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Abstract: Large-scale and high-dimensional time series data are widely generated in modern applica-
tions such as intelligent transportation and environmental monitoring. However, such data contains
much noise, outliers, and missing values due to interference during measurement or transmission.
Directly forecasting such types of data (i.e., anomalous data) can be extremely challenging. The
traditional method to deal with anomalies is to cut out the time series with anomalous value entries or
replace the data. Both methods may lose important knowledge from the original data. In this paper,
we propose a multidimensional time series forecasting framework that can better handle anomalous
values: the robust temporal nonnegative matrix factorization forecasting model (RTNMFFM) for
multi-dimensional time series. RTNMFFM integrates the autoregressive regularizer into nonnegative
matrix factorization (NMF) with the application of the L2,1 norm in NMF. This approach improves
robustness and alleviates overfitting compared to standard methods. In addition, to improve the
accuracy of model forecasts on severely missing data, we propose a periodic smoothing penalty that
keeps the sparse time slices as close as possible to the time slice with high confidence. Finally, we train
the model using the alternating gradient descent algorithm. Numerous experiments demonstrate
that RTNMFFM provides better robustness and better prediction accuracy.

Keywords: multidimensional time series forecasting; L2,1 norm; nonnegative matrix factorization
(NMF); robust

1. Introduction

With the advancement of Internet of Things (IoT) technology and the reduced cost of
sensor deployment, numerous IoT applications are producing massive amounts of time
series data, such as intelligent building energy monitoring [1] and real-time rail monitoring
applications [2]. Users can get information about the monitored object or region in real
time according to multiple sensors, enhancing the effectiveness and security of pertinent
decisions. Large size and multidimensionality are two important characteristics of the
time series data used in these applications. For example, a smart building might include
hundreds of sensors that track energy consumption [1]. Typically, such time series are
sampled at high frequencies over lengthy periods of time, which can be leveraged to fore-
cast energy consumption patterns, detect anomalies, and optimize building management
decisions. Another feature is that most of these data have non-negativity constraints. For
example, the speed of vehicle movement and customer electricity consumption are usually
stored in a nonnegative matrix. In addition to IoT data, multidimensional time series data
are similarly generated in some fields, such as e-commerce [3], web traffic [4], and the
biomedical field [5].

The development of modern sensor technology and large-scale data storage technology
has brought some new challenges to the task of multidimensional time series forecasting.
First, while the data may be generated by different sensors or objects, it may be impacted
by common trends [6]. Traditional statistical time series forecasting models like ARIMA [7]
are hard to build correlations across dimensions. Second, sensor data are often plagued
by data loss problems, power exhaustion of sensor nodes, monitoring objects temporarily
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disappearing, and network congestion are all important causes of data loss. In the actual
world, we typically observe two types of missing data patterns: pointwise missing, where
data is lost randomly, and continuous missing, in which data is lost continuously for a
period of time. Further, noise and outliers are prevalent in the collection and transmission of
data due to factors such as electromagnetic interference or various external, immeasurable
disturbances [8]. Severe outliers can change the distribution of the original data, so pre-
processing for outliers and missing values is required before performing the prediction task.
Yet, the accuracy of the preprocessed data directly affects the performance of the prediction
model, and the high-quality interpolation algorithm incurs additional computational costs.
Figure 1 illustrates two data missing patterns and outliers, where missing entries are
marked with hollow dots. Outlier entries are marked with yellow dots.

To address these challenges, we focus on several recent approaches based on matrix
factorization (MF) to solve these problems in multidimensional time series data forecasting.
Matrix factorization can find a lower-dimensional representation of the original matrix
that captures the latent features or patterns in the data. To enable matrix factorization
models to be applied in time series forecasting applications [9], Yu et al. [3] provided
temporal regularization matrix factorization (TRMF) that accounts for positive and negative
correlations by placing a new AR regularizer on the temporal factor matrix. Ahn et al. [10]
used a Gaussian kernel as a weighting function to model temporal factors with temporal
correlation. Overall, these matrix factorization methods can automatically solve the missing
value problem, and they have demonstrated exemplary performance in handling multi-
dimensional time series tasks. However, the above model fails to consider that noise and
missing data in forecasting tasks are also key factors affecting the performance of the
forecasting task.

This paper proposes a robust temporal nonnegative matrix factorization forecasting
model (RTNMFFM) for multidimensional time series based on the L2,1 norm [11]. It is
a robust version of Temporal Nonnegative Matrix Factorization (TNMF) and focuses on
multidimensional time series data forecasting. The overall contribution of our model is
as follows:

• We propose RTNMFFM, a multi-dimensional time series matrix factorization method
that can efficiently handle noise and missing values. RTNMFFM utilizes the L2,1 norm
as the loss function for non-negative matrix factorization to boost the model’s capacity
to handle anomalous data and integrates an autoregressive (AR) regularizer [3] to
capture the temporal correlation of the factor matrix. The model can automatically
estimate missing values and make predictions.

• We propose a period smoothing penalty method using high-confidence time slices to
improve the stability of predictions when data are severely missing.

• We propose an alternating optimization strategy applicable to RTNMFFM, using the
Adam optimizer [12] to accelerate the training process. Experiments have shown that
RTNMFFM provides state-of-the-art errors on noisy and missing data.

The rest of the paper is organized as follows: in Section 2, we briefly review the related
work on multidimensional time series data forecasting. Section 3 describes our proposed
RTNMFFM model in detail. Section 4 provides results from experiments based on several
real-world datasets. This is followed by the conclusions and future work in Section 5.
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Figure 1. Illustration of two data missing patterns and outliers.
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2. Related Work

In this section, we will first introduce the time series forecasting model that deals with
noise and missing data, and then we will concentrate on the time series forecasting model
based on matrix factorization.

2.1. Time Series Forecasting Model That Can Handle Anomalous Data

To deal with noisy time series data, Singh et al. [13] discussed injecting Gaussian
noise into time series data, applied Fourier analysis to filter the noise, and proposed a
pattern modeling and recognition system (PMRS) to forecast noisy data. Laurinec et al. [14]
proposed a density-based unsupervised ensemble learning method to improve forecasting
accuracy for extremely fluctuating and noisy time series. Liu et al. [15] proposed an
integrated three-phase model called adaptive noise reduction stacked autoencoder (ANR-
SAE-VALSTM). The model uses ANR to filter out the noise and Long Short-Term Memory
(LSTM) neural networks to forecast the data. Rasul et al. [16] proposed TimeGrad, a multi-
dimensional probabilistic forecasting method using a diffusion probability model. The
disadvantage is the high cost of model training.

For handling incomplete data, inputting data before forecasting is one class of meth-
ods. Sridevi et al. [17] proposed to use of ARLSimper, an autoregressive-based estimator
of missing values, to repair the missing values and then forecast future data. In this way,
the imputation algorithm’s effectiveness and performance indirectly influence the fore-
casting algorithm’s accuracy. On the other hand, some studies build forecasting models
directly from missing data. Che et al. [18] proposed a decay mechanism integrated with
a Gated Recursive Unit deep learning model (GRU-D). Bokde et al. [19] proposed a pre-
processing algorithm. The method simultaneously forecasts and backcasts missing values
for imputation by improving the Pattern Sequence Forecasting (PSF) algorithm.

However, as mentioned earlier, these methods, in which time series data with anoma-
lous data are first preprocessed to remove missing values and outliers from the data and
then predicted using certain time series prediction models, are prone to accumulating
errors in the interpolation algorithm.

2.2. Forecasting Models Based on Matrix Factorization

Matrix factorization is a low-rank factorization model. Because of its ability to find la-
tent factors in data, it is frequently used in clustering [20] and recommendation systems [21].
MF models such as non-negative matrix factorization (NMF) [22] and more general forms
of tensor factorization (CP, Tucker) have been widely used for complex time-stamped
events [9]. On time series data, matrix factorization is widely used for dimensionality
reduction [23] and data imputation [24].

The default MF can only capture global low-rank features. For time series data,
we want the decomposed matrix to maintain the temporal correlation of the original
data. Early graph Laplacian regularization fails to establish negative correlations between
time points [25]. To create a model of non-negative matrix factorization having temporal
smoothness, Chen et al. [26]. construct the difference terms using Toeplitz matrices. Rao
et al. [27] use a graph-based approach to introduce Laplacian regularization to deal with
temporal correlation. The above regularization method maintains the temporal pattern,
improves temporal smoothness, and shows better performance on interpolation tasks.
However, these models cannot perform forecast missions. Yu et al. [3] developed a new
regularization framework, and the proposed temporal regularized MF model (TRMF)
can be applied to multidimensional time series data with missing values. TRMF can
handle missing values while achieving forecasts through an autoregressive regularizer.
Takeuchi et al. [28] obtained better forecasting performance by modeling spatiotemporal
tensor data by introducing a spatial autoregressive regularizer. Sen et al. [29] proposed
a global model combining MF and temporal convolutional network regularization. It
can perform better with unnormalized data. Chen et al. [30] proposed a fully Bayesian
matrix factorization (BTMF) framework to establish temporal correlation through vector
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autoregression (VAR) [31] models. Yet, BTMF’s use of the Gibbs sampling algorithm to
increase the model’s robustness has a very high time cost, so it cannot be suitable for
large datasets. Yang et al. [32] proposed to use the LSTM temporal regularizer matrix
factorization model, but also Group Laplacian (GL) is used as a spatial regularizer to take
advantage of the spatial correlation between sensors. More detailed comparisons between
TRMF and other competitors can be found in Section 4.1.2.

However, the above framework mostly considers how to establish temporal correlation,
ignoring the effects of noise, outliers, and missing values. Too many parameters in the
model can also cause overfitting. To the best of our knowledge, the L2,1-norm has better
robustness properties [33,34], and non-negative matrix factorization can reduce overfitting.

3. Proposed Method
3.1. Problem Description and Notation

In this paper, we assume that multidimensional time series data have some cross-
dimensional correlation (like spatial correlation or common trends) and have data with
non-negative constraints. In general, we organize the data collected by the M sensors
with N time stamps as a matrix Y ∈ RM×N

+ . To denote the matrix, we utilize boldface and
uppercase letters. (e.g., Y), boldface and lowercase letters to denote column vectors (e.g.,
y), and unbolded lowercase to denote scalars (e.g., a). We use the symbols listed in Table 1.

Table 1. Table of symbols.

Symbol Definition

Y Observation data matrix ∈ RM×N
+

U Latent correlation factors matrix/Loading matrix ∈ RM×K
+

X Latent temporal factors matrix ∈ RK×N
+

∥X∥F Frobenius norm of matrix X
∥X∥2,1 L2,1 norm of matrix X
∥x∥2 L2 norm of vector x
⊙ Element-wise multiplication of vectors, Hadamard product of matrix
L Time lag set that indicates temporal correlation topology
ld Maximum value of time lag set
⊤ Transpose matrix or vector
u⊤

j The jth row of the matrix U
xt The tth column of the matrix X
Ω The set of observed entries
λAR,λw Regularization parameter

3.2. Constrained Non-Negative Matrix Factorization Algorithm

In this section, we will introduce the theory of the constrained non-negative matrix
factorization algorithm, which is the basis of our proposed model.

Given a multidimensional non-negative time series data matrix Y ∈ RM×N
+ , the NMF

can decompose the data matrix Y into an approximation of two K-dimensional low-rank
non-negative matrices, such that Y ≈ UX(K ≪ min(M, N)), where X ∈ RK×N

+ is the latent
temporal factor matrix and U ∈ RM×K

+ is the latent correlation factor matrix. Only under
the sole non-negativity constraint, basic NMF will not obtain a unique solution [35]. So,
in order for NMF to incorporate prior knowledge and adequately represent or reflect the
problem’s relevant features, this can be achieved by adding regularization terms to U
and/or X. It is easy to solve the non-negative matrix factorization with constraints by
minimizing the objective function,

min
U,X

∥Y − UX∥2
F + λUJ1(U) + λXJ2(X), s.t. U ≥ 0, X ≥ 0, (1)
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where λU and λX are the regularization parameters used to balance the goodness of fit
and the constraint, J1(U), and J2(X) are the penalty terms; they are utilized to enforce
application-specific requirements. For example, J1(U) = ∥U∥2

F,J1(X) = ∥X∥2
F can be

added to balance the goodness of fit and constrain the overall parameter size [35], where
∥ ∥F is the Frobenius norm. The objective function (1) uses the squared Euclidean distance
to calculate the difference between the original data matrix and the approximation UX.

3.3. Proposed Method

In this section, we propose RTNMFFM. It is a multidimensional time series forecasting
model that effectively handles noise, outliers, and missing values. First, we will intro-
duce how RTNMFFM handles anomalous data and establishes temporal dependencies
in Section 3.3.1. Then, in Section 3.3.2, we will describe how RTNMFFM can alleviate the
decrease in prediction accuracy when data are severely missing. In Section 3.3.3, we will
describe in detail how the objective function is optimized. Finally, Section 3.3.4 describes
how the model predicts.

3.3.1. Time-Dependent Non-Negative Matrix Factorization Using the L2,1 Norm

The objective function (1) measures the difference between the original matrix Y and
the approximate UX in the form of the squared error. Due to the large mean square error
of the anomalous data, the objective function is easily dominated by such data. RTNMFFM
applies the L2,1 norm to quantify the error between the original time series data and the
approximation matrix. The L2,1 norm of the matrix [34,36] Y is defined as

∥Y∥2,1 =
N

∑
t=1

√√√√ M

∑
i=1

Y2
it =

N

∑
t=1

∥yt∥2. (2)

Note that it satisfies the triangle inequality as well as the three norm conditions and the
L2,1 norm is a legitimate norm [34]. RTNMFFM uses it as a measure of error.

min
U,X

∥Y − UX∥2,1 + λU∥U∥2
F+λX∥X∥2

F

s.t. U ≥ 0, X ≥ 0,
(3)

where the first term is the robust formulation of the error function [37], ∥ ∥F is the
Frobenius norm for preventing overfitting [38] or guaranteeing strong convexity [3], and
λU and λX are the regularization parameters. The robust formulation of the error function
is equivalent to

∥Y − UX∥2,1 =
N

∑
t=1

√√√√ M

∑
i=1

(Y − UX)2
it =

N

∑
t=1

∥yt − Uxt∥2. (4)

Equation (4) treats the L2,1 norm as a measure of the loss of the reconstruction error. When
there are outliers in the data, the data will show a fat-tailed distribution, and the Laplace
distribution is one of the statistical methods to analyze the fat-tailed data, which has a low
sensitivity to outliers and more robust features. Assume that the observation data vector xt
is contaminated by noise εt, obeying a Laplace distribution with mean zero.

yt = θt + εt, (5)

where θt is an unobservable truth value that can be considered as a point in a K-dimensional
subspace (K < M), i.e.,

θt = Uxt, (6)
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where xt is the projection of yt onto the subspace defined by the columns of U. As-
suming that εt obeys a Laplace distribution with zero mean and scale parameter b, thus
yt ∼ La(θt, b), and since in general, each vector yt in Y is independent, the probability
distribution of yt conditional on θt is

p(yt|θt) ∼ exp−|yt − θt|
b

, (7)

the L2,1 metric loss function has a rotational invariant property, while the pure L1 loss
function does not have such a desirable property. The literature [39] emphasizes the
importance of rotational invariance in the context of learning algorithms. The reason the
L2,1 norm possesses rotational invariance is that its inner layer first solves for the L2 norm
of the vector, and rotational invariance is a fundamental property of Euclidean spaces
with the L2 norm [36]. Since the subspace is not uniquely determined before mapping
the data to a lower-dimensional space, it is common to model the data with distributions
that satisfy rotational invariance [36]. By the rotational invariance of the L2,1 norm, the
literature [36] generalizes the Laplace distribution to the rotationally invariant Laplace
distribution (Equation (8)).

p(yt|θt) ∼ exp−||yt − θt||2
b

, (8)

according to the strategy of maximizing the log-likelihood of the data, it can be obtained that

max
θt

log
N

∏
t=1

p(yt|θt) = max
θt

−1
b

N

∑
t=1

||yt − θt||2, (9)

Maximizing the data likelihood is equivalent to minimizing the summation part of
Equation (9), so by replacing θt with Uxt, we obtain Equation (10),

min
θt

N

∑
t=1

||yt − θt||2 = min
U,xt

N

∑
t=1

||yt − Uxt||2 = min
U,X

||Y − UX||2,1. (10)

In Equation (10), assuming that the fitting error obeys a rotationally invariant Laplace
distribution, the maximum likelihood problem is transformed into a non-negative matrix
factorization problem with L2,1 norm as the loss function by imposing the constraints
U ≥ 0,X ≥ 0 [37]. Typically, L0 norms are ideal for eliminating outliers. The L0 norm
is the number of non-zero elements in a vector, and it can realize the sparsity constraint.
However, solving the L0 norm is an NP-hard problem and it is difficult to optimize. A
common method is to solve an approximation problem for the L0 norm [11]. Both the L2,1
norm and the L1 norm have the property that the L0 norm makes the solution results sparse,
so we believe that the L2,1 norm can achieve the same robustness goal. In contrast to the
loss function of the L1 metric, the L2,1 metric is convex and can be easily optimized [11,34].

From a computational point of view, the error for each data point in the robust formula
is ∥yt − Uxt∥2, which prevents large errors due to outliers from dominating the objective
function in the form of squared errors [34,37]. We use two-dimensional toy data to show
the robustness of the L2,1 metric loss function by generating 10 original two-dimensional
data points, two of which are outliers. For each data point, we fit the original data points
using the L2,1 metric loss function and the standard non-negative matrix factorization,
respectively. All data projections will be in the one-dimensional subspace. The residuals
corresponding to each data point are shown in Figure 2, where the nonnegative matrix
factorization of the L2,1 metric loss function has a much smaller error compared to the
standard NMF and is minimally affected by the two outliers. This robust approach keeps
large errors caused by outliers from dominating the objective function by compressing the
larger residual values. However, the model defined by the loss function in Equation (4)
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is not yet able to predict the data, and next, we will describe in detail how RTNMFFM
constructs temporal correlations and predicts future data.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10

standard NMF Proposed method

Figure 2. Plot of residue: |X − UX| by using standard NMF and the proposed method. Data points
#2 and #6 are outliers.

In general, the latent state of a particular timestamp may be related to the latent state of
one or more timestamps preceding that timestamp. The relationship between the columns
of the latent temporal factor matrix can be expressed as follows:

xt ≈ ∑
l∈L

wl ⊙ xt−l , (11)

where L is a lag set storing the timing relationships between columns in X, wl is a vector
of timing coefficients for xt−l , and all wl are combined into a timing coefficient matrix
W . As in the timing structure shown in Figure 3, the state of each timestamp is then
related to the state of the first and third timestamps preceding that timestamp. In this
example, L = {1, 3}, W = [w1, w3]. In this example, any column xt of the matrix X is a
combination of its first previous column xt−1 and its third previous column xt−3 in the
following manner:

xt ≈ w1 ⊙ xt−1 + w3 ⊙ xt−3. (12)

��− ��− ��− ��−1 �� ��+1

1 1 1 1 1

3 3 3

. . . . . .

Figure 3. The temporal relationship with L = {1, 3}.

Based on the above temporal relationship between the columns of the latent temporal
factor matrix X, by introducing an AR temporal regularizer [3] on top of the non-negative
matrix factorization approach JAR(X | W ,L, λw), it learns in an autoregressive manner
the matrix of temporal coefficients W , the matrix of latent correlation factor U, and the
matrix of latent temporal factor X that are best adapted to the system without having to
realize the artificial setting of the timing coefficients W .
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The matrix factorization model that incorporates a temporal regularizer establishes a
temporal relationship generation mechanism between the columns of X, and at the same
time achieves the prediction of high-dimensional time series data. The AR regularizer is

JAR(X | W ,L, λw) =
N

∑
t=ld+1

∥∥∥∥∥xt − ∑
l∈L

wl ⊙ xt−l

∥∥∥∥∥
2

2

+ λw∥W∥2
F, (13)

where the first term in Equation (13), L = {l1, l2, ..., ld} is a time lag set that indicates
temporal correlation topology, the temporal structure indicated by the time lag set can be
reflected in the matrix of latent temporal factors. ld is the maximum value of the time lag
set (ld = maxl∈L(l)), ⊙ is the element-wise product, wl is K × 1 coefficient vector, and it is
a learnable parameter representation of the autoregressive coefficients, and the last term is
the regularization term of the W = (w1, w2, ..., wld). The aim is to prevent overfitting. The
set of time lags in AR regularizers can be discontinuous to flexibly embed seasonality [3].

Introducing constraint (13) into the loss function (3), we get

min
U,X,W

∥Y − UX∥2,1 + λU∥U∥2
F + λX∥X∥2

F

+ λAR

N

∑
t=ld+1

∥∥∥∥∥xt − ∑
l∈L

wl ⊙ xt−l

∥∥∥∥∥
2

2

+ λw∥W∥2
F

s.t. U ≥ 0, X ≥ 0

(14)

The illustration of RTNMFFM is shown in Figure 4, where RTNMFFM decomposes
the data matrix Y on the left side into the dimensional feature matrix U and the tempo-
ral feature matrix X on the lower right-hand side, while the upper right side denotes
the temporal dependence of RTNMFFM mining xt and its historical data through the
autoregressive regularizer.

Figure 4. Illustration of RTNMFFM.
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It is important to note that the model proposed in this paper can be viewed as a special
kind of dynamic factor model (DMF) that

yt = Uxt + εt,

xt = ∑
l∈L

wl ⊙ xt−l , (15)

Compared to TRMF, our proposed method is more robust and uses NMF rather than
standard MF. The non-negative constraint of NMF on the latent temporal factor favors the
generation of sparse encoding (more zero values). In learning autoregressive coefficients,
fewer elements are involved in the training, thus reducing overfitting. Although more
complex temporal regularizers have been studied and applied [29,32], RTNMFFM still
chooses to capture the linear relationship of the AR model because NMF can only extract
the linear structure of the data, and our study is more focused on robustness.

Where it is generally assumed that εt to be serially uncorrelated (i.e., εt ∼ i.i.d. N (0, Φ),
with Φ being a diagonal matrix).

The difference between our proposed method and Equation (15) is that first, our
proposed model assumes that the noise εt obeys a Laplace distribution. This assumption
is more appropriate for describing the distribution of data in the presence of outliers.
Another difference is that most of the existing studies [40–42] use principal component
analysis (PCA) to obtain the sequence correlation, while our method uses NMF. Compare
PCA, which uses a linear combination of all eigenbasis vectors to represent the data. Only
the linear structure of the data can be extracted. In contrast, NMF represents data using
combinations of different numbers and differently labeled basis vectors, so it can extract
the multilinear structure of the data and has some nonlinear data processing capability.

3.3.2. Periodic Smoothing Penalty for Severe Missing Values

The percentage of missing data can be as high as 50% or more of the data collected by
real sensors [10]. Severe missing values can result in inaccurate forecast values. A similar
phenomenon was reported by Fernandes et al. [43], which they refer to as the “misalignment
problem in matrix factorization with missing values”. This problem is illustrated in Figure 5:
even though the nonnegative matrix factorization captures accurately the evolution of the
time series in the missing gaps, the estimated range of values is far from the actual range of
values. An intuitive observation of this problem is that the variation between consecutive
timestamps is smooth, whereas this smoothness disappears when data are severely missing.

Figure 5. Example of the matrix factorization misalignment concerning the observed time series.

This unsmooth character carries over into the potential time factor matrix obtained by
matrix factorization. When observations are missing, it causes the latent temporal factor
matrix derived from the temporal regularization matrix factorization algorithm to lose
its smoothing properties. This is manifested numerically in the form of lower numerical
values of the latent temporal factor vectors for the time slices with missing data relative
to the time slices with no missing time slices, and there is a misalignment of the vectors.
The loss of smoothing the latent temporal factor matrix leads to overfitting, which prevents
the autoregressive parameters from correctly representing the temporal relationships, and
ultimately makes the prediction accuracy worse. Based on the above motivation, we need
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a way to improve the generalization ability, and our main goal is to create strategies for
automatically smoothing these latent temporal factor vectors where the misalignment
problem occurs.

The matrix factorization-based temporal regularization framework can be considered
a specific example of a dynamic factor model (DFM) [44] that searches for linear links
between high-dimensional observations and hidden states [30]. Imposing a smoothing
penalty constraint on the latent variable can make the two variables similar, and we hope to
reduce the effect of missing observations by adding some kind of smoothing penalty to the
objective function to make the latent states of time slices with more missing values smoother.

Assuming a seasonal period of T, seasonality can make latent temporal factors X that
are in the same in-phase similar, and in order to account for this, we need to rewrite the
objective function to account for:

min
U,X,W

∥Y − UX∥2,1 + λU∥U∥2
F + λX∥X∥2

F

+ λAR

N

∑
t=ld+1

∥∥xt − fw(xt−1, xt−2, ..., xt−ld)
∥∥2

2 + λw∥W∥2
F

s.t. U ≥ 0, X ≥ 0

(16)

where fw() denotes the AR temporal regularizer. The temporal regularization can be
formulated as follows:

JAR(X) = λAR

N

∑
t=ld+1

∥∥xt − x′t
∥∥2

2 (17)

where x′t is historical temporal feature vectors xt−1, xt−2, ..., xt−ld as input and make a
forecast of x′t = fw(xt−1, xt−2, ..., xt−ld). The temporal regularizer can be viewed as xt doing
smoothing with the predicted value x′t of the autoregressive model, and this smoothing
makes xt similar to x′t, and due to seasonality, xt will be similar to both xt−T vectors. Based
on this result, we envisioned whether we could do a smoothing penalty on the vectors of
latent temporal factors that have lost their smoothing due to severe data missing versus
the vectors of latent temporal factors with historical seasonality so that these factor vectors
would regain their smoothing properties.

Since the missing values result in low numerical values of latent temporal factor
vectors, we force smoothing of latent temporal factor vectors with low numerical values
and latent temporal factor vectors with high numerical values, where the latent temporal
factor vectors with high numerical values are in the same phase as the vectors with low
values, by regularization penalties based on the presence of seasonality in the time series.
For example, for any xt, the latent temporal factor vectors in the same phase as they are
xt−T , xt−2T , ... etc. The rationale is that latent temporal factor vectors that are in the same
phase should be similar due to seasonality, as mentioned before. This is done to minimize
the misalignment illustrated in Figure 5.

Based on this motivation, we propose to consider reducing the misalignment induced
by missing values by applying a smoothing penalty to latent temporal factor vectors with
lower numerical values. This smoothing penalty takes the form

JT(X) = λT

N

∑
t=ld+1

∥xt − xht∥2
2 (18)

where λT is the regularization parameter for the periodic smoothing penalty, xt is a vector of
low numerical value latent temporal factors that need to be smoothed, and xht is a vector of
latent temporal factors with smoother, higher numerical valued states of the potential state.
This smoothing approach leads to two questions: (1) how to select the vectors that need to
be smoothed? and (2) these selected vectors with low numerical values are smoothed with
what kind of vectors xht?
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We propose to control these vectors and whether to use the periodic smoothing penalty
based on the energy of the vectors in the temporal factor matrix Pt at the moment t, where
energy at the moment t of the time slice xt is

Pt =
K

∑
i=0

x2
it. (19)

We define Pmean-T as the average of the latent temporal factor vector energies of all
latent temporal factors of vector xt up to moment t and with xt in the same phase. The
form of Pmean-T is

Pmean-T =
1

k + 1 ∑
t′=t−k·T

Pt′ , (ld < t′ ≤ t, k = 0, 1, 2, ..., k · T < t). (20)

To prevent overfitting, the periodic smoothing penalty is not applied to all time slices and
is only used when the energy Pt of the current latent temporal factor is smaller than Pmean-T,
which is consistent with the motivation that we mentioned before, i.e., we only need to
smooth potential space-time factor vectors that have lower values. The energy Pt of the
potential temporal factor vector with lower values will be smaller. For example, suppose
the seasonality is T = 3 and the time lag set is L = {1, 3}. We need to compute Pmean-T for
x10. The steps are to first calculate the energies P7 and P4 for x7 and x4. After that, find
their average value Pmean-T = (P7 + P4)/2. Finally, when P10 is smaller than Pmean-T, a
periodic smoothing penalty on x10 is required. If P10 is bigger than Pmean-T, we will force
the regularization parameter λT = 0 to indicate that x10 does not participate in the periodic
smoothing penalty. This judgment prevents higher-energy time slices from participating
in the periodic smoothing penalty and prevents normal potential time factor vectors from
losing certain features that should be present due to overfitting previous time vectors
instead. We utilize the property that the seasonality of the time series leads to similar values
of the latent temporal factor vectors, assuming that the current latent temporal factor vector
xt is too low due to missing data, the energy of this vector will be lower than the average
energy of the historical vectors of the same phase, and we pick out vectors that need to be
smoothed by this method.

For the second problem, we define the high-confidence latent temporal vector xht
of xt to be the latent temporal vector that is historically in the same phase as xt and has
the highest energy. The reason for this is that latent temporal factor vectors with lower
values need to be smoothed with latent temporal vectors with higher values, which should
have relatively higher energies. Secondly, due to seasonality, latent temporal factors that
are in the same phase should be similar. For example, if x10 needs to perform a periodic
smoothing penalty, we need to find the maximum energy latent temporal factor vector in
x7 and x4 and use it as the high-confidence latent temporal vector xht for x10.

We give an intuitive explanation of the results of the latent temporal factor matrix
decomposed by the temporal regularization matrix factorization after adding the periodic
smoothing penalty we proposed, as compared to the latent temporal factor matrix without
adding the periodic smoothing penalty, using an example. We experimented with temporal
regularization matrix factorization on the Guangzhou Urban Traffic Speed dataset with a
data size of 214 × 1380, and we let all the data from t = 360 to t = 1200 as missing. We set
the rank of the low-rank matrix at K = 40. In Figure 6, the blue line is the result after adding
the periodic smoothing penalty, and the red line is not added. It can be seen that the latent
temporal factors are smoother with the added periodic smoothing penalty, which is very
obvious at t = 360 to t = 1200. This shows that our proposed periodic smoothing penalty
can make the latent temporal factor matrix smoother, more conducive to the learning of the
parameters in the temporal regularization term, and more conducive to the final prediction.
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Figure 6. Results with and without periodic smoothing penalty added.

The loss function with the addition of the periodic smoothing penalty is

min
U,X,W

∥Y − UX∥2,1 + λU∥U∥2
F + λX∥X∥2

F

+ λAR

N

∑
t=ld+1

∥∥∥∥∥xt − ∑
l∈L

wl ⊙ xt−l

∥∥∥∥∥
2

2

+ λT

N

∑
t=ld+1

∥xt − xht∥2
2 + λw∥W∥2

F

s.t. U ≥ 0, X ≥ 0.

(21)

The objective function in Equation (21) focuses on the severely missing data. For lower-
energy time slices, RTNMF actively utilizes high confidence slices, while for higher-energy
time slices, no smoothing is performed to prevent overfitting.

3.3.3. Optimization

To minimize the objective function in Equation (21), we propose a gradient descent-
based algorithm. The optimization of the L2,1 norm can be found in [11,37]. RTNMFFM
will alternate the optimization of each factor matrix; it updates just one-factor matrix at a
time while fixing all other factor matrices. We use the Adam optimizer [12], which has been
successful in deep learning, to accelerate training. Suppose we can update the pertinent
parameters as follows at iteration p.
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Updates for latent correlation factor matrix U. Find the partial derivative of matrix U.

∇UF (U(p), X(p), W (p)) = −2
(

Y − U(p)X(p)
)

DX(p)⊤ + 2λUU(p)⊤, (22)

where ⊤ is the transpose of a matrix or vector and D is a diagonal matrix with the diagonal
elements given by

Dtt = 1/

√√√√ M

∑
i=1

(Y − UX)2
it = 1/∥yt − Uxt∥2. (23)

Update the matrix U(p+1)

U(p+1) = P+(U(p) − α∇UF (U(p), X(p), W (p)), (24)

where α is the learning rate and P+ denotes the projection operator that forces all elements
of it to be projected onto a non-negative semi-axis; this takes the form of Equation (25).

P+(x) = max{x, 0} (25)

Updates for latent temporal factor matrix X. The gradient of the solver matrix X is divided
into two parts. First, calculate the gradient of the first term in Equation (21):

−2U(p+1)⊤
(

Y − U(p+1)X(p)
)

D + 2λXX(p), (26)

where the matrix D has the same form as Equation (23). Second, for vectors xt t = 1, 2, . . . ,
N, calculate the gradient of the AR regularization term and the periodic smoothing penalty
term by column.

When t > ld:

λT

(
x(p)

t − xht

)
+ 2λAR

[
x(p)

t − ∑
l∈L

w(p)
l ⊙ x(p)

t−l + 2w(p)
l

2
⊙ x(p)

t

− ∑
l∈L,

t+l<N

w(p)
l ⊙

x(p)
t+l − ∑

l′∈L−{l}
w(p)

l′ ⊙ x(p)
t+l′−l

⊤
,

(27)

combine all column vectors with Equation (27) into a matrix and add Equation (26) in
∇XF (U(p+1), X(p), W (p)) to update in matrix form

X(p+1) = P+(X(p) − α∇XF (U(p+1), X(p), W (p)). (28)

Updates for AR regularizer parameters W . For vectors wi, i = 1, 2, . . . , ld:

∇wF
(

U(p+1), X(p+1), w(p)
i

)
=

λAR ∑
t=ld+1

[−2(x(p+1)
t − ∑

l∈L−{i}
w(p)

i ⊙ x(p+1)
t−i )⊙ x(p+1)

t−i

+ 2diag(x(p+1)
t−i ⊙ x(p+1)

t−i )w(p)
i + λWw(p)

i ],

(29)

combine all column vectors into a matrix ∇WF (U(p+1), X(p+1), W (p)) to update in ma-
trix form

W (p+1) = W (p) − α∇WF (U(p+1), X(p+1), W (p)). (30)
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Overall training. Algorithm 1 describes the entire training process of RTNMFFM. First,
initialize each factor with a non-negative constraint. We update sequentially each factor
matrix for each iteration while using the Adam optimizer [12] to accelerate training. We
will select the model with the lowest error on the validation set as the final model.

Algorithm 1 Training RTNMFFM

Input: Observed data matrix Y ∈ RM×N
+ , rank K, lag set L, learning rate α, regularization

parameter λU , λX , λAR and λT , number of iterations p = 0, validation set Y ′;
Output: Final values for U,X,W with the lowest error on the validation;

1: Initialize all matrices U(0), X(0), W (0);
2: repeat
3: Update U(p+1) = P+(U(p) − α∇UF (U(p), X(p), W (p)) using Adam;
4: Calculate high-confidence time slices and determine whether period smoothing is

needed;
5: Update X(p+1) = P+(X(p) − α∇XF (U(p+1), X(p), W (p)) using Adam;
6: Update W (p+1) = P+(W (p) − α∇WF (U(p+1), X(p+1), W (p)) using Adam;
7: until convergence criterion is met;
8: return The matrix U, X, W with the lowest error on the validation set Y ′.

3.3.4. Forecasting

For RTNMFFM forecasting, given matrices U, X ,and the time regularizer parameter
W , the latent time factor vector at the moment t + 1 in the future is forecasted by the
autoregressive model in a single step

x̂t+1 = ∑
l∈L

wl ⊙ xt+1−l . (31)

The model is based on one-step forecasting and performs multi-step forecasting by recur-
sively reusing the predicted values as input and then estimating observed time series data
with ŷt+1 = Ux̂t+1. Figure 7 illustrates how the model makes multi-step forecasts.

Figure 7. Illustration of the one-step rolling forecasting scheme.

4. Experiments

To demonstrate the performance of the proposed model, in this section, we experiment
with five datasets. We set up multiple noise and missing forms to fully validate the model.
All experiments are performed on a machine equipped with Intel i7-10700. The software
environment is Python 3.8, Numpy 1.22.3.

4.1. Experimental Settings
4.1.1. Datasets

• Dataset (G): Guangzhou urban traffic speed (https://zenodo.org/record/1205229#.ZE9_kM5
BxPY, accessed on 18 January 2024). This dataset tracks the speed of traffic on 214 road
segments over the course of two months at a 10-minute resolution. We change the

https://zenodo.org/record/1205229#.ZE9_kM5BxPY
https://zenodo.org/record/1205229#.ZE9_kM5BxPY
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data to reflect hourly speed by aggregating blocks of six columns and organizing
the raw data set into a time series matrix of 214 × 1380 and there are 1.3 percent
missing values.

• Dataset (H): Hangzhou metro passenger flow. (https:// tianchi.aliyun.com/competition/entra
nce/231708/inf ormation accessed on 18 January 2024),With a 10-minute resolution, this
dataset collects inbound passenger flows from 80 subway stations in Hangzhou, China.
We ignore the timeframe 0:00 a.m.–6:00 a.m. and structure the dataset into a matrix of
80 × 2700 and there are no missing data.

• Dataset (P): Pacific surface temperature. (http:// iridl.ldeo.columbia.edu/SOURCES/.CAC/,
accessed on 18 January 2024) This data set includes measurements of the Pacific Ocean’s
monthly sea surface temperature taken over 396 consecutive months between January
1970 and December 2002. The size of the matrix is 2520 × 396 and there are no
missing data.

• Dataset (C): California freeways occupancy rate (https://archive.ics.uci.edu/ml/datasets/PE
MS-SF, accessed on 18 January 2024). These data comes from the California Department
of Transportation. These data record lane occupancy rates on San Francisco Bay Area
freeways. We combine the 10-minute sampling data into hourly data and confine our
research to the last 2736 timestamps to organize the data into a matrix of 963 × 2736
and there are no missing data.

• Dataset (E): Electricity load data (https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagr
ams20112014, accessed on 18 January 2024). A total of 370 clients’ electricity consumption
data with a sampling frequency of 15 min. We use the last 10272 timestamps of
electrical data to organize the data into a matrix of 370 × 10272 and there are no
missing data.

4.1.2. Metrics

We use Normalized Deviation (ND) and Root Mean Squared Error (RMSE) to evaluate
performance, defined as follows.

ND =
∑i,t∈Ω|Yit − Ŷit|

∑i,t∈Ω|Yit|
, RMSE =

√
1
|Ω| ∑

i,t∈Ω
(Yit − Ŷit)2

where Ω indicates the test set, Yit indicates a forecasted entry with index (i, t), and Ŷit is
the forecast results.

4.1.3. Competitors

We compare RTNMFFM with the following competitors.

• TRMF [3]: A temporally regularized matrix decomposition method (https://github.c
om/xinychen/transdim, accessed on 18 January 2024). We rewrite this as a gradient-
based version. Framework for predicting data with AR.

• ARNMF [4]: Non-negative constrained version of TRMF. Our purpose in using this
method as a baseline is to verify whether NMF is the main reason for the better
performance achieved by RTNMFFM. Framework for predicting data with AR.

• SVD-AR(1) [3]: The rank-K approximation of Y = USV⊤ is first obtained by singular
value decomposition (SVD). After setting F = US and X = V⊤, a K-dimensional
AR(1) is learned on X for forecasting.

• BTMF [30]: A Bayesian Temporal Matrix Factorization (BTMF) framework by in-
corporating a VAR layer into Bayesian probabilistic matrix factorization algorithms
(https://github.com/xinychen/transdim, accessed on 18 January 2024). The frame-
work is predicted by using the observation at the corresponding position in the
previous time period as the predicted value. It can be considered as a seasonal naive
forecast method after the data are complemented with high accuracy.

https://tianchi.aliyun.com/competition/entrance/231708/information
https://tianchi.aliyun.com/competition/entrance/231708/information
http://iridl.ldeo.columbia.edu/SOURCES/.CAC/
https://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://archive.ics.uci.edu/ml/datasets/PEMS-SF
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/xinychen/transdim
https://github.com/xinychen/transdim
https://github.com/xinychen/transdim
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• LSTM-ReMF [32]: LSTM-ReMF framework by incorporating an LSTM layer into
matrix factorization algorithms (https://github.com/Vadermit/TransPAI, accessed
on 18 January 2024). Framework for predicting data with LSTM.

4.1.4. Hyper-Parameter

The hyper-parameters used are in Table 2. The last few timestamps in the data are
used as the test and validation sets, the lengths of which are shown in Table 2. For matrix
factorization models using AR as a regularizer, all regularization parameters and learning
rates are selected from the validation set, using the same rank-K, time lag set, and size of
the forecasting window. For all algorithms, use a grid search to select all regularization
parameters and learning rates, and set the hyperparameter set for which the model obtains
the minimum RMSE on all sub-datasets as the final hyperparameters. All gradient-based
algorithms are trained using Adam [12] acceleration. For BTMF and LSTM-ReMF, we
use the hyperparameters suggested in the original paper. For all models, the data were
min-max normalized before training the models, and we chose to have the lowest ND in
the validation set as the final model.

Table 2. Default hyper-parameter setting, V-length/T-length indicates the number of validation
set/test set timestamps.

Dataset Time Lags Set-L V-Length T-Length Rank-K

Data (G) [1, . . . , 24] ∪ [7 × 24, . . . , 7 × 24 + 24] 84 84 40
Data (H) [1, . . . , 12] ∪ [756, . . . , 768] 378 378 20
Data (P) [1, . . . , 3] ∪ [12, . . . , 15] ∪ [24, . . . , 27] 6 6 60
Data (C) [1, . . . , 24] ∪ 7 × 24, . . . , 7 × 24 + 24] 168 168 60
Data (E) [1, . . . 12] ∪ [7 × 96, . . . , 7 × 96 + 12] 336 336 40

4.2. Forecasting Accuracy

In Table 3, we compared the forecasts of RTNMFFM with those of competitors on the
raw data. The results of all experiments are given by “ND/RMSE”. RTNMFFM(0) indicates
that RTNMFFM does not use a periodic smoothing penalty.

Table 3. Performance comparison (in ND/RMSE) for prediction tasks on data sets (G), (H), (P), (C),
and (E).

Model Data (G) Data (H) Data (P) Data (C) Data (E)

RTNMFFM 0.116/0.112 0.167/0.0557 0.109/0.161 0.257/0.071 0.195/0.113
RTNMFFM(0) 0.129/0.113 0.170/0.0567 0.116/0.194 0.274/0.073 0.202/0.116

TRMF 0.120/0.123 0.204/0.0681 0.107/0.166 0.299/0.077 0.212/0.129
ARNMF 0.118/0.120 0.164/0.0545 0.107/0.167 0.314/0.078 0.186/0.111
SVD-AR 0.142/0.136 0.211/0.0746 0.121/0.187 0.412/0.101 0.229/0.134

BTMF 0.134/0.115 0.181/0.0582 0.175/0.216 0.425/0.103 0.219/0.140
LSTM-ReMF 0.275/0.201 0.357/0.109 0.165/0.192 0.473/0.114 0.299/0.173

The best results are underlined.

RTNMFFM has almost obtained the best results, and we consider that the distribution
of residuals on some datasets is the root cause of the poor performance of RTNMFFM.
If the residuals obey a Gaussian distribution, their maximum likelihood problem can be
converted to a standard NMF problem, which may be the reason why models based on
standard NMF can take the lead in Data (H) and Data (E). Even so, the method proposed
in this paper still gives sub-optimal results on both datasets. A comparison of the run
times of the models can be found in Appendix A. Moreover, to verify the effect of noise on
RTNMFFM, we added Gaussian noise and Laplace noise to all the data in Section 4.2.1. In
Section 4.2.2, we test the forecasting performance of the proposed model under multiple
missing modes.

https://github.com/Vadermit/TransPAI
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4.2.1. Forecasting Performance in Noisy Data

To verify the validity of the model under different background noises, we added
Gaussian white noise (mean is µ = 0, variance is σ = 1) and Laplace noise (position
parameter µ = 0 and scale parameter b = 1) to each dataset to generate signal-to-noise
ratios of 5, 2, 0, −2, and −5. The definition of the signal-to-noise ratio is

SNR = 10 log10
Ps

Pn
, (32)

where Ps is the power of the signal and Pn is the power of the noise. The data we obtained
are discrete, so for one piece of time series data yi of the observation matrix Y , the signal
power is

Ps =
1
n

N

∑
t=1

yit. (33)

To add noise of a certain signal-to-noise ratio to a signal, the method is to first compute
the average power of the original signal, then compute the noise power by Equation (32).
Finally, generate noise that obeys the Laplace distribution or the standard normal distribu-
tion and increase it by

√
Pn times. These added noises are only present in the training set

and have no effect on the valid set and the test sets. In order to maintain the distribution of
noise added to the data, we relaxed the non-negativity of the data and subjected the data to
min-max normalization before training. It is important to note that here RTNMFFM does
not use the period smoothing penalty (i.e., λT = 0).

Forecasting results and Analysis. The forecasting performance of the model after
adding Gaussian noise and Laplace noise to the five datasets is given in Figures 8 and 9.
All errors are calculated after undoing the scaling. The RTNMFFM model does not impose
a periodic smoothing penalty.

RTNMFFM shows competitive forecasting results in these matrix-based decomposition
models. When the source of real noise is particularly complex, Gaussian noise may be
considered the best simulation of real noise. In Figure 8, RTNMFFM has an absolute
advantage in forecasting performance in Gaussian noise. For datasets (G) and (H), the
forecasting results of RTNMFFM were more significant compared to other competitors. A
possible reason is that the length of these two datasets is smaller, and RTNMFFM is better
able to learn temporal correlation from the limited information under noise. Comparing
the results of RTNMFFM and ARNMF, the L2,1 norm plays a dominant role in handling the
noise. In addition, to more fully validate the RTNMFFM, the performance of the model
in Laplace noise is shown in Figure 9. As we have seen, RTNMFFM can still learn the
temporal dependencies from noisy data, and it can mitigate the effects of noise and make
better forecasts.

RTNMFFM TRMF ARNMF BTMF SVD-AR

(a) Data (G) (b) Data (H) (c) Data (P)

Figure 8. Cont.
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(d) Data (C) (e) Data (E)

Figure 8. Test RMSE of RTNMFFM and competitors for varying SNR with Gaussian noise.

RTNMFFM TRMF ARNMF BTMF SVD-AR

(a) Data (G) (b) Data (H) (c) Data (P)

(d) Data (C) (e) Data (E)

Figure 9. Test RMSE of RTNMFFM and competitors for varying SNR with Laplacian noise.

4.2.2. Forecasting Performance in Missing Data

In this section, we validate the effectiveness of the proposed model in making forecasts
under various data loss scenarios. For one type of random point-wise missing (RM), we
randomly removed certain observations and modeled random missingness with a value
of zero. The other is continuous missing (CM), where data is missing for a sustained
period of time. Continuously missing corresponds to a situation where the sensor has a
certain probability of failing on a certain day. The missing setup method is taken from the
literature [32], where continuous missing exists for multiple intervals and all sensors will
have missing data. We tested the forecasting accuracy of each model at 60%, 50%, 40%, and
20% missing proportions. These added missing data are only present in the training set
and have no effect on the valid set and test sets. We apply the proposed period smoothing
penalty to TRMF as well to test its scalability (named TRMF(1)).
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Forecasting results and Analysis. Tables 4 and 5 demonstrate the forecasting per-
formance of RTNMFFM and other baseline models for datasets (G), (H), (P), (C), and (E).
For random missing values, RTNMFFM leads to prediction accuracy across the board.
RTNMFFM works well for two categories of missing data when more than 50% of the
data is missing. For continuous missing values, except in dataset (H), RTNMFFM exhibits
superior predictive accuracy even in the presence of persistent missing data. Comparing
RTNMFFM with BTMF, BTMF is as robust in the dataset (H), and its excellent performance
stems from the Bayesian probabilistic matrix factorization algorithms.

Comparing RTNMFFM with its version without the period smoothing penalty (RTN-
MFFM(0)), the forecasting results show that our proposed period smoothing penalty can
improve the prediction ability to some extent when severe data are missing.

From the forecasting results, it can be seen that RTNMFFM(0) can also obtain good
results in some cases. This model based on the L2,1 norm measure of matrix factorization
error is also known as indirect sparse matrix factorization with L2,1 norm [33], which
indirectly optimizes the upper bound of the F-norm function in a way that is the reason for
its ability to find more effective information from sparse data and obtain more accurate
predictions. In order to compare the variability of the predictions, we also compared the
results of the Diebold–Mariano test [45] for RTNMFFM and the best alternative model, and
the conclusions are shown in Appendix B.

Comparing TRMF and TRMF(1), TRMF(1) has better forecasting accuracy, which
proves the scalability and effectiveness of the period smoothing penalty proposed in this
paper. Similar to the previous conclusions, the model after adding the period smoothing
penalty is more effective when the amount of missing data is high.

Table 4. Performance comparison (ND/RMSE) for forecasting tasks with random missing.

Data Missing RTNMFFM RTNMFFM(0) TRMF(1) TRMF ARNMF BTMF

(G)

60%RM 0.112/0.108 0.117/0.112 0.115/0.112 0.115/0.113 0.115/0.112 0.151/0.132
50%RM 0.110/0.109 0.112/0.107 0.115/0.114 0.117/0.115 0.115/0.114 0.150/0.136
40%RM 0.119/0.113 0.116/0.106 0.119/0.117 0.118/0.115 0.119/0.117 0.143/0.132
20%RM 0.117/0.112 0.115/0.110 0.119/0.118 0.120/0.118 0.119/0.118 0.150/0.136

(H)

60%RM 0.176/0.059 0.184/0.062 0.192/0.064 0.201/0.066 0.192/0.064 0.183/0.059
50%RM 0.167/0.056 0.174/0.058 0.178/0.060 0.198/0.064 0.178/0.060 0.180/0.058
40%RM 0.169/0.056 0.169/0.057 0.169/0.056 0.166/0.054 0.168/0.056 0.184/0.059
20%RM 0.168/0.056 0.165/0.055 0.173/0.057 0.193/0.060 0.173/0.057 0.183/0.059

(P)

60%RM 0.048/0.058 0.054/0.063 0.107/0.166 0.110/0.162 0.107/0.166 0.202/0.240
50%RM 0.050/0.059 0.060/0.061 0.105/0.166 0.119/0.171 0.105/0.166 0.206/0.251
40%RM 0.041/0.049 0.042/0.050 0.112/0.163 0.115/0.167 0.112/0.163 0.200/0.242
20%RM 0.076/0.081 0.059/0.065 0.105/0.164 0.109/0.162 0.105/0.164 0.198/0.254

(C)

60%RM 0.260/0.071 0.261/0.072 0.332/0.082 0.308/0.077 0.332/0.082 0.396/0.100
50%RM 0.277/0.072 0.274/0.073 0.296/0.077 0.298/0.076 0.296/0.077 0.603/0.134
40%RM 0.278/0.074 0.284/0.077 0.304/0.076 0.301/0.077 0.304/0.076 0.419/0.103
20%RM 0.272/0.071 0.261/0.071 0.283/0.074 0.295/0.076 0.283/0.074 0.392/0.098

(E)

60%RM 0.174/0.104 0.199/0.114 0.196/0.114 0.219/0.132 0.196/0.114 0.190/0.123
50%RM 0.179/0.105 0.208/0.118 0.180/0.107 0.216/0.128 0.180/0.107 0.192/0.123
40%RM 0.169/0.102 0.170/0.103 0.191/0.111 0.222/0.134 0.191/0.111 0.194/0.124
20%RM 0.190/0.111 0.188/0.117 0.194/0.113 0.215/0.123 0.194/0.113 0.194/0.124

The best results are underlined.

The forecasting results of RTNMFFM are more significant on datasets (P), (C), and
(E). For datasets (C) and (E), they have more sampling cycles, RTNMFFM can select high-
confidence time slices from more samples to apply the period smoothing penalty, and the
number of time series entries in the dataset (P) is much larger than the timestamps. The
above features may be the reason why RTNMFFM is more competitive. Even on the poorly
performing dataset (G), RTNMFFM remains optimal even at more than 50% missing values.
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However, for 20% of the missing data, RTNMFFM performs slightly worse. The biggest
reason is that overfitting is generated. Therefore, we suggest using the period smoothing
penalty when there are more missing values or performing a period smoothing penalty
only in the initial phase of model learning.

Table 5. Performance comparison (ND/RMSE) for forecasting tasks with continuous missing.

Data Missing RTNMFFM RTNMFFM(0) TRMF(1) TRMF ARNMF BTMF

(G)

60%CM 0.119/0.115 0.121/0.119 0.122/0.116 0.129/0.125 0.126/0.126 0.150/0.142
50%CM 0.116/0.112 0.119/0.113 0.116/0.113 0.122/0.119 0.122/0.122 0.153/0.141
40%CM 0.126/0.109 0.113/0.106 0.115/0.116 0.126/0.124 0.121/0.119 0.172/0.146
20%CM 0.115/0.106 0.119/0.114 0.108/0.108 0.124/0.121 0.116/0.115 0.147/0.135

(H)

60%CM 0.187/0.064 0.193/0.066 0.192/0.061 0.226/0.074 0.214/0.072 0.201/0.064
50%CM 0.207/0.071 0.198/0.066 0.191/0.060 0.202/0.063 0.204/0.068 0.180/0.058
40%CM 0.185/0.063 0.190/0.064 0.178/0.057 0.211/0.069 0.190/0.062 0.171/0.056
20%CM 0.172/0.058 0.178/0.059 0.188/0.058 0.186/0.061 0.186/0.062 0.176/0.058

(P)

60%CM 0.053/0.072 0.078/0.086 0.090/0.093 0.107/0.164 0.106/0.164 0.181/0.238
50%CM 0.046/0.054 0.056/0.060 0.081/0.090 0.106/0.159 0.107/0.167 0.197/0.248
40%CM 0.047/0.052 0.047/0.052 0.072/0.076 0.100/0.142 0.107/0.165 0.207/0.248
20%CM 0.072/0.076 0.066/0.069 0.082/0.087 0.099/0.152 0.102/0.164 0.211/0.254

(C)

60%CM 0.243/0.069 0.284/0.076 0.290/0.076 0.321/0.080 0.305/0.081 0.475/0.112
50%CM 0.236/0.067 0.295/0.079 0.297/0.076 0.314/0.079 0.297/0.076 0.730/0.161
40%CM 0.243/0.067 0.282/0.074 0.290/0.075 0.312/0.078 0.270/0.073 0.401/0.097
20%CM 0.236/0.067 0.259/0.072 0.305/0.076 0.295/0.077 0.302/0.076 0.407/0.102

(E)

60%CM 0.202/0.129 0.230/0.137 0.222/0.132 0.252/0.161 0.223/0.137 0.217/0.135
50%CM 0.204/0.130 0.221/0.135 0.212/0.118 0.251/0.161 0.230/0.137 0.215/0.135
40%CM 0.195/0.126 0.222/0.134 0.211/0.130 0.249/0.167 0.223/0.133 0.214/0.134
20%CM 0.191/0.124 0.215/0.131 0.229/0.133 0.241/0.156 0.227/0.134 0.214/0.134

The best results are underlined.

Next, we will show the forecast visualization of RTNMFFM on missing data. Figure 10
shows the prediction visualization of RTNMFFM on the Hangzhou metro passenger flow
dataset, with 60% of the data randomly missing in the figure; the red line is the predicted
value, and the blue line is the true value. As shown in the figure, the red and blue lines
match each other for drastic short-term changes and long-term fluctuations, demonstrating
our method’s effectiveness under severe missingness.

(a) Sensors No. 1

Figure 10. Cont.
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(b) Sensors No. 5

(c) Sensors No. 50

(d) Sensors No. 62

Figure 10. Predicted metro passenger flow (red curves) of RTNMFFM at 60% RM missing.

5. Conclusions and Future Work

This paper proposes a robust forecasting model for multidimensional time series
data. We integrate the L2,1 norm and the AR regularizer into the non-negative matrix
factorization algorithm. This combination can better establish the temporal correlation
of multidimensional time series data when there is noise and missing values in the data.
Also, the proposed period smoothing penalty for RTNMFFM improves the accuracy of
the prediction task on incomplete data. RTNMFFM provides a powerful tool for multi-
dimensional time series prediction tasks, and we have examined the model on several
real-world time series matrices. RTNMFFM has shown superior performance compared
to other baseline models. There are several directions for future research to explore. First,
an important reason why time series data is difficult to predict is data drift, i.e., the data
distribution may change as time evolves, and an online learning framework is needed to
correct the prediction results. Secondly, our model can establish trends and seasonality
well, but it is not easy to establish cyclicality. Finally, our model can only establish linear
correlations, and the modeling of nonlinear temporal correlations based on deep learning
matrix decomposition and diffusion models is the focus of future research.
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Appendix A. Computation Time Cost

The experiments were conducted using a Windows 11 computer with Intel i7-10700
CPU and 16G RAM. The computational time cost for model training and testing on each
dataset is shown in the table below.

As can be seen from Table A1, although the proposed RTNMFFM model requires more
static training time, the difference is not significant.

Table A1. Comparison of training times for each model.

Data (P) Data (H) Data (E) Data (C) Data (G)

RTNMFFM 10 min 33 min 3 h 28 min 2 h 26 min 1 h 42 min
RTNMFFM(0) 6 min 33 min 3 h 16 min 2 h 21 min 1 h 38 min

TRMF 5 min 32 min 3 h 00 min 2 h 12 min 1 h 36 min
ARNMF 5 min 31 min 2 h 58 min 2 h 13 min 1 h 36 min

BTMF 12 min 25 min 2 h 36 min 40 min 24 min
LSTM-ReMF 18 min 46 min 4 h 13 min 3 h 12 min 2 h 01 min

Appendix B. The Diebold–Mariano Test for RTNMFFM and the Best Alternative Model

The Diebold–Mariano test (DM test) is used to test whether there is a significant
difference in the predictive power of the two forecasting models. The Diebold–Mariano test
is essentially a t-test that tests whether the means of the two series that produce the forecasts
are equal. That is, it is a t-test for the zero mean of a series of loss differences. We mainly
compare the results of the DM test for the two models RTNMFFM, and the best alternative
algorithm at 60% RM and 60% CM. The original hypothesis of the DM test is that the two
models have the same prediction results. The original hypothesis is rejected when the
p-value of the DM test statistic is <0.05, implying that the two models have different effects,
at which point the DM test statistic is <0, indicating that the RTNMFFM model is superior
to the best alternative algorithm. Since the DM test is only for one-dimensional data, on
each dataset, we randomly selected five of the sequences for the DM test, and the results
are shown in Tables A2 and A3. The results show that not all entries in the various datasets
pass the DM test, and in most cases when the p-value is <0.05, the DM statistic value is
indicative of a better prediction by RTNMFFM. Especially in Data (E), the ND/RMSE
metrics of RTNMFFM have a clear advantage over the best alternative algorithm, while the
DM test shows the same result on the five randomly selected sequences.

On the other hand, we also did the DM test on the prediction results of RTNMFFM for
60% RM and 50% RM cases, and the results are shown in Table A4. The results show no
significant difference between the DM tests for 60% and 50% random missing RTNMFFM
predictions. We would like to state here that the DM test is a statistical test to determine
which of the univariate models has better forecasting results. Due to the lack of reference
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support, we cannot use the DM test to determine which multidimensional time series
forecasting model is more effective, but these results can inform future research.

Table A2. The DM test results for RTNMFFM and the best alternative algorithm in 60% RM.

Data (P) Data (H) Data (E) Data (C) Data (G)

DM Value p-Value DM Value p-Value DM Value p-Value DM Value p-Value DM Value p-Value

No. 1 −1.57 0.176 −2.89 0.004 −1.65 0.098 1.18 0.237 −0.67 0.503
No. 2 −1.42 0.002 −2.83 0.004 −3.76 0.000 −1.84 0.067 −2.62 0.010
No. 3 −2.47 0.049 1.18 0.234 −2.06 0.039 −2.31 0.022 −5.01 0.000
No. 4 −2.46 0.057 0.74 0.454 −3.97 0.000 −2.14 0.033 0.63 0.530
No. 5 −0.92 0.398 2.03 0.042 −1.90 0.057 −2.65 0.008 1.05 0.293

Table A3. The DM test results for RTNMFFM and the best alternative algorithm in 60% CM.

Data (P) Data (H) Data (E) Data (C) Data (G)

DM Value p-Value DM Value p-Value DM Value p-Value DM Value p-Value DM Value p-Value

No. 1 0.48 0.649 −4.98 0.000 −5.57 0.000 −2.87 0.005 −1.79 0.077
No. 2 −0.85 0.431 1.37 0.170 −11.21 0.000 −3.81 0.000 −1.83 0.069
No. 3 2.51 0.054 7.21 0.000 −10.19 0.000 −0.49 0.623 −4.05 0.001
No. 4 2.09 0.090 −0.19 0.840 −2.26 0.000 −1.19 0.232 2.48 0.014
No. 5 −0.199 0.367 0.96 0.333 −4.21 0.032 −2.71 0.007 −2.15 0.033

Table A4. The DM test for 60% and 50% random missing RTNMFFM predictions.

Data (P) Data (H) Data (E) Data (C) Data (G)

DM Value p-Value DM Value p-Value DM Value p-Value DM Value p-Value DM Value p-Value

No. 1 1.14 0.304 1.37 0.169 −2.95 0.001 7.29 0.001 −0.14 0.889
No. 2 0.25 0.819 −5.08 0.000 −4.86 0.000 6.65 0.002 0.99 0.923
No. 3 −1.29 0.253 −1.29 0.253 −1.35 0.175 4.65 0.006 6.44 0.000
No. 4 1.11 0.317 1.11 0.317 −6.47 0.001 4.44 0.000 −1.21 0.226
No. 5 −0.17 0.871 −0.16 0.872 −1.65 0.100 11.12 0.000 −2.43 0.016

References
1. González-Vidal, A.; Jiménez, F.; Gómez-Skarmeta, A.F. A methodology for energy multivariate time series forecasting in smart

buildings based on feature selection. Energy Build. 2019, 196, 71–82 [CrossRef]
2. Sobin, C. A survey on architecture, protocols and challenges in IoT. Wirel. Pers. Commun. 2020, 112, 1383–1429. [CrossRef]
3. Yu, H.-F.; Rao, N.; Dhillon, I.S. Temporal regularized matrix factorization for high-dimensional time series prediction. In Advances

in Neural Information Processing Systems, 29. 2016. Available online: https://www.cs.utexas.edu/~rofuyu/papers/tr-mf-nips.
pdf (accessed on 18 January 2024).

4. Atif, S.M.; Gillis, N.; Qazi, S.; Naseem, I. Structured nonnegative matrix factorization for traffic flow estimation of large cloud
networks. Comput. Netw. 2021, 201, 108564. [CrossRef]

5. Bourakna, A.E.Y.; Chung, M.K.; Ombao, H. Topological data analysis for multivariate time series data. arXiv 2022,
arXiv:2204.13799.

6. Lim, B.; Zohren, S. Time-series forecasting with deep learning: A survey. Philos. Trans. R. Soc. A 2021, 379, 20200209. [CrossRef]
[PubMed]

7. Stellwagen, E.; Tashman, L. Arima: The models of Box and Jenkins. Foresight Int. J. Appl. Forecast. 2013, 30, 28–33.
8. Tian, T.; Sun, S.; Li, N. Multi-sensor information fusion estimators for stochastic uncertain systems with correlated noises. Inf.

Fusion 2016, 27, 126–137 [CrossRef]
9. Faloutsos, C.; Gasthaus, J.; Januschowski, T.; Wang, Y. Forecasting big time series: Old and new. Proc. VLDB Endow. 2018, 11,

2102–2105 [CrossRef]
10. Ahn, D.; Jang, J.-G.; Kang, U. Time-aware tensor decomposition for sparse tensors. Mach. Learn. 2022, 111, 1409–1430 [CrossRef]
11. Nie, F.; Huang, H.; Cai, X.; Ding, C. Efficient and robust feature selection via joint ℓ2, 1-norms minimization. In Advances in

Neural Information Processing Systems, 23. 2010. Available online: https://proceedings.neurips.cc/paper_files/paper/2010/fil
e/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf (accessed on 18 January 2024).

12. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
13. Singh, S. Noise impact on time-series forecasting using an intelligent pattern matching technique. Pattern Recognit. 1999, 32,

1389–1398. [CrossRef]

http://doi.org/10.1016/j.enbuild.2019.05.021
http://dx.doi.org/10.1007/s11277-020-07108-5
 https://www.cs.utexas.edu/~rofuyu/papers/tr-mf-nips.pdf
 https://www.cs.utexas.edu/~rofuyu/papers/tr-mf-nips.pdf
http://dx.doi.org/10.1016/j.comnet.2021.108564
http://dx.doi.org/10.1098/rsta.2020.0209
http://www.ncbi.nlm.nih.gov/pubmed/33583273
http://dx.doi.org/10.1016/j.inffus.2015.06.001
http://dx.doi.org/10.14778/3229863.3229878
http://dx.doi.org/10.1007/s10994-021-06059-7
https://proceedings.neurips.cc/paper_files/paper/2010/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/09c6c3783b4a70054da74f2538ed47c6-Paper.pdf
http://dx.doi.org/10.1016/S0031-3203(98)00174-5


Entropy 2024, 26, 92 24 of 25

14. Laurinec, P.; Lóderer, M.; Lucká, M.; Rozinajová, V. Density-based unsupervised ensemble learning methods for time series
forecasting of aggregated or clustered electricity consumption. J. Intell. Inf. Syst. 2019, 53, 219–239. [CrossRef]

15. Liu, F.; Cai, M.; Wang, L.; Lu, Y. An ensemble model based on adaptive noise reducer and over-fitting prevention LSTM for
multivariate time series forecasting. IEEE Access 2019, 7, 26102–26115. [CrossRef]

16. Rasul, K.; Seward, C.; Schuster, I.; Vollgraf, R. Autoregressive denoising diffusion models for multivariate probabilistic time series
forecasting. In Proceedings of the 38th International Conference on Machine Learning (PMLR), Virtual, 18–24 July 2021; Meila,
M., Zhang, T., Eds.; Proceedings of Machine Learning Research Series; Volume 139, pp. 8857–8868.

17. Sridevi, S.; Rajaram, S.; Parthiban, C.; SibiArasan, S.; Swadhikar, C. Imputation for the analysis of missing values and prediction
of time series data. In Proceedings of the 2011 International Conference on Recent Trends in Information Technology (ICRTIT),
Chennai, India, 3–5 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1158–1163.

18. Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; Liu, Y. Recurrent neural networks for multivariate time series with missing values.
Sci. Rep. 2018, 8, 6085. [CrossRef] [PubMed]

19. Bokde, N.; Beck, M.W.; Álvarez, F.M.; Kulat, K. A novel imputation methodology for time series based on pattern sequence
forecasting. Pattern Recognit. Lett. 2018, 116, 88–96 [CrossRef]

20. Yang, Z.; Corander, J.; Oja, E. Low-rank doubly stochastic matrix decomposition for cluster analysis. J. Mach. Learn. Res. 2016, 17,
6454–6478

21. Takács, G.; Pilászy, I.; Németh, B.; Tikk, D. Investigation of various matrix factorization methods for large recommender systems.
In Proceedings of the 2nd KDD Workshop on Large-Scale Recommender Systems and the Netflix Prize Competition, Las Vegas,
NV, USA, 24–27 August 2008; pp. 1–8.

22. Lee, D.; Seung, H.S. Algorithms for non-negative matrix factorization. In Advances in Neural Information Processing Systems, 13.
2000. Available online: http://msp.ucsd.edu/syllabi/270b.16w/files/4/nmf/lee-seung-algorithms-for-non-negative-matrix-
factorization.pdf (accessed on 18 January 2024).

23. Stock, J.; Watson, M. Chapter 8—dynamic factor models, factor-augmented vector autoregressions, and structural vector autore-
gressions in macroeconomics. In Handbook of Macroeconomics; Taylor, J.B., Uhlig, H., Eds.; Elsevier: Amsterdam, The Netherlands,
2016; Volume 2, pp. 415–525.

24. Song, X.; Guo, Y.; Li, N.; Yang, S. A novel approach based on matrix factorization for recovering missing time series sensor data.
IEEE Sens. J. 2020, 20, 13491–13500. [CrossRef]

25. Smola, A.J.; Kondor, R. Kernels and regularization on graphs. In Proceedings of the Learning Theory and Kernel Machines: 16th
Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, 24–27 August
2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 144–158.

26. Chen, Z.; Cichocki, A. Nonnegative Matrix Factorization with Temporal Smoothness and/or Spatial Decorrelation Constraints; Technical
Report; Laboratory for Advanced Brain Signal Processing, RIKEN: Saitama, Japan, 2005; Volume 68.

27. Rao, N.; Yu, H.-F.; Ravikumar, P.K.; Dhillon, I.S. Collaborative filtering with graph information: Consistency and scalable methods.
In Advances in Neural Information Processing Systems, 28. 2015. Available online: https://proceedings.neurips.cc/paper_files
/paper/2015/file/f4573fc71c731d5c362f0d7860945b88-Paper.pdf (accessed on 18 January 2024).

28. Takeuchi, K.; Kashima, H.; Ueda, N. Autoregressive tensor factorization for spatio-temporal predictions. In Proceedings of the
2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; IEEE: Piscataway,
NJ, USA, 2017; pp. 1105–1110.

29. Sen, R.; Yu, H.-F.; Dhillon, I.S. Think globally, act locally: A deep neural network approach to high-dimensional time series
forecasting. In Advances in Neural Information Processing Systems, 32. 2019. Available online: https://proceedings.neurips.cc
/paper_files/paper/2019/file/3a0844cee4fcf57de0c71e9ad3035478-Paper.pdf (accessed on 18 January 2024).

30. Chen, X.; Sun, L. Bayesian temporal factorization for multidimensional time series prediction. IEEE Trans. Pattern Anal. Mach.
Intell. 2021, 44, 4659–4673 [CrossRef]

31. Hyndman, R.J.; Athanasopoulos, G.; Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018.
32. Yang, J.-M.; Peng, Z.-R.; Lin, L. Real-time spatiotemporal prediction and imputation of traffic status based on LSTM and graph

laplacian regularized matrix factorization. Transp. Res. Part C Emerg. Technol. 2021, 129, 103228. [CrossRef]
33. Jin, X.; Miao, J.; Wang, Q.; Geng, G.; Huang, K. Sparse matrix factorization with L2,1 norm for matrix completion. Pattern Recognit.

2022, 127, 108655. [CrossRef]
34. Ren, C.-X.; Dai, D.-Q.; Yan, H. Robust classification using ℓ2, 1-norm based regression model. Pattern Recognit. 2012, 45, 2708–2718.

[CrossRef]
35. Wang, Y.-X.; Zhang, Y.-J. Nonnegative matrix factorization: A comprehensive review. IEEE Trans. Knowl. Data Eng. 2012, 25,

1336–1353. [CrossRef]
36. Ding, C.; Zhou, D.; He, X.; Zha, H. R1-pca: Rotational invariant L1-norm principal component analysis for robust subspace

factorization. In Proceedings of the 23rd International Conference on Machine Learning (ICML ’06), Pittsburgh, PA, USA,
25–29 June 2006; Association for Computing Machinery: New York, NY, USA, 2006; pp. 281–288.

37. Kong, D.; Ding, C.; Huang, H. Robust nonnegative matrix factorization using L21-norm. In Proceedings of the 20th ACM
International Conference on Information and Knowledge Management (CIKM ’11), Glasgow, Scotland, UK, 24–28 October 2011;
Association for Computing Machinery: New York, NY, USA, 2011; pp. 673–682.

http://dx.doi.org/10.1007/s10844-019-00550-3
http://dx.doi.org/10.1109/ACCESS.2019.2900371
http://dx.doi.org/10.1038/s41598-018-24271-9
http://www.ncbi.nlm.nih.gov/pubmed/29666385
http://dx.doi.org/10.1016/j.patrec.2018.09.020
http://msp.ucsd.edu/syllabi/270b.16w/files/4/nmf/lee-seung-algorithms-for-non-negative-matrix-factorization.pdf
http://msp.ucsd.edu/syllabi/270b.16w/files/4/nmf/lee-seung-algorithms-for-non-negative-matrix-factorization.pdf
http://dx.doi.org/10.1109/JSEN.2020.3004186
https://proceedings.neurips.cc/paper_files/paper/2015/file/f4573fc71c731d5c362f0d7860945b88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/f4573fc71c731d5c362f0d7860945b88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3a0844cee4fcf57de0c71e9ad3035478-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3a0844cee4fcf57de0c71e9ad3035478-Paper.pdf
http://dx.doi.org/10.1109/TPAMI.2021.3066551
http://dx.doi.org/10.1016/j.trc.2021.103228
http://dx.doi.org/10.1016/j.patcog.2022.108655
http://dx.doi.org/10.1016/j.patcog.2012.01.003
http://dx.doi.org/10.1109/TKDE.2012.51


Entropy 2024, 26, 92 25 of 25

38. Chen, L.; Yang, Y.; Wang, W. Temporal autoregressive matrix factorization for high-dimensional time series prediction of OSS.
IEEE Trans. Neural Netw. Learn. Syst. 2023, early access. [CrossRef]

39. Ng, A.Y. Feature selection, L1 vs. L2 regularization, and rotational invariance. In Proceedings of the Twenty-first International
Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 78.

40. De Stefani, J.; Borgne, Y.-A.L.; Caelen, O.; Hattab, D.; Bontempi, G. Batch and incremental dynamic factor machine learning for
multivariate and multi-step-ahead forecasting. Int. J. Data Sci. Anal. 2019, 7, 311–329 [CrossRef]

41. Kwon, J.; Oh, H.-S.; Lim, Y. Dynamic principal component analysis with missing values. J. Appl. Stat. 2020, 47, 1957–1969.
[CrossRef]

42. Bitetto, A.; Cerchiello, P.; Mertzanis, C. A data-driven approach to measuring epidemiological susceptibility risk around the
world. Sci. Rep. 2021, 11, 24037. [CrossRef]

43. Fernandes, S.; Antunes, M.; Gomes, D.; Aguiar, R.L. Misalignment problem in matrix decomposition with missing values. Mach.
Learn. 2021, 110, 3157–3175. [CrossRef]

44. Mirowski, P.; LeCun, Y. Dynamic factor graphs for time series modeling. In Machine Learning and Knowledge Discovery in Databases,
Proceedings of the European Conference, ECML PKDD 2009, Bled, Slovenia, 7–11 September 2009; Proceedings, Part II 20; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 128–143.

45. Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 2002, 20, 134–144. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNNLS.2023.3271327
http://dx.doi.org/10.1007/s41060-018-0150-x
http://dx.doi.org/10.1080/02664763.2019.1699910
http://dx.doi.org/10.1038/s41598-021-03322-8
http://dx.doi.org/10.1007/s10994-021-05985-w
http://dx.doi.org/10.1198/073500102753410444

	Introduction
	Related Work
	Time Series Forecasting Model That Can Handle Anomalous Data
	Forecasting Models Based on Matrix Factorization

	Proposed Method
	Problem Description and Notation
	Constrained Non-Negative Matrix Factorization Algorithm
	Proposed Method
	Time-Dependent Non-Negative Matrix Factorization Using the L2,1 Norm
	Periodic Smoothing Penalty for Severe Missing Values
	Optimization
	Forecasting


	Experiments
	Experimental Settings
	Datasets
	Metrics
	Competitors
	Hyper‑Parameter

	Forecasting Accuracy
	Forecasting Performance in Noisy Data
	Forecasting Performance in Missing Data


	Conclusions and Future Work
	Appendix A
	Appendix B
	References

