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Abstract: The interior problem, a persistent ill-posed challenge in CT imaging, gives rise to trun-
cation artifacts capable of distorting CT values, thereby significantly impacting clinical diagnoses.
Traditional methods have long struggled to effectively solve this issue until the advent of supervised
models built on deep neural networks. However, supervised models are constrained by the need for
paired data, limiting their practical application. Therefore, we propose a simple and efficient unsuper-
vised method based on the Cycle-GAN framework. Introducing an implicit disentanglement strategy,
we aim to separate truncation artifacts from content information. The separated artifact features serve
as complementary constraints and the source of generating simulated paired data to enhance the
training of the sub-network dedicated to removing truncation artifacts. Additionally, we incorporate
polar transformation and an innovative constraint tailored specifically for truncation artifact fea-
tures, further contributing to the effectiveness of our approach. Experiments conducted on multiple
datasets demonstrate that our unsupervised network outperforms the traditional Cycle-GAN model
significantly. When compared to state-of-the-art supervised models trained on paired datasets, our
model achieves comparable visual results and closely aligns with quantitative evaluation metrics.

Keywords: CT imaging; truncation artifacts; unsupervised model; disentanglement

1. Introduction

Due to the ability to provide relatively high-quality and high-resolution images in
a fast and cost-effective manner, X-ray computed tomography (CT) has become one of
the most commonly used imaging tools in many fields. Compared to other mainstream
imaging methods, the advantage of CT imaging is its high spatial resolution, but it comes
with the drawback of ionizing radiation. To fully exploit the benefits of high resolution,
contemporary CT imaging has been increasing its resolution levels. However, as the
resolution increases, it brings forth the issue of reduced imaging field of view, leading
to unintentional truncation of projection data. On the other hand, to mitigate ionizing
radiation exposure, one of the better choices in practice is to conduct scans specific to the
region of interest. This will induce intentional truncation of projection data. The direct
consequence of projection data truncation results in truncation artifacts, often referred to as
cupping artifacts. The cupping artifacts can significantly impair image quality and distort
CT values.

The issue of image reconstruction from truncated projection data is known as an
interior problem. An interior problem is an ill-posed problem arising from incomplete
projection data, and hence, traditional analytical reconstruction algorithms like FBP cannot
solve this problem. For a long time, it was believed that the solution to the interior problem
is not unique, and researchers tried to use the projection extrapolation methods to mitigate
cupping artifacts [1–5], although inaccurate extrapolation may lead to deviations in CT
values of the reconstructed image [6]. With further exploration, researchers have discovered
that the interior tomography can obtain accurate and stable solutions under certain specific
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conditions, such as when the region of interest (ROI) includes boundaries of the object or a
prior information inside the ROI is known [7]. The representative approaches employ a
back-projection of the derivative of projection data, and then a Hilbert transform along the
desired direction in the image domain [8–10].The emergence of these methods effectively
addresses a wide range of interior problems. However, when the ROI is entirely inside
the scanned object and no prior knowledge in the ROI is available, all these methods are
no longer applicable. In order to cater to a broader range of application scenarios, model-
based iterative reconstruction (MBIR) methods have been developed. In these methods,
iterative reconstruction and total variation (TV) [11] are combined to reduce truncation
artifacts based on the assumption that the scanned object is piecewise constant. Although
these methods can enhance artifact removal to some extent, it is challenging to completely
eliminate artifacts in practical applications. Therefore, in specific application scenarios,
introducing specific priors such as low-dose [12] or low-resolution priors [13] into the basic
MBIR model can further improve the truncation artifact removal. In recent years, deep learning
methods have been extensively employed across various aspects of CT imaging [14], including
low-dose image processing [15–17], limited-angle CT imaging [18,19], and sparse-view
reconstruction [20–23], achieving significant successes. Some deep learning based
models [24,25] are successfully used to remove truncation artifacts. These methods im-
prove the generalization performance of the network by using truncated differentiated
backprojection (DBP) data instead of truncated filtered backprojection (FBP) data as input.
At present, most of the existing deep learning based methods are based on supervised
models, requiring pairs of CT images which entails two sets: one with cupping artifacts and
the other without. Unfortunately, acquiring paired images in real applications is usually
impossible, and researchers can only use simulated paired data to train the supervised
models, which are then transferred to remove truncation artifacts in real scenarios. But,
images acquired in real-world scenarios may significantly differ from simulated data in
terms of anatomical structures and truncation ratios, leading to a notable performance
drop when well-trained network models are transferred to real datasets. The emergence
of unsupervised models offers a potential solution to address this issue. Currently, the
representative unsupervised models are Cycle-GAN [26] and its variants [27]. Cycle-GAN
employs consistency loss to address the challenge of lacking paired data. These models
have demonstrated significant application potential in medical imaging domains, such as
image denoising [28], super-resolution imaging [29–31], and metal artifact reduction [31–33].
To the best of our knowledge, there are very few effective unsupervised methods specifi-
cally designed for truncation artifact removal. Therefore, we aim to develop an efficient
unsupervised model to reduce truncation artifacts in this paper. We are aware that the
Cycle-GAN model performs excellently in domain translation tasks involving unpaired
data, allowing it to transform images of one style into another. However, Cycle-GAN is
an end-to-end network that lacks directed constraints guiding the generation of latent
space, limiting the enhancement of network performance. To address this, we develop
an implicit disentanglement network capable of intervening in latent space encoding for
truncation artifact removal. The disentanglement concept is from the ADN method for
metal artifact removal [27], which explicitly separates metal artifacts and structure infor-
mation using multiple encoders. The disentanglement network we propose is an implicit
disentanglement network, which can directly guide truncation artifacts and image content
information to be distinguishable in the latent space and meanwhile significantly simplify
the complexity of the network by reducing the number of encoders. Furthermore, we
know that truncation artifacts are global artifacts, which are different from other common
artifacts such as low-dose artifacts, metal artifacts that possess local features. To effectively
distinguish truncation artifacts and content information in the latent space, the network
should have the capability of capturing these global features. U-Net [34] has multiple
pooling layers, which gives it a very large receptive field, making it widely used for global
feature extraction. Therefore, U-Net becomes a candidate network for our task, which can
be used to extract truncation artifacts with global features. In order to better capture the
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global features of truncation artifacts, we introduce a domain transformation mechanism
to better extract these features. Given the quasi-circular nature of truncation artifacts, we
incorporate polar coordinate transformation to convert the 2D cupping-shaped features
to line-shaped features which are easier to extract. Through this process, we significantly
alleviate the disentanglement network’s burden in extracting features, making it easier for
the network to disentangle truncation artifacts and content information in the latent space.

The remainder of this paper is organized as follows. In Section 2, we introduce the
methods and models. Section 3 presents the experiments and results. In Section 4, results
and relevant issues are discussed. Finally, in Section 5, the conclusions are drawn.

2. Methods

Assuming that the domain of images with truncation artifacts is the set Dt, and the
images without artifacts belong to the set D, a traditional supervised model based on the
paired dataset PI =

{(
It, J

)
| It ∈ Dt, J ∈ D

}
is to learn a mapping function g : Dt → D.

The approaches based on supervised models have been extensively approved to be signif-
icantly effective. However, in practical scenarios, obtaining paired training data is often
unfeasible, significantly limiting the applicability of supervised models. To address this
issue, we establish an unsupervised method in this study. In an unsupervised model, we
only need an unpaired dataset NPI =

{(
It, J

)
| It ∈ Dt, J ∈ D

}
based on which a mapping

function f : Dt → D can be obtained through unsupervised learning. The essence of the
methods for removing truncation artifacts based on deep learning models lies in how to
effectively separate artifact features from content features. Supervised models can rely
on paired data to efficiently learn to separate these two types of features. Nevertheless,
unsupervised models, due to the lack of paired data, exhibit relatively weaker perfor-
mance in guiding the network to separate these two features. To boost the performance
of unsupervised methods in this regard, we propose an implicit disentanglement model
based on Cycle-GAN to enhance the separation of content features and artifact features in
the latent space. To fully exploit the features of cupping artifacts, we have introduced a
domain transformation mechanism, whose purpose is to transform the cupping-shaped
features into line-shaped features, thereby enabling the encoder to achieve more effective
extraction of features. The implicit disentanglement network with this domain transforma-
tion mechanism further enhances the ability to separate artifacts from content information
under unsupervised conditions. In the following subsections, we will provide a detailed
description of the domain transformation and the implicit disentanglement network.

2.1. Domain Transformation

Truncation artifacts present highly unique morphological characteristics on the recon-
structed image. As shown in Figure 1a, truncation artifacts appear as cup-shaped structures,
featuring bright circular borders that gradually diminish in intensity from the periphery
towards the center. To enhance the extraction of the cup-shaped artifacts, we introduce a
common domain transformation called the polar transformation as a preprocessing step
before feeding the input image into the network. Assuming the center point

(
Cx, Cy

)
of

the input image as the origin of the target polar coordinate system, we can transform any
point (x, y) in the input image to its corresponding polar coordinates (ρ, ϕ). After this
procedure, we obtain the transformed image It

p(ρ, ϕ). Figure 1b illustrates the image after
undergoing the polar coordinate transformation, revealing that the cup-shaped artifacts
have been converted into line-shaped artifacts. Clearly, most of the artifacts present in this
image can be removed using only basic horizontal local filters. Given the enhanced local
filtering capabilities of deep neural networks, employing such networks to process images
like this makes the separation of artifacts even more straightforward and more efficient.
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Figure 1. Preprocessing based on polar coordinate transformation. (a) shows the images without
domain transformation, (b) represents the images after polar coordinate transformation.

2.2. Unsupervised Model Based on Implicit Disentanglement

The overall architecture of the implicit disentanglement network is shown in Figure 2.
The input images of the network are It

p and Jp, which are obtained by applying polar
coordinate transformation to unpaired images It and J from domains Dt and D, respectively.
The whole network consists of two pairs of encoder–decoder subnetworks:

{
ED/Dt , G

}
for

transforming images with artifacts into artifact-free images, and
{

ED/Dt , Gt} for generating
images with artifacts from artifact-free images. Notably, the subnetworks in our model
shares the same encoder ED/Dt , resulting in a simpler network structure compared to the
traditional Cycle-GAN network that possess multiple encoders. We refer to this network as
“implicitly disentangled” because we do not employ multiple encoders to explicitly extract
image features and artifact features from the input images. Instead, we use a single encoder
and attempt to concurrently construct an image feature subspace and an artifact feature
subspace in the latent space. Moreover, we want these two subspaces to be separable for the
decoders. With these design goals in mind, firstly, the image with cupping artifacts in polar
coordinates It

p is fed into the encoder, which maps It
p to the latent space L, resulting in the

feature information ℓI . ℓI is composed of two parts: content features cI belong to the content
space C, and the artifact features tI belong to the artifact space T , i.e., ℓI = cI + tI . Next,
content features cI are extracted through the decoder G, generating the artifact-removal
image Îp in the polar coordinates. These two sub-procedures can be expressed as follows:

ℓI = ED/Dt

(
It
p

)
, (1)

Îp = G(ℓI). (2)

Although the input in Equation (2) consists of the complete features ℓI , the decoder G only
extracts content features cI . In other words, from the decoder’s perspective, the content
and artifact features in the latent space are separable. To achieve this goal, we can impose a
discriminative constraint on the output of the decoder first. However, due to the absence
of a fidelity constraint, relying solely on the discriminative constraint is insufficient to
guarantee the perfect extraction of the content feature. To better extract the content features,
we also introduce the complementary constraint, which is the constraint for the artifact
features since the artifact features can be regarded as the complementary features of the
content features. Based on this logical relationship, we first separate the artifact features
formally by introducing a short connection formulated as follows: complementary features
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of the content features. Based on this logical relationship, we first separate the artifact
features formally by introducing a short connection formulated as follows:

tI = ℓI − ℓ Î = ℓI − ED/Dt

(
Îp
)
. (3)

Then, we combine the artifact features tI and the mapping features IJ which is obtained by
mapping an artifact-free image Jp into the latent space, and use a decoder Gt that can extract
both artifact and content features to generate a synthesized image with truncation artifacts,

Ĵt
p = Gt(tI + ℓJ

)
. (4)

After that, we introduce a discriminative constraint on Ĵt
p to ensure a high degree of

similarity between Ĵt
p and the real images with truncation artifacts. This encourages a better

extraction of the artifact features tI , meaning the extraction of content features is enhanced
complementarily. At last, we reintroduce the previous encoder–decoder pair

{
ED/Dt , G

}
into the network, and the artifact removal synthesized image is written as

Ĵp = G
(

ED/Dt

(
Ĵt
p

))
. (5)

In this process, the presence of a reference image as a constraint allows for better arti-
fact truncation removal by the encoder–decoder pair

{
ED/Dt , G

}
. Furthermore, since this

encoder–decoder pair constitutes the final artifact removal network we require, utiliz-
ing synthesized paired images can further enhance its capability of removing truncation
artifacts under unsupervised conditions.

Figure 2. The overall architecture of the implicit disentanglement network for removing
truncation artifacts.

2.3. Learning Process

The core objective of this study is to establish an encoder ED/Dt capable of efficiently
extracting content features under unsupervised conditions, along with a decoder G that
can generate artifact-free images based on these features. However, in the absence of paired
data, it is difficult to obtain an encoder–decoder pair that can efficiently separate content
features while reducing truncation artifacts due to the lack of fidelity constraints. To address
this issue, we need to introduce additional auxiliary subnetworks and supplementary
constraints to reduce the reliance on fidelity constraints. We design five loss functions,
including adversarial loss Ladv which is the combination of adversarial content loss LD

adv
and adversarial cupping artifact loss LDt

adv. Additionally, there are artifact consistency loss
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Lart , self-reconstruction loss Lrec, cycle consistency loss Lcycle, and total variation loss Ltv.
Therefore, the overall objective function is the weighted sum of these losses,

L = λadv

(
LD

adv + LDt
adv

)
+ λart Lart + λrec Lrec + λcycle Lcycle + λtvLtv, (6)

where the λ are hyper-parameters to balance the importance of each loss.
Adversarial loss: If we want ED/Dt and G to perform well in the absence of paired

images, the basic way is to introduce discriminators to guide the training. In this network,
we introduce two discriminators. The first discriminator DD is located after the first
decoder G. Its role is to discriminate whether an image comes from the network-generated
images or from the truncation artifact-free image set. Training this discriminator allows
the network-generated images to closely resemble truncation artifact-free images. The loss
function based on this discriminator can be expressed as follows:

LD
adv = ED

[
log DD

(
Jp
)]

+EDt

[
1 − log DD

(
Îp
)]

. (7)

Relying solely on the discriminator DD can make the generated image images and the
truncation artifact-free images similar in terms of features, but it is still not sufficient to
guarantee anatomical consistency. As mentioned above, we have decoupled the truncation
artifact features implicitly, separating them from the anatomical features. Based on these
separated truncation artifact features and truncation artifact-free images, we can generate
synthesized truncation artifact-affected images. To encourage that the synthesized images
are consistent with real truncation artifact-affected images in terms of features, we introduce
another discriminator DDt and related loss function as follows:

LDt
adv = EDt

[
log DDt

(
It
p

)]
+ED,Dt

[
1 − log DDt

(
Ĵt
p

)]
. (8)

Because promoting feature consistency between synthesized images and real artifact-
affected images needs to extract full truncation artifact features in the latent space, the
introduction of discriminator DDt can indirectly promote separation of artifact features in
the latent space. The objective function under the combined action of these two discrimina-
tors can be expressed as:

Ladv = LD
adv + LDt

adv. (9)

Reconstruction loss: The encoder ED/Dt is used to encode truncation artifact-affected
images and truncation artifact-free images. It maps content features to content feature
space and artifact features to artifact feature space. Decoder Gt is responsible for decoding
all latent space features. To ensure that no intrinsic features are lost when input images pass
through this encoder–decoder pathway, we establish the reconstruction loss as follows:

Lrec = ED,Dt

[∥∥∥ Ĩt
p − It

p

∥∥∥
1
+
∥∥ J̃p − Jp

∥∥
1

]
. (10)

The first term in the equation enforces that there is no feature loss when artifact-affected
images pass through the

{
ED/Dt , Gt} encoder–decoder pathway, while the second term

ensures that there is no content feature loss when artifact-free images pass through the{
ED/Dt , G

}
pathway. In this way, we can consider that when the artifact-affected image

passes through the
{

ED/Dt , G
}

pathway, the content features are extracted. And, because
when it passes through the

{
ED/Dt , Gt} pathway all features including content and artifact

features are extracted, we can approximately assume that the difference tI between the two
pathways is the entirety of the artifact features.

Artifact consistency loss: In the adversarial loss, the discriminator DD is used to
discriminate artifact-free images, allowing it to separate the artifact features. The promotion
of the discriminator DDt on discriminating synthetic artifact images can enable DD to more
comprehensively separate the artifact features. This is because the promotion of DDt would
force the generator Gt to generate more realistic synthesized artifact-affected images, thus
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causing more comprehensive artifact features to be passed by tI . However, we know
that a generative adversarial network has a powerful capability in generating data that
matches the desired data distribution through adversarial learning. This might result
in the incomplete decoding of artifact features passed by tI , thereby, the discriminative
performance improvement of DDt may not fully reversely promote the encoding–decoding
pair

{
ED/Dt , G

}
to separate artifact features. To avoid this issue, we introduce the artifact

consistency loss as follows,

Lart = ED,Dt

[∥∥∥(It
p − Îp

)
−
(

Ĵt
p − Jp

)∥∥∥
1

]
. (11)

This ensures that the artifact features generated by Gt originate from the separated artifact
features, and ensures that the performance improvement of DDt can effectively promote
the extraction of artifact features by the encoding–decoding pair

{
ED/Dt , G

}
.

Cycle consistency loss: The ultimate goal of the network is to build an effective
encoding–decoding pair

{
ED/Dt , G

}
that can efficiently eliminate truncation artifacts. How-

ever, due to the lack of paired data, it is not possible to directly construct a regression model.
Therefore, we utilize the separated artifact features tI and artifact-free image Jp to generate

simulated artifact-affected image Ĵt
p. This allows us to create synthetic paired data

{
Ĵt
p, Jp

}
,

thus indirectly constructing the following regression model to train the encoding–decoding
pair

{
ED/Dt , G

}
Lcycle = ED,Dt

[∥∥ Ĵp − Jp
∥∥

1

]
. (12)

Total variation loss: Truncation artifacts are cup-like artifacts with the following
characteristics: the pixel intensity gradually decreases from the edge to the center in a
radial direction, and the intensity change is a smooth transition. In the original images, it is
challenging to directly construct a regularizer to constrain this feature. In the images after
polar transformation, the radially decreasing artifacts are transformed into a horizontally
decreasing artifacts, making it easier to establish constraints on this feature. Here, we
introduce a horizontal total variation term to constrain the truncation artifacts as follows,

Ltv =
∫

Ω

√
u2

xdx, (13)

where Ω is the support domain of the difference image It
p − Îp, ux = ∂u

∂x .

2.4. Network Details

The whole network consists primarily of five parts: one encoder, two decoders, and
two discriminators. The detailed network architectures of these components are shown in
Figure 3. The encoder subnetwork and the two decoder subnetworks form two encoder–
decoder pairs. The encoder subnetwork consists of five convolutional layers, of which only
three have down-sampling operations, since extracting the truncation artifact features in
polar coordinates does not require a very large receptive field. The structures of the two
decoders correspond to that of the encoder, so each decoder subnetwork is also composed
of five convolutional layers, employing three up-sampling operations to restore the image
to its original size. The two discriminators share the same network architecture. Because
many studies such as CycleGAN [27] and Pix2Pix [35] have already demonstrated that the
PatchGAN discriminator is more advantageous for style transfer tasks compared to the
general GAN discriminator, we also adopt the PatchGAN discriminator in this study.
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Figure 3. The detailed network architectures of the primary parts in PIDNET; (a) shows the details
of the encoder ED/Dt , (b) is the generator G, (c) represents the generator Gt, and (d) denotes the
discriminator, DDt /DD. IN refers to Instance Normalization, while ReLU represents LeakyReLU,
except for ED/Dt . Additionally, k, s,p in Conv(k, s, p) signify the kernel size, stride, and padding
size, respectively.

3. Experiments and Results
3.1. Dataset
3.1.1. Clinical Dataset

In our experiment, we prepared two clinical datasets named CL1 and CL2. These
datasets originated from the American Association of Physicists in Medicine (AAPM) and
the National Cancer Institute’s Cancer Imaging Archive (TCIA), respectively. In dataset CL1,
there were a total of 11,924 pairs of paired chest CT images. When training the supervised
models, we selected 10,000 pairs forming the training set and the remaining 1924 pairs
forming the test set. When training the unsupervised model, the artifact-affected images
in the training dataset formed the set Dt, while the artifact-free images formed the set D.
To enable a direct comparison of the supervised and unsupervised model performance
in the absence of paired data and evaluate the performance change of supervised models
transferred to similar datasets, on dataset CL2, we used 2427 pelvis CT images with
truncation artifacts to form the set Dt, and 2427 artifact-free CT images to form the set
D. Additionally, we used 300 pairs of paired images to form the test set. The image size
for both datasets CL1 and CL2 was 384 × 384. In the simulated fan-beam projection, the
number of projection views was set to 720, and the data truncation proportion was set to
30%. The reconstruction method employed was FBP.

3.1.2. Preclinical Dataset

In order to illustrate the decline in performance metrics of traditional supervised
models when transferred to datasets with exacerbated feature disparities from the original
training set and simultaneously validate the advantage of our proposed PIDNET, we
constructed a preclinical dataset derived from our self-developed micro-CT system [36,37].
We obtained projection data from multiple mice and reconstructed 2752 CT images using
the FDK method. Compared to dataset CL2, these images exhibit a greater disparity from
the clinical dataset CL1. While our proposed PIDNET model is applicable in cone-beam
CT, it is important to note that the classical comparison method, E2E U-Net, is exclusively
compatible with fan-beam CT. Additionally, due to the memory constraint, applying the
classical TV method to cone-beam CT is not straightforward. Hence, we projected the
acquired CT images using fan-beam geometry and reconstructed them utilizing the FBP
method. The truncation proportion in the experiment was set to 30%. We utilized 2452
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artifact-affected images to form the dataset Dt and 2452 artifact-free images to form the
dataset D. Additionally, 300 pairs of paired data constituted the test set.

3.2. Evaluation Metrics

To comprehensively evaluate the proposed method, we used two evaluation metrics to
measure the performance of different methods in removing truncation artifacts, including
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). PSNR is a
commonly used metric to assess the quality of processed images, and it is described
as follows:

PSNR
(

f gt, f p) = 20 × log10

(
NM

∥∥ f gt
∥∥

∞
∥ f gt − f p∥2

)
, (14)

where f gt represents the ground truth, f p represents the estimated image, and M and N
are the number of rows and columns of the image pixels. SSIM is a metric used to measure
the similarity between two images, and higher SSIM values indicate greater similarity and
better image quality. SSIM is considered to be more in line with human perception of image
quality compared to PSNR. The formula for SSIM is as follows:

SSIM
(

f gt, f p) =
(

2µ f gt µ f p + c1

)(
2σf gt , f p + c2

)
(

µ2
f gt + µ2

f p + c1

)(
σ2

f gt + σ2
f p + c2

) , (15)

where µ f gt and µ f p are the means of the ground truth and estimated images, and σf gt

and σf p are the variances of the ground truth and estimated images, respectively. σf gt , f p

represents the covariance between f gt and f p. c1 and c2 are two stability constants used for
division. We set them as c1 = (k1L)2 and c2 = (k2L)2, where L is the maximum pixel value
of the image, and k1 and k2 are constant values set to 0.03.

3.3. Training and Testing

To provide a more objective evaluation of our method, we compared it with five
other classic truncation artifact removal methods. Two of these methods are traditional
models, including the extrapolation method and the iterative reconstruction method based
on total variation constraint. For simplicity, they are referred to as Extrapolation and
TV. Two others are state-of-the-art supervised models, namely U-Net [34] and the dual-
domain model E2E U-Net [38]. The final one is the most classic unsupervised method,
Cycle-GAN, widely used for unsupervised image translation. For U-Net and Cycle-GAN,
we utilized their official code, while for the other three methods, we re-implemented
the code based on the corresponding publicly published research papers. The proposed
network was implemented using the PyTorch(2.0.0) deep learning framework. In terms of
optimization, we employed the Adam optimizer with a learning rate of 1× 10−4 to minimize
the objective function. The hyper-parameters in the objective function were set as follows:
LD

adv = LDt
adv = 1.0, λart = λrec = 5.0, λcycle = 10.0, λtv = 100.0.

In our experiments, all supervised methods were trained on CL1 and directly trans-
ferred to other datasets because only CL1 had paired training data. However, all unsuper-
vised methods, including the comparative unsupervised method, were trained and tested
separately on the three datasets since they do not require paired data.

3.4. Results

In the experiment, we tested the method proposed in this paper and all the comparison
methods on the clinical datasets CL1 and CL2 and the preclinical dataset. Quantitative
analysis was conducted based on the evaluation metrics SSIM and PSNR.

The quantitative analysis results of all methods on the CL1 dataset are shown in Table 1.
It can be intuitively observed from the table that, compared to traditional Extrapolation
and TV methods, deep learning methods show a significant improvement in removing
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truncation artifacts. Among supervised models, E2E U-Net stands out in terms of metrics.
Supervised models, particularly E2E U-Net, outperform the classical unsupervised model
Cycle-GAN and the later improved unsupervised model ADN in performance metrics,
mainly due to strong pixel-level fidelity constraints in supervised models. Looking at the
performance metrics, our proposed unsupervised method shows a clear improvement
over Cycle-GAN and ADN, approaching a similar performance to supervised models,
especially with almost no difference in SSIM and only a slight disadvantage in PSNR.
Figure 4 illustrates the result images of various comparison methods and the residual
images compared to the ground truth. It is evident that Extrapolation and TV methods
already exhibit significant improvement in removing truncation artifacts compared to the
reconstruction image from FBP. However, there are still noticeable truncation artifacts left.
Moreover, the Extrapolation method fails to recover many texture details. The two super-
vised models, U-Net and E2E U-Net, show substantial improvement over the traditional
Extrapolation and TV methods in artifact removal performance. Residual images hardly
exhibit noticeable truncation artifacts, and the unrecovered image details are minimal,
making it challenging to observe differences from the ground truth image. Although the
classical Cycle-GAN model may not completely restore texture details, it performs better
than traditional Extrapolation and TV methods in truncation artifact removal, resulting
in a significant reduction in truncation artifacts in the residual images. ADN performs
better than Cycle-GAN in removing artifacts, but still falls short in restoring fine details.
From the residual images, it is apparent that our proposed unsupervised method performs
exceptionally well, achieving performance comparable to supervised models in artifact re-
moval. Truncation artifacts are nearly indiscernible in the residual images, and unrecovered
texture details are minimal. These results align with the quantitative analysis presented
in Table 1. To visually demonstrate the consistency between the artifact-removed images
and the ground-truth image, we provide profile plots along the orange lines indicated in
Figure 4. These plots are shown in Figure 5. From this figure, we can see that the profile
plot from our unsupervised model and the plots from the competing supervised models are
close to each other, and meanwhile, they closely align with the ground-truth profile plot.

Table 1. Quantitative comparison of different methods in terms of PSNR(dB) and SSIM on dataset CL1.

Method Metrics
SSIM PSNR

Chest

Conventional Extrapolation 0.9143 21.0513
TV 0.8210 24.9560

Supervised U-Net 0.9827 40.8604
E2E U-Net 0.9897 42.9835

Unsupervised
CycleGAN 0.8107 26.1695

ADN 0.9666 32.0834
Ours 0.9873 39.7273

Figure 4. Qualitative comparison of different methods on dataset CL1; (a–i) represent the ground
truth and the resulting images from FBP, Extrapolation, TV, U-Net, E2E U-Net, Cycle-GAN, ADN,
and our PIDNET, respectively. The second row shows the residual images derived from comparing
the resulting images with ground truth. The yellow lines indicate the positions of the profile plots
shown in Figure 5.



Entropy 2024, 26, 101 11 of 18

Figure 5. Comparison of the profile plots of the yellow lines marked in the resulting images shown in
Figure 4.

To simulate unsupervised scenarios, we only designed unpaired data in dataset CL2.
Therefore, it was impossible to train supervised models on this dataset and the supervised
models tested on dataset CL2 were directly transferred from dataset CL1. As both datasets
CL1 and CL2 consist of clinical CT images, their similarity is relatively high. Testing
the pre-trained models on dataset CL2 can be used to intuitively demonstrate the perfor-
mance variation of supervised models when they are transferred between similar datasets.
Table 2 displays the performance metrics of all comparative methods on dataset CL2. It is
evident that the supervised models, being directly transferred from dataset CL1, exhibit a
significant decline in all performance metrics. However, the final outcomes still surpass
the traditional Extrapolation and TV methods, indicating the practical value of directly
transferring pre-trained models. Table 2 also clearly shows that the performance metrics of
our proposed unsupervised model are superior to the supervised models. This is because
our model is unsupervised and can be trained without paired data. The results and residual
images shown in Figure 6 support the same conclusion as Table 2. The supervised models
outperform the traditional Extrapolation and TV methods, but their residuals are larger
than those obtained on dataset CL1, indicating that more truncation artifacts (highlighted
by red arrows) are not removed. Additionally, the comparison results of the profile plots
in Figure 7 clearly demonstrate the superiority of the supervised models over traditional
methods, while the profile plot from our unsupervised model is closer to the ground-truth
profile plot than all comparison methods.

Table 2. Quantitative comparison of different methods in terms of PSNR(dB) and SSIM on dataset CL2.

Method Metrics
SSIM PSNR

Pelvis

Conventional Extrapolation 0.8907 24.3274
TV 0.8601 22.3092

Supervised U-Net 0.9763 35.7170
E2E U-Net 0.9483 38.2473

Unsupervised
CycleGAN 0.8899 28.1647

ADN 0.9721 32.5045
Ours 0.9947 42.4615
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Figure 6. Qualitative comparison of different methods on dataset CL2; (a–i) represent the ground
truth and the resulting images from FBP, Extrapolation, TV, U-Net, E2E U-Net, Cycle-GAN, ADN,
and our PIDNET, respectively. The second row shows the residual images derived from comparing
the resulting images with ground truth. The yellow lines indicate the positions of the profile plots
shown in Figure 7.

Figure 7. Comparison of the profile plots of the yellow lines indicated in the resulting images shown
in Figure 6.

Because the preclinical data are derived from micro-CT, their similarity with dataset
CL1 is lower compared to dataset CL2. Thus, we can simulate the performance changes
of supervised models transferred to datasets with lower similarity and assess the perfor-
mance advantage of unsupervised models. Table 3 presents the performance metrics of all
comparative methods on this dataset. From this table, it is evident that the performance of
supervised models in terms of SSIM and PSNR metrics continues to decline compared to
the results on Dataset CL2, although their values are still better than traditional extrapola-
tion and TV methods. This further illustrates that the performance of supervised models
worsens with exacerbated changes in data characteristics. Conversely, our unsupervised
model maintains good performance on this dataset. The results and residual images in
Figure 8 distinctly show that our model is closest to the ground-truth images. The compari-
son of profile plots in Figure 9 demonstrates that our unsupervised method achieves the
highest similarity with the ground-truth profile plot compared to other methods, which
exhibit visible gaps from the ground-truth profile plot. Both qualitative and quantitative
analyses indicate that our unsupervised model achieves the best performance in removing
truncation artifacts on this dataset.
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Table 3. Quantitative comparison of different methods in terms of PSNR(dB) and SSIM on the
precinical dataset.

Method Metrics
SSIM PSNR

Mouse

Conventional Extrapolation 0.9082 25.3666
TV 0.8465 20.5258

Supervised U-Net 0.9701 32.2261
E2E U-Net 0.9257 35.9452

Unsupervised
CycleGAN 0.8464 26.6343

ADN 0.9702 32.1039
Ours 0.9903 43.9631

Figure 8. Qualitative comparison of different methods on preclinical dataset ; (a–i) represent the
ground truth and the resulting images from FBP, Extrapolation, TV, U-Net, E2E U-Net, Cycle-GAN,
ADN, and our PIDNET, respectively. The second row shows the residual images derived from
comparing the resulting images with ground truth. The yellow lines indicate the positions of the
profile plots shown in Figure 9.

Figure 9. Comparison of the profile plots of the yellow lines indicated in the resulting images shown
in Figure 8.

3.5. Ablation Study
3.5.1. Performance of Model Components

To validate the effectiveness of the different components in our proposed model, six ab-
lation experiments were conducted on dataset CL1. The configurations of the experiments
are shown as follows:

Var1: only the adversarial loss Ladv is introduced in the network.
Var2: the reconstruction loss Lrec is added to Var1.
Var3: the artifact consistency loss Lart is introduced to Var2.
Var4: the cycle consistency loss Lcycle is added on the basis of Var3.
Var5: the polar coordinate transformation is incorporated into Var4.
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Var6: the total variation loss Ltv is added to Var5, and this is the final network configuration.

Table 4 shows a significant increase in SSIM and PSNR scores from Var1 to Var6. Var1,
having only discriminative constraints, fails to recover many image details. However, when
introducing the reconstruction loss in Var2, the network’s performance notably improves.
At this stage, the network’s performance surpasses that of the classical unsupervised
Cycle-GAN model. Subsequently, with the inclusion of artifact consistency and cycle
consistency losses, the network’s performance sees a marked enhancement over Var2. SSIM
increases by nearly 5 percentage points, and PSNR improves by approximately 4.6 dB. To
further optimize the network, the polar coordinate transformation is incorporated in Var4,
forming Var5. The performance metrics of Var5 show further improvement, indicating
that polar coordinates indeed help enhance the separation of artifact features and content
features. Finally, with the addition of lateral TV constraints in Var6, compared to Var4,
SSIM increases by 1.6 percentage points, and PSNR improves by nearly 4 dB. These results
demonstrate the effectiveness of polar coordinates and the lateral TV constraint. Consistent
with Table 4, the residual images from Var1 to Var6 in Figure 10 are getting smaller,
confirming that all introduced constraints and tricks significantly contribute to improving
network performance.

Table 4. Quantitative analysis in the ablation study.

Model Metrics
SSIM PSNR

Var1 (Ladv only) 0.7838 24.5578
Var2 (Var1 with Lrec) 0.9232 31.2989
Var3 (Var2 with Lart) 0.9573 33.7104

Var4 (Var3 with Lcycle) 0.9710 35.8856
Var5 (Var4 with polar transformation) 0.9805 37.5096

Var6 (Var5 with Ltv) 0.9873 39.7273

Figure 10. Qualitative analysis of the ablation study of the proposed PIDNET conducted on dataset
CL1. Var1–Var6 mean different components added to the network. Each group’s three columns
represent ground truth, resulting image, and residual image, respectively.

3.5.2. Impact of Truncation Ratio and Image Size

To validate the sensitivity of our proposed model to truncation ratios and image sizes,
we conducted experiments using different truncation ratios and image sizes. In particular,
we chose truncation ratios of 30% and 50%. After applying a 30% truncation ratio, the
image size became 384 × 384, while a 50% truncation ratio resulted in an image size of
256 × 256.The results of the comparative experiments are shown in Figure 11.
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Figure 11. Comparison of results at different truncation ratios on dataset CL1 and preclinical dataset.

From Figure 11, it can be observed that the resulting images and residual images under
both truncation ratios and image sizes do not exhibit significant differences. Table 5 shows
the SSIM and PSNR scores for the two experiments.The evaluation metrics at different
truncation ratios do not differ much as the truncation ratio increases and the image size
changes, which demonstrates that our method has good robustness and adaptability.

Table 5. Quantitative comparison of different truncation ratios in terms of PSNR(dB) and SSIM.

SSIM PSNR
Ratio 30% 50% 30% 50%

Chest 0.9873 0.9885 39.7273 39.2435

Mouse 0.9903 0.9899 43.9631 42.3032

4. Discussion

The presence of truncation artifacts can significantly distort CT values, directly affect-
ing the outcomes of image diagnosis. Moreover, the truncation issue remains a challenging
problem in most application scenarios since it is an ill-posed problem. Although deep learn-
ing models have proven to effectively remove truncation artifacts in supervised settings
where a large amount of paired data are needed. Nevertheless, obtaining paired data in
numerous real application scenarios is impractical. Therefore, the conventional workflow
for supervised models in practical applications is based on training with simulated paired
data, followed by direct transfer to the target real dataset. In theory, the direct transfer
strategy could degrade the performance of trained models depending on the similarity
of the intrinsic features of the target dataset to the training dataset. In our experiments,
we validated the performance degradation of the direct transfer models. Experimental
results indicate that when the training dataset is transferred to a similar target dataset, the
performance of truncation artifact removal decreases to some extent. As the dissimilarity
between the target and training datasets increases, the performance degradation becomes
more pronounced. This suggests that supervised models, while achieving excellent results
during simulated training, face significant limitations in practical applications. Therefore,
unsupervised models are essential in real applications. In this paper, we propose a novel
unsupervised artifact removal model, which is an implicit disentanglement model. It
introduces complementary constraints by implicitly disentangling the truncation artifacts,
enhancing the performance of encoder–decoder pairs in removing truncation artifacts.
The disentangled truncation artifact features also assist in generating simulated paired
data more effectively, further strengthening the training of the encoder–decoder pair for
truncation artifact removal. We also introduce other auxiliary strategies, such as polar
coordinate transformation and the horizontal total variation strategy based on it. Exper-
imental results show that the proposed unsupervised model achieves almost equivalent
visual results as the state-of-the-art supervised models trained with paired data, with only a
slightly lower PSNR score. In the absence of paired training data, the performance of the di-
rectly transferred supervised models degrades, whereas our proposed unsupervised model
adapts well to this situation. Furthermore, the experiments confirm that our unsupervised
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model’s performance is far superior to the classical Cycle-GAN model and ADN, indicating
that our proposed disentanglement model and the various auxiliary strategies effectively
enhance the unsupervised model’s performance. Through qualitative and quantitative
analyses in the ablation study, we can see that all introduced tricks contribute to some
degree of improvement in the model. Specifically, various objective functions designed for
the implicit disentanglement network greatly enhance the network’s performance, while
the additional polar coordinate transformation and the horizontal total variation constraint
based on this transformation further improve the network’s artifact removal performance.
In this paper, we rely solely on the image domain to establish the unsupervised model,
and we have demonstrated that the unsupervised model can achieve good performance in
removing truncation artifacts and is comparable to the state-of-the-art supervised models.
However, our network still has some limitations. First, there is room for improvement in
restoring edge details. In future studies, we can enhance the performance of the model
by integrating novel techniques, such as attention mechanisms [39,40], into our approach.
Secondly, although our model is unsupervised, it still requires the support of non-truncated
data with similar features. Achieving truncation artifact removal under the condition of
only artifacted images available is the goal of our future research.Moreover, we know that
in the research on various CT artifact removal, the combination of multiple domains such
as the projection domain and image domain can be used to achieve better performance.
Many previous studies have confirmed this point, so if unsupervised models combining
with multiple domains are used to solve truncation artifact problem, there should be a
better performance improvement. This will be our research focus in the future.

5. Conclusions

In this paper, we propose a simple and efficient unsupervised method for removing
truncation artifacts. Our method is built upon the Cycle-GAN network, incorporating an
implicit disentanglement model to separate truncation artifacts from content information.
The separated artifact features are then utilized as complementary constraints to strengthen
the training of the artifact removal subnetwork. Additionally, the method synthesizes sim-
ulated paired data using these artifact features, further enhancing the performance of the
artifact removal subnetwork. Our method also introduces polar coordinate transformation
and an innovative constraint based on this transformation, specifically designed for trunca-
tion artifact features. These innovative strategies significantly enhance the performance of
the unsupervised network. Experiments conducted on multiple datasets demonstrate that
the performance of this unsupervised network surpasses that of the classic Cycle-GAN
model and ADN. Moreover, when compared to supervised models trained on paired
datasets, our proposed model achieves almost equivalent visual results, closely resem-
bling performance in SSIM, with only a slight disadvantage in PSNR. However, when
transferring supervised models to scenarios without paired data, these models experience
varying degrees of performance degradation. In contrast, the performance of our proposed
unsupervised model remains unaffected. Both subjective and objective evaluation metrics
confirm the superiority of our unsupervised model over classical supervised models. This
indicates that unsupervised models have greater practical value in real-world applications.
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