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Abstract: The quantum Wigner function and non-equilibrium equation for a microscopic particle
in one spatial dimension (1D) subject to a potential and a heat bath at thermal equilibrium are
considered by non-trivially extending a previous analysis. The non-equilibrium equation yields a
general hierarchy for suitable non-equilibrium moments. A new non-trivial solution of the hierarchy
combining the continued fractions and infinite series thereof is obtained and analyzed. In a short
thermal wavelength regime (keeping quantum features adequate for chemical reactions), the hierarchy
is approximated by a three-term one. For long times, in turn, the three-term hierarchy is replaced by a
Smoluchovski equation. By extending that 1D analysis, a new model of the growth (polymerization)
of a molecular chain (template or te) by binding an individual unit (an atom) and activation by a
catalyst is developed in three spatial dimensions (3D). The atom, te, and catalyst move randomly
as solutions in a fluid at rest in thermal equilibrium. Classical statistical mechanics describe the
te and catalyst approximately. Atoms and bindings are treated quantum-mechanically. A mixed
non-equilibrium quantum–classical Wigner–Liouville function and dynamical equations for the atom
and for the te and catalyst, respectively, are employed. By integrating over the degrees of freedom of
te and with the catalyst assumed to be near equilibrium, an approximate Smoluchowski equation is
obtained for the unit. The mean first passage time (MFPT) for the atom to become bound to the te,
facilitated by the catalyst, is considered. The resulting MFPT is consistent with the Arrhenius formula
for rate constants in chemical reactions.

Keywords: non-equilibrium Wigner function and hierarchy for moments; short thermal wavelength
and long-time regimes; approximate Smoluchovski equation; catalyzed polymerization

1. Introduction

Non-equilibrium quantum statistical mechanics has its own scientific importance [1–17],
and its applications make it even more important. Part of the latter, of paramount relevance,
are chemical reactions [18–23]: in them, typically, atoms/molecules in an initial state are not
the same as those in the final one, while on the other hand, those processes occur in the
presence or inside a statistical medium (for instance, a fluid). Here, chemical reactions can
be understood in a broad sense and include, namely, biochemical processes [23]. The very
formation and breaking up of bound states with discretized binding energies in chemical
reactions unavoidably requires quantum mechanics and statistical mechanical concepts, even
if other features in those processes can be accounted for in terms of classical physics for that
purpose. For further knowledge regarding thermodynamics and statistical mechanics, see, for
instance [24–28].

Before proceeding further, it seems adequate to remind the reader of part of the
previous work that has motivated the present one. For that purpose, see [29,30] and
references therein.

The non-equilibrium dynamics of a closed classical gas composed of a large number
of identical non-relativistic particles was described by the classical Liouville distribution
f and equation, which depend on the time t and on the positions and momenta of all
particles with some suitable initial condition at t = 0. It was assumed that only the inner
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part of the gas was off-equilibrium while the remainder of it was at equilibrium at absolute
temperature T. The standard Boltzmann equilibrium distribution feq with temperature T,
being Gaussian in all momenta, generated a family of orthogonal polynomials in the latter:
the standard Hermite polynomials. The latter, upon integrating on the momenta, enabled
the introduction of non-equilibrium moments (depending on t and particle positions). The
Liouville equation gave rise to an infinite three-term hierarchy for those classical moments.
The hierarchy was entirely different from the standard Bogoliubov–Born–Green–Kirkwood–
Yvon (BBGKY) hierarchy [1,3,4]. The hierarchy was solved in terms of suitable infinite
continued fractions of operators. Those continued fractions suggested and allowed for the
implementation of a long-time approximation. After further approximations, the lowest
non-equilibrium moment was shown to satisfy a Smoluchovsky equation, which is formally
similar to the one characterizing the so-called Rouse model in polymer dynamics [31]. An
approximate approach to thermal equilibrium over a long time can then be established.

Attempts at extensions of those procedures to quantum processes faced two difficulties.
First, it was not warranted that, contrary to the classical situation, quantum–mechanical
distributions be non-negative in certain limited spatial domains. This, in turn, would, in
general, prevent a direct use of the corresponding equilibrium distribution to generate, in
the standard way, a family of orthogonal polynomials in momenta and, so, non-equilibrium
moments. Such difficulty was bypassed by invoking a suitable generalization of the theory
of orthogonal polynomials, as will be illustrated later in Section 2.3 of this work. The
second difficulty was (and still continues partly to be) that, after having implemented that
solution of the first difficulty, the resulting hierarchy for the non-equilibrium moments is
not, in general, a three-term one: this demands proper analysis.

The present work presents: (1) a new study of non-equilibrium quantum statistical
mechanics aimed at providing a new (at least, partial) solution to the second difficulty
(Section 2) and (2) one possible application to a certain chemical reaction: namely, the one
playing a key role in the polymerization of a molecular chain [32] (Sections 3 and 4). In so
doing, previous analysis will be generalized [30,33] in a non-trivial way.

Section 2 presents: a one-dimensional (1D) non-equilibrium quantum Wigner function
(W) and dynamical equation, the introduction of a family of orthogonal polynomials
generated by the equilibrium Wigner distribution (Weq), a general n-term recurrence relation
for non-equilibrium moments of the corresponding W (determined, in turn, by those
orthogonal polynomials), a formal solution by combining continued operator fractions and
series expansions thereof, an approximate three-term recurrence relation for short thermal
wavelengths (still in the quantum regime), long-time approximations, and an irreversible
Smoluchowski equation.

Section 3 treats a three-dimensional (3D) model for the addition (polymerization) of
one single atom to a freely jointed molecular chain acting as a template (te) activated by a
catalyst in a fluid at equilibrium at a given temperature.

Section 4 studies the model in Section 3 through 3D non-equilibrium quantum–
classical Wigner–Liouville functions, a dynamical equation for the individual atom, the
te, and the catalyst, and successive approximations (assuming that the te and catalyst are
at thermal equilibrium) so as to yield a standard 3D non-equilibrium Wigner equation.
At this stage, the 1D developments in Section 2 (short thermal wavelength and long-time
approximations in Section 2) are extended to the above standard 3D equation, thereby
yielding a Smoluchowski equation for the single atom, and a mean first passage time
(MFPT) equation for the atom to become attached to the te chain.

Successive approximations are made for conditions suitable for chemical reactions.
Section 5 offers the conclusions and some discussions.
This work is a contribution to “180th Anniversary of Ludwig Boltzmann”, a Special

Issue of Entropy.
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2. One-Dimensional Wigner Function and Equation
2.1. General Aspects

We consider a simplified model of a microscopic non-relativistic particle of mass m in
one spatial dimension (x) in a finite interval Ω (= (−L/2,+L/2)), which is large on the
microscopic scale although possibly small on the macroscopic one, by omitting unnecessary
details. The particle is subject to a real (time-independent and velocity-independent) potential
V = V(x) in −L/2 < x < L/2 and to a heat bath (HB) at absolute temperature T. The
quantum particle Hamiltonian is H = −(h̄2/2m)(∂2/∂x2)+V, with h̄ being Planck’s constant.
For definiteness, the wave functions may be assumed to fulfill Dirichlet boundary conditions
in | x |= L/2.

The conditions on the potential V = V(x) are:

V(x) = V(−x) (for simplicity, although strictly unnecessary).
V(x) is attractive (< 0) in the interval −a < x < a (0 < a < L/2); it is very small (with an
arbitrary sign) in a <| x |< L/2 and vanishes fast as | x |→ L/2. Specifically, V(x) is finite
everywhere, and its magnitude |V| is appreciable only in the limited interval −a < x < a;
a is understood to be the range of V.
V(x) and all dnV(x)/dxn for n = 1, 2, 3, . . . are continuous everywhere.

In general, H has both a denumerably infinite number of discrete states with non-
negative energy (an almost continuous spectrum: L being large but finite at the microscopic
scale) and, in principle, a finite discrete spectrum (j = d) with energies Ed < 0. With j being
a general label, let φj = φj(x) generically denote a suitably normalized eigenfunction of H
with corresponding eigenvalue Ej.

As a simplifying assumption, V(x) does give rise to only one bound state
(bound spectrum).

The denumerably infinite discrete (almost continuous) spectrum Ej of H has a small
spacing, approaches a continuous spectrum more the larger L is, and would become a
continuous one (sweeping the continuous positive real axis 0 < Ej < +∞) if L−1 → 0.
We shall always denote it by CS, even if the small L−1 remains > 0. The eigenfunctions
corresponding to CS are φj = φk(x), with j ≡ k being an almost continuous wavevector
and eigenvalues Ej = Ek = h̄2k2/(2m) ≥ 0. The CS eigenfunctions are normalized through:
(φk, φk′) =

∫
dxφ∗

k φk′ = δk,k′ (a Kronecker delta). Also, by taking into account the bound
state: (φd, φd) =

∫
dxφ∗

d φd = 1 (normalized) and (φd, φk) =
∫

dxφ∗
d φk = 0. Integrations

are performed over Ω. Hence, φd and all CS φk span two separate Hilbert subspaces Hd
and HCS. See [34–36].

The time (t) evolution of the quantum particle is given by the general density operator
ρ = ρ(t) (a statistical mixture of quantum states) for t > 0. It fulfills the (t-reversible)
operator equation ∂ρ/∂t = (ih̄)−1[H, ρ] ([H, ρ] = Hρ − ρH being the commutator) with
initial condition ρ(t = 0) = ρin. The Hermitian and positive-definite linear operators ρ(t)
and ρin act on the Hilbert space spanned by the set of all eigenfunctions of H. See [34].

Let β = (kBT)−1, with kB being Boltzmann’s constant. We shall introduce the fixed
and physically relevant x-independent momentum and thermal wavelength:

qeq = (2m/β)1/2, λth = h̄/qeq (1)

We now resort to the non-equilibrium (reversible) Wigner function [1,2,4,6–8,37] at t,
which reads formally:

W(x, q; t) =
1

πh̄

∫
dx′ exp

[
2i
h̄

x′q
]
⟨x − x′|ρ(t)|x + x′⟩, (2)
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The initial Wigner function Win is given by Equation (2) by using ρ(t = 0). The
equilibrium density operator ρeq = exp[−βH] determines the equilibrium Wigner function
Weq (x, q) formally as:

Weq (x, q) =
1

πh̄

∫
dx′ exp

(
i2qx′

h̄

)
⟨x − x′|ρeq |x + x′⟩. (3)

A more specific analysis is required since Ω is not strictly an infinite interval. However,
as L is large, we shall approximate spatial integrals as those for an infinite length interval
when such approximations are harmless unless some specific discussion is required. Strictly
speaking, as Ω is not an infinite interval, the q′ are discretized momenta and

∫
dq′ (which

will appear later) should be interpreted as a series. However, as L is large, we shall
disregard the small spacings in q′ and understand

∫
dq′, as the notation indicates, as an

integral (q′ thus varying continuously) instead of as a sum. This remark and interpretation
will apply and be understood whenever integrations over momenta occur later. We shall
accept that all integrals (or all series) over momenta converge for large values of the latter:
explicit expressions and computations will support this assumption. Summarizing: as
L is large and unless otherwise stated, we shall approximate using practical calculations
(without writing it explicitly) spatial integrals by those in −∞ < L < +∞ and series over
momenta by integrations over them in −∞ < q < +∞.

Integrability properties of the Wigner function hold and will not be considered here for
brevity: they have been treated previously in [29,30] and, in particular, in references therein.

In principle, ∑j will denote sums over all eigenfunctions in j = d and j = CS; that is,
the former includes the contribution of both the single (bound state) discrete eigenfunction
plus that of an infinite summation over the whole CS ones. Since L is large, we approximate
for the CS: ∑j → (L/(2π))

∫
dk as L−1 → 0. Therefore, with the latter understanding for a

large-interval Ω, Weq is approximated as:

Weq(x, q) =
1

(πh̄)

∫
dx′ exp

(
i2qx

h̄

)
∑

j
exp[−βEj]φj(x − x′)φ∗

j (x + x′). (4)

While at T = 0 there is no transition between the bound state and the CS ones; such
a transition is indeed possible for T > 0 (due to the HB) and can play a key role as kBT
approaches |Ed|. We emphasize that the contribution of the bound state becomes more
negligible the higher the temperature is (quasi-classical regime) and even disappears in the
full classical regime. On the other hand, there seems to be no compelling reason for not
using the quasi-classical or even classical formula as rough or zeroth-order approximations
in regions where the contributions due to the bound states are negligible.

For t > 0, the exact (t-reversible) dissipationless quantum master equation for the
general off-equilibrium Wigner function W [6,37] is:

∂W(x, q; t)
∂t

= − q
m

∂W(x, q; t)
∂x

+ MQW, (5)

MQW =
∫

dq′W(x, q′; t)
∫ idx′

πh̄2

[
V(x + x′)− V(x − x′)

]
exp

[
i2(q − q′)x′

h̄

]
=

dV
dx

∂W
∂q

− h̄2

3!22
d3V
dx3

∂3W
∂q3 +

h̄4

5!24
d5V
dx5

∂5W
∂q5 − · · · , (6)

with initial condition Win. W is real: this can be directly established through either Equation (2)
or Equation (6) by taking complex conjugates and changing x′ → x′′ = −x′.

If h̄ → 0, then the above equation becomes the classical Liouville equation [1,4,6].

∂W(x, q; t)
∂t

= − q
m

∂W(x, q; t)
∂x

+
dV
dx

∂W
∂q

(7)
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2.2. Equilibrium Wigner Function near the Classical Limit

Recall that in the classical case, the equilibrium (or Boltzmann’s) canonical distribution
describing the thermal equilibrium of a classical particle with an HB is proportional to
a Gaussian in q: that is, exp

[
−βq2/(2m)

]
, with q now being the classical momentum. In

the high temperature or small β (quasiclassical) regime, Wigner [6] obtained successive
approximations for Weq(x, q) as a power series in h̄. Equations (22) and (25) in [6] (the
leading terms in that expansion for Weq(x, q)) are directly recast as:

Weq(x, q) = c0 feq[1 + c1 + c2
∂2V
∂x2 H2(q/qeq)] (8)

with

feq = exp[−(q2/q2
eq + βV)] (9)

c1 = h̄2[− β2

12m
∂2V
∂x2 +

β3

24m
(

∂V
∂x

)2] (10)

c2 =
(βh̄)2

48m
(11)

where c0 = 2πh̄. H2 denotes the standard Hermite polynomial of second order [38]. We
shall refer to the contributions associated with c1 and c2 as quantum contributions in the
quasiclassical regime. Actually, Wigner’s series in [6], after factoring out c0 feq, turns out to
also be a power series in β and q so that the contributions in his Equation (25) contain only
up to quadratic powers in q. The latter have been rewritten in terms of H2 in (8) in order to
facilitate an eventual comparison with Weq if desired.

In the classical case (h̄ = 0) with attractive V in some domain, feq contains the factor
exp[−βV], which is > 1 and can be certainly large in the regions where V < 0. Recall that
in the classical case, in the latter domains there are no bound states but a continuum of
classical orbits. At this point, one may wonder how such a continuum of classical orbits
can become a discrete set of bound states if one resorts back to the quantum (statistical)
regime of interest here. The above quasiclassical expressions do provide some hint for that.
In fact, for Weq as given in by the small β (or, formally, small h̄) Equation (8), by integrating
over y (with y = q/qeq) and doing some algebra, one has that

∫
dyWeq tends to:

c0π1/2 exp[−βV].

[
1 − h̄2 β2

12m
∂2V
∂x2 +

h̄2β3

24m
(

∂V
∂x

)2

]
(12)

We state that the crucial term −h̄2 β2

12m
∂2V
∂x2 is a qualitative signal of how a continuum of

classical orbits can become a discrete set of bound states even if it does not provide a
quantitative mechanism. In fact, the attractive V, being finite and having minima (with
values < 0) in certain domains, have ∂2V

∂x2 > 0 at those minima. Then, the leading correction

−h̄2 β2

12m
∂2V
∂x2 tends to reduce the importance of V(< 0) in those domains and contributes to

restrict a continuum of classical bounded orbits to a discrete set of quantum bound states.

The remaining term h̄2β3

24m ( ∂V
∂x )

2 (> 0) would tend to reinforce exp[−βV] (with −V(> 0))
but at a smaller amount due to the additional factor β and due to the fact that it is small
and vanishes at the minimum ( ∂V

∂x = 0). We shall regard this qualitative behavior as an
indication that even the lowest quantum corrections to the classical fre,eq contain certain,
even if small and partial, signals of quantum effects.
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2.3. Weq as a Quasi-Definite Functional of Momenta

Notice that neither Weq nor W can be warranted to be nonnegative in general [8,37,39,40].
However, by invoking a suitable extension [41] of the theory of orthogonal polynomials, it
is natural: (i) to accept that Weq is a quasi-definite functional of momenta (as one can justify
through examples in certain cases: see references in [29]) and (ii) to invoke that Weq can be
regarded as a generating function to construct recurrently an infinite family of orthogonal
polynomials in q.

Let y = q/qeq. We introduce (unnormalized) orthogonal polynomials HQ,n = HQ,n(y)
in y determined by Weq, which acts as a (in general, non-Gaussian) weight function. The
term n is a non-negative integer. HQ,n(y) also depends parametrically on x, although such
a dependence is not displayed explicitly. Under the assumptions about V in Section 2.1,
Weq is an even function of q: this is immediately confirmed, in particular just by looking at
the classical and quasiclassical expressions for it given in Section 3.2. Then, HQ,n is even or
odd in y for even or odd n, respectively. We choose HQ,0 = HQ,0(y) = 1. We also choose:
HQ,1 = HQ,1(y) = y, HQ,2 = HQ,2(y) = y2 + ϵ2,0, HQ,3 = HQ,3(y) = y3 + ϵ3,1y, and so on.
In general, the HQ,n terms are constructed recurrently as follows. We impose for n ̸= n′

and any x (left unintegrated) that∫
dyWeq(x, y)HQ,n (y)HQ,n’(y) = 0, (13)

where

HQ,n(y) = yn + ∑
j

ϵn,n−jyn−j + · · · (14)

with 0 ≤ j ≤ n and n − j = 2, 4, . . .. Here, ϵn,n−j are dimensionless and y-independent (though
x-dependent, in general). One has ϵn,n−j = 0 if j is odd so that HQ,n(−y) = (−1)HQ,n(y).

The nonvanishing ϵn,n−2 for low-order n = 2, 3, 4, 5 (j even) are

ϵ2,0 = −⟨y2⟩, ϵ3,1 = −⟨y4⟩
⟨y2⟩ , (15)

ϵ4,2 =
⟨y2⟩⟨y4⟩ − ⟨y6⟩
⟨y4⟩ − ⟨y2⟩2 , ϵ4,0 =

⟨y2⟩⟨y6⟩ − ⟨y4⟩2

⟨y4⟩ − ⟨y2⟩2 (16)

ϵ5,3 =
⟨y4⟩⟨y6⟩ − ⟨y2⟩⟨y8⟩
⟨y2⟩⟨y6⟩ − ⟨y4⟩2 , (17)

⟨yn⟩ =
∫

dyWeq(x, q)yn∫
dyWeq(x, q)

. (18)

They fulfill the following exact quantum identities:

(ϵ3,1 − ϵ4,2)ϵ2,0 + ϵ4,0 = 0 (19)

−(ϵ4,2 − ϵ5,3)ϵ3,1 + ϵ4,0 − ϵ5,1 = 0 (20)

ϵ5,1 =
⟨y4⟩⟨y8⟩ − ⟨y6⟩2

⟨y2⟩⟨y6⟩ − ⟨y4⟩2 (21)

There is an infinite number of identities among higher ϵ values, which lie outside our
scope here. In the strict quantum regime, HQ,n(y) are different from the standard Hermite
polynomials. The procedure for successively constructing HQ,n(y) based upon (13) and (14)
becomes increasingly cumbersome as n increases, even if it is conceptually straightforward:
notice that possible recurrence relations among HQ,n(y) are still lacking so far. In the
classical limit (h̄ → 0), with Weq(x, q) approximated by the classical Boltzmann distribution
c0 feq , the orthogonal polynomials HQ,n(y) are equal to 2−nHn(y), with Hn(y) being the
standard Hermite polynomials [38]. Then, for the latter, the computation of all coefficients
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in the (classical) counterpart of (14) boils down to that of ⟨yn⟩ and the latter to that of
Gaussian integrals. In the classical limit, one finds:

ϵ2,0 = −1
2

, ϵ3,1 = −3
2

, ϵ4,0 =
3
4

, ϵ4,2 = −3, ϵ5,3 = −5, ϵ5,1 =
15
4

(22)

which are x-independent. The term ϵ2,0 in the quantum regime will play an important role:
it will be studied in Section 2.7.

2.4. Non-Equilibrium Moments and Hierarchy

We shall proceed to the non-equilibrium Equations (5) and (6). We shall use the (un-
normalized) polynomials in y (= q/qeq) HQ,n = HQ,n(y) (n = 0, 1, 2, 3, . . . ) orthogonalized
in y (for fixed x) by using the equilibrium distribution Weq as a weight function. The actual
HQ,n(y) lead to defining the non-equilibrium moments (n = 0, 1, 2, . . .):

Wn = Wn(x; t) =
∫

dyHQ,n(y)W (23)

The initial moments Win,n for Wn are obtained by replacing W with Win in Equation (23). The
transformation of the one-dimensional Equations (5) and (6) into a linear hierarchy for the non-
equilibrium moments Wn will play an important role in this work. It can be carried out through
direct computations and cancellations employing Equations (13) and (23), which are increasingly
cumbersome as n increases. The general (t-reversible) hierarchy implied by Equations (5) and (6)
for any n reads:

∂Wn

∂t
= −Mn,n+1Wn+1 −

n

∑
n′=1

Mn,n−n′Wn−n′ (24)

The M’s are t-independent operator coefficients, which are characterized below. In general,
the quantum hierarchy is not a three-term one. The following operator coefficients for any
n will play a key role:

Mn,n+1Wn+1 ≡
qeq

m
∂Wn+1

∂x
(25)

Mn,n−1Wn−1 = −
qeq

m

[
(ϵn+1,n−1 − ϵn,n−2)

∂Wn−1

∂x

]
+

n
qeq

∂V
∂x

Wn−1 −
qeq

m
∂ϵn,n−2

∂x
Wn−1. (26)

Thus, in the exact non-equilibrium quantum hierarchy (24), the contributions from
Wn+1 always have the same structure (−(qeq/m)∂Wn+1/∂x) for any n. Then Mn,n+1 is n-
independent.

It is very convenient to perform a Laplace transform of the general hierarchy (24) so as
to replace each Wn with its Laplace transform W̃n = W̃n(s) =

∫ +∞
0 dtWn(t) exp(−st).

Then, the above hierarchy (24) becomes the Laplace-transformed quantum hierarchy:

sW̃n = Win,n− Mn,n+1W̃n+1 −
n

∑
n′=1

Mn,n−n′W̃n−n′ (27)

with the same t-independent operators (the M’s) as in (24). Notice that Mn,n′=0 = 0 for
any n except for n = 1, and Mn,n−n′ = 0 if n − n′ is even. For simplicity and without any
essential loss of generality, we shall assume Win,n = 0 for , n > 0 while only Win,n=0 ̸= 0.

In detail, the lowest equations in the Laplace-transformed quantum hierarchy (27) are:
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sW̃0 = Win,0 − M0,1W̃1 (28)

sW̃1 = −M1,2W̃2 − M1,0W̃0 (29)

sW̃2 = −M2,3W̃3 − M2,1W̃1 (30)

sW̃3 = −M3,4W̃4 − M3,2W̃2 (31)

sW̃4 = −M4,5W̃5 − M4,3W̃3 − M4,1W̃1 (32)

sW̃5 = −M5,6W̃6 − M5,4W̃4 − M5,2W̃2 (33)

sW̃6 = −M6,7W̃7 − M6,5W̃5 − M6,3W̃3 − M6,1W̃1 (34)

and so on for higher values of the integer n. A key feature of the non-equilibrium hierarchies
(24) and (27) is that all operator coefficients (M) in the former are expressed in terms of
V and of quantities computed out of the equilibrium Wigner function Weq. The Mn,n′

for n = 0, 1, 2, 3, 4 are identified upon comparing Equation (27) and Equations (28)–(32).
Specifically, the operator coefficients (M) in the above equations follow directly from:

sW̃0 = Win,0 −
qeq

m
∂W̃1

∂x
, (35)

sW̃1 = −
qeq

m
∂W̃2

∂x
+

qeq

m
∂

∂x
(
(ϵ2,0)W̃0

)
+

1
qeq

dV
dx

W̃0, (36)

sW̃2 = −
qeq

m
∂W̃3

∂x
+

qeq

m
∂

∂x
(
(ϵ3,1 − ϵ2,0)W̃1

)
+

qeq

m
dϵ2,0

dx
W̃1 +

2
qeq

dV
dx

W̃1, (37)

sW̃3 = −
qeq

m
∂W̃4

∂x
+

qeq

m
∂

∂x
(
(ϵ4,2 − ϵ3,1)W̃2

)
+

qeq

m
dϵ3,1

dx
W̃2 +

3
qeq

dV
dx

W̃2, (38)

sW̃4 = −
qeq

m
∂W̃5

∂x
+

qeq

m
∂

∂x
(
(ϵ5,3 − ϵ4,2)W̃3

)
+

qeq

m
dϵ4,2

dx
W̃3 +

4
qeq

dV
dx

W̃3

+
h̄2

22q3
eq

d3V
dx3

(
−6 +

ϵ4,2

ϵ2,0

)
W̃1 (39)

The ϵn,n−2 in the first four Equations (35)–(38) do contain inside them (even if not in
an explicit way) quantum effects arising from Weq.

The derivations of the successive equations in the non-equilibrium recurrence start-
ing from the equation for sW̃3 onward are increasingly difficult, as they involve exact
cancellations in order to arrive at consistent equations.

Thus, Equation (38) for sW̃3 makes use of the identity in (19) and it involves the exact
cancellation of the contribution of W̃0.

Also, Equation (39) for sW̃4 employs the identity in (20) and involves other exact
cancellations in such a way that the contribution of W̃1 is explicitly proportional to the
quantum correction h̄2

22q3
eq

d3V
dx3 (of order h̄2) as it stands. We emphasize that such a contri-

bution multiplying W̃1 in Equation (39) for sW̃4 has an explicit quantum origin. In that
aspect, (39) does differ from (35)–(38). The reason for that difference is that the quantum
corrections in Equations (5) and (6) manifest themselves explicitly only at order h̄2 and
then, in turn, in the equations in the hierarchy at orders n ≥ 4.

The very fact that the full quantum Equation (39) for n = 4 does contain a term of
order h̄2 in W̃1 confirms that the quantum hierarchy (24) is not a three-term hierarchy.

W̃n′ (0 < n′ ≤ n − 1) do carry n-dependent coefficients, which increase with n. In
particular (and leaving aside other contributions), the equation for sW̃5 can be shown to
contain in its right-hand-side (h̄2/q3

eq)(∂
3V/∂x3)W̃2 as the highest spatial derivative of V,

while that for sW̃6 contains (h̄2/q3
eq)(∂

3V/∂x3)W̃3 and (h̄4/q5
eq)(∂

5V/∂x5)W̃1 and so on.
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We stress that the complicated structure of the general hierarchy (24) is a genuine
consequence of quantum mechanics. If h̄ → 0, the hierarchy for the classical limit of W̃n
becomes the following three-term one for Equation (7):

∂Wn

∂t
= −Mn,n+1Wn+1 − Mn,n−1Wn−1 (40)

Mn,n+1 ≡
qeq

m
∂

∂x
(41)

Mn,n−1 = −
qeq

m

[
(ϵn+1,n−1 − ϵn,n−2)

∂

∂x

]
+

n
qeq

∂V
∂x

. (42)

with Mn,n−n′ = 0 for n′ ̸= 1 and the same Mn,n+1. Specifically, one has:

Mn,n−1 =
qeqn

m
[
1
2

∂

∂x
+

m
q2

eq

∂V
∂x

] (43)

Notice the crucial simplification for h̄ → 0: ϵ become independent on x.

2.5. Formal Solution of General Hierarchy

It is methodologically important and useful to obtain a formal solution of the general
quantum hierarchy (24) that is not a three-term one (that is, without proceeding to the
classical regime). For that purpose, one solves the hierarchy (24) for n > 0 recurrently.
Then, all Wn for n > 0 can be expressed through suitable linear operators in terms of W0
and of the initial condition Win,0 (assuming Win,n = 0 for n > 0). In particular, it will be
important to get W1 as a linear functional of W0.

In practice, it is convenient to operate in terms of Laplace transforms by employing (27).
The solution of the hierarchy proceeds specifically as follows: (i) for suitable n0 ≥ 2, in the
equation of the hierarchy (27) yielding W̃n0(s), one omits W̃n0+1(s) and solves formally the
resulting equation for W̃n0(s) in terms of those W̃n0−n(s) for n > 0 appearing in the right-
hand-side of that equation; (ii) one proceeds to the equation of the hierarchy yielding W̃n0−1(s),
reshuffles into it the above expression for W̃n0(s), and solves for W̃n0−1(s); (iii) one proceeds by
iteration to the equations for W̃n0−n(s) for n > 1 and so on until one arrives at W̃1(s) in terms of
W̃0(s). Then, one repeats the above procedure for W̃n0+1(s) and infers by induction what the
formal structure of the solution is as n0 → +∞. One finds (s-dependences being understood for
brevity as suitable):

W̃1(s) = D1(s)[−M1,0]W̃0(s). (44)

D1 =
1

sI − M1,2D2(M2,1 + M2,3D3M3,4D4M4,1 + M2,3D3M3,4D4M4,5D5M5,6D6M6,1 + . . . )
, (45)

D2 =
1

sI − M2,3D3(M3,2 + M3,4D4M4,5D5M5,2 + M3,4D4M4,5D5M5,6D6M6,7D7M7,2 + . . . )
, (46)

D3 =
1

sI − M3,4D4(M4,3 + M4,5D5M5,6D6M6,3 + M4,5D5M5,6D6M6,7D7M7,8D8M8,3 + . . . )
(47)

and so on. The D vales are continued-fraction linear operators. I is the unit operator. In a
compact form:

Dn = Dn(s) =
1

sI − Mn,n+1Dn+1(Mn+1,n + Nn+1,n)
(48)

Nn+1,n = Nn+1,n(s) = Mn+1,n+2Dn+2Mn+2,n+3Dn+3Mn+3.n + . . . (49)

with the understanding that if the infinite continued fraction related to Dn in (48) is
approximated by a finite continued fraction by cutting it off at some n0, the infinite series
for Nn+1,n is approximated by a finite sum that is cut off at n0; thereby, its last term contains
Mn0.n.
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Then, one has the exact equation for W̃0(s):

sW̃0(s) = Win,n − M0,1D1[−M1,0]W̃0(s) (50)

For previous approaches to stochastic equations that make use of continued fractions,
see [42,43]. As a general reference on ordinary continued fractions, see [44]. Notice the
genuine cyclic structure (determined by the structure of the hierarchy) in successive terms
in the denominators in Dn. For instance, in D1, the contribution M2,3D3M3,4D4M4,1 in
the series N2,1 indeed achieves a cyclic structure in the indices of M due precisely to

M4,1 = − h̄2

22q3
eq

∂3V
∂x3

(
−6 + ϵ4,2

ϵ2,0

)
, which is a quantum correction depending explicitly on h̄

(and also implicitly on it through ϵ4,2
ϵ2,0

). In the strict classical limit, ϵ2,0 = −(1/2) and
ϵ4,2 = −3, and that quantum correction disappears. And there is similarly with M6,1 in
M2,3D3M3,4D4M4,5D5M5,6D6M6,1 and so on.

There are other approaches (different from the one pursued here, to the best of the
present authors’ knowledge) to the analysis of general linear recurrence relations: see, for
instance [45].

2.6. Convergence: A Qualitative Analysis

A detailed mathematical study lies outside the scope of this work, as we shall limit
ourselves to indicate arguments justifying convergence. We shall consider first the case
h̄ → 0. Then, one has the three-term hierarchy in Equations (40), (41) and (43) for the
Liouville equation. Equation (48) still holds with the series Nn+1,n → 0 so that

Dn = Dn(s) =
1

sI − Mn,n+1Dn+1Mn+1,n
(51)

with Mn,n+1 and Mn+1,n being given in Equations (41) and (43). We shall introduce the
n-independent operators

F = Mn,n+1[(−Mn+1,n)/(n + 1)] (52)

a+ =
1

F1/4 Mn,n+1
1

F1/4 , a− =
1

F1/4 [(−Mn+1,n)/(n + 1)]
1

F1/4 (53)

Let s = 0 in Equation (48) and iterate it indefinitely. By using Equations (52) and (53), a
direct formal computation yields:

Dn(0) = 2−1/2 Γ((n/a +−2) + 1/2)
Γ((n/2) + 1)

F−1/4 AF−1/4, A =
1

a−Aa+
(54)

where Γ is the standard Gamma function [46] and the operators F and A being n-independent.
The following formal and short discussion (simplifying unimportant dependences for it) may
be adequate. Let us assume the operator F = − ∂

∂x (a
∂

∂x + b) with real functions a = a(x) ≥ 0
and b = b(x) acting on functions f = f (x). Upon transforming f → g with f = exp(−b/a)g,
F → F1 with F1 = −[ ∂

∂x − (b/2a)]a[ ∂
∂x + (b/2a)]. The operator F1 (acting on g) is non-

negative. The preceding argument is closely related to the one to be employed later in
Section 2.9 regarding (62). Going backwards, that enables us to give a meaning to F−1/4, a+,
and a−. A can be formally regarded as an operator-continued fraction. Even if a rigorous
characterization for it is lacking at present, Equation (54) indicates that Dn(0) factorizes into the
n-independent operator F−1/4AF−1/4 times an explicit function of n. For large n, Γ((n/2)+1/2)

Γ((n/2)+1)

behaves as 2n−1/2 [44] and Dn(0) tends to vanish proportionally to n−1/2. This suggests that
the operator Dn(s) in Equation (51) also tends to vanish as n−1/2 for large n. We shall employ
this large n behavior in order to assess, for the general hierarchy (24), the convergence of
Dn(s) and Nn+1,n(s) in Equations (48) and (49), respectively. That is, in these assessments
for continued fractions and infinite series in the exact solutions, we estimate that the exact
operator Dn(s) behaves for large n and fixed and finite s as n−1/2 (times an n-independent
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operator). The application of such estimates to the operators Nn+1,n(s) and some judicious
guess for the last factor in each operator contribution (Mn+3,n in the first contribution in (49)
and so on) leads us to infer that the operator Nn+1,n is more negligible compared to Mn+1,n
the larger n is. Then, upon estimating Dn+1 in the right-hand-side of (48) to be of order
n−1/2 and noticing that Mn+1,n is of order n, it follows that Dn in the left-hand-side of (48)
is of order n−1/2 consistently. This suggests that D1 in Equation (50) is finite. Even if full
mathematical justifications are lacking, it is felt that the arguments above provide reasonable
support towards the finiteness and well-posedness of the present developments based upon
non-equilibrium moments and hierarchy.

2.7. Properties at Equilibrium: ϵ2,0

The equilibrium Wigner function in (4) and the definitions of the equilibrium moments
using Weq(x, q) as the generating function implies that all Wn = Weq,n = 0 for n =
1, 2, 3, . . . , while only the lowest one is non-vanishing:

W0 = Weq,0 =
1

qeq
∑

j
exp[−βEj]φj(x)φ∗

j (x) (55)

In this case, Win,n = 0 for any n = 0, 1, 2, . . . . On the other hand, one has the general equation:

M1,0Wn = −
qeq

m
∂

∂x
((ϵ2,0)Wn) +

1
qeq

∂V
∂x

Wn (56)

Equation (24) for equilibrium and n = 1 imply

M1,0Weq,0 = 0 (57)

Equation (57) and the expression for M1,0 from (56) with the condition that in the classical
(h̄ → 0) limit, −ϵ2,0 = 1/2, can be recast as two alternative and exact representations, each
having its own interest. First, Equation (57) implies:

−ϵ2,0(x)Weq,0(x) = (1/2) exp[− m
q2

eq

∫ +∞

x
dx′

1
ϵ2,0(x′)

∂V
∂x′

], (58)

Since Weq,0 ≥ 0, it follows that −ϵ2,0 ≥ 0 for any x.
Second, an explicit representation of −ϵ2,0 in terms of Weq,0 and V is:

ϵ2,0(x) = − 1
2Weq,0(x)

− m
q2

eqWeq,0(x)

∫ +∞

x
dx′Weq,0(x′)

∂V
∂x′

, (59)

The formally infinite integration limits in Equations (58) and (59) are to be understood in
the framework (very large L) and conditions on V stated in Section 2.1. In particular, since V is
appreciable in a finite interval (−a < x < a), the integrals in Equations (58) and (59) converge.

2.8. One-Dimensional Non-Equilibrium Hierarchy: Small Thermal Wavelength

Let δx be a typical scale of variation of V: for instance, a fraction (say, 1/5 to 1/10)
of one nanometer. We shall consider a quantum regime with a relatively small thermal
wavelength with, say, λth/δx < 1: some features in it are treated as in the classical regime
while others behave quantum mechanically. In such a regime, chemical reactions of the
kind we are interested in occur. Such a regime is not the strict classical high-temperature
limit. For assumptions and estimates characterizing such a regime, see Section 3.2 in [30]. A
summary of those estimates is the following. Let the mass m be about one to two orders of
magnitude larger than the neutron mass. The range of V may be about 0.1 to 0.5 nanometers.
The value of kBT may lie, for instance, between 300 K (room temperature) and, say, 1200 K.
| V | may vary between 1 and a few eV, and let V0 be a positive constant energy having a
value in such a range. Let ∂nV

∂xn be estimated as δnV
(δx)n . In turn, δV is estimated as one order
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of magnitude smaller than V0, and δnV is estimated as one order of magnitude smaller than
δn−1V, n = 2, 3, . . . .

In Equation (39), h̄2

q3
eq

∂3V
∂x3 appears to be smaller than 1

qeq
∂V
∂x by a factor (λth

δx )
2 times a con-

tribution smaller than unity. This suggests we can neglect the quantum correction containing
h̄2

22q3
eq

∂3V
∂x3 [−6+ ϵ4,2

ϵ2,0
] compared to the one containing 1

qeq
∂V
∂x in Equation (39). Similar approxima-

tions can be carried out in the equation for ∂W5/∂t (by neglecting the contribution containing
(h̄2/q3

eq)∂
3V/∂x3) and in the equation for ∂W6/∂t (by neglecting (h̄2/q3

eq)(∂
3V/∂x3) and

(h̄4/q5
eq)(∂

5V/∂x5)) and so on. In general, we shall accept as a plausible approximation (appli-
cable in applications for chemical reactions) that in Equation (24), one can neglect, on average,
all contributions due to all Mn,n−n′Wn′ with n′ = 2, . . . n − 1 compared to Mn,n−1Wn−1. Then,
Equation (24) becomes the approximate (t-reversible) three-term hierarchy

∂Wn

∂t
= −Mn,n+1Wn+1 − Mn,n−1Wn−1, (60)

but we still retain the full Mn, n− 1 (including its own quantum corrections) in Equation (26).
The latter makes Equation (60) differ from Equation (40), in which Mn, n − 1 is given in
Equation (43).

Alternatively, in D1, the contribution M2,3D3M3,4D4M4,1 (with a cyclic structure in
the indices of M) is smaller than M2,1 thanks formally to the h̄2 in the contribution M4,1.
In physical terms, we proceed to the quantum regime with a relatively small thermal
wavelength as characterized above: then, on average, the magnitude of the values implied
by the action of the operator M2,3D3M3,4D4M4,1 on a generic function may be smaller
(by about one to two orders of magnitude) than those by the operator M2,1. Then, in
D1, it appears plausible to discard the contribution M2,3D3M3,4D4M4,1 and, by a similar
argument, the full M2,3D3M3,4D4M4,5D5M5,6D6M6,1 + . . . compared to M2,1. It is stressed
that the full M2,1 is still kept (thereby still taking into account certain quantum effects). The
actual counterpart to Equation (48) for the three-term hierarchy (60) is, for n = 1, 2, 3 . . . :

Dn = Dn(s) =
1

sI − Mn,n+1Dn+1Mn+1,n
(61)

That is consistent with the operator-continued fractions that follow directly from Equa-
tion (60). We shall continue to assume the initial condition Win,0 ̸= 0, Win,0 ̸= Weq,0, and
Win,n = 0 for n ̸= 0 for simplicity. This amounts to discarding all contributions in the opera-
tors containing cyclic structures: that is, to discard M2,3D3M3,4D4M4,5D5M5,6D6M6,1 + . . .
in D1 and so on for Dn for n = 2, 3, . . . .

The following remark can be regarded as a gratifying check of consistency. At very high
temperatures, practically in the classical regime, and based upon [6], we shall approximate
the one-dimensional equilibrium quantum distribution to a leading order by the classical
distribution: Weq ≃ c0 feq with feq = exp

[
−β((q2/2m) + V)

]
, thereby neglecting the

corrections computed in [6]. Then, the computations of all ϵn,n−j boil down to computing
Gaussian integrals. From (15) and (16), one easily finds: ϵ2,0 = −1/2 and ϵ4,2 = −3. Then,
under that approximation corresponding to the classical regime, one finds −6 + ϵ4,2

ϵ2,0
= 0 in

Equation (39) and, consequently, the hierarchy Equations (35)–(39) reduce to a three-term
one. The same reduction of Equation (24) to a three-term hierarchy occurs for any n.

Notice as well the following behavior. Consider the Laplace transform of Equation (60),
which implies W̃n(s) = −DnMn,n−1W̃n−1(s) for n ≥ 1. For fixed and finite s and large n, Dn
behaves as n−1/2. Then, sW̃n(s) is subdominant compared to Mn,n+1W̃n+1(s)+ Mn,n−1W̃n−1(s).
In turn, that behavior will be consistent with the long-t approximation in the next subsection.

2.9. One-Dimensional Non-Equilibrium Hierarchy: Long-Time Approximation

We shall proceed to approximations adequate for a long-time non-equilibrium evolu-
tion based upon Equation (60), with chemical reactions in mind.
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The operators Mn,n+1 and Mn,n−1 in (60) have dimensions (time)−1.
The characteristic or effective evolution times associated with those operators, denoted

as (τ∗)−1, have orders of magnitude that can be estimated easily. Thus, the τ∗ associated
with Mn,n+1 is about λthm(δx)/h̄) and so on for the various terms contributing to Mn,n−1
(the estimates of which depend on x).

We shall consider t about and larger than those effective evolution times. Then, as large t
corresponds to small s, the simplest (long-time) approximation can be formally conjectured
for each n = 1, 2, . . . as follows: We replace Dn(s) in Equation (61) with the s-independent
operator Dn(s = ϵ) (with fixed and small s = ϵ > 0), and then, one has the approximation:
W̃n(s) ≃ Dn(s = ϵ)[−Mn,n−1]W̃n−1 (also regarded as a short-memory approximation). The
system formed by the inverse Laplace transform of W̃1(s) ≃ D1(s = ϵ)[−M1,0]W̃0 together
with Equation (60) for n = 0 completes the long-time approximation scheme. This amounts to
the argument that the t-dependence of Wn(t), n = 1, 2, . . . would be approximately enslaved
by that of Wn−1(t). That immediately yields the following quantum equation:

∂W0

∂t
=

qeq

m
∂

∂x
[D1(s = ϵ)M1,0W0] (62)

with the above initial condition Win,0. Providing a suitable approximation method or ansatz
yielding D1(s = ϵ) is a difficult open problem: see [30]. The diffusion-like Equation (62)
appears to be t-irreversible. However, at the present stage, we do not warrant that all
eigenvalues of − qeq

m
∂

∂x D1(s = ϵ)[−M1,0] are nonnegative.
For the sake of a complementary understanding, we shall accept as a plausible ap-

proximation that the linear operator D1(s = ϵ) be replaced by a non-negative function
D = D1(s = ϵ) ≥ 0 of x.

We introduce f0(x; t) through:

W0 = exp
[∫ x

0
dx′u(x′)

]
f0, (63)

u(x) = −
qeq/m)(∂(−ϵ2,0)/∂x) + (1/qeq)(∂V/∂x)

(2qeq/m)(−ϵ2,0)
. (64)

Then, Equation (62) becomes

∂ f0

∂t
=

[
∂

∂x
+ u(x)

] q2
eqD(−ϵ2,0)

m2

[
∂

∂x
− u(x)

]
f0. (65)

Recall that −ϵ2,0 is nonnegative for any x (Section 2.7). Then, all eigenvalues of

[ ∂
∂x + u(x)]

q2
eqD(−ϵ2,0)

m2 [ ∂
∂x − u(x)] are nonnegative, and the solution of Equation (65) tends

towards Weq,0 for t → +∞ for any Win,0 (irreversibility and thermalization).
Regarding stochastic equations, see [18,31,47–49].
The 1D developments in this section will be very useful at a certain stage

(Sections 4.4 and 4.5) in the 3D model for polymerization explained in the following sections.

3. Towards a Model for Catalyzed Polymerization

Throughout this and the following section, we consider a fluid at rest in thermal
equilibrium at absolute temperature T in an interval about room temperature and in
three-dimensional (3D) space. The fluid plays the role of an HB. Then, we consider
three ensembles immersed in the fluid: (1) an ensemble of widely separated independent
unbound units (atoms and/or small molecules); (2) an ensemble of widely separated,
independent, freely jointed (fj) chains as templates (te); and (3) an ensemble of widely
separated independent catalysts.
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3.1. Ensemble of Widely Separated Independent Unbound 3D Units

Let an ensemble of identical Neuu non-relativistic microscopic units (atoms and/or
small molecules) with equal masses be widely separated from and interacting negligibly
with one another. To fix the idea, we concentrate on one of them, denoted as “1”, with mass
M1, position vector R1, momentum Π1(=-ih̄∇1), and quantum kinetic energy Π2

1/2M1, ∇1
as the 3D gradient operator with respect to R1. Any wavefunction of the ensemble of Neuu
units factorizes into the product of Neuu individual wavefunctions.

The 3D scalar product of two individual wavefunctions ψj, j = 1, 2 for the same unit 1
that depends on the same R1 reads:

(ψ1, ψ2)3 ≡
∫

d3R1ψ∗
1 ψ2 , (66)

with the integration being carried out over R1, and ∗ denoting the complex conjugate.

3.2. Ensemble of 3D Freely Jointed (fj) Chains as Templates (te)

We consider, also immersed in the fluid, a very dilute solution of identical te molecular
chains described below that are adequately separated (and then independent) from one another.
That is, the fluid contains an ensemble of such template chains. Any chain is supposed to be
adequately long. Regarding molecular chains from various standpoints, see [21,23,31,32,50–55].

This subsection will remind the reader of a model for a single 3D te formed by
Nte − 1 non-relativistic atoms or small molecules as an open, linear, freely jointed (fj)
molecular chain. Let Rte,i, ¶te,i, and Mte,i be the position and momentum vectors and
the mass, respectively, of the i-th atom in the te (i = 2, . . . , Nte). The total mass of the te
is: Mte = ∑Nte

i=2 Mte,i. Let Pte,CM = ∑Nte
i=2 Pte,i be the total momentum operator of the te,

and let yi = Rte,i+1 − Rte,i, i = 2, . . . , Nte − 1 be the relative position vectors (the bond
vectors) along the te. The latter is treated in the framework of the Born–Oppenheimer
approximation [56] so that the most rapidly varying electronic degrees of freedom have
already been integrated out. Eel(< 0) is the electronic energy (essentially, a constant), which
will always be subtracted out from the outset.

In 3D spherical coordinates, the three-momentum operator associated with yi reads:

−ih̄∇yi = −a3,i

yi
− ih̄ui

∂

∂yi
, (67)

with

yi = yiui , a3,i = ih̄uθi

∂

∂θi
+ ih̄uφi

1
sin θi

∂

∂φi
, (68)

with the three orthonormal vectors:

ui = (cos φi sin θi, sin φi sin θi, cos θi) , (69)

uθi = (cos φi cos θi, sin φi cos θi,− sin θi) , (70)

uφi = (− sin φi, cos φi, 0) (71)

Let:

e3,l ≡ ih̄ul − a3,l , (72)

l = 2, . . . , Nte − 1 [53–55]. The total quantum kinetic energy of the te is:

P2
te,CM/2Mte +

Nte−1

∑
i,j=2

Aij[−ih̄∇yi ][−ih̄∇yj ] (73)
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The constants Aij are given by: M−1
i + M−1

i+1 if i = j, −M−1
i if j = i − 1, −M−1

j if j = i + 1,
and 0, otherwise. So: Aij = Aji.

Approximate models for a te as a 3D molecular chain with constrained distances (bond
lengths) between successive pairs of neighbor atoms due to strong harmonic-oscillator-like
vibrational potentials (covalent bonds that are not as strong as electrical degree-of-freedom
interactions) have been constructed [33,53–55]. In short, the te is modeled as a freely jointed,
or fj, molecular chain. For the sake of a short justification of the latter, as a dominant
effective approximation of the covalent bonding (neglecting other weaker interactions), let
nearest-neighbor atoms interact through harmonic-oscillator-like potentials with vibrational
frequencies ω0,j [53]. The vibrational energies h̄ω0,j (much smaller than Eel) are supposed
to be larger than KBT [53–55]. One is also assuming that, on that energy scale, angular
degrees of freedom are not constrained. In such a regime, yj equals, approximately, the
constant equilibrium distance dj (bond length).

One can also entertain other molecular te with additional constrained distances
between successive pairs of next-to-nearest-neighbor units due to (somewhat weaker)
harmonic-oscillator-like vibrational potentials: freely rotating molecular chains. Freely
rotating chains can be approximated by f j ones that include persistent lengths (namely,
effective bond lengths, which amount to constraining approximately both the above yj and
also the angles between neighboring bond vectors) [21]. Such models do provide useful
approximations for real single-polymer chains under various conditions [21]. In the present
work, dealing with fj chains will suffice, with the understanding that the bond lengths can
be interpreted as either fixed bond lengths in fj chains or as persistent lengths in freely
rotating chains.

Let θ, φ denote, collectively, the two sets θ2, . . . , θNte−1, φ2, . . . , φNte−1, respectively.
Different 3D variational computations [33,53–55] enable us to consistently derive the same
3D model for an f j molecular chain with fixed yj = dj while allowing for purely angular
motion of the bond vectors. From those coinciding results, by omitting the total zero-point
energy Ezp of the vibrations and factoring out the overall center-of-mass motion, one arrives
at the following 3D quantum purely angular Hamiltonian and at the scalar product for the
fj molecular chain:

H̃3, f j =
Nte−1

∑
i,j=2

Aij

2didj
e3,ie3,j (74)

(ψ1, ψ2)3, f j ≡
∫
[dΩ]3ψ1(θ, φ)∗ψ2(θ, φ) , (75)

with [dΩ]3 = ΠNte−1
i=2 dθidφi. The integration is carried out over the whole Nte − 2 set of

solid angles. The angular motion of the te is described by wavefunctions ψ = ψ(θ, φ) and
eigenfunctions of the stationary Schrodinger equation, with energy eigenvalues E:

H̃3, f jψ = Eψ (76)

The purely angular motions described by H̃3, f j will be essential for the understanding
of what follows.

The analysis in the remainder of this subsection is intended only as a methodological
and essential step towards the study of polymerization in Section 4.

So, we suppose that KBT is adequately smaller than all h̄ω0,i and that all vibrational
states of any fj chain are the ground-state ones, so that the relevant degrees of freedom of
the fj chain are the rotational ones (say, in principle, those corresponding to H̃3, f j).

The evolution of an individual fj chain in the fluid at KBT can be described in principle
by a non-equilibrium Wigner distribution and equation. However, due to the influence
of the fluid at such KBT, it will be physically adequate to approximate the quantum
description of the rotational motions of the template fj chain as provided by classical
statistical mechanics and, hence, by classical Liouville distribution functions.
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For units 2, . . . , Nte forming the template fj chain, the approximate transition to classical
mechanics reads: e3,i → −a3,c,i, −ih̄ ∂

∂θi
→ πθi,c, −ih̄ ∂

∂φi
→ πφi,c. So, −a3,c,i = πθi,cuθi +

πφi,cuφi . The small terms proportional to ih̄u are taken as negligible and, so, are disregarded.
The terms πθi,c, πφi,c are classical momenta and are canonically conjugate to θi, φi, respectively.
The terms πθ,c, πφ,c denote the set of all πθi,c, πφi,c, respectively.

Then, the quantum Hamiltonian H̃3, f j for the angular motion of the te chain is approx-
imated by the following classical one (factoring out the center-of-mass motion):

H̃3, f j,c = ∑Nte−1
i,j=2 (Aij/2didj)(−a3,c,i)(−a3,c,j). Let fte,c = fte,c(θ, φ, πθ,c, πφ,c; t) be the non-

equilibrium classical Liouville distribution function for the te. Accordingly, [H̃3, f j,c, fte,c]Pb
denotes the standard classical Poisson bracket (Pb) of H̃3, f j,c and fte,c [57]. The non-equilibrium
classical Liouville equation is:

∂ fte,c

∂t
= [H̃3, f j,c, fte,c]Pb (77)

Let [dΩ]3,L = ΠNte−1
i=2 dθidπθi ,cdφidπφi ,c. Total probability is consistently conserved:

∂
∫
[dΩ]3,L fte,c/∂t = 0. These classical approximations for the te chain are instrumental

and will be implemented directly in Sections 4.1 and 4.2.

3.3. Ensemble of Widely Separated Independent 3D Catalyst (cat) Molecules

Let an ensemble of identical non-relativistic individual catalyst units be widely sepa-
rated from (with negligible interactions with) one another. Each catalyst unit (cat for short)
is a medium-size molecule (formed by other small molecules, monomers. . . ). The total
mass of a cat unit is M0.

The fluid is at rest and in thermal equilibrium at a KBT adequately smaller than all
vibrational energies of a cat molecule. Then, by assumption, all relevant vibrational states
in the cat are the ground ones, and the relevant degrees of freedom in it are the rotational
ones and those associated with its corresponding center of mass.

With an enormous simplification, at the given T, the cat is modeled as a slow and free
massive molecule of mass M0 with position vector R0, which approximates the location of
its center-of-mass and disregards the spatial extension of the catalyst. Alternatively, R0 can
also be considered approximately by assumption as the location of a quite reduced domain
of the catalyst (the “active” site or center), which will interact with the individual unit and
the relevant part of the template and without taking into account the spatial extension of
the cat.

To fix the ideas, in a quantum-mechanical setting, let Π3,0 be the quantum momentum
canonically conjugate to R0. The quantum Hamiltonian of the free catalyst is H̃3,enz ≃
Π2

3,0/2M0. We advance that from Section 4.1 onward, at the given T, it will suffice to
approximate the behavior of the cat by employing classical mechanics.

4. 3D Catalyzed Polymerization of One Single Atom by a Chain: Mixed
Quantum–Classical Description

We shall consider a model for chain growth through polymerization: technically,
for what is known as insertion polymerization. A (slightly simplified) example is: · · · −
(CHR − CH2)n − [Ti] + (CHR − CH2) → · · · − (CHR − CH2)n − (CH2 − CHR) − [Ti].
(CHR − CH2) plays the roles of the individual “small” molecule 1 and of one "small"
molecule in the te chain (denoted, in turn, as · · · − (CHR − CH2)n). [Ti], symbolizing, in
short, the complex TiCl4 − AIR3), is the catalyst. See [32].

We suppose that the number of unbound units Neuu is approximately equal both to
the number of template chains and also to the number of individual cat molecules. Then,
the fluid at equilibrium and at rest can also be regarded approximately as an ensemble
formed by copies adequately separated from one another: with each copy, in turn, being
a triplet formed by one unbound unit, one fj chain, and one cat molecule. We consider
that each copy has a finite volume, albeit it is quite large on the microscopic scale. Those
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three entities are now regarded as not separated from one another, on average, so that
interactions among them occur. Those interactions will be modeled in what follows.

The action of the catalyst enables an unbound unit to become attached to the fj te chain
so as to give rise to another larger chain made up of Nte atoms. The individual unit is
treated quantum-mechanically since its binding to the te is a chemical reaction.

4.1. Interactions of a Unit, an fj Chain, and a Catalyst

An individual unit (certainly influenced by its interaction with the catalyst and with
the te fj chain) is dealt with quantum-mechanically, as this genuinely applies to its binding
process to the template fj chain. In principle, the dynamics are accounted for by a quantum
Wigner function [4,6,37].

We introduce the relative vector from that unit to the first atom in the template:
y1 = Rte,2 − R1. We suppose a rotational-invariant interaction potential between the
individual unit and the first atom in the te chain: U1(y1) = U1(y1) (y1 =| y1 |). This is
appreciable in 0 ≤ y1 ≤ y1,2. Specifically, U1(y1): (1) is repulsive (> 0) for short distances
in 0 ≤ y1 ≤ y1,0, (2) is attractive (< 0) in y1,0 ≤ y1 ≤ y1,1, (3) is repulsive in y1,1 ≤ y1 ≤ y1,2,
and (4) vanishes very quickly for y1 > y1,2. The term y1 varies inside the microscopically
large but finite volume of each copy of the ensemble referred to at the beginning of this
section. In short, U1(y1) vanishes very quickly beyond a domain having a size of order of
at most a few bond lengths in the te chain.

Another crucial interaction potential U0, activation of the polymerization process, is
supposed among the individual units, unit 2 in te, and the cat. The catalyst (also denoted
here as unit 0) interacts simultaneously with the atomic unit (unit 1) in the ensemble and
unit 2 in the te through the real, spherically symmetric potential U0(y0, y0 + y1), with
y0 = R1 − R0. The properties of U0(y0, y0 + y1) will not be discussed at this stage. Its
assumed effective behavior (specifically, that of the average of U0(y0, y0 + y1) over y0) will
be considered a posteriori in Section 4.3.

Units 0 and 1 will be included in the overall CM and in the general description in
Section 3.2, where they are enlarged with y0, y1. The model is being constructed with
the following crucial numbering convention. The set of all material entities is numbered
successively in the following sequence: 0 (cat), 1 (individual unit), and 2,3,. . . Nte (those in
the te) consistently with the definitions and numbering of the y. In turn, such a numbering
convention and the above choice of potentials U1(y1) and U0(y0, y0 + y1) will be consistent
with the individual unit 1 to be bound to unit 2 in the te. Accordingly, we also introduce
A00 = M−1

0 + M−1
1 , A01 = A10 = −M−1

1 and so on for A11, A12, and A21 upon consistently
extending the definitions of Aij in Section 3.2.

The quantum purely kinetic Hamiltonian for the cat, the individual units, and the
template is Π2

3,0/2M0 + Π2
1/2M1 + P2

te,CM/2Mte + 2−1 ∑Nte−1
i,j=2 Aij[−ih̄∇yi ][−ih̄∇yj ].

At this stage, one performs the following transformations: (i) one introduces and factors
out the contribution of the total center-of-mass (for te, unit 1, and cat); (ii) one introduces all
relative vectors y0, y1, y2,. . . , yNte−1 and makes use of Equation (74) for y2,. . . , yNte−1; and
(iii) one adds U0, U1, and all vibrational potentials accounting for the structure of the fj chain
and implements the transition giving rise to fixed bond lengths in the te. Then, one infers the
following effective quantum Hamiltonian (omitting the overall center-of-mass for all material

entities): ∑1
i,j=0 2−1Aij[−ih̄∇yi ][−ih̄∇yj ]+

A12+A21
2d2

e3,2[−ih̄∇y1 ]+∑Nte−1
i,j=2

Aij
2didj

e3,ie3,j +U0 +U1.
It will be supposed that the cat, evolving in the fluid at the temperature T assumed, can

be described approximately through classical statistical mechanics and that it has random
motion during the effective duration of the process catalyzed by it. Let ß3,c,0 be the classical
momentum, which is canonically conjugate to y0, for the classical cat.

As for the cat, the evolution of the fj te chain inside the fluid at thermal equilibrium at
those temperatures is also described approximately through classical statistical mechanics: recall
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the analysis and the transition to classical variables in Section 3.2. Then, one can entertain the
reasonableness of the following formal mixed quantum–classical Hamiltonian structure:

A00ß2
3,c,0

2
+

(A01 + A10)ß3,c,0[−ih̄∇y1 ]

2
+ 2−1 A11[−ih̄∇y1 ][−ih̄∇y1 ] +

A12 + A21

2d2
(−a3,c,2)[−ih̄∇y1 ] +

Nte−1

∑
i,j=2

Aij

2didj
(−a3,c,i)(−a3,c,j) + U0 + U1 (78)

with the sole purpose of using it as a key guide to directly formulate a mixed quantum–
classical Wigner–Liouville equation, as we shall do in Section 4.2.

4.2. Mixed Wigner–Liouville Equations for the Ensemble, te, and Catalyst

Let ß3,c,1 be a momentum, which is canonically conjugate to R1, for the individual unit
treated quantum-mechanically. Use will be made of the classical variables employed in
Sections 3.2 and 4.1 for the te and catalyst, respectively.

The system formed by a unit, an fj chain, and a cat is described, by assumption, by a
mixed (quantum–classical) distribution function in phase-space. The following quantum
Wigner-like one for unit 1 and a classical Liouville-like one for the chain and the cat will
be considered: fm = fm(y1, θ, φ, y0, ß3,c,1, πθ,c, πφ,c, ß3,c,0; t). By assumption, fm fulfills the
time (t)-reversible Wigner–Liouville equation that follows naturally by starting from the
mixed Hamiltonian structure in (78) by operating quantum-mechanically (via Wigner) with
it for the variables of the individual unit and classically (via Liouville) for those of the te
and the catalyst. One finds directly:

∂ fm

∂t
= −(A11ß3,c,1 + A21(−a3,c,2) + A01ß3,c,0)(∇y1 fm) +

∫
d3ß3,c,1,0 fm(ß3,c,1,0)

∫ id3y1,0

h̄(πh̄)3 ×

exp(
2i(ß3,c,1 − ß3,c,1,0)y1,0

h̄
)[U1(y1 + y1,0)− U1(y1 − y1,0) +

U0(y0, y0 + y1 + y1,0)− U0(y0, y0 + y1 − y1,0)] +

+A12ß3,c,1[
∂(−a3,c,2)

∂θ2

∂ fm

∂πθ2

−

∂(−a3,c,2)

∂πθ2

∂ fm

∂θ2
+

∂(−a3,c,2)

∂φ2

∂ fm

∂πφ2

− ∂(−a3,c,2)

∂πφ2

∂ fm

∂φ2
] + [H̃3, f j,c, fm]Pb −

(A00ß3,c,0 + A10ß3,c,1)(∇y0 fm) + (∇y0U0(y0, y0 + y1))(∇ß3,c,0 fm), (79)

with H̃3, f j,c = ∑N−1
i,j=2(Aij/2didj)(−a3,c,i)(−a3,c,j) (recall Section 3.2). [H̃3, f j,c, fm]Pb denotes

the standard classical Poisson bracket [57] (recall Equation (77)). It approximates, in the clas-
sical regime, an integral contribution for the chain analogous to the one for the individual
unit in Equation (79). We have interpreted the formulation of this mixed quantum–classical
formulation by writing directly the pair A01ß3,c,0(∇y1 fm) and A10ß3,c,1(∇y0 fm) together
with the pair A21(−a3,c,2)(∇y1 fm) and A12ß3,c,1 times (the Poisson bracket of (−a3,c,2)
and fm). Instead of the mixed quantum–classical Equation (79), a more basic treatment
would have taken a fully quantum-mechanical Wigner equation for all (individual unit,
te, and cat) entities, with Poisson brackets replaced by the corresponding integrals, as a
starting point. However, in order not to encumber the analysis, it seemed more economical
not to proceed like that but to start out from the mixed quantum–classical Equation (79).
We advance that both te and cat will be supposed to be in classical states at approximate
thermal equilibrium in the next subsection, which also supports such a shortened strategy.
The term fm(ß3,c,1,0) inside the integral in Equation (79) is (omitting the writing of repeated
variables) obtained just by replacing ß3,c,1 with ß3,c,1,0 in fm.

Through direct partial integrations, total probability is shown to be conserved consis-
tently: ∂

∫
d3y1

∫
d3ß3,c,1

∫
d3y0

∫
d3ß3,c,0

∫
[dΩ]3,L fm/∂t = 0.
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4.3. Template and Catalyst at Thermal Equilibrium: Integration over Their Degrees of Freedom and
Non-Standard Effective Hamiltonian

The dynamics will be considered for a sufficiently long time (t). As the fluid is at
thermal equilibrium at absolute temperature T, it seems physically reasonable that in each
triplet, the te chain and cat are approximately at thermal equilibrium at the same T, and that
under their influence, the individual atomic unit evolves off-equilibrium so as to give rise
to polymerization. The resulting dynamics of the individual atomic unit are not expected
to alter the statistical equilibrium states of the fj chain and of the cat. Actually, such an
assumption underlies the very formulation of Equation (79).

We accept the approximate factorization of the non-equilibrium distribution:
fm ≃ f1 feq,2 feq,0 with an off-equilibrium f1 = f1(y1, ß3,c,1, t) for the individual atomic
unit. The cat is described by the (t-independent) classical Boltzmann equilibrium distribu-
tion (A10 = A01):

feq,0 = Z−1
eq,0 exp[−(KBT)−1[(A00/2)ß2

3,c,0 + A10ß3,c,0ß3,c,1 + U0]], which depends on

ß3,c,0, ß3,c,1, y0, and y1 (with Zeq,0 =
∫

d3y0d3ß3,c,0 exp[−(KBT)−1[(A00/2)ß2
3,c,0 + U0)]]).

We also accept that the te chain is described by the (t-independent) classical Boltzmann
equilibrium distribution (A12 = A21): feq,2 = Z−1

eq,2 exp[−(KBT)−1[(A12/d2)ß3,c,1(−a3,c,2) +

H̃3, f j,c,2]], which depends on all variables of the te and ß3,c,1 (with
Zeq,2 = [dΩ]3,L exp[−(KBT)−1H̃3, f j,c,2]), which includes ß3,c,1(−a3,c,2).

Notice that (−a3,c,2) is coupled to ∇y1 in Equation (79).
We integrate Equation (79) with

∫
[dΩ]3,L

∫
d3y0d3ß3,c,0 and perform the approximate

replacement fm ≃ f1 feq,2 feq,0
The contribution of A12ß3,c,1 times the Poisson bracket involving f1 feq,2 feq,0 and mul-

tiplying it plus the contribution of the Poisson bracket ([H̃3, f j,c,2, f1 feq,2 feq,0]Pb) gives a
vanishing result.

Then:
∫
[dΩ]3,L fm ≃ f1 feq,0

∫
[dΩ]3,L feq,2, and

∫
[dΩ]3,L fm(−a3,c,2) ≃

f1 feq,0
∫
[dΩ]3,L feq,2(−a3,c,2) = f1 feq,0[−((KBTd2)/A12)(∇ß3,c,1

∫
[dΩ]3,L feq,2)].

The function
∫
[dΩ]3,L feq,2 ≡ f2 = f2(ß3,c,1) is studied in the Appendix A.

Consequently:
∫

d3y0d3ß3,c,0
∫
[dΩ]3,L fm ≃ f1 f2 f0, with

f0 =
∫

d3y0d3ß3,c,0 feq,0 = exp[(2KBT)−1(A2
10/A00)ß2

3,c,1].
Equation (79) becomes, in terms of W = W(y1, ß3,c,1, t) = f1 f2 f0:

∂W
∂t

= −[A11ß3,c,1 − (KBT)(∇ß3,c,1 ln f2)− (A2
10/A00)ß3,c,1](∇y1W) +

∫
d3ß3,c,1,0 ×

W(y1, ß3,c,1,0, t)]
∫ id3y1,0

h̄(πh̄)3 exp(
2i(ß3,c,1 − ß3,c,1,0)y1,0

h̄
)[U1,e f f (| y1 + y1,0 |)−

U1,e f f (| y1 − y1,0 |)] (80)

U1,e f f (| y1 |) = U1(| y1 |) + U0,e f f (| y1 |) (81)

U0,e f f (| y1 |) =
∫

d3y0U0(y0, y0 + y1) exp[−(KBT)−1U0)]∫
d3y0 exp[−(KBT)−1U0]

(82)

We shall assume the following properties of U0,e f f (| y1 |) = U0,e f f (y1) (y1 =| y1 |): (a1) it
is repulsive for 0 ≤ y1 ≤ y1,3, where y1,0 ≤ y1,3 < y1,1; (a2) it is attractive for y1,3 ≤ y1 ≤ y1,2;
and (a3) it tends to vanish for adequately large values of y1(> y1,2). We allow, at this stage,
for U0(y0, y0 + y1) to give rise to bound states of the catalyst for the system formed by the
individual unit and the te. Such a possibility can be entertained at the level of Equation (79) but
lies outside the scope of Equation (80) and its consequences, which concentrate on the individual
atom 1. See the comments in Section 5.

Upon recalling the properties assumed for U1, it follows that U1,e f f (| y1 |) = U1,e f f (y1):
(1) is repulsive in 0 ≤ y1 ≤ y1,0; (2) is attractive in y1,0 ≤ y1 ≤ y1,1; (3) is repulsive in
y1,1 ≤ y1 ≤ y1,2; and (4) tends to vanish for adequately large values of y1(> y1,2). Two
important additional points are: (5) U1,e f f (y1) continues to be attractive in y1,0 ≤ y1 ≤ y1,1
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in spite of the possibility that U0,e f f (y1) can be repulsive in y1,0 ≤ y1 ≤ y1,3; and (6)
U1,e f f (y1) is considerably less repulsive than U1(y1) in y1,1 ≤ y1 ≤ y1,2. The basic effect
due to U0,e f f (y1) (and, hence, due to the catalyst) is to offset and make lower the positive
values of U1(y1) in y1,1 ≤ y1 ≤ y1,2. We shall assume later (Section 4.5) that U1,e f f (y1) does
give rise to bound states (specifically, to one bound state).

Equation (80) depends only on the degrees of freedom of the individual unit.
Equation (80) with (81) is the standard Wigner equation for the non-standard quantum
Hamiltonian: H̃n−s,1 = −(h̄2/2)((A11 − (A2

10/A00)))∇2
y1

+ [ln f2](ß3,c,1 → −ih̄∇y1) +
U1,e f f (| y1 |). In so doing, we are correcting some misprint in the non-standard quantum
Hamiltonian H̃n−s,1 in Section 5.1 in [33]: such a misprint is inconsequential regarding the
developments in [33].

Equation (80) directly yields the probability flux conservation:

∂

∂t

∫
d3ß3,c,1W = −∇y1

∫
d3ß3,c,1[A11ß3,c,1 − (KBT)(∇ß3,c,1 ln f2)−

−(A2
10/A00)ß3,c,1]W (83)

∂

∂t

∫
d3y1

∫
d3ß3,c,1W = 0 (84)

4.4. Standard Approximate Effective Quantum Hamiltonian for the Individual Unit

As it is difficult to handle H̃n−s,1, it will be approximated by the new effective Hamil-
tonian H̃e f f ,1 below. Accordingly, one approximates: −(KBT)(∇ß3,c,1 ln f2) ≃ A12σß3,c,1:
see Appendix A. The constant σ(> 0 and dimensionless) accounts for the influence of the
classical fj chain on the dynamics of unit 1. After this approximation, Equation (80) becomes
the standard Wigner equation for the effective standard quantum Hamiltonian for unit 1:
H̃e f f ,1 = −(h̄2/2)A11,e f f∇2

y1
+ U1,e f f (| y1 |), where A11,e f f = (A11 − (A2

10/A00)) + A12σ,
which yields a (quasi-)continuous spectrum of eigenvalues and one bound state associated
with (quasi-)unbound motion and polymerization of the individual unit, respectively.

Let W = W(y1, ß3,c,1, t) be the (effective) non-equilibrium Wigner function for a quan-
tum particle with mass A−1

11,e f f and subject to the potential U1,e f f (| y1 |). The corresponding
non-equilibrium Wigner equation reads:

∂W
∂t

= −[A11,e f f ß3,c,1](∇y1W) +
∫

d3ß3,c,1,0W(y1, ß3,c,1,0, t)]×∫ id3y1,0

h̄(πh̄)3 exp(
2i(ß3,c,1 − ß3,c,1,0)y1,0

h̄
)[U1,e f f (| y1 + y1,0 |)− U1,e f f (| y1 − y1,0 |)] (85)

The equilibrium distribution determined by Equation (85) is Weq.

4.5. Extension of Sections 2.8 and 2.9 to Equation (85): Small Thermal Wavelength and
Long-Time Approximations

The one-dimensional analysis in Section 2 can now be directly extended to the D = 3
Equation (85): namely, equilibrium distribution Weq, the family of orthogonal polynomials
generated by the former, non-equilibrium moments and hierarchy, and small thermal
wavelength (corresponding to the absolute temperature T assumed for the fluid) and long-
time approximations. Details will be omitted. Then, the 1D long-time approximations in
Section 2.9, extended directly to 3D by following [30], lead to the irreversible D = 3 Smolu-
chowski equation for the lowest moment W[0] = W[0](y1, t)(=

∫
d3ß3,c,1)W(y1, ß3,c,1, t))

for the individual atomic unit (y1 = (y1,1, y1,2, y1,3)):

∂W[0]

∂t
= Dqeq A11,e f f

3

∑
α=1

∂

∂y1,α
M[1α ],[0]W[0] (86)

M[1α ],[0]W[0] = −qeq A11,e f f
∂

∂y1,α
(ϵ[2],[0]W[0]) + +

1
qeq

∂U1,e f f

∂y1,α
W[0] (87)
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D (assumed to be y1-independent ) and ϵ[2],[0] are the natural 3D counterparts of the 1D
ones in Section 2.9. The equilibrium distribution for (87) is:

W[0],eq = ∑j exp(−Ej/(KBT))ϕj(y1)
∗ϕj(y1).

The terms ϕj(y1) and Ej are, for all possible values of the set of subindices j, the (almost)
continuum and bound-state eigenfunctions and energies of H̃e f f ,1 (H̃e f f ,1ϕj(y1) = Ejϕj(y1)).
Since U1,e f f = U1,e f f (| y1 |) = U1,e f f (y1), Weq is seen to depend on y2

1, ß2
3,c,1, and (y1ß3,c,1)

2.
Then: ϵ[2],[0] = −

∫
d3ß3,c,1Weq(ß3,c,1)

2
α/(q2

eq
∫

d3ß3,c,1Weq)(< 0) is seen to be independent
on α = 1, 2, 3 and to depend only on y1. Consistently, W[0],eq fulfills: M[1α ],[0]W[0],eq = 0,
which is a set of three partial differential equations that are compatible and explicitly
solvable for W[0],eq, since U1,e f f and ϵ[2],[0] depend on y1. We shall assume that U1,e f f gives
rise to just one bound state.

The physically interesting solution is, naturally, spherically symmetric W[0] = W[0](y1, t)
so that Equation (86) becomes:

∂W[0]

∂t
= Dqeq A11,e f f (

∂

∂y1
+

2
y1

)(−qeq A11,e f f
∂

∂y1
(ϵ[2],[0]W[0]) +

1
qeq

∂U1,e f f

∂y1
W[0]) (88)

now with qeq = (2KBT/A11,e f f )
1/2. It is convenient to replace W[0] with another distribu-

tion f = f (y1, t) = y−2
1 W[0](y1, t). Equation (88) becomes:

∂ f
∂t

= Dqeq A11,e f f
∂

∂y1
(−qeq A11,e f f

∂

∂y1
(ϵ[2],[0] f ) +

1
qeq

∂U1,e f f

∂y1
f +

2
y1

qeqϵ[2],[0]A11,e f f f (89)

4.6. Mean First Passage Time

It is important to compute approximately the (average) time required for unit 1 to
become attached to the chain as a next-neighbor of unit 2 in the te chain in the presence of
and under the influence of the cat. For that purpose, the mean first passage time (MFPT)
formalism, which provides an estimate of the latter time, is very useful. For references
about the MFPT formalism, see [18,47,58]. In the present application of the MFPT, we shall
extend [30,33,59]. The MFPT t(y1) function is the solution of the following so-called adjoint
equation associated with Equation (89):

Dq2
eq A2

11,e f f (−ϵ[2],[0])
∂2t(y1)

∂y2
1

− Dqeq A11,e f f (
1

qeq

∂U1,e f f

∂y1
+

2qeqϵ[2],[0]A11,e f f

y1
)

∂t(y1)

∂y1
= −1 (90)

provided that suitable boundary conditions are added. The properties of U1,e f f (y1) have
been explained in Section 4.3. Accordingly, the boundary conditions adequate for polymer-
ization are the following: t(yabs) = 0 (absorption) and [∂t(y1)/∂y1]y1=yre f = 0 (reflection).
The radial distance yre f is supposed to fulfill: y1,0 ≤ yre f ≤ y1,1. The radial distance yabs
is supposed to be larger than (but close to) y1,2. The term t(y1) is interpreted here as an
estimate of the time required for the individual atom 1—near yabs and, thus, far from unit 2
of the te—to reach y1 under the action of the cat. If y1,0 ≤ y1 ≤ y1,1, then t(y1) estimates
the time required for unit 1 to become bound to unit 2 of the te.

Then, by direct integration, the solution of Equation (90) with those boundary
conditions is:

t(y1) =
∫ yabs

y1

ds1

s2
1D(qeq A11,e f f )2

J(s1) (91)

J(s1) = −
∫ s1

yre f

ds2s2
2

ϵ[2],[0](s2)
exp[− 1

2KBT

∫ s1

s2

ds3(∂U1,e f f /∂s3)

ϵ[2],[0](s3)
] (92)
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For definiteness, we have chosen y1,2 = yabs in Equation (91).
Reference [30] studied an MFPT for a simpler chemical reaction between two atoms with

neither a te molecular chain nor a cat (and not having required to start out from any sort of
mixed Liouville–Wigner equation, as has been the case here). In spite of that relative simplicity,
the resulting MFPT is rather similar to that described by Equations (91) and (92). The detailed
analysis of the MFPT in [30] can be extended rather directly to Equations (91) and (92) and
will be omitted. The resulting MFPT in [30] displays a temperature dependence consistent
with the Arrhenius formula for rate constants in chemical reactions, and the same is true for
Equations (91) and (92). For brevity, we shall limit ourselves to a direct estimate based upon the
properties of U1,e f f : yielding the Arrhenius formula here.

We suppose that y1 fulfills yre f ≤ y1 ≤ y1,1. We choose suitable estimates for −ϵ[2],[0]
to let them to be displaced without large errors outside

∫ s1
s2

ds3, and we subsequently
perform the resulting integration

∫ s1
s2

ds3(∂U1,e f f /∂s3). Then, we argue that an estimate

of the dominant contribution to the exponential inside J(s1) is: exp[ 1
2KBT [

U1,e f f
(−ϵ[2],[0])

(y+)−
U1,e f f

(−ϵ[2],[0])
(y−)]]. The radial distance y+ is larger than y1,1 and is not far from the y1 at

which
U1,e f f

(−ϵ[2],[0])
is positive (with repulsive U1,e f f ) and takes on its largest values. The radial

distance y− is smaller than y1,1 and is not far from the y1 at which
U1,e f f

(−ϵ[2],[0])
is negative (with

attractive U1,e f f ) and takes on its minimum values. We remind that −ϵ[2],[0] is positive
(Section 2.7). It is plausible that −ϵ[2],[0](y+) (−ϵ[2],[0](y−)) is dominated by the almost
continuous spectrum (the bound state). Then, an estimate of the the MFPT is:

t(y1) ≃
∫ yabs

y1

ds1

s2
1D(qeq A11,e f f )2

∫ s1

yre f

ds2s2
2

(−ϵ[2],[0](s2))
×

exp[
1

2KBT
[

U1,e f f

(−ϵ[2],[0])
(y+)−

U1,e f f

(−ϵ[2],[0])
(y−)]] (93)

Other contributions to J(s1) are regarded as subdominant and, hence, discarded. The
term t(y1)

−1 for yre f ≤ y1 ≤ y1,1 provides an approximate estimate of a rate constant

for polymerization activated by the cat. Then, notice that factor exp[− 1
2KBT [

U1,e f f
−ϵ[2],[0]

(y+)−
U1,e f f
−ϵ[2],[0]

(y−)]] is responsible for and characteristic of an Arrhenius behavior. It also explains

why the inclusion of the cat activates polymerization: in fact, the latter (due to U0,e f f < 0)
makes U1,e f f (> 0) be smaller than U1(> 0) in y1,1 ≤ y1 ≤ y1,2.

One can obtain directly another solution of Equation (90) with other boundary con-
ditions: namely, with reflection for y1 ≥ y1,2 and reflection for y1 ≤ y1,1. However, such
a solution has been discarded as it implies properties that disagree with the physically
expected ones (implied correctly by Equations (91) and (92)).

5. Conclusions and Discussion

The first part (Section 2) of this work dealt with the basic quantum Wigner function and
non-equilibrium equation for a microscopic particle subject to a potential V and to a heat bath
(HB) at thermal equilibrium. Previous analyses were extended non-trivially. For simplicity,
only 1D was considered, with the extension to 3D being direct. The case in which V has
one bound state (plus an infinite number of discrete states that approximate the standard
continuum or scattering states) was considered. The equilibrium Wigner distribution generates
an infinite number of orthogonal polynomials in momentum. The latter enabled us to define
an infinite family of non-equilibrium moments. Commonly, Wigner functions are employed
to evaluate expectation values for suitable operators in phase space (see, for instance [7,8]).
On the other hand, the present approach is not specifically concerned with phase space; rather,
the former focuses on the information encoded in non-equilibrium moments (depending
on the spatial positions of the particles as time evolves and becomes long): specifically, in
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the lowest moment, which can give probabilistic information. The non-equilibrium Wigner
equation yields a general n-term hierarchy for the corresponding moments. A new non-
trivial solution of the non-equilibrium hierarchy that combines operator-continued fractions
and the infinite series thereof is obtained and analyzed; arguments are given to support its
finiteness. In a short thermal wavelength regime (retaining quantum features and adequate
for chemical reactions), the non-equilibrium hierarchy is approximated by a three-term one.
In a long-time approximation, the approximate three-term hierarchy is, in turn, approximated
by a Smoluchovski equation. Among other open issues left open by the present study, we
quote here the following: (i) further improvements regarding the theory of the generalized
orthogonal polynomials in [41], which can benefit the construction of the HQ,n(y); (ii) further
analysis for infinite n-term hierarchies (n > 3); and (iii) mathematically rigorous analysis
of continued fractions of operators. In fact, in previous works (see [29,30] and references
therein) and in the present one, we have handled continued fractions of operators and the
infinite series thereof in a formal way, with effort to provide arguments to justify consistency,
convergence, and an approximate approach to equilibrium for long t. Recall, for instance, the
operator A in Section 2.6. However, regarding (iii) in particular, we have been recognizedly
unable to obtain mathematically rigorous results that, to the best of our knowledge, appear to
be lacking.

In the second part (Sections 3 and 4) of this work, a new model of the growth (poly-
merization) of a molecular chain (template, te) by binding an individual atom activated by
a catalyst is developed in 3D. The atom, te, and cat move randomly as solutions in a fluid
at rest (playing the role of an HB) in thermal equilibrium. Classical statistical mechanics
describe te and cat approximately. The individual atom is treated quantum-mechanically.
Mixed non-equilibrium quantum–classical Wigner–Liouville functions and dynamical
equations for the individual atom and for the te and cat, respectively, are employed. By
assuming the latter two to be at thermal equilibrium, integrating over their degrees of
freedom, and through a further approximation regarding the degrees of freedom of the te, a
standard 3D effective non-equilibrium Wigner equation is obtained for the individual atom.
Upon extending to the latter Wigner equation the moment methods together with the short
thermal wavelength and long-time approximations in Sections 2.8 and 2.9, respectively, an
approximate 3D Smoluchowski equation is obtained for the individual atom. The mean
first passage time (MFPT) for the individual atom to become bound to the te, facilitated by
the cat, is considered. The resulting MFPT displays a temperature dependence consistent
with the Arrhenius formula for rate constants in chemical reactions.

The following properties of typical insertion polymerizations occurring in practice
should be mentioned (see Section 3.6.1 in [32]). Firstly, the cat does not emerge unchanged
as a consequence of the polymerization process: that is, its final state is different from the
initial one. Secondly, it continues to reside, in the form of deteriorated fragments, at the
relevant end of the augmented te chain.

Motivated by those facts, two comments regarding the model presented here seem in
order. Our treatment allows for the catalyst to remain weakly bound to the enlarged chain
formed by atom 1 bound to the initial te chain: that can, in principle, occur for suitable
U0(y0, y0 + y1). The model, with the chosen numbering of material units and dynamical
variables, has been formulated precisely in order to account for that: the individual unit
is numbered atom 1 and will become bound to atom 2 (one end atom in the te). Then, at
the end of the process, the cat (numbered as 0) may remain bound to atom 1 as a possible
additional extension of the chain (see Figure 1). On the other hand, our treatment does not
seem to account for the deterioration of the catalyst: a generalization (outside our scope
here) would be required for that.
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Figure 1. Catalyst (circle), individual unit atom (box), and freely jointed template formed by 11 units
(small boxes). Dashed lines represent binding (bonds). The successive numbering is: catalyst (unit 0),
individual atom 1, and, in the template, atom 2, atom 3,. . . , atom 11. After polymerization, atom 1
becomes bound to atom 2, and the catalyst is bound (weakly) to atoms 1 and 2. The term y1 is the
vector (not displayed) along the dashed line from atom 1 (box) to atom 2 (small box).
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Appendix A. 3D Single-Unit Polymerization by Classical fj Chain at Equilibrium:
Computations

The formula f2 = f2(ß3,c,1) =
∫
[dΩ]3,L feq,2 will be studied here by extending [33].

First, Gaussian integrations over ΠNte−1
i=2 dφidπφ,c,i in [dΩ]3,L are performed by generalizing

directly the rotational invariant methods in [60]. The result is:
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f2 = exp[
A2

12(A−1
2 )22ß2

3,c,1

2KBT
]([

∫
(
[dΩ]3,2

det∆2
)1/2]−1

∫
(
[dΩ]3,2

det∆2
)1/2 ×

exp[− A12

2KBT

Nte−1

∑
i,j=2

(A12(A−1
2 )2i)(ß3,c,1ui)((∆2,1)

−1)ij(A12(A−1
2 )j2)(ß3,c,1uj)] (A1)

The (Nte − 2)× (Nte − 2) matrix A2 with non-vanishing elements Aij, i, j = 2, . . . , Nte − 1
is symmetric, tridiagonal, and has positive eigenvalues. A−1

2 and detA2 are the inverse and the
determinant, respectively, of A2. The (Nte − 2)× (Nte − 2) matrices ∆2 and ∆2,1 have elements:
(∆2)ij = (A−1

2 )ijuiuj and (∆2,1)ij = A12(A−1
2 )ijuiuj, respectively. The integral in Equation (A1)

with (∆2,1)
−1 = 0 has been studied in [53,60]: it was found that the dominant contributions are

equal to one another and come from all tiny domains with (uiuj)
2 close to +1. One finds:

f2 ≃ exp[
A2

12(A−1
2 )22ß2

3,c,1

2KBT
][
∫ 2π

0
dφ2

∫ π

0
dθ2 sin θ2]

−1
∫ 2π

0
dφ2

∫ π

0
dθ2 sin θ2 ×

exp[−
A2

12(A−1
2 )22(u2ß3,c,1)

2

2KBT
] (A2)

A12 and (A−1
2 )22 account, respectively, for the influences of unit 2 and of all units 2,. . . ,Nte −

1 on the dynamics of unit 1. At this stage, one approximates: −(KBT)(∇ß3,c,1 ln f2) ≃ A12σß3,c,1,
σ = −A12(A−1

2 )22σ1 with constant σ1, 0 < σ1 < 1.
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