergence from data, referred to as “causal emergence with
machine learning”. On the other hand, causal emergence theory and effective information
(EI) measures have potential applications in the field of machine learning, known as
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“causal emergence for machine learning”. However, the extension depends on a deeper
understanding of how causal emergence theory is related to causality.

4.1. Causal Emergence with Machine Learning

In Section 3.6.5, we discussed the challenge of identifying causal emergence. Although
Rosas et al. presented a method to address this issue by calculating an approximate
measure of causal emergence based on their theoretical framework (Equation (41)), the
method requires the availability of a macro-variable, denoted as Vt, which needs to be
defined in advance. However, defining this variable in a general sense when confronted
with data remains challenging. Hence, the question arises of whether we can leverage
machine learning to automatically learn the macro-variable. In this section, we explore
two recent approaches that utilize machine learning and neural network techniques to
address the problem of causal emergence identification from the perspective of Heol et al.’s
theoretical framework for EI maximization. These methods aim to learn the coarse-graining
strategy, macro-variable, and macro-dynamics directly from the data, eliminating the need
for explicit definitions. By leveraging the power of machine learning, we can potentially
overcome the limitations of manual variable definition and enable a more automated and
data-driven approach to identifying causal emergence.

4.1.1. Neural Information Squeezer (NIS)

The first work we introduce has just been published in this special issue. In this
paper, the authors formulated the problem of causal emergence identification in continuous
Markov dynamics. Suppose the time-series data x1, x2, . . . , xT are generated by a stochastic
dynamical system continuously, which can be described by a differential equation,

dx
dt

= g(x(t), ξ), (44)

where ξ is a Gaussian noise. The time series {xt} represents the observations of the micro-
states of the system. The problem we confront is identifying whether causal emergence
occurs for the original system. We also want to know the appropriate coarse-graining
strategies, the macro-dynamics corresponding to the chosen coarse-graining method, and
the dimension of the phase space at the macro-level when the causal emergence occurs.

To address this problem, the authors proposed a mathematical framework by convert-
ing the original issue into an optimization problem for functions. Specifically, the goal is
to find the appropriate coarse-graining strategy ϕq, defined onRp → Rq, where q < p is
the dimension of the macro-states. Additionally, the aim is to determine the macro-level
Markov dynamics f , defined onRq → Rq with the random noise ζ, by maximizing J—the
dimension-averaged EI of the macro-dynamics (see Equation (27)). This is expressed as,

maxJ ( f̂ϕq), (45)

However, this problem has a trivial solution, e.g., ϕ is a constant map for all micro-
states, and the macro-dynamic is an identity. Surprisingly, this solution has a large EI
because the identity map has the largest determinism and lowest degeneracy among all
q-dimensional functions. This is trivial because too much information has been abandoned
by the coarse-graining strategy such that the macro-dynamic is useless.

To address the problem, the authors added a reasonable constraint to the original
optimization framework, called the effectiveness requirement. A coarse-graining strategy
and its corresponding macro-dynamics are considered effective if there exists another
decoarse-graining function ϕ† such that the functions ϕ, f , and ϕ† can predict the micro-
state, instead of the macro-state, in the next time step based on the state in the previous
step. The constraint can be written as,

||ϕ†( f (ϕ(xt)))− xt+1|| < ϵ, (46)
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for all time steps t, where ϵ is a given constant. This way, an effective coarse-graining
strategy and macro-dynamics not only maximize the EI but also reproduce the original
micro-dynamics as much as possible.

This constraint is an important complement to the framework for EI maximization
because the decoarse-graining function ϕ† can map macro-states back to micro-states,
addressing the problem of the ambiguity of macro-states. This constraint also ensures
commutativity. To demonstrate this, we can apply (ϕ†)−1 ≈ ϕ to both sides of Equation (46),
resulting in || f (ϕ(xt))− ϕ(xt+1)|| < ϕ(ϵ).

However, the problem is still hard to solve. In [31], the authors proposed a two-stage
method, which can minimize the prediction error under a given dimension q of macro-
states in the first step and maximize EI for different values of q in the second step. The first
step can be solved by training a neural network, and the second step converts the complex
functional optimization problem into a line search in one-dimensional space.

To realize the abstract mathematical framework, the authors proposed an encoder-
dynamics learner-decoder framework for neural networks, named the Neural Information
Squeezer (NIS), vividly describing the basic working principle of the framework as depicted
in Figure 14.

Figure 14. The architecture and workflow of the Neural Information Squeezer (NIS). The NIS consists
of three main components: an encoder ϕ, a dynamics learner f , and a decoder ϕ†. The encoder ϕ

comprises an invertible neural network ψ and a projection operator χ, which simply discards fixed
dimensions output by ϕ. On the other hand, the decoder ϕ† incorporates the same invertible neural
network as the encoder but implements its inverse ψ−1. In cases where the input is incomplete, it can
be complemented using Gaussian random noise.

In order to reduce the complexity of the encoder and decoder, corresponding to ϕ
and ϕ†, respectively, the authors used an invertible neural network to implement the
encoder and inverted the input-output workflow of the same neural network to implement
the decoder. Concretely, the encoding process was decomposed into two computation
steps: information conversion with the invertible neural network ψ : Rp → Rq on a
p-dimensional input space, and information discarding with a simple projection operation.
This is expressed as:

ϕ(x) = χq(ψ(x)), (47)

where χq is the projection operator that projects a p > q-dimensional vector into a q-
dimensional vector, retaining dimensions from 1 to q. The decoding process also consists of
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two stages: randomly sampling Gaussian noise to complete the details of macro-states, and
information conversion but in an inverted way, that is,

ϕ†(x) = ψ−1(x
⊕

ζ), (48)

where ζ ∼ N (0, Ip−q) is a p− q-dimensional standard Gaussian random vector, and
⊕

is
the operation of vector concatenation.

The adoption of an invertible neural network in the framework serves two main
purposes. Firstly, by inverting the workflow of the neural network ψ to obtain the decoder
ϕ†, a significant reduction in the number of parameters is achieved. This reduction can lead
to improved efficiency and computational benefits. Secondly, the use of invertible functions
in the neural network provides favorable mathematical properties that facilitate the analysis
of the entire framework in a tractable manner. These properties enable researchers to gain
insights and understand the characteristics of the framework more easily.

This architectural design with an invertible neural network not only reduces the
complexity of computation but also separates the input information from the micro-states
into noise and EI for prediction. The authors proved a mathematical theorem stating that, as
the neural network converges through training, the mutual information between adjacent
macro-states tends to approach the mutual information of two adjacent-step micro-states in
the data. This means that all the information discarded by the encoder is almost irrelevant
to the prediction. All the useful information converges into the information bottleneck
within the macro-level dynamics learner. Another theorem demonstrates that the degree
of information compression for micro-states increases as we reduce the dimension of the
macro-states. Thus, the macro-state dynamics learner, acting as a narrower information
bottleneck, progressively discards more and more extraneous information from the original
micro-state data.

To address the problem of causal emergence identification, we first optimize the neural
networks, and the dimension-averaged EI, Jq, can be obtained for different q. When
q = p, the derived Jp is the dimension-averaged EI for the micro-dynamics. Finally, the
calculation of

∆J = Jq −Jp (49)

is the measure of dimension-averaged causal emergence (see Equation (28)). If ∆J > 0, we
can state that causal emergence occurs.

Numeric examples are provided to show the effectiveness of the whole framework.
Interestingly, the Neural Information Squeezer can handle time-series data with discrete
micro-states, even though the whole framework was initially designed for continuous
dynamical systems. Particularly, the model determines the same coarse-graining strategy
and macro-level dynamic as illustrated in the example of a boolean network with four
nodes in Hoel’s original paper, although no information about node grouping and state
mapping was provided in the framework.

It is also interesting to compare the NIS with the frameworks and models mentioned
in previous sections. Compared to the theory of computational mechanics, the NIS can be
treated as a kind of ϵ-machine because any encoded macro-states can be understood as
states. When the whole framework is well trained, such that it can precisely predict future
micro-states, the encoded macro-states converge to effective states, which can be treated
as causal states in computational mechanics. However, the objective that maximizes the
effective information (EI) in the NIS has no correspondence.

The NIS also shares a similarity with G-emergence because it adopts the ideas of
Granger causality: the effective macro-state is optimized by predicting the micro-state
in the next time step. However, there are several obvious differences between the two
frameworks. In the theory of G-emergence, the macro-state must initially be selected
manually, although it is optimized automatically. In addition, the NIS uses neural networks
to predict future states, whereas G-emergence uses auto-regressive techniques to fit the
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data. Due to the universal approximate theorem (see [122,123]), neural networks are more
advantageous.

The NIS provides a solution for causal emergence identification from data, and it is
the first solution for addressing the problem of the automatic construction of the coarse-
graining strategy and macro-dynamics from data for causal emergence identification.

Another important benefit of the NIS is that it essentially addresses a generalized
causal emergence identification problem, extending beyond mere justification. This is
because following training, the NIS not only identifies whether causal emergence occurs
but also obtains a neural network for coarse-graining the data and another for simulat-
ing the macro-dynamics. This can provide us with richer information compared to a
mere justification.

4.1.2. Neural Information Squeezer Plus (NIS+)

One of the biggest problems of the NIS is that it does not directly address the EI
maximization problem by optimizing the neural networks (encoder, decoder, and dynamics
learner). Instead, it searches for the optimal dimension of the macro-state space q such
that EI can be maximized. Therefore, for a given q, the neural networks are optimal for
reconstructing the micro-dynamics (minimizing Equation (46)) but not for EI. In addition,
the NIS cannot support complex computations such as coarse-graining functions involving
multiple steps of information conversion and discarding.

To address these problems, the NIS+ was proposed, as discussed in [32]. Mathemati-
cally, the problem of EI maximization can be transformed into a machine learning problem
based on the definition of EI and the variational inequality and probability reweighting
technique. After this conversion, the minimization problem can be solved by training three
neural networks ψω, fθ , and gθ′ with parameters ω, θ, and θ′, respectively. Formally, the
minimization problem without constraints can be written as:

min
ω,θ,θ′

T−1

∑
t=1

w(xt)||yt − gθ′(yt+1)||+ λ||x̂t+1 − xt+1||, (50)

where yt = ϕ(xt) = Projq(ψω(xt)) and yt+1 = ϕ(xt+1) = Projq(ψω(xt+1)) are the macro-
states. λ is a Lagrangian multiplier, which is regarded as a hyperparameter in experiments.
w(xt) is the inverse probability weight, which is defined as:

w(xt) =
p̃(yt)

p(yt)
=

p̃(ϕ(xt))

p(ϕ(xt))
, (51)

where p̃ is the new distribution of macro-states yt after intervention for do(yt ∼ Uq), and p
is the natural distribution of the data. In practice, p(yt) is estimated through kernel density
estimation (KDE) [124]. The approximated distribution, p̃(yt), is assumed to be a uniform
distribution, which is characterized by a constant value. Consequently, the weight w is
computed as the ratio of these two distributions. Theorems have been proven to ensure the
correctness of this conversion. The overall framework for the NIS+ is depicted in Figure 15.

Additionally, to apply the NIS+ to data generated by complex systems like multi-agent
systems and cellular automata, the structures of the encoder can be extended by defining
two kinds of combinations: stacking the basic encoder and concatenating the basic encoder.
Here, a basic encoder is the composition of an invertible neural network and a projection
operation. By inverting the directions of all the basic encoders and supplementing empty
inputs with Gaussian noise vectors, we can obtain the corresponding decoder.

Serious numerical experiments have demonstrated that the NIS+ can automatically
learn emergent dynamics and the coarse-graining strategy from data and can integrate
these results to identify causal emergence.

For instance, in experiments utilizing training data generated by introducing Gaussian
noise to SIR dynamics, the NIS+ demonstrated superior performance compared to the
NIS in recovering the vector field of derivatives that aligned with the actual macro-level
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SIR dynamics. To assess the ability of the NIS+ to learn emergent dynamics, the authors
generated data based on macro-states using the SIR dynamics as the ground truth. However,
the NIS+ cannot directly utilize this data; only micro-level noisy data can be employed.
These micro-level data were generated by introducing Gaussian noise to the macro-states.

In the experiments conducted with the Boid model, training data were generated using
the renowned Boid model, which simulates the herding behavior of birds. Both the NIS+
and NIS demonstrated the ability to automatically learn macro-level states and dynamics.
In this simulation, the authors divided all artificial birds (boids) into two distinct groups.
Interestingly, the learned macro-states could also be categorized into two groups. Within
each group, the predicted trajectories generated by the learned macro-dynamics of this
group accurately followed the center of the boid groups.

Figure 15. The workflow and architecture of our proposed framework, the Neural Information
Squeezer Plus (NIS+), for discovering causal emergence within data. (a) Various forms of input data.
(b) The framework for our proposed model, the NIS+, incorporates our previous model, the NIS.
The boxes represent functions or neural networks, and an arrow pointing to a cross represents the
operation of information discarding. xt and xt+1 represent the observational data of micro-states,
whereas x̂t+1 represents the predicted micro-state. yt = ϕ(xt) and yt+1 = ϕ(xt+1) represent the
macro-states obtained by encoding the micro-states using the encoder. ŷt = ϕ(x̂t) and ŷt+1 = ϕ(x̂t+1)

represent the predicted macro-states obtained by encoding the predictions of micro-states. The
mathematical problems that each framework aims to solve are also illustrated in the figure. (c) The
various output forms of the NIS+, which include the learned macro-dynamics, captured emergent
patterns, functions of coarse-graining, and the degree of causal emergence.

The ability to capture emergent patterns was verified through experiments conducted
in the “Game of Life”. The NIS+ demonstrated the capability to automatically discover
both static and dynamic patterns, such as the “glider”, within the learned latent space. Ad-
ditionally, when clear emergent patterns appeared in the data, larger effective information
(EI) was observed for the learned emergent macro-dynamics.

Across all the training data generated through simulations, the NIS+ outperformed
comparative models, including the NIS, variational autoencoders, and feed-forward neural
networks, in experiments testing the model on data distributions that differed from the
training data.

The paper also presented results on real data. Two sets of real fMRI time-series data
from human subjects were used. The first dataset, AOMIC ID1000 [125], contained fMRI
scanning data collected while subjects watched the same movie clip. As a comparison,
another fMRI dataset, AOMIC PIOP2 [125], containing resting-state data from 50 subjects,
was also utilized. The primary training objective was to predict the fMRI signal at the
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next time step using the learned macro-dynamics and decoder while simultaneously
maximizing the effective information (EI) of the macro-level dynamics. Ultimately, a
one-dimensional macro-state was found to represent all 100-dimensional micro-state data.
Through attribution analysis, the authors found that micro-level signals with larger weights
contributing to the one-dimensional macro-state were located in areas associated with
visual tasks. However, in the comparison dataset with resting-state data, seven-dimensional
macro-states were found to represent the micro-states, and attribution experiments revealed
that micro-states with larger weights were distributed across different brain areas.

After the macro-dynamics and coarse-graining strategy were learned, the EIs at both
the macro-level and micro-level could be calculated so that causal emergence could be
quantified. The experiments showed that the measure of causal emergence depends on
different types of noise. If noise was added to the observational data (micro-state), the
degree of causal emergence increased with the level of noise. In contrast, if the noise was
from the dynamical mechanism, i.e., added to macro-states, the degree of causal emergence
decreased with the level of noise. This implies that coarse-graining can learn to eliminate
noise in raw data so that better macro-dynamics with larger EI can emerge. However, if the
noise is from the internal dynamics, it cannot be removed through coarse-graining.

4.2. Why Is Causal Emergence “Causal”?

In the previous sections, we discussed two frameworks that utilize machine learning
and neural network techniques to address the challenge of causal emergence identification.
Both frameworks place significant emphasis on maximizing EI to learn the coarse-graining
strategy and macro-dynamics. Notably, the NIS+ framework extends the NIS approach to
achieve real EI maximization, whereas the NIS relies on adjusting the hyperparameter q to
optimize EI.

Moreover, the NIS+ has demonstrated an additional capability to generalize data
distributions that differ from the training data. This suggests that the NIS+ can learn an
invariant causal mechanism that is independent of the input distribution shifts through EI
maximization. However, before extending this method to other machine learning scenarios,
an essential question needs to be addressed: Is there a genuine relationship between causal
emergence, EI maximization, and causality itself?

In the previous sections, we introduced two theoretical frameworks of causal emer-
gence: Hoel’s framework and Rosas’s framework. In both frameworks, the measurement of
causal emergence heavily relies on mutual information. However, it is crucial to acknowl-
edge that mutual information primarily quantifies correlation rather than causality. So why
do the authors assert that their theories pertain to “causal” emergence?

The key point lies in the research objectives of these frameworks, which focus on a
Markov dynamical system. In this context, the dynamical mechanism is assumed to be
known, and confounding variables are not considered. Under this assumption, measures
related to correlation can effectively indicate causality. While mutual information itself is
not a direct measure of causality, it can serve as a proxy for causality when the underlying
dynamics are well understood and confounding factors are absent. Therefore, in the context
of these frameworks, the use of mutual information as a measure for causal emergence is
justified because it captures the relationships between variables in a way that aligns with
the assumed known dynamics of the system.

When comparing the two frameworks, Hoel’s framework can be considered more
“causal” than Rosas’s framework. This is because Hoel’s framework introduces the do
operator in the definition of effective information (EI), as expressed in Equation (7). The
do operator allows for interventions and represents a causal manipulation of variables,
which strengthens the causal interpretation of the framework. Furthermore, the significance
of EI lies in its deep connections with other measures of causation proposed in various
fields [28]. According to the information in Section 3.5.3, these measures aim to quantify
the causal impact of an intervention or treatment on an outcome. By incorporating the



Entropy 2024, 26, 108 41 of 56

do operator, EI aligns with these causal effect measures and provides a valuable tool for
assessing causal relationships.

Furthermore, let us delve into the application background of the NIS and NIS+ to
understand why these frameworks, based on EI maximization, are considered causal.
Firstly, the input data in both frameworks, denoted as xt, are generated by a Markovian
dynamical system, with no other confounding factors considered, apart from the system
itself. As a result, the state of two consecutive time steps, represented as xt and xt+1,
without loss of generality, can be modeled by a simple causal diagram xt → xt+1 due to the
Markovian property. This causal diagram naturally adheres to the exogeneity assumption
in causal inference [16], indicating the absence of any confounders between the two states.
Consequently, the “do” operator in EI can be replaced with conditional probability, which
can be estimated from observations.

Taking all these aspects into consideration, we conclude that the theoretical frame-
works of causal emergence and the machine frameworks for causal emergence identification,
namely the NIS and NIS+, are indeed related to causality. Moreover, they can be extended
to other scenarios within the realm of machine learning. We further explore and discuss
this point in the subsequent sections.

4.3. Causal Emergence for Machine Learning

In this sub-section, we introduce how causal emergence can enhance machine learning
in out-of-distribution scenarios. It turns out that the do intervention introduced in EI
captures the causal dependency from the data generation process and thus complements
correlation-based machine learning algorithms.

4.3.1. Out-of-Distribution Generalization

As demonstrated in the previous subsection, the measurement of causal emergence
by vanilla effective information [19] is defined for stationary dynamics systems in a self-
supervised fashion since the input (cause) space and the output (effect) space share the
support. However, Hoel generalized effective information to general input-output sys-
tems [26] (see Section 3.5.5), where the cause and the effect space take arbitrary support,
which could either be discrete or continuous. Empowered by the general notation of EI,
causal emergence could be applied in supervised machine learning to evaluate the strength
of causation between the feature space X (or its learned representation) and the target
space Y , thus enhancing the prediction from the cause (feature) to the effect (target). It
is worth noting that a direct fitting from X to Y on the observations suffices for common
prediction tasks with an i.i.d. assumption, implying that the training and test data are
independently and identically distributed.

However, if samples are drawn from outside the training distribution, it is essential
to learn a representation space that generalizes from the training to the test environment,
known as out-of-distribution (OOD) generalization. Due to the common belief that causal
relations generalize better than statistical correlations [126], causal emergence theory could
serve as a criterion for the causation embedded in the representation space. The occurrence
of causal emergence indicates the revelation of potential causal factors of the target, thus
producing a robust representation space with regard to out-of-distribution generalization.

Introduction to OOD

Before the detailed discussion of the connection between causal emergence and OOD
generalization, we begin with a brief introduction to the latter topic. Out-of-distribution gen-
eralization toward arbitrary distributional shifts is generally considered impossible [127].
Therefore, it is commonly assumed that there exists an underlying causal mechanism
governing the data generation process, which remains invariant to distributional shifts.
Formally, according to Pearl’s Structural Equation Model [16], which causally formulates
data generation, the target Y is supposed to be generated from a part of the feature X,
i.e., Y = f (Xc, ϵ), where Xc represents the selected features or a representation of X, and
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ϵ is a random noise independent of (X, Y). Obviously, Xc is the true cause of the target,
and the causal mechanism f is presumed to be invariant across training and test envi-
ronments. On the other hand, the raw feature X might comprise a mixture of causal
variables and non-causal variables. The latter could arise from confounding, selection bias,
or anti-causal mechanisms, all of which introduce spurious correlations between the target
and non-causal variables. The strength and direction of these spurious correlations vary
across environments, resulting in distributional shifts that hamper the out-of-distribution
performance of machine learning techniques. As a remedy, a prominent branch of OOD
algorithms [126,128–130] learns an invariant representation space distilling the causal vari-
ables from the raw feature space. Typically, a metric of the representation is devised to
verify the stability of the correlation between the learned representation space and the
target and is adopted as a regularization for the optimization objective to encourage the
representation learner to extract causal variables from features. The paradigm for invariant
representation learning can be expressed as [131]:

min
f ,ϕ
R( f (ϕ(X)), Y) + λℓreg(ϕ), (52)

where ϕ(X) is the learned representation, f is the learned predictor,R is the task-specific
risk function, and ℓreg is the regularization.

Representation learning-based OOD algorithms are diversified in their constraints on
the representation space characterized by the regularizers. Each metric of the representation
fits a specific data generation pattern and does not guarantee to filter out the causal variables
when the setting is violated. However, causal emergence potentially offers a united metric
of representation for OOD generalization rooted in causality theory.

Before diving into the application of causal emergence, we first discuss the repre-
sentative regularizers of representation learning and their limitations. Domain-invariant
representation learning proposes an aligned feature space with the constraint g(X) ⊥ E ,
where E denotes the environment index for training and test environments. The regular-
ization is implemented by the metric of Maximum Mean Discrepancy (MMD) distance of
representation across environments [132] or an adversarial classifier for the environment
index [130]. However, the alignment constraint provides a generalization guarantee only
for a covariate shift [129], where the distribution shift is restricted to the features X without
perturbing P(Y|X). On the other hand, invariant risk minimization [126,133] pursues an
invariant conditional distribution P(Y|g(X)) of the representation across environments,
which translates to Y ⊥ E | g(X). Invariant risk minimization has been proven to re-
cover the causal variable in a data generation process where the non-causal variable is
anti-causally generated by the target but is reported to fail under a covariate shift [134].
Further, conditional invariant representation [128,132] is designed specifically for image
classification where the target is modeled as the cause of the feature instead of the effect.
The conditional independence g(X) ⊥ E | Y is enforced on the representation space.

It has been theoretically proven that any statistical independence regularization is
valid for a subgroup of Structural Equation Models, and it does not generalize across
all data generation processes [135]. As a result, the metric of representation manages to
capture the causation between the representation space and the target variable only if a
specific causal graph of data generation is given, hindering the general applicability of
invariant representation learning. Worse still, the existence of the environment index E
in the independence regularizers introduces the necessity of multiple environments for
training procedures, increasing the data collection and labeling expenses. To this end, there
is active demand for a unified and general metric of representation for OOD generalization,
for which causal emergence might be a good candidate.

Causal Emergence and OOD

The link between OOD generalization and causal emergence can be attributed to
the do intervention of effective information. By definition [16], intervening in the feature
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distribution with do(X) modifies the structural equations of all the variables in the feature
space to a constant value, whereas the equation for the target remains intact as Y = f (Xc).
On one hand, the assumption of the causal mechanism’s invariance to distributional shift
is respected since the causal correlation between causal variables and the target is reserved.
On the other hand, the spurious correlation between non-causal variables and the target is
removed by the intervention. For example, a non-causal variable anti-causally correlated
with the target leads to a structural equation as Xn = h(Y, ϵ), and do(Xn) replaces the
equation with Xn = U, where U ∼ Umax, and Umax represents the maximum entropy
distribution on the domain of Xn. As a result, Xn is no longer caused by Y, and the spurious
correlation vanishes. In another example, if a non-causal variable is correlated with the
target by a confounder E (probably in the feature space), the structural equation takes
the form of Xn = ϕ(E, ϵ) and Y = f (Xc, E, ϵ). Then, the do intervention would modify
the equation to Xn = U and confounding ceases to exist. In summary, the intervention
introduced by EI captures the causal correlation between features and the target while
suppressing the spurious correlation. It renders EI an ideal metric to assess the causality
contained in the representation space and, thus, the generalization of the induced algorithm.

Recall that an increment in effective information implies the occurrence of causal emer-
gence. Therefore, we propose a conjecture that out-of-distribution generalization could
be achieved simultaneously with maximizing EI (or normalized EI) for representation
learning. Notably, Shannon’s mutual information holds the property that any represen-
tation has no gain of mutual information with the target over the raw feature space, i.e.,
I(g(X); Y) ≤ I(X; Y), as per the data processing theorem. Thus, direct fitting inclines to
absorb as much information with the target as possible into the representation space. In
contrast, EI (or normalized EI) would possibly peak at a medium stage of abstraction of
raw features, coinciding with the philosophy of OOD generalization that less could be
more. Ideally, at the peak of EI (or normalized EI) where causal emergence occurs, all
non-causal features are excluded, and the causal features are revealed, resulting in the most
informative representation while remaining invariant to distributional shifts.

The removal of spurious correlations and recovery of causal mechanisms by manip-
ulating feature distributions are principles shared by the reweighting technique widely
adopted in the OOD literature. For instance, stable learning [136–138] is designed for sce-
narios where collinearity exists in input variables, causing spurious correlations between
non-causal variables and the target. It achieves this by reweighting training samples to
decorrelate the features, thus reducing collinearity and eliminating spurious correlations.
Similar to EI, stable learning is free of environment index labeling. Further, both sample
reweighting and feature decorrelation share the philosophy of distribution intervention. In
this sense, EI could be viewed as an information-theoretic abstraction of reweighting-based
debiasing techniques for OOD generalization.

5. Discussion and Perspectives

We have presented several quantitative theoretical frameworks on causal emergence.
However, there are numerous unexplored problems and implications that warrant further
discussion. In this section, we address four key topics for future research: causal emergence
and causal representation learning, ontological and epidemiological causality and emer-
gence, potential applications in complex systems, and understanding complex systems
from the perspective of causal emergence.

5.1. Causal Emergence and Causal Representation Learning

Causal representation learning (CRL) is an emerging field in artificial intelligence
(AI) [33] that combines two important fields in AI: representation learning and causal
inference. Representation learning aims to extract important features (or representations)
hidden in data to make predictions automatically [139]. It can be regarded as a typical
application of deep learning and has achieved remarkable success in various domains such
as image classification [111], face recognition [112], language understanding [113–115], and



Entropy 2024, 26, 108 44 of 56

game playing [109,116]. However, conventional representation learning suffers from a
critical limitation: it can only capture the information of associations within the data but
not the underlying causal relationships. Therefore, it is important to consider causality in
representation learning.

To address the problem, CRL tries to combine the advantages of the two sub-fields:
representation learning and causal inference to extract the important features and the
relationships with causation behind data automatically [33].

A typical CRL scenario is depicted in Figure 16. Suppose there is a set of variables
and causal mechanisms (including causal graphs and structural equations) that describes
how the world of robotic arms and colorful blocks works. However, these mechanisms are
not directly observable for the agent undergoing causal representation learning. Instead,
what the agent can observe is a set of images generated by robotic arms and blocks. The
objective of a causal learning framework is to extract the causal variables and mechanisms
from the observed images, and the variables and mechanisms can be used to implement
other downstream tasks, for example, causal relationship discovery [140] and predictions
in different environments [120] or domains [118,121].

Figure 16. Illustration of the workflow of a typical causal representation learning (CRL) agent.
The top panel depicts a real block world with a robotic arm and the corresponding causal graph,
representing relationships between variables in the real world, which is totally unknown to the agent.
Additionally, the data are presented as images generated by the block world. The bottom panel
depicts the structure of the causal representation learning agent. It utilizes a convolutional neural
network (CNN) to extract meaningful representations from the data and perform downward tasks
based on these representations. The encoder plays a crucial role in capturing relevant features and
patterns from the input data, enabling the agent to learn and understand causal relationships.

When comparing Figures 14 and 15 with Figure 16, we found that as a framework
for machine learning, Neural Information Squeezer Plus can be regarded as a kind of
CRL framework. Thus, with the NIS and NIS+, we effectively employ CRL to address the
problem of identifying causal emergence (CE). Both CE and CRL frameworks feature an
encoder and decoder designed to represent raw data as causal variables. Latent causal
mechanisms can be learned in both frameworks. In this section, we compare the similarities
and differences between these two emerging fields.
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5.1.1. Similarities

It is interesting to compare the tasks of causal emergence identification within the
theoretical framework of Erik Hoel and causal representation learning. Actually, the task
of causal emergence identification can be understood as a task of causal representation
learning, where the macro-variables are the causal variables, the macro-dynamics are the
causal mechanisms, and the coarse-graining strategy is an encoding process that transforms
the original data into representations. Within this framework, EI can be understood as a
measure of the strength of the causal effect on the mechanism. To identify causal emergence,
we need to learn the appropriate causal variables to represent data and discover causal
mechanisms at the macro-level (in the representational latent space) to ensure that the
EI of the learned causal mechanism in the latent space is larger than that of the original
data. Table 1 shows a detailed comparison of causal emergence identification and causal
representation learning.

Table 1. Comparison of causal emergence identification and causal representation learning.

Causal Emergence
Identification

Causal Representation
Learning

Data
Observations (time series)

of micro-states
Raw data generated by

some causal mechanism in real life
Latent variables Macro-states Causal representations

Causal mechanism Macro-dynamics Causal mechanisms
Mapping between data

and latent variables Coarse-graining Representation

Optimization for
causality EI maximization Prediction loss, disentanglement

Objective
Finding an optimal coarse-graining strategy

and a macro-dynamic that has a
stronger causal effect

Finding an optimal representation of the
raw data to ensure that the independent

causal mechanism can be realized by
the representations

With these similarities, the technologies and concepts from both fields can learn from
each other. For example, the techniques of causal representation learning can be applied to
discover causal emergence.

On the other hand, the learned abstract causal representations can be viewed as macro-
states, which enhances the explainability of causal representation learning. This perspective
suggests that CRL essentially uncovers hidden causal emergent features within the data.

Moreover, these similarities between emergent phenomena and CRL contribute to a
deeper understanding of emergence itself. By applying CRL frameworks to data generated
by dynamical systems exhibiting emergent phenomena, we can extract more profound
causal structures. These profound causal structures may serve as the origins of the myster-
ies surrounding emergence. By delving into the depths of CRL and uncovering the hidden
causal relationships within complex systems, we can gain insights into the mechanisms
behind emergent phenomena. These causal structures may provide a foundation for under-
standing the emergence of novel properties and behaviors that arise from the interactions
of simpler components.

5.1.2. Differences

However, there are several theoretical differences between CRL and causal emergence.
The biggest difference is that CRL assumes that there is a real causal mechanism behind
the data, and the data are generated by this causal mechanism [33]. In contrast, for causal
emergence identification, the emergent variables and mechanisms at the macro-level are
just handy ways to observe and understand data, and “real causality” may not exist. The
differences are illustrated in Figure 17.
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Figure 17. Comparison of causal emergence identification and causal representation learning. All
the potential co-founders are ignored. The black arrows represent causal relations, whereas the blue
arrows represent interactions between macro-variables. The dashed lines with arrows represent the
information flows for coarse-graining, representation, or data generation.

However, if an epistemological perspective is adopted, this difference disappears
because both approaches extract meaningful information from observational data to obtain
representations with stronger causal effects.

Another major difference is that the causal mechanism for macro-states in causal
emergence is a dynamical system. Therefore, if the dynamics in the macro-state space are
on a network, circular structures may exist because the state variables will be iterated in
the dynamical system. As a result, feedback and circular indirect interactions are allowed
in such a model. However, the causal mechanism is always represented by a structural
causal model in CRL. Although these models are always directed acyclic graphs, loops or
circular structures are not allowed. However, these differences are not important because
Markovian dynamics can always be converted to causal models, as mentioned in Section 2.1.

Finally, unknown co-founders are always ignored in causal emergence, whereas they
play very important roles in causal structural models.

In summary, there are deep connections between causal emergence and CRL. On one
hand, the machine learning framework for causal emergence identification exhibits similar
structures to the frameworks for CRL. And even the concepts can establish one-to-one
correspondence, as shown in Table 1. Therefore, the ideas and techniques of both sides can
learn from each other.

On the other hand, studies of causal emergence can provide new perspectives and
insights for causal representation learning algorithms. For example, we can interpret the
learned representations and causal mechanisms as emergent causal laws. The maximization
of EI may improve the efficiency of learning the causalities for both CRL and reinforcement
learning agents.
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5.2. Ontological and Epistemological Causality and Emergence

Although machine learning techniques have facilitated the learning of causal structures
and models, as well as the exploration of emergent properties and causation, it is important
to consider whether the results obtained through machine learning reflect ontological
causality and emergence or if they are merely epistemological phenomena.

Here, ontological causality refers to the causal relationships that exist in objective
reality, independent of our knowledge or understanding. Ontological causality explores
the fundamental mechanisms and interactions that give rise to causal effects in the world.
Similarly, ontological emergence is concerned with the objective existence of emergent
properties and their underlying mechanisms.

Epistemological causality, on the other hand, focuses on our knowledge and under-
standing of causality. It deals with how we perceive, model, and explain causal relation-
ships based on our observations and experiences, but the causality may not exist in the
real world. Epistemological emergence, akin to epistemological causality, focuses on our
comprehension and elucidation of emergent phenomena. In other words, epistemological
causality and emergence depend on an observer, and different observers may have distinct
perspectives about causality and emergence for a particular objective phenomenon.

There has been a longstanding debate regarding the ontological and epistemological
aspects of causality and emergence throughout history [17,22,68,76]. The authors of [68]
highlighted that the concept of “causation” in the literature is often vague and should be
differentiated into “cause” and “reason”, aligning with ontological and epistemological
causality. “Cause” means genuine cause that sufficiently causes the effects (causal closure
principle [141] and exclusion principle [142]), whereas “reason” serves as a mere explana-
tion for individuals to comprehend the effects. Reason may not possess the same level of
rigor as genuine cause, but it does offer a certain degree of predictability that individuals
find valuable in certain circumstances.

However, distinguishing between them, particularly when addressing specific phe-
nomena, remains a challenging task. One such controversial concept is downward causa-
tion, which has sparked extensive discussions. The question of whether downward causa-
tion exists objectively or not remains open. In [24], Rosas argued that downward causation
not only exists independently of particular observers but also provides a characterization of
the phenomenon through quantified measures using information decomposition. However,
Yurchenko proposed that it is important to differentiate between two separate concepts:
causality and reasoning. According to this perspective, downward causation falls under
the category of “reason” rather than causation. In this context, causality and reasoning can
be seen as representing ontological and epistemological causality, respectively.

Similarly, debates persist regarding the nature of causal emergence. The question
arises as to whether causal emergence is a genuine phenomenon that exists independently
of particular observers [77]. In Section 3.5.4, we highlighted that different coarse-graining
strategies can lead to distinct macro-dynamic mechanisms with varying measures of
EI. In essence, different coarse-graining strategies can be seen as representing different
observers. However, Hoel’s theory proposes a criterion to differentiate between coarse-
graining methods, namely EI maximization. Consequently, for a given set of Markovian
dynamics, only the coarse-graining strategy and corresponding macro-dynamics that
maximize the EI measure can be considered as an objective outcome. Nevertheless, a
challenge arises when multiple solutions exist that maximize EI, introducing a degree of
subjectivity [77]. The authors of [31,32] addressed this issue by introducing constraints
on prediction errors in micro-states, which partially alleviates the problem. However, the
question of whether optimal results have unique solutions remains an open problem that
requires further investigation.

Similarly, although the incorporation of machine learning cannot resolve debates
surrounding ontological and epistemological causality and emergence, it can provide
objective standards that help mitigate subjectivity. This is because machine learning
algorithms strive to optimize objective functions. Thus, machine learning agents can
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be viewed as “objective” observers that make judgments on causality and emergence. This
represents an additional advantage of incorporating machine learning. However, the issue
of unique solutions is crucial in this approach and warrants further attention.

Are the machine learning results ontological or epistemological? The answer is that
the results are epistemological and depend on machine learning algorithms. However, this
does not mean that all the results of machine learning are meaningless since if the learning
agents are well trained and the defined mathematical objectives are effectively optimized,
the results can also be considered objective and independent of the algorithms.

It is intriguing to pose the same question regarding human cognition. Do all cognitive
results in the human brain, encompassing causality, coarse-graining strategies, and macro-
dynamics, reflect objective reality, or are they purely epistemological? Firstly, answering this
question is exceedingly challenging. Secondly, the cognitive results specific to a particular
human brain must objectively manifest within the neural network structures. Thus, for that
brain, these results are ontological. Similar reasons hold for machine learning. The cognitive
results of machine learning algorithms are recorded by the structures and parameters in
neural networks. Therefore, studying these structures may reveal the properties of the
original systems, and the nature of the interactions between the observer and the observed
objects can be objectively reflected by machines.

Furthermore, the integration of machine learning can assist in establishing a theoretical
framework for modeling observers and studying the interactions between the observer
and the corresponding observed complex systems. This framework allows us not only
to explore the hard problems regarding causality and emergence but also to understand
the limitations and boundaries of the observer. One example of this research is the emer-
gent classicality of quantum systems from the information bottleneck formed by machine
learning algorithms [143].

5.3. Potential Applications in Complex Systems

In Section 4, we discussed the techniques related to causal emergence identification,
machine learning, and causal inference. In this sub-section, we discuss the potential
applications of these techniques in complex systems. Complex systems can be understood
as a large network, with events connected by causal links. Automatically discovering the
complex causal relationships from data is a challenging problem.

The research area of causal discovery has tried to address this problem in various
ways [144–149]. However, additional challenges may arise when applying these causal
discovery methods in complex systems because circular causal structures and cross-level
causation may exist.

Circular causal structures widely exist in complex dynamical systems due to the
feedback effect. That is, one variable may affect itself via a direct self-loop feedback or a
long chain forming a circle. This circular causal structure may pose a challenge to existing
methods of causality because most of these methods study directed acyclic causal graphs.
However, recent progress has seen the development of some methods for discovering these
circular structures in a data-driven manner, e.g., [46–49,150–153].

Another aspect is that higher-level or cross-level causation may exist if the ingredients
of scale and coarse-graining are considered. For example, downward causation describes
the causal effect between macro-level and micro-level variables. Thus, the causal connec-
tions may be cross-level. If causal emergence occurs in a complex system, some strong
causality may be found between macro-variables. All of these factors in complex systems
present new challenges. The machine learning methods discussed in Section 4.1.1 can
address the question of whether higher-level causality exists at the macro-level. However,
it is important to note that this is a global property. It must be further developed and
extended to find a local causal relationship between macro-variables or macro-variables
and micro-variables [98]. Moreover, existing methods of causal discovery must be extended
to consider the method of grouping a set of variables or coarse-graining a system. For
example, ref. [154] proposed a coarse-to-fine causal discovery algorithm based on Granger
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causality and a graph neural network. The grouping process of variables is from coarse to
fine, which can improve the efficiency of the algorithm. Other multi-level causal discovery
methods were proposed and discussed in [155–157].

Another interesting problem is emergence detection. In complex dynamical systems,
various higher-level patterns, such as waves, periodic oscillations, and solitons, are ubiq-
uitous. For instance, in the climate system, typhoons and tornadoes are emergent vortex
structures. In urban areas, traffic jams also emerge as a result of interactions among a large
number of cars. Social riots are another example of emergent events in higher levels of
human society. Identifying these emergent patterns at an early stage is crucial and signifi-
cant [81,81,158–162]. Therefore, there is an urgent need for a method that can automatically
detect these emergent patterns and even provide early warning signals.

In this review, we mainly focus on the emergence of causality; however, we are not
limited to this specific type of emergence. More macroscopic or global-level properties
could also be emergent, although causal emergence may be the most important one. For
example, in [163], the authors discussed the concept of emergent information closure,
which refers to the idea that the encoded information within an agent can form a closed
system that is not influenced by the external world. The authors then argued that this agent
with information closure can be regarded as a kind of consciousness. Symmetry may be
another interesting property within some complex systems, and it may be emergent. For
example, any single trajectory of a large number of random walkers in a two-dimensional
Euclidean space is random. Nevertheless, the Gaussian distribution surface describing
how the number of walkers falling in each small region changes with different locations
is isotropic. This kind of symmetry can only be found at the macro-level and, thus, it
is emergent. It would be interesting and useful to deploy a method for automatically
discovering this kind of emergent symmetry. The framework for the NIS can be extended
to address the problem of emergent symmetry identification if the optimized objective, EI,
is replaced with a measure of isotope or more general symmetry [164]. Similarly, we can
also find other emergent symmetries using this framework once their measurement and
optimization are possible.

However, it is crucial to acknowledge the inherent limitations of applying machine
learning techniques to causal discovery and emergence identification problems. For in-
stance, in [45], the authors highlighted the existence of ’statistically equivalent’ but causally
distinct DAGs, implying that different causal structures can be constructed to account
for the same dataset. Consequently, when utilizing machine learning techniques to un-
cover causality and emergent properties, similar challenges need to be addressed. Further
research in this direction warrants significant attention to overcome these obstacles.

5.4. Understanding Complex Systems from Causal Emergence

A profound understanding of causal emergence and emergent causality can provide
insights into understanding various mysterious phenomena in complex systems, includ-
ing living systems, social systems, climate systems, ecosystems, and more. Significantly,
fundamental questions, such as free will [68], consciousness [165], and life, are all intri-
cately connected to emergent causation [166]. For instance, free will can be viewed as an
emergent form of downward causation [68]. Social phenomena can be comprehended
through the lens of causal emergence [167]. Interestingly, both the EI and ϕID frameworks
for causal emergence have connections with one of the theories of consciousness, namely
the integrated information theory [168]. However, understanding these abstract concepts
and phenomena in the context of causal emergence is merely an initial step.

For a specific system, there are three problems that should be addressed in future
studies: (1) When does causal emergence occur? (2) How does emergent causality have
functional effects on the system? (3) How does emergent causality change when the system
is changed to adapt to the environment? We discuss these problems one by one.

We still do not know when causal emergence will occur and how the measure of
causal emergence changes with some key parameters of a system. In [32], the authors
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showed how the measure of causal emergence changes with different noises in the Boid
model (see the relevant discussion in Section 4.1.2). It is reasonable to expect that there is a
phase transition of emergent causality within a complex system when some key parameter
changes because the causality or strength of the causal effect is also a global property, and
it may be dependent on some order parameters.

If causal emergence occurs in the system, how does the emergent causation affect the
parts and the whole of the system? For example, the emergent “I” can be understood as
an emergent macro-variable [68]. How does “I” influence the part, say the foot, to move?
This problem is non-trivial because it relates to the problem of mind–body interaction. It is
important to study the information flows at both the macro-level and micro-level together
to understand this phenomenon.

Finally, what is the relationship between adaptation and emergence [4,169,170]? Some-
times, when we refer to a property as emergent, we essentially mean that this property can
be developed through adaptation. Therefore, adaptation or evolution serves as a causal
force for certain emergent properties. This concept also applies to emergent causality. For
instance, downward causation, which is commonly found in complex systems, emerges
as a result of adaptation and evolution. The next crucial question is, how can we evolve
an emergent property or causation? This problem resembles the issue of designing emer-
gence [171–173]. However, our aim here is to seek an explanation rather than a design. We
want to understand the specific environment and manner in which the observed emergent
causation can be evolved through adaptation.

All these problems require further studies in the future. However, these problems are
just a few of the more interesting problems that need to be addressed.
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Appendix A. Calculation of EI with Transition Probability Matrix

Calculating effective information (EI) requires knowledge of the joint probability dis-
tribution of the system. The state transition probability matrix (TPM) defines the probability
of transitioning from one state of the system to another. Specifically, the jth element of the
ith row in the TPM, denoted by TPM(i, j), represents the probability of the system being in
state sj at time t + 1, given that it is in state si at time t (i.e., P(Xt+1 = sj|Xt = si)).

TPM(i, j) = P(Xt+1 = sj|Xt = si) =
P(Xt+1 = sj, Xt = si)

P(Xt = si)
(A1)

Assuming we can “force” the system to conform to a maximum entropy distribution
(i.e., uniform distribution) with N states, the probability of being in any given state i at time
t, denoted by Pu(Xt = si), is 1

N .
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As a result, the TPM can be expressed as the product of the joint probability of the
system’s maximum entropy distribution, denoted by Pu(Xt+1 = sj, Xt = si), and the total
number of states, which is N, as demonstrated below.

TPM(i, j) =
Pu(Xt+1 = sj, Xt = si)

Pu(Xt = si)
=

Pu(Xt+1 = sj, Xt = si)

1/N
= N × Pu(Xt+1 = sj, Xt = si) (A2)

Hence, the TPM of the system can be used to express both the joint probability and
marginal probability at time t + 1 of the system’s maximum entropy distribution.

∴ Pu(Xt+1 = sj, Xt = si) =
1
N

TPM(i, j) (A3)

∴ Pu(Xt+1 = sj) = ∑
i

Pu(Xt+1 = sj, Xt = si) =
1
N ∑

i
TPM(i, j) (A4)

Using this relationship, EI can be calculated directly with the TPM.

EI = I(ID; ED) = I(Xt; Xt+1)|do(Xt)∼U

= ∑
i,j

Pu(Xt+1 = sj, Xt = si) log2

( Pu(Xt+1 = sj, Xt = si)

Pu(Xt+1 = sj)Pu(Xt = si)

)
= ∑

i,j

1
N

TPM(i, j) log2

( 1
N TPM(i, j)

1
N ∑k TPM(k, j)× 1

N

)
=

1
N ∑

i,j
TPM(i, j) log2

(N × TPM(i, j)
∑k TPM(k, j)

)
(A5)
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