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Abstract: Evaluating the capabilities of a satellite communication system (SCS) is challenging due
to its complexity and ambiguity. It is difficult to accurately analyze uncertain situations, making
it difficult for experts to determine appropriate evaluation values. To address this problem, this
paper proposes an innovative approach by extending the Dempster-Shafer evidence theory (DST)
to the probabilistic hesitant fuzzy evidence theory (PHFET). The proposed approach introduces the
concept of probabilistic hesitant fuzzy basic probability assignment (PHFBPA) to measure the degree
of support for propositions, along with a combination rule and decision approach. Two methods are
developed to generate PHFBPA based on multi-classifier and distance techniques, respectively. In
order to improve the consistency of evidence, discounting factors are proposed using an entropy
measure and the Jousselme distance of PHFBPA. In addition, a model for evaluating the degree of
satisfaction of SCS capability requirements based on PHFET is presented. Experimental classification
and evaluation of SCS capability requirements are performed to demonstrate the effectiveness and
stability of the PHFET method. By employing the DST framework and probabilistic hesitant fuzzy
sets, PHFET provides a compelling solution for handling ambiguous data in multi-source information
fusion, thereby improving the evaluation of SCS capabilities.

Keywords: Dempster–Shafer evidence theory; probabilistic hesitant fuzzy set; capability evaluation;
satellite communication system

1. Introduction

The satellite communication system (SCS) consists of communications satellites, track-
ing and data relay satellites, and associated ground stations that provide data transmission
to support ground systems. It demands various functions, performance, and effectiveness
to carry out complex and diverse mission tasks successfully. Analyzing the capabilities
of SCS is crucial to ensure its reliability and performance in meeting expectations. In
addition, the primary objective of evaluating the capability satisfaction of the SCS is to
identify vulnerabilities and performance bottlenecks and establish a foundation for future
technology and system upgrades. Therefore, finding an accurate method to evaluate the
capability of SCS is crucial.

Numerous researchers have used various techniques to evaluate the efficiency and
performance of SCS, such as mathematical modeling [1], Bayesian theory [2], gray inte-
grated evaluation [3], ADC method [4], neural network [5], and intuitionistic fuzzy set
(IFS) [6]. However, there are still relatively few mature methods available for evaluating
the satisfaction degree of SCS capability requirements.

The Dempster–Shafer evidence theory (DST) [7] is a probabilistic reasoning method
for multi-source information fusion with uncertainty, ambiguity, and incompleteness. It has
been extensively studied in terms of evidential reasoning [8,9], belief entropy [10,11], uncer-
tainty measure [12], belief divergence measure [13], and other hybrid approaches [14–16].
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DST is widely applied in various fields, including classification [17–19], decision mak-
ing [20], risk assessment [21,22], medical diagnosis [23], and others, and others, as it offers
rigorous and effective data fusion solutions.

In traditional DST, the probability assignment of a focal element represents the level
of support for a proposition and is typically a precise value. However, in situations where
evaluation criteria are ambiguous and experts are hesitant to express their opinions, the
probability assignment may become uncertain or inaccurate. To address this challenge,
fuzzy sets such as IFS have been employed for decision-making under uncertainty [24]. As
a result, researchers have integrated DST with various approaches such as IFS, hesitant
fuzzy linguistic term sets, Pythagorean fuzzy sets, hesitant fuzzy sets (HFS) theory, and
others to capture and describe uncertainty in the decision-making process [20,25–27].

HFS was developed by Torra and Narukawato [28,29] as an extension of fuzzy sets that
models the hesitancy by allowing multiple degrees of membership values for each element.
It has been proven that the envelope of the HFSs is an IFS [28]. Compared to IFS, HFS
provides more precise information descriptions, enabling accurate characterization of the
degree associated with each evaluation value. Moreover, HFS aligns with people’s intuitive
feelings and diversity of opinions. Therefore, HFS is a valuable tool for decision-making
and analysis, especially in uncertain and ambiguous scenarios.

However, all elements in the hesitant fuzzy element (HFE) have equal occurring proba-
bilities, implying equal importance for all membership values. To address this issue, Xu and
Zhou [30] introduced the probabilistic hesitant fuzzy set (PHFS) and probabilistic hesitant
fuzzy element (PHFE), which generalize the fuzzy form by incorporating probabilities
with the associated membership values. The academic community has shown considerable
interest in the research on PHFS, leading to numerous findings [31,32] since PHFS enables
more precise characterization of fuzziness and hesitation in human thinking. In [33], a
ranking model under PHFS is introduced by extending the concept of evidence theory.
However, this approach converts probabilistic hesitant fuzzy information into a single
value before combining it with evidence theory. This premature transformation eliminates
uncertainty in PHFS, potentially overlooking uncertainties and hesitations important for
decision-making in complex systems.

Therefore, in this paper, we extend the evidence theory to the probabilistic hesitant
fuzzy evidence theory (PHFET). The probabilistic hesitant fuzzy basic probability assign-
ment (PHFBPA), a new probability assignment based on PHFS, along with the combination
rule are introduced. Moreover, we designed two methods for generating PHFBPAs using
distance and the multi-classifier approach, respectively. In addition, to address the conflicts
and uncertainty in the evidence, we employ an entropy measure and the Jousselme dis-
tance of PHFBPA to modify the evidence before fusion. Based on the PHFET, we develop a
model for evaluating the degree of satisfaction of the SCS capability demand. Furthermore,
the proposed method is applied to the classification experiments and an SCS capability
demand evaluation experiment, demonstrating the feasibility and effectiveness of the
PHFET approach.

The main contributions of this work are summarized as follows:

• We introduce the PHFBPA, which effectively represents information that is difficult
to describe with exact values. The PHFBPA incorporates both membership degrees
and probabilities, allowing for more ambiguous information representation. When
the PHFBPA element is a single value, it degenerates to the basic probability assign-
ment (BPA).

• The combination rule for PHFBPA based on the operators of PHFS and the decision-
making strategy to make the final decision are proposed. A numerical example is
provided to illustrate the feasibility of the combination rule.

• We develop two methods for generating PHFBPAs. The first method is based on the
difference between actual and expected values, with the probability distribution of
the element in the PHFE being determined by experts through system analysis. The
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second method is multi-classifier-based, where membership degrees and probabilities
are obtained through training on a dataset.

• Discounting factors are designed to modify the PHFBPA. An entropy measure of
PHFBPA is proposed as the credibility discounting factor, and its axiomatic properties
are proven. The Jousselme distance of PHFBPAs is used as the reliability discounting
factor to measure conflict between evidence.

• We compare the PHFET method with several machine learning algorithms for the
classification of some UCI data sets, and the results demonstrate the effectiveness of
the PHFET method.

• A model for evaluating SCS capability demand satisfaction degree based on PHFET
is provided, which involves establishing a capability indicator system through task
decomposition and fusing data from different indicators using the PHFET method.
Furthermore, we simulate a representative case digitally to analyze the stability of
PHFET and compare it with some traditional methods, highlighting the robustness
and superiority of the PHFET method.

The remainder of the paper is structured as follows. The relevant knowledge of
evidence theory, PHFS, and Jousselme distance is introduced in Section 2. In Section 3, the
PHFBPA, combination rule and generation methods of PHFBPA, and discounting factors
are proposed. Section 4 designs the process to evaluate the capability demand satisfaction
degree of SCS. In Section 5, the PHFET is applied to target recognition and an SCS capability
demand satisfaction degree evaluation. Section 6 summarizes this paper.

2. Preliminaries

This section briefly introduces some basic definitions of DST, PHFS, and
Jousselme distance.

2.1. Dempster–Shafer Theory

DST is a generalization of probability theory that is useful for processing uncertain
and ambiguous information. The following are the basic concepts of DST.

Definition 1 (Frame of discernment). The Frame of Discernment (FOD) is a set of mutually
exclusive and exhaustive hypotheses or propositions about the state of the world. It is defined as [7]:

Θ = {θ1, θ2, · · · , θn}, (1)

where θi is an element in the frame and n is the number of hypotheses in the frame.

Definition 2 (Power set). The power set of Θ is denoted as follows:

2Θ = {∅, {θ1}, {θ2}, · · · , {θN}, {θ1 ∪ θ2}, {θ1 ∪ θ3}, · · · , Θ}. (2)

Definition 3 (Basic probability assignment). Based on the power set Θ, the BPA, which is also
called mass function, is defined as

m : 2Θ → [0, 1], (3)

which satisfies the following conditions:

m(∅) = 0, (4)

∑
A⊆2Θ

m(A) = 1. (5)

When m(A) > 0, A is called a focal element, and m(A) indicates the degree of evidence supporting
the proposition A.
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Definition 4 (Combination rule of Dempster). Let m1(·), m2(·) be two BPA on Θ, and the
combination rule of Dempster is defined as

m(A) =
∑B∩C=A m1(B)m2(C)

1 − k
, (6)

with k = ∑B∩C=∅ m1(B)m2(C).

Definition 5. Assume m(A) to be a BPA over Θ. Let α ∈ [0, 1] be the discounting factor, and the
discounted BPA is defined as follows [7]:

m̂j(A) =

{
αm(A) + 1 − α, A = Θ
αm(A), A ⊂ Θ, A ̸= Θ

. (7)

2.2. Probabilistic Hesitant Fuzzy Set Theory

Definition 6. Let X be a fixed set; an HFS on X is in terms of a function that when applied to X
returns a subset of [0, 1], which can be represented as the following :

H = {⟨x, h(x)⟩ | x ∈ X}, (8)

where h(x) is a set of values in [0, 1], denoting the possible membership degrees of the element
x ∈ X to the set H. h(x) is a hesitant fuzzy element (HFE).

Definition 7. Let X be a reference set with finite elements; a PHFS on X is defined as :

Hp = {⟨x, hp(x)⟩ | x ∈ X}. (9)

The PHFE h(x) can be described as:

hp(x) = {γi(pi) | i = 1, 2, · · · , n}, (10)

where γi ∈ [0, 1] denotes the possible membership degrees of the element x ∈ X to the set Hp,
pi ∈ [0, 1] is the associated occurring probability, and ∑n

i=1 pi = 1, n is the cardinality of hp(x).

Definition 8. The score function of the PHFE hp = {γi(pi) | i = 1, 2, · · · , n} is defined as:

score(hp) =
n

∑
i=1

γi pi. (11)

Definition 9 ([30]). Given PHFEs: hp1 and hp2, the multiplication operator is presented as follows:

hp1 ⊗ hp2 =
⋃

γ1∈hp1,γ2∈hp2
{[γ1γ2](p1 p2)} . (12)

2.3. Jousselme Distance

Definition 10 ([34]). The Jousselme distance, denoted as dJ , is defined as follows:

dJ(m1, m2) =

√
1
2
(m1 − m2)

TD(m1 − m2

)
, (13)

where D is a 2n × 2n dimensional matrix, n is the number of mutually exclusive and exhaustive
hypotheses, and

D(A, B) =
|A ∩ B|
|A ∪ B| , (14)
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where |A ∪ B| denotes the cardinality of the subset of the union A and B. |A ∩ B| measures the
number of common objects between elements A and B. It is easy to see that D(A, B) ∈ [0, 1], and
the larger D(A, B) is, the more similar the focal elements A and B are.

3. Probabilistic Hesitant Fuzzy Evidence Theory

This section introduces PHFET, including a new BPA called PHFBPA, combination
rule, decision strategy, generation methods of PHFBPA, and discounting factors.

3.1. The Concept of the Probabilistic Hesitant Fuzzy Evidence Theory

First, referring to the definitions of PHFS, the mathematical expression and definition
of the PHFBPA for focal elements are as follows:

Definition 11. The PHFBPA of Θ on the power set space 2Θ is defined as follows:

mP = {⟨θ, hp(θ)⟩ | θ ∈ 2Θ}, (15)

where hp(θ) is a PHFE, hp(θ) = {γi(pi) | i = 1, 2, · · · , n} and γi ∈ [0, 1] represent the set of
probability assignments of focal elements θ ∈ 2Θ, pi ∈ [0, 1] is the associated occurring probability,
and ∑n

i=1 pi = 1, n is the cardinality of hp(θ).

The PHFBPA embodies the hesitation between multiple quantitative single values
and the importance of each expert opinion. It can be seen that if hp(θ) contains only one
unique value, the PHFBPA of the focal element degenerates into the classical single-value
probability assignment, so that the PHFBPA of the focal element can be regarded as a
generalized BPA.

The summation operation of PHFBPA is defined as the accumulation of the probability
assignments and the probabilities, respectively:

mP1(θ1) + mP2(θ2) = {[γσ(i)
1 + γ

σ(i)
2 ](pσ(i)

1 + pσ(i)
2 )}q

i=1, (16)

where γ
σ(i)
1 and γ

σ(i)
2 are the i-th largest values in mP1(θ1) and mP1(θ2), and pσ(i)

1 , pσ(i)
2 are

the associated probabilities. q = max{n1, n2}, in which n1, n2 are the cardinality of mP1(θ1),
mP1(θ2). If n1 ̸= n2, several terms γ(p) must be provided based on the conservative
criterion or the optimistic criterion [35] with the probability 0.

Based on the multiplication operator Equation (12) of PHFS, PHFBPA operators are
also given to deal with focal elements:

mP1(θ1)⊗ mP2(θ2) =
⋃

γ1∈mP1(θ1),γ2∈mP2(θ2)

{[γ1γ2](p1 p2)}. (17)

Definition 12. Let mP1(·), mP2(·) be two sources of evidence on Θ, and A, B, C are subsets of 2Θ.
The combination rule of PHFET is defined as:

∀A ∈ 2Θ, mPM(A) = ∑
B,C∈2Θ ,B∩C=A

mP1(B)⊗ mP2(C). (18)

To make a final decision according to PHFBPAs, we use the score function Equation (11)
to evaluate the probability of the focal element. The higher the score value, the higher
the degree of trust in the proposition. Thus, the maximum support rule is adopted as the
strategy of decision-making. Therefore, the maximum modulus of PHFBPA will be selected
as the decision, denoted as:

D = arg max
θ∈DΘ

score(mp(θ)). (19)
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Example 1. Suppose that there are two PHFBPAs on the FOD Θ = {θ1, θ2}; they are described
as follows:

mP1 = {mP1(θ1), mP1(θ2), mP1(θ1 ∪ θ2)}
= {{0.6(0.8), 0.5(0.2)}, {0.2(0.5), 0.1(0.5)}, {0.3(0.7), 0.2(0.3)}},

(20)

mP2 = {mP2(θ1), mP2(θ2), mP2(θ1 ∪ θ2)}
= {{0.6(0.3), 0.4(0.7)}, {0.4(0.6, 0.3(0.4))}, {0.2(0.8), 0.1(0.2)}}.

(21)

Then, following the combination rule of PHFET, the fusion result is calculated as follows :

mP(θ1) = ∑

⋃
mP1(θ1)⊗ mP2(θ1),

mP1(θ1)⊗ mP2(θ1 ∪ θ2),
mP2(θ1)⊗ mP1(θ1 ∪ θ2)




= ∑

⋃
{0.36(0.24), 0.3(0.06), 0.24(0.56), 0.2(0.14)},
{0.12(0.64), 0.1(0.16), 0.06(0.16), 0.05(0.04)},
{0.18(0.21), 0.12(0.49), 0.12(0.09), 0.08(0.21)}




= {0.66(1.09), 0.52(0.71), 0.42(0.81), 0.33(0.39)},

(22)

mP(θ2) = ∑

⋃
mP1(θ2)⊗ mP2(θ2),

mP1(θ2)⊗ mP2(θ1 ∪ θ2),
mP2(θ2)⊗ mP1(θ1 ∪ θ2)




= ∑

⋃
{0.08(0.3), 0.06(0.2), 0.04(0.3), 0.03(0.2)},
{0.04(0.4), 0.02(0.4), 0.02(0.1), 0.01(0.1)},

{0.12(0.42), 0.09(0.28), 0.08(0.18), 0.06(0.12)}




= {0.24(1.12), 0.17(0.88), 0.14(0.58), 0.1(0.42)},

(23)

mP(θ1 ∪ θ2) = ∑
{⋃{

mP1(θ1 ∪ θ2)⊗ mP2(θ1 ∪ θ2)
}}

= {0.06(0.56), 0.04(0.24), 0.03(0.14), 0.02(0.06)}.
(24)

In order for mP(θ1) and mP(θ2) to satisfy the definition of PHFBPA, the probabilities should be
normalized. Then, calculate the scores of each focal element as:

score(mp(θ1)) = 0.66 × 0.3633 + 0.52 × 0.2367 + 0.42 × 0.27 + 0.33 × 0.13 = 0.5192, (25)

score(mp(θ2)) = 0.24 × 0.3733 + 0.17 × 0.2933 + 0.14 × 0.1933 + 0.1 × 0.14 = 0.1805, (26)

score(mp(θ1 ∪ θ2)) = 0.06 × 0.56 + 0.04 × 0.24+0.03 × 0.14 + 0.02 × 0.06 = 0.0486. (27)

score(mp(θ1)) has the largest value; thus, the final decision is θ1.

Based on Example 1, it can be observed that after the aggregation operation, the
resulting PHFBPAs should be accumulated to obtain the final PHFBPAs of the fused focal
elements. In the traditional belief function framework, an overall belief mass of 1 is assigned
to represent the overall belief, which is then distributed among different focal elements.
However, in the case of PHFET, it requires that the score of the sum of the PHFBPAs
for each focal element derived from the same source of evidence should be equal to 1
score(∑A⊆2Θ m(B)) = 1. If this condition is not met, the data must be normalized.

Let any subset of Θ be A; the sum of the basic belief corresponding to all subsets of A
is referred to as the belief function, defined as:

Bel(A) = score( ∑
B⊆A

mP(B)). (28)
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The plausibility function Pl(A) represents the non-false trust of A and is defined as:

Pl(A) = score( ∑
B∩A ̸=ϕ

mP(B)) = 1−Bel(A). (29)

3.2. Generation Methods of Probabilistic Hesitant Fuzzy Basic Probability Assignment

The quality of BPAs significantly impacts the result of evidence fusion and the fi-
nal decision. Therefore, BPA generation is a crucial aspect of evidence theory. There
are two commonly employed approaches for BPA generation. One approach involves
subjective input from experts or decision-makers, drawing upon their extensive experi-
ence and knowledge. The other approach revolves around modeling the collected data to
derive BPAs.

In this section, two methods for generating PHFBPAs are designed. The first method
is based on distance and incorporates experts’ analysis and insights. The second method
relies on a multi-classifier approach and data.

Assume there are N classes on FOD Θ; N is the cardinality of 2Θ, and each class has k
attributes, denoted as ai1, ai2, · · · , aik.

3.2.1. Distance-Based Generation Method

For practical systems, obtaining sufficient, reliable training data can be challenging.
To address this issue, we propose a method for generating PHFBPAs based on the distance
between sample data and ideal values derived from system analysis and experts’ opinions.
The steps are as follows:

• Step 1: Define the ideal values for each class. The ideal value of class i is denoted as
Ci = (ci1, ci2, · · · , cik), where cik is the ideal value of attribute aik. These values can be
determined based on expert analysis of the system or through the use of clustering
algorithms such as KMeans. For test sample S = (s1, s2, · · · , sk), if sk is equal to Cik,
then sk is considered to belong to class i.

• Step 2: Calculate the distance between the actual and expected values. To generate the
probability assignment for test sample S, we employ the Euclidean distance metric
to quantify the dissimilarity. The Euclidean distance between S and each center Ci is
computed as follows:

dik =| sk − cik | . (30)

• Step 3: Generate BPAs. The proximity of sk to a center determines the likelihood
of sk belonging to that class. As sk moves further away from a center, its likelihood
of belonging to that class diminishes. Therefore, the following formula is given to
calculate the BPAs of the kth attribute:

γ(θi) =
αe

−d2
ik

2

∑N
i=1 αe

−d2
ik

2

, (31)

where α > 0 is an adjustment parameter representing the impact of the distance.
• Step 4: Add the corresponding probabilities to the BPAs. The probabilities p(θi) ∈

(0, 1] are determined by experts, and they are added to the BPAs to obtain the PHFE
containing a single value hp(θi) = {γ(θi)(p(θi))} .

• Step 5: Select different criteria and repeat Steps 1–4. Experts may have difficulty
determining the ideal value for a specific focal element due to uncertainty or variability
in evaluation criteria. Thus, n ideal values C1

i · · ·Cn
i are determined based on different

evaluation criteria for class i. By performing the aforementioned Steps 1–4 n times,
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we can obtain multiple elements γ(θi)(p(θi)), which collectively form the PHFBPA of
attribute k for class i:

mP(θi) = {γj(θi)(pj(θi)) | j = 1, 2, · · · , n}. (32)

3.2.2. Multi-Classifier-Based Generation Method

Sometimes, obtaining accurate occurrence probabilities for uncertain elements in
PHFE through the subjective judgment of experts can be challenging. To address this, we
designed a method to generate PHFBPAs based on multiple classifiers. The specific steps
are as follows:

• Step 1: Divide the original data set into a training set and test set.
• Step 2: Construct multiple classifiers. Utilize the training data to create n distinct

classifiers for each piece of evidence. These classifiers are denoted as classifier
1, 2, · · · , j, · · · , n. The output of each classifier should consist of sets of real num-
bers in [0, 1], representing the degree to which a sample belongs to different classes.
The classifiers should be capable of providing the probability of each class to which
a sample belongs, denoted as y = {y(θ1), · · · , y(θi)}. The accuracy of a classifier,
represented as Acc, measures the proportion of correctly classified samples. It can be
calculated using the following formula:

Acc =
1
N

N

∑
i=1

TPi + TNi
TPi + TNi + FPi + FNi

, (33)

where i represents class index and N is the total number of classes. TP, TN, FP,
and FN denote True Positives, True Negatives, False Positives, and False Negatives,
respectively.

• Step 3: Generate PHFBPAs. The test set is inputted into the trained classifiers to obtain
the output of each classifier. The corresponding probability based on the accuracy of
each classifier is calculated as follows:

pj =
Accj

∑n
j=1 Acc

. (34)

Subsequently, the PHFBPAs can be obtained as shown below:

mP(θ(i)) = {yj(θi)(pj) | j = 1, 2, · · · , n}. (35)

3.3. Discounting Factors

Uncertainty and conflicts in evidence can result in inaccurate fusion results, thus
limiting the practical application of evidence theory. Given that uncertainty and conflicts
are typically caused by unreliable sources before the fusion process, we have adopted a
discounting approach to estimate the reliability of evidence bodies and handle them before
the fusion step. The mass function is then modified, considering both the uncertainty and
distance between bodies of evidence.

3.3.1. Uncertainty Measurement

According to information theory, the information quantity is proportional to its uncer-
tainty. Conversely, evidence with lower information entropy provides more information
and fosters greater confidence. As the information entropy of evidence increases, it delivers
less information, involves more uncertainty, and inspires less confidence. In DST, entropy
is a measure of uncertainty and disorder and has been utilized in the uncertainty measure-
ment represented by BPA [36,37]. To measure the ambiguity and uncertainty of PHFBPA,
we extend the entropy measure introduced by [38] for HFS to an entropy measure for PHFS.
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In proceeding with the axiomatic definition of entropy measures for PHFBPAs, denote
A = {⟨θ, hp⟩ | θ ∈ 2Θ} as A = {hp}, where hp represents a fixed PHFE.

Definition 13. Let mP be a PHFBPA defined on FOD Θ, and an entropy measure is represented
as follows:

Ep(mP) =
1

|mP|

|mP |

∑
i=1

(1 − 2
n

∑
j=1

pj(θi) | γj(θi)− 0.5 |)

= 1 − 2
|mP|

|mP |

∑
i=1

(
n

∑
j=1

pj(θi) | γj(θi)− 0.5 |),

(36)

where |mP| is the cardinality of mP.

Proposition 1. Let A, B be two PHFBPAs; AC =
{
⟨θ, hAC (θ)⟩ | θ ∈ 2Θ} is the complement

PHFBPA of A, where hAC (θ) = {(1 − γj)(pj) | j = 1, 2, · · · , n}. The probabilistic hesitant fuzzy
entropy of the PHFBPA defined in Definition 13 has several properties as follows:

1. 0 ≤ Ep(A) ≤ 1;
2. EP(A) = 0 iff A = {0(p), 1(1 − p)} ;
3. EP(A) = 1 iff A = {0.5(1)};
4. EP(A) = EP(AC);
5. EP(A) ≤ EP(B), if γAj ≤ γBj ≤ 1/2 or 1/2 ≤ γBj ≤ γAj and pAj = pBj.

Proof.

1. Since 0 ≤ γ(θi) ≤ 1 and 0 ≤ p(θi) ≤ 1, then 0 ≤| γ(θi)− 0.5 |≤ 0.5, and 0 ≤ p(θi) |
γ(θi)− 0.5 |≤ 0.5. From ∑n

j=1 pj = 1, we know 0 ≤ 2 ∑n
j=1 pj(θi) | γj(θi)− 0.5 |≤ 1.

Then, 0 ≤ 1− 2 ∑n
j=1 pj(θi) | γj(θi)− 0.5 |≤ 1, yielding 0 ≤ 1

|A| ∑|A|(1− 2 ∑n
j=1 pj(θi) |

γj(θi)− 0.5 |) ≤ 1; thus, 0 ≤ Ep(A) ≤ 1.
2. EP(A) = 0 iff 1 − 2 ∑n

j=1 pj(θi) | γj(θi)− 0.5 |= 0 iff ∑n
j=1 pj(θi) | 2γj(θi)− 1 |= 1,

then γ(θi) = 0 or γ(θi) = 1, A = {0(p), 1(1 − p)}.
3. EP(A) = 1 iff 1 − 2 ∑n

j=1 pj(θi) | γj(θi)− 0.5 |= 1 iff ∑n
j=1 pj(θi) | 2γj(θi)− 1 |= 0 iff

γ(θi) = 0.5.

4. Since AC =
⋃{1−γj(θi)(pj(θi))}, then Ep(A) = 1− 2

|mp |

|mp |
∑

i=1
(∑n

j=1 p(θi) | 1−γ(θi)−

0.5 |) = Ep(AC).
5. If γAj ≤ γBj ≤ 1/2 or 1/2 ≤ γBj ≤ γAj and pAj = pBj, then | γAj(θi) − 0.5 |≥|

γBj(θi) − 0.5 |. Hence, 1 − 2 ∑n
j=1 pAj(θi) | γAj(θi) − 0.5 |≤ 1 − 2 ∑n

j=1 pBj(θi) |
γBj(θi)− 0.5 |, which implies EP(A) ≤ EP(B).

The credibility discounting factor can be obtained as:

ωi =


1/Ep(mi)

∑k
i=1 1/Ep(mi)

, Ep(mi) ̸= 0

1/k, Ep(mi) = 0
, (37)

in which k is the number of bodies of evidence.

3.3.2. Conflict Measurement

The Jousselme evidence distance is an effective approach to estimate the presence of
conflicts between evidence. Therefore, we establish the reliability of evidence based on
the Jousselme evidence distance. According to Definition 10, the Jousselme distance of
PHFBPA is given as follows:
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Definition 14. Let mP1 and mP2 be two PHFBPAs defined on the same FOD Θ; A and B are any
focal elements of mP1 and mP2. The Jousselme distance, denoted as dp, is defined as

dp(mP1, mP2) =

√
1
2
(mP1 − mP2)

TD(mP1 − mP2

)
, (38)

in which D is an N × N dimensional matrix, N is the cardinality of 2Θ,

mP1 − mP2 =


hp1(θ1)⊖ hp2(θ1)
hp1(θ2)⊖ hp2(θ2)

...
hp1(θN)⊖ hp2(θN)

, (39)

and for θi ∈ 2Θ:

hp1(θi)⊖ hp2(θi) =
n

∑
j=1

(p1
j (θi)γ

1
j (θi)− p2

j (θi)γ
2
j (θi)), (40)

where n is the cardinality of hp(θi).

The degree of similarity can be defined as

Sim(mP1, mP2) = 1 − dP(mP1, mP2). (41)

The reliability discounting factor can be quantified by the support degree, which is defined
as below:

υi =
∑k

j=1,j ̸=i s(mij)

∑k
j=1 ∑k

j=1,j ̸=i s(mi)
, (42)

where k is the number of bodies of evidence.
Before combining the evidence, it is essential to adjust the PHFBPAs with the credibility

discounting factor and the reliability discounting factor. However, in practice, inconsistency
in the status of different information sources leads to different levels of importance for
different evidence. Consequently, an importance weight is assigned to every body of
evidence to accurately reflect its relative importance in the evaluation process. Let the
importance weight be δ, and ∑k

i=1 δi = 1. Then, the normalized weight assigned to each
body of evidence is as follows:

αi = δi
ωiυi

∑k
i=1 ωiυi

. (43)

According to Definition 5 and the weight of each body of evidence, the discounted PHFBPAs
are as follows:

mP(θ) =
k

∑
i=1

αimPi(θ). (44)

Then, use the combination rule in Definition 12 to fuse the modified evidence for k − 1
times to obtain the final result.

4. Capability Evaluation of a Satellite Communication System

Capability refers to the function, performance, and efficiency that a system must
possess to successfully accomplish a specific mission. In this section, an evaluation model
based on evidence theory is established to analyze whether the current capability of the
SCS aligns with the requirements of the mission task.

By decomposing the mission task and conducting system analysis, we identify the
specific demands associated with the mission. Subsequently, we construct a comprehensive
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capability indicator system that encompasses these demands. To measure the satisfaction
level of the capability demands, we employ the PHFET to fuse data from different indicators.

4.1. Capability Indicator System Construction

In order to establish a comprehensive evaluation model for the capability demand
satisfaction of SCS, it is necessary to decompose the demands into specific capabilities that
can be assessed. In this regard, a set of capability indicators must be established to assess
the level of performance for each capability. These indicators should be measurable, reflect
the key attributes of each capability, and be structured in a hierarchical system. Therefore,
a thorough analysis of the demands and capabilities is required to establish an evaluation
model that can effectively guide the development of the SCS. The process of constructing
the indicator system is illustrated in Figure 1.

• Step 1: Task analysis. The initial step involves the decomposition of mission tasks to
identify the capabilities that are necessary to support these tasks. Given that mission
tasks are diverse in nature, the capabilities required to accomplish them are also varied.
Thus, by breaking down the core mission task T, we obtain independent and unique
sub-tasks at different levels, denoted as

T = {T1, T2, · · · , Ti}. (45)

Secondly, refine tasks into activity options. The unit-level activities A describe the
specific behavior required to complete the tasks, and their corresponding relationships
with capabilities are relatively stable, allowing for mapping with capability indica-
tors. We gradually decompose the tasks until we reach activities that correspond to
capability indicators

Ti = {A1
i , A2

i , · · · , Aj
i}. (46)

It is worth noting that lower-level tasks can simultaneously support multiple upper-
level tasks. To enhance the accuracy of our task description, we aggregate the final
level of sub-tasks and activities, eliminating any duplication or redundancy.

• Step 2: Capability analysis. The specific execution of an activity requires certain
capabilities, creating a one-to-one or one-to-many mapping relationship between
activities and capabilities, denoted as follows:

Aj
i = {Ca1, Ca2, · · · , Cam}. (47)

Capabilities are further broken down into multiple sub-capabilities until they arrive at
measurable capability indicators.

Cam = {ca1
m, ca2

m, · · · , can
m}, (48)

representing n sub-capabilities under capability Cam.
• Step 3: Indicator analysis. A capability is defined by one or more capability indicators

can
m = {I1, I2, · · · }, which are measurable capability attributes. We decompose the

capabilities to obtain sub-capabilities, and this iterative decomposition process contin-
ues until we reach a set of basic measurable, operable, and understandable attributes,
that is, technical and tactical indicators of the system.
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Figure 1. Indicator system construction process.

The SCS primarily performs information transmission tasks. The degree of task com-
pletion varies depending on its information transmission capability, information security
and protection capability, and other factors. Through the process outlined above, we have
constructed a general evaluation indicator system for the SCS, consisting of three main ca-
pability indicators: service acquisition capability, information transmission capability, and
security capability. Moreover, each of the main indicators was decomposed into multiple
quantifiable individual indicators. As a result, we have obtained a hierarchical capability
indicator system for the SCS, as shown in Figure 2.

Capability 
indicators of SCS

Service 
acquisition 
capability

Coverage 
capability

Ground coverage

Orbital coverage

Time coverage

Connectivity 
capability

Inter-satellite link 
connectivity

Information 
transmission 

capability

Transmission 
quality

Signal to noise 
ratio

Bit error ratio

Link interruption 
rate

Packet loss ratio

Service quality

Bandwidth

Time delay

Throughput 
capacity

Transmission rate

Security capability

Anti-interference 
capability

Link anti-
interference 
capability

Terminal anti-
interference 
capability

Anti-destruction 
capability

Satellite 
protection 
capability

Network 
reconfiguration 

capability

Information 
security capability

Data privacy 
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Figure 2. Capability indicator system of SCS.

4.2. Capability Demand Satisfaction Degree Evaluation

After obtaining the capability indicators for a specific mission, we employ PHFET to
obtain the PHFBPA of each indicator and then combine the results in order to evaluate the
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overall capability demand satisfaction degree of the SCS. The process of the evaluation is
shown in Figure 3.

To evaluate the satisfaction degree of the SCS using evidence theory, it is essential to
establish the appropriate frame before combining information expressed as belief functions.
Each element in the frame of discernment represents a level of satisfaction with the capabil-
ities required for the task. For example, we define Θ = {θ1, θ2}, where θ1 indicates that the
SCS possesses the capacity to meet the demands, and θ2 suggests that the capabilities of
the SCS do not meet the demands. Hence, when the degree of satisfaction is divided into N
levels, the frame of discernment is established as follows:

Θ = {θ1, θ2, · · · , θN}, (49)

where θN represents the Nth degree of satisfaction.
Firstly, we design the simulation experiments under specific operational scenarios to

obtain the experimental data of each indicator according to the mission task and indicator
system. Subsequently, these experimental data are utilized to calculate the PHFBPAs of
each indicator for each class of satisfaction under the established FOD. In cases where there
are insufficient training data, the distance-based method proposed in Section 3.2.1 can be
employed, where the ideal value of the indicator represents the desirable value that must
be achieved to complete the task. Conversely, the muti-classifier based method proposed
in Section 3.2.2 can be used to derive the PHFBPAs. Then, we discount the PHFBPAs by
solving the uncertainty and conflicts. Moreover, the different importance of each indicator
can be adjusted by adding importance weights to the PHFBPAs. Finally, combine the
PHFBPA of all indicators to obtain the capability demand satisfaction degree of the SCS
under a specific mission.

It is worth noting that the ideal value of the same indicator under different sub-tasks
can take different values, thus constituting multiple degrees of membership values for each
element in the PHFBPA. And the probability of each PHFE in the PHFBPA can also indicate
the importance of sub-tasks.

FOD

Indicator
Indicator

Indicators

Demands

Distance based 
generation method

Multi-classifier 
based generation 

method

PHFBPA of 
indicator-1

PHFBPA of 
indicator-i
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… …

Uncertainty measurement 
(credibility discounting factor)

Discounting PHFBPAs

Combination

Conflict measurement 
(reliability discounting factor)

Capability demand 
satisfaction degree

Simulation and 
experiment

Mission task Indicator
Indicator

Indicator system

Figure 3. Capability demand satisfaction evaluation process.

5. Verification and Application

In this section, two types of experiments are conducted to evaluate the performance
of the PHFET on classification and capability demand satisfaction degree evaluation. To
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achieve this, we utilize data sets obtained from the UCI machine learning repository,
alongside a case simulation of SCS.

5.1. Verification on Classification

The applications in this study utilize several data sets sourced from the UCI machine
learning database. These data sets include the Statlog (Australian Credit Approval) data set,
Breast Cancer Wisconsin (Diagnostic) data set, Seeds data set, Climate Model Simulation
Crashes data set (CMSC), Heart disease data set, Wine data set, and Ionosphere data set.
The details are shown in Table 1.

Table 1. Basic information of the data sets.

Data Set Attribute
Type Instances Attributes Class Subject Area

Statlog Categorical,
Integer, Real 690 14 2 Financial

Breast Cancer Real 569 30 2 Life
Seeds Real 210 7 3 Life
CMSC Real 540 18 2 Physical

Heart disease Categorical,
Integer, Real 303 13 5 Life

Wine Integer, Real 178 13 3 Physical
Ionosphere Integer, Real 351 34 2 Physical

To demonstrate the effectiveness of the proposed method in classification, several
algorithms are selected. These algorithms include XGBoost, Support Vector Machine (SVM),
Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). For each dataset,
we have chosen ten classifiers from these five methods to generate a diverse set of classifiers.
The specific classifiers used are as follows:

1. XGBoost classifiers with booster options of gbtree and gblinear.
2. SVM classifiers with radial basis function kernel and linear kernel.
3. RF classifiers with criterion options of gini and entropy.
4. Multi-Layer Perceptron (MLP) classifiers with two hidden layers using either 10-10 or

20-10 nodes, and tansig activation function.
5. LR classifiers with LBFGS and Stochastic Average Gradient (SAG) solver, respectively.

To combine the classifiers, the PHFET method is used. Five types of classifiers are
utilized, resulting in five bodies of evidence. Each body of evidence includes information
from two classifiers. The mass function of evidence is generated using the output of two
classifiers and their accuracy, according to Equations (34) and (35). In the experiments,
the 5-fold cross-validation method is employed, which is a common method to test the
accuracy of the classification algorithm. The mean accuracy of different classifiers based on
different data sets is provided in Table 2.

Table 2. Classification accuracy of different methods.

Data Set XGBoost-1 XGBoost-2 SVM-1 SVM-2 RF-1 RF-2 MLP-1 MLP-2 LR-1 LR-2 PHFET

Statlog 0.8810 0.8578 0.8564 0.8534 0.8810 0.8883 0.8549 0.8549 0.8593 0.8593 0.8905
Breast cancer 0.9701 0.9649 0.9210 0.9210 0.9649 0.9649 0.9139 0.8402 0.9438 0.9139 0.9912

Seeds 0.9191 0.9571 0.9381 0.9429 0.9143 0.8952 0.9143 0.9000 0.9381 0.9381 0.9762
CMSC 0.9204 0.9204 0.9204 0.9500 0.9500 0.9556 0.9574 0.9611 0.9630 0.9630 0.9630

Heart disease 0.5710 0.5876 0.5808 0.5842 0.5841 0.5775 0.5940 0.6007 0.5875 0.5875 0.6333
Wine 0.9492 0.9552 0.6571 0.9494 0.9776 0.9775 0.6356 0.6395 0.9494 0.7135 1.0000

Ionoshpere 0.9345 0.8805 0.9402 0.8804 0.9402 0.9375 0.8719 0.8803 0.8803 0.8803 0.9486

As observed from Table 2, the PHFET method consistently achieves the highest accu-
racy across all seven data sets. These results clearly demonstrate the effectiveness of the
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PHFET method in merging the information and advantages of multiple classifiers, leading
to improved recognition accuracy.

5.2. Application on Capability Demand Satisfaction Evaluation of SCS

To demonstrate the effectiveness of a practical SCS capability evaluation, a specific
information assurance mission is considered. This evaluation aims to assess the SCS’s ability
to meet the requirements of the mission task. The SCS consists of the walker constellation,
with a total of 24 satellites, 4 orbital planes, and 6 satellites per orbital plane.

The objective of this operation is to safeguard maritime and land-based communica-
tions, which can be further divided into three tasks: command communications, reconnais-
sance intelligence transmission, and daily communications tasks. These activities involve
issuing command orders, transmitting and receiving positioning information and weather
updates, facilitating daily communications, and providing broadcasting services. By ana-
lyzing each activity individually, a list of SCS capability demands under the information
assurance mission is compiled, along with corresponding capability indicators. These
indicators include ground coverage, orbital coverage, time coverage, inter-satellite link
connectivity, signal-to-noise ratio, bit error ratio, link interruption rate, packet loss ratio,
bandwidth, time delay, transmission rate, throughput capacity, denoted as I1 to I12.

The evaluation considers three concentrations within the FoD:

V = {v1, v2, v3}, (50)

where v1, v2, v3 represent the satisfaction levels of high, medium, and low, and the bound-
aries of v1, v2, and v2 are not precisely defined.

Assume that there are two potential schemes for constructing the SCS to fulfill the
mission. The demand indicator values of different satisfaction levels have been provided
by experts, and the indicator values of different schemes are collected from simulation. The
values of the demand indicators for maritime communication are 0.9, 0.8, 0.8, 0.75, 0.7, 0.95,
0.95, 0.8, 0.9,1.1, 0.9, 0.9 times higher than that for land, respectively.

In order to integrate the different indicator values, the raw data need to be standardized
and converted into normalized data with a range of [0, 1]. The demand indicators of the
land communication assurance mission and the indicators of two schemes are given in
Table 3.

Table 3. Values of capability indicators.

Indicators Demand
Value of v1

Demand
Value of v2

Demand
Value of v3

Scheme 1 Scheme 2

I1 0.9679 0.7364 0.6312 1 0.9772
I2 0.8878 0.6658 0.4439 0.9903 1
I3 1 0.9 0.7 0.9772 0.9897
I4 1 0.5 0.2 0.7789 0.8355
I5 0.9672 0.9188 0.8705 0.9636 1
I6 0.7921 0.9307 1 0.8267 0.8239
I7 0.1667 0.6667 1 0.3553 0.6927
I8 0.3333 0.5 1 0.4517 0.8553
I9 1 0.9333 0.8333 0.9719 0.9718
I10 0.8 0.8571 1 0.8083 0.8040
I11 1 0.8947 0.7895 0.9704 0.9742
I12 1 0.5 0.3125 0.9375 0.5000

The importance of two parts of the mission under 12 indicators is shown in Table 4.
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Table 4. Importance of mission.

Importance I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

Land communication 0.6 0.8 0.8 0.7 0.6 0.75 0.5 0.8 0.8 0.8 0.8 0.6
Maritime communication 0.4 0.2 0.2 0.3 0.4 0.25 0.5 0.2 0.2 0.2 0.2 0.4

According to the distance-based generation method, the data of 12 indicators are
modeled as PHFBPAs, which consist of the importance and the degree of affiliations of
demand of two parts of the mission. The detailed PHFBPAs of scheme 1 are shown in
Table 5.

Table 5. PHFBPAs of scheme 1.

PHFBPAs mP(v1) mP(v2) mP(v3)

mP1 {0.3794(0.6), 0.3415(0.4)} {0.3309(0.6), 0.2978(0.4)} {0.2898(0.6), 0.26070(0.4)}
mP2 {0.4185(0.8), 0.3348(0.2)} {0.3463(0.8), 0.2770(0.2)} {0.2352(0.8), 0.18819(0.2)}
mP3 {0.3512(0.8), 0.2809(0.2)} {0.3474(0.8), 0.2779(0.2)} {0.3015(0.8), 0.2412(0.2)}
mP4 {0.3987(0.7), 0.2990(0.3)} {0.3763(0.7), 0.2823(0.3)} {0.2250(0.7), 0.1687(0.3)}
mP5 {0.3357(0.6), 0.2350(0.4)} {0.3344(0.6), 0.2341(0.4)} {0.3299(0.6), 0.2310(0.4)}
mP6 {0.3419(0.75),0.3248(0.25)} {0.3354(0.75),0.3186(0.25)} {0.3227(0.75),0.3066(0.25)}
mP7 {0.4251(0.5), 0.4039(0.5)} {0.3761(0.5), 0.3573(0.5)} {0.1988(0.5), 0.1889(0.5)}
mP8 {0.3865(0.8), 0.3092(0.2)} {0.3956(0.8), 0.3165(0.2)} {0.2179(0.8), 0.1743(0.2)}
mP9 {0.3376(0.8), 0.3038(0.2)} {0.3371(0.8), 0.3034(0.2)} {0.3254(0.8), 0.2928(0.2)}
mP10 {0.3419(0.8), 0.3761(0.2)} {0.3403(0.8), 0.3744(0.2)} {0.3177(0.8), 0.3495(0.2)}
mP11 {0.3415(0.8), 0.3073(0.2)} {0.3382(0.8), 0.3044(0.2)} {0.3204(0.8), 0.2884(0.2)}
mP12 {0.4654(0.6), 0.4189(0.4)} {0.3199(0.6), 0.2879(0.4)} {0.2147(0.8), 0.1933(0.4)}

As depicted in Table 5, an inconsistency arises between mP8 and other evidence since
mP8 assigns more belief mass to satisfaction level v2 compared to v1, which is supported
by other evidence. To ensure a comprehensive synthesis, it is crucial to merge the vari-
ous pieces of data. Relying solely on a single piece of evidence would be unreliable for
making informed decisions. Therefore, in order to address the uncertainties and conflicts,
the reliability discounting factor is determined by employing the Jousselme distance of
PHFBPAs, while the credibility discounting factor is determined using the entropy measure
of PHFBPAs.

According to Equation (37), the credibility discounting factors could be calculated
as follows:

ω = [0.0833 0.0833 0.0833 0.0824 0.0814 0.0839 0.0836 0.0833 0.0838 0.0847 0.0838 0.0833]T. (51)

Following Equation (42), the reliability discounting factors could be calculated as:

υ = [0.0834 0.0834 0.0834 0.0826 0.0816 0.0838 0.0837 0.0834 0.0836 0.0844 0.0836 0.0833]T. (52)

The credibility discounting factors and the reliability discounting factor are integrated to
form the final weight to adjust the PHFBPAs of the evidence. Applying the combination rule
of PHFET Equation (18) to fuse the modified evidence 11 times and use the score function
of PHFBPA to obtain the final result as: score(mp1(v1)) = 0.8725, score(mp1(v2)) = 0.127,
score(mp1(v3)) = 0.0005. These scores indicate a high degree of satisfaction with the
capability demand for scheme 1, suggesting that the Satellite Communication System (SCS)
built according to this scheme possesses the necessary capabilities to successfully fulfill
the mission.

To facilitate a comparison between different schemes, assume that there are scheme 3
and scheme 4. Scheme 3 shares identical indicators with scheme 1, except for I6 = 0.896
and I7 = 0.8267. On the other hand, scheme 4 has identical indicators to scheme 1, except
for I8 = 0.335. The fusion result for these four schemes are illustrated in Figure 4.

Analyzing the satisfaction degrees of the four schemes reveals that scheme 1, scheme
3, and scheme 4 exhibit high levels of satisfaction, while scheme 2 demonstrates a moderate
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level. The discrepancies in the indicator values account for the variations in satisfaction
levels among scheme 1, scheme 3, and scheme 4. Notably, scheme 3 yields the highest
level of satisfaction. However, despite a notable reduction in packet loss ratio compared to
scheme 1, its impact on overall improvement is minimal.
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Figure 4. Satisfaction degrees of different schemes.

5.3. Discussion

To assess and validate the stability of the proposed algorithm, we conducted sensitivity
analysis on the indicator weights and mission importance to examine their impact on
the fusion result. We assigned different weights to the 12 indicators, denoted as δ in
Equation (43), creating three distinct weight sets, as shown in Table 6.

Table 6. Weight sets of indicators.

Weight Set I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

1 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12 1/12
2 0.151 0.032 0.312 0.012 0.144 0.132 0.035 0.067 0.005 0.014 0.081 0.015
3 0.017 0.051 0.081 0.036 0.123 0.092 0.094 0.225 0.068 0.097 0.106 0.01

Furthermore, in order to evaluate the effect of the basis for the possibility values in
PHFBPAs on the fusion result, Table 7 presents two more importance ratings for land and
maritime communication missions in addition to those in Table 4.

Table 7. Importance sets of missions.

Importance Set I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12

2 0.96 0.52 0.7 0.32 0.27 0.4 0.67 0.18 0.63 0.73 0.68 0.54
0.04 0.48 0.3 0.68 0.73 0.6 0.33 0.82 0.37 0.27 0.32 0.46

3 0.05 0.06 0.79 0.98 0.96 0.24 0.19 0.26 0.49 0.82 0.25 0.39
0.95 0.94 0.21 0.02 0.04 0.76 0.81 0.74 0.51 0.18 0.75 0.61

The experimental results, depicted in Figure 5, reveal that the priority order of satis-
faction level remains consistent despite significant fluctuations in both indicator weights
(Figure 5a) and mission importance (Figure 5b). These findings strongly support the stabil-
ity and robustness of the introduced PHFET model under various weighting scenarios.
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These results reaffirm the effectiveness and reliability of the proposed algorithm for
the decision-making processes. The algorithm’s ability to maintain consistent performance
across different weight configurations enhances its practical applicability. Decision-makers
can confidently use this model without concerns about unpredictable or inconsistent
outcomes due to variations in experts’ weights. Additionally, the stability analysis provides
a solid foundation for future research and potential refinements of the algorithm.
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Figure 5. Stability analysis. (a) Fusion results with different indicator weights; (b) fusion results with
different mission importance.

Several traditional methods have been adopted for comparison, including Dempster’s
method [39], referred to as ‘DS’; Yager’s method [40], referred to as ‘Yager’; Sun et al.’s
method [41], referred to as ‘Sun’; Murphy’s method [42], referred to as ‘Murphy’; and
Deng’s method [36], referred to as ‘Deng’. To verify the effectiveness of the proposed
discounting factors in eliminating uncertainty and conflicting evidence, several variants of
the PHFET method are utilized. The PHFET method without the discounting of evidence
is denoted as ’PHFET’, while the versions with credibility discounting factor and reliability
discounting factor are denoted as ‘PHFET-1’ and ‘PHFET-2’, respectively. Furthermore, the
combination of both discounting factors is denoted as ‘PHFET-12’.

According to the distance-based generation method proposed in the previous section,
PHFBPAs of scheme 1 were obtained. Furthermore, to facilitate comparison with other
methods, the adjustment parameter α in Equation (31) takes the values of 1 and 1, with a
probability of 0.5 for each value. The final fusion results of the evidence from all indicators
are depicted in Figure 6.
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Entropy 2024, 26, 94 19 of 21

As can be seen from Figure 6, most of the methods allocate the largest belief mass to
v1, indicating sufficient capabilities to carry out the mission as intended, except for Yager’s
method and Sun et al.’s method. These two methods allocate most of the belief mass
to an unknown space V, indicating that they cannot provide a specific satisfaction level.
Among the methods that identify the satisfaction level as high, the discounted PHFET
method performs the best, achieving the highest belief of 0.8705 and demonstrating superior
convergence performance by quickly converging to 1. Additionally, compared to the PHFET
method without discounting, which assigned the belief mass of v1 to 0.7028, and only uses
one of the credibility and reliability discounting factors, which results in belief masses of
0.7103 and 0.7105, respectively, the PHFET method with both discounting factors allocates
a higher belief degree to the target concentration. Thus, the effectiveness and superiority of
the uncertainty and conflict-based discounting strategy of PHFET is demonstrated.

6. Conclusions

In this paper, we introduce a generalized form of BPA that incorporates fuzziness
and hesitancy, PHFBPA, which extends DST to the PHFET. Two novel methods based on
distance and multi-classifier approaches are designed for generating PHFBPAs. Moreover,
the combination rule that integrates PHFBPA with a decision-making strategy are proposed.
To address the inconsistency of evidence, we employ a discounting method with an entropy
measure of PHFBPA as a credibility discounting factor and the Jousselme distance of
PHFBPAs as a reliability discounting factor. Furthermore, we establish and apply a PHFET
model for evaluating the satisfaction degree of the SCS capability demand in a specific case
study. Experimental results demonstrate the effectiveness and superiority of the PHFET
method compared to various machine learning algorithms and traditional methods applied
to classification tasks on different data sets. The consistent outperformance of the PHFET
method highlights its enhanced capability and potential for practical applications.

In our future works, one potential direction is to refine and optimize the combination
rule and decision-making strategies of PHFET in order to enhance the efficiency and accu-
racy of decision-making processes. Additionally, it is essential to dedicate further efforts
towards improving the computational efficiency of PHFET algorithms, particularly when
handling large-scale data sets, as they can become computationally intensive. Moreover, it
would be worthwhile to explore the integration of PHFET with emerging techniques, such
as deep learning or ensemble learning, and their application across various domains.
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