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Abstract: The profound impacts of severe air pollution on human health, ecological balance, and
economic stability are undeniable. Precise air quality forecasting stands as a crucial necessity, enabling
governmental bodies and vulnerable communities to proactively take essential measures to reduce
exposure to detrimental pollutants. Previous research has primarily focused on predicting air
quality using only time-series data. However, the importance of remote-sensing image data has
received limited attention. This paper proposes a new multi-modal deep-learning model, Res-
GCN, which integrates high spatial resolution remote-sensing images and time-series air quality
data from multiple stations to forecast future air quality. Res-GCN employs two deep-learning
networks, one utilizing the residual network to extract hidden visual information from remote-sensing
images, and another using a dynamic spatio-temporal graph convolution network to capture spatio-
temporal information from time-series data. By extracting features from two different modalities,
improved predictive performance can be achieved. To demonstrate the effectiveness of the proposed
model, experiments were conducted on two real-world datasets. The results show that the Res-
GCN model effectively extracts multi-modal features, significantly enhancing the accuracy of multi-
step predictions. Compared to the best-performing baseline model, the multi-step prediction’s
mean absolute error, root mean square error, and mean absolute percentage error increased by
approximately 6%, 7%, and 7%, respectively.

Keywords: air quality prediction; multi-modal data; remote-sensing image; graph neural network;
deep learning; time-series prediction

1. Introduction

In the current scenario, the escalating frequency of severe air pollution, particularly in
urban and metropolitan areas [1], has become a significant concern for citizens and society
at large. The adverse impacts of air pollution extend beyond environmental degradation
to encompass a spectrum of detrimental health consequences. PM2.5, also known as Par-
ticulate Matter 2.5, is a prevalent and highly dangerous air pollutant. It consists of tiny
particles with a diameter of 2.5 micrometers or less, capable of lingering in the atmosphere
for prolonged durations. Prolonged exposure to high concentrations of PM2.5 has been
associated with increased incidence rates of asthma, cancer, respiratory diseases, and car-
diovascular ailments, consequently elevating mortality rates [2,3]. Beyond its impact on
human health, air pollution significantly affects the sustainable development of global
socio-economic systems and ecosystems [4]. Given the crucial risk posed by air pollution,
numerous nations have been implementing and reinforcing measures aimed at preventing
air pollution [5]. Multiple monitoring stations have been established worldwide to track air
pollutant emissions and gather real-time air quality data [6]. However, these monitoring
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stations provide solely current and past air quality data, making it challenging to undertake
effective measures for preventing future air pollution. Accurately predicting air pollution
based on historical data collected from multiple monitoring stations contributes signifi-
cantly to identifying necessary preventive measures. This allows for avoiding exposure
to air pollutants, safeguarding public health, and minimizing air pollution risks to the
greatest extent possible. For instance, individuals can use air quality prediction results to
determine whether a particular day is suitable for outdoor activities. Precise air pollution
forecasting significantly aids urban sustainable development by assisting governments in
implementing pollution control measures and formulating robust health policies.

The past decade has also witnessed the rapid advancement of remote-sensing technol-
ogy, providing a wealth of multi-source remote-sensing data. The availability of these data
has been continuously increasing, not only opening new possibilities for a better under-
standing of intelligent earth observations but also posing new methodological challenges
in various remote-sensing applications, such as land-cover classification [7], mineral explo-
ration, and mapping [8], scene understanding [9] and object detection [10]. These remote-
sensing images also include observed geographical distribution data of PM2.5 [11,12], and
we believe that remote-sensing images can serve as a new modularity source in modeling
to improve the predictive performance of air quality prediction.

In addition, some works in image quality assessment (IQA) are also noteworthy. Wu
et al. proposed a cascaded deep neural network based on CNNs for blind IQA, and this
method effectively captures the representation of quality degradation [13]. Sun et al. intro-
duced a distortion-graph representation learning framework GraphIQA for IQA, leveraging
type-discriminative networks and blur prediction networks for blind image quality evalua-
tion [14]. Liu et al. utilized a split-and-merge distillation strategy to train a single-headed
network addressing lifelong blind IQA challenges [15]. Yang et al. presented a Transformer-
based blind IQA with continual learning methods to enhance model transferability [16].
Su et al. introduced a dual-branch network to simultaneously learn low-level distortions
and high-level semantics, employing masking label strategies and progressive weighted
curriculums for IQA [17]. Saha et al. proposed an expert fusion approach for training two
independent encoders to learn advanced content and low-level image quality features in
an unsupervised environment, addressing the issue of automated perceptual IQA [18].

Conventional methods for air quality prediction primarily comprise interpretable
statistical methods and machine learning models. Statistical methods, fundamentally
grounded in mathematically interpretable models such as vector autoregressive (VAR)
models [19] and autoregressive integrated moving average (ARIMA) [20], impose stringent
requirements on input data, often necessitating data that pass stationarity tests. In contrast,
machine learning methods do not demand specific input data prerequisites and adeptly
address nonlinear fitting challenges. Ma et al. utilized the XGBoost method to forecast
air quality in Shanghai [21]. Liu et al. employed intelligent algorithms to seek optimal
parameters, proposing a genetic algorithm-based extreme learning machine model [22].
Patel et al. conducted sensitivity analysis to comprehend the individual factor impacts,
subsequently employing a random forest model for predicting air quality in Delhi [23]. Ma
et al. employed a variety of machine learning models such as ANN, XGBoost, and SVM to
construct an ensemble method for predicting air quality in Macau [24]. However, due to
the inherent limitations in model complexity, machine learning models often struggle to
achieve optimal performance on big datasets.

Deep-learning methods possess superior feature extraction capabilities compared to
traditional machine learning approaches. Most models expand their architectural structures
or algorithms based on convolutional neural networks (CNNs) and recurrent neural net-
works (RNNs) to address the temporal variations in air quality. Yi et al. integrated various
data sources, segregating them into spatial and temporal perspectives, and inputted the
data into a deep neural network (DNN) [25]. Wang et al. achieved favorable outcomes in
predicting air quality in Hebei Province, China, by utilizing the chi-square test algorithm
and long short-term memory (LSTM) neural networks [26]. Li et al. employed bidirectional
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LSTM to model long-term dependency relationships within the data [27]. Jiang et al. opted
for gated recurrent units (GRUs), a simplified framework of LSTM addressing gradient
vanishing issues, for air quality prediction [28]. Wu et al. initially utilized variational mode
decomposition to handle non-stationarity in air quality data and subsequently utilized
LSTM for prediction [29]. Du et al. considered temporal context and proposed a bidi-
rectional LSTM with an attention mechanism for multivariate time-series prediction [30].
Cheng et al. integrated ResNet and LSTM to forecast air quality, utilizing ResNet for spatial
correlation extraction among stations and LSTM for capturing temporal dependencies [31].
Liang et al. combined various attention mechanisms with LSTM, employing an encoder–
decoder architecture for multi-station air quality prediction [32]. Lin et al. utilized temporal
convolutional networks (TCNs) alongside spatio-temporal attention to extract intricate
dynamic features, further employing Bayesian optimization to explore optimal parameters
[33]. Hu et al. employed Granger causality and k-means to identify strongly correlated
stations, and subsequently used attention-LSTM to predict air quality [34]. However, these
CNN- and RNN-based models excel in capturing temporal relationships while struggling
to capture spatial correlations among different stations.

Subsequently, models based on graph neural networks (GNNs) emerged, effectively
compensating for the limitations of CNNs in capturing spatial correlations between stations.
Huang et al. used points of interest data in the city to construct topological structures,
capturing spatial heterogeneity attributes [35]. Ge et al. leveraged points of interest data to
establish latent geographical features and utilizing graph convolutional networks (GCNs)
with TCNs to extract the spatio-temporal information [36]. Jin et al. utilized the propagation-
based GNN GraphSAGE and GRU to extract spatio-temporal correlations, employing the
Bayesian algorithm to search for optimal model hyperparameters [37]. Xiao et al. proposed
a new similarity method by utilizing wind field data to build a bidirectional directed graph,
employing GCN and GRU to develop a predictive model [38]. Wang et al. utilized diverse
station interrelations to construct multiple graphs, embedding GCN within the encoder and
decoder structures to predict air quality [39]. Chen et al. employ an attention mechanism
and embedding layers to integrate multiple predefined graphs, utilizing GCN and TCN
to capture complex spatio-temporal dependencies [40]. However, these models have all
only utilized single-source time-series data and have not made use of remote-sensing
image data.

The prediction of air pollutant concentrations has long been a focal point [41]. How-
ever, the variation in atmospheric pollutant concentrations is intricate and dynamic, span-
ning multiple sectors, regions, and dimensions of analysis [42]. Delving into the dynamic
patterns of air pollutant concentration changes necessitates handling substantial volumes
of data on air pollutant concentrations alongside pertinent meteorological information.
Currently, there exists a substantial body of research in academia concerning the prediction
of air quality. However, the predominant approach relies heavily on unimodal predictive
methods, primarily involving the construction of machine learning or deep-learning mod-
els using historical time-series data such as air quality and meteorological data. We posit
that leveraging remote-sensing image data to enrich the data sources and introduce new
data modalities holds promise in enhancing the predictive efficacy of air quality prediction.
Remote-sensing images offer additional visual information about pollutant dispersion,
strengthening the predictive performance of the model.

In this paper, we place special emphasis on the demanding task of multi-station air
quality prediction. This task has gained prominence due to its growing significance in
areas such as precision urban planning, environmental monitoring, and cross-sectoral
and societal governance. We present a multi-modal deep-learning model, Res-GCN, that
concurrently processes time-series data from multiple stations and high-resolution remote-
sensing images to predict future air quality. Specifically, we apply a residual neural
network (ResNet) for extracting visual features from remote-sensing images and propose a
dynamic spatio-temporal graph convolution network (DSTGCN) for capturing the spatio-
temporal feature from time-series data. By fusing these two distinct modal features, the
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Res-GCN model is endowed with the capability to handle multi-source data. To validate
the effectiveness of the Res-GCN model, experiments were conducted using the Beijing
dataset, comparing it with several common mono-modal deep-learning models, along with
ablation experiments. The main contributions of our work are summarized as follows:

1. We propose a new multi-modal deep-learning prediction model (Res-GCN) that
utilizes ResNet to extract visual features from remote-sensing images and employs
a dynamic spatio-temporal graph convolution network to extract spatio-temporal
features from multi-station time-series data. By extracting two distinct modal features,
Res-GCN achieves a more accurate prediction of air quality. To the best of our
knowledge, we are the first to extract multi-modal features for prediction from both
time-series data and remote-sensing images.

2. We introduce dynamic time pattern distance to construct dynamic graphs, better
accommodating the temporal dynamics of air quality. The generated dynamic graphs,
coupled with the dynamic graph convolutional network, aid in the flexible extraction
of spatio-temporal features, thereby enhancing predictive performance.

3. Ablation experiments demonstrate the effectiveness of the components of Res-GCN.
Comparative experiments reveal the superiority of Res-GCN over mono-modal mod-
els, affirming the utility of multi-modality.

The structure of this paper is outlined as follows: Section 2 elaborates on the problem
definition of multi-station air quality prediction; Section 3 details the process of Res-GCN,
a multi-modal prediction method based on ResNet and DSTGCN; Section 4 introduces
the dataset and meticulously describes the experimental details and results; finally, the
conclusions and prospects for future work are discussed in Section 5.

2. Problem Statement

In this paper, our aim is to predict future PM2.5 pollution concentrations across mul-
tiple monitoring stations utilizing historical time-series data and PM2.5 remote-sensing
images. Within a time window T, the data from N monitoring stations are represented
as X = {x1, x2, · · · , xN}, where xn ∈ RT×F denotes the F-dimensional features recorded
by the n-th monitoring station. Furthermore, we construct a dynamic graph to aid in
extracting features from the time-series data. This dynamic graph is constructed as an
undirected graph denoted by G = (V, E, A), where V represents the set of nodes, each
corresponding to a monitoring station. E signifies the edges connecting different nodes,
and the relationships between nodes are represented by the adjacency matrix A ∈ RN×N ,
where N is the number of nodes. Simultaneously, we incorporate the previous day’s
remote-sensing image as auxiliary data in our modeling, denoted by XR ∈ RNL×NW , with
NL indicating the image’s length and NW representing its width. It is important to note
that these remote-sensing images contain solely single-channel information.

Utilizing historical time-series data X, the established graph G, and remote-sensing
image XR as inputs, the aim of air quality prediction is to derive a function f that accurately
forecasts future PM2.5 pollution concentrations Y ∈ RN×τ×1 across N monitoring stations
over a forthcoming duration of τ time steps.

Y = f (X; XR; G) (1)

3. Methodology
3.1. Overview

As illustrated in Figure 1, our proposed deep-learning model (Res-GCN) is intricately
composed of a combination of residual networks (ResNets) and dynamic spatio-temporal
graph convolutional networks (DSTGCNs). The primary objective of Res-GCN is to forecast
the future air quality of multiple stations through the integration of features extracted
from two different modalities of data. Our framework is delineated into three pivotal
components: (1) We employ ResNet for the concealed extraction of visual features from
remote-sensing images. These visual features encompass not only detailed information
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from images but also intricate patterns of pollution propagation; (2) Acknowledging the
dynamic spatial correlation among stations, we calculate dynamic time warping (DTW)
distances between every pair of stations to generate a dynamic graph. DSTGCN, in
conjunction with the generated dynamic graph, extracts spatio-temporal features from the
time-series data, thereby effectively capturing the dynamic relationships among stations;
(3) We adopt a parameter matrix fusion approach to blend the extracted features from the
two modalities. Ultimately, through a fully connected layer and a convolution layer, we
amalgamate their outputs, generating predictions for future air quality at multiple stations.
This fusion process contributes to the comprehensive utilization of both feature modalities,
enhancing the predictive performance.

Time-series data
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Figure 1. Overview of Res-GCN: FCN, fully connected layer; TCN, temporal convolution network;
GCN, graph convolution network.

3.2. Residual Network

ResNet is employed for visual feature extraction from remote-sensing images. Intro-
duced by He et al. [43], ResNet aims to facilitate feature learning within deep networks,
resolving historical challenges associated with training deep models. The fundamental
concept of ResNet involves establishing skip connections, referred to as residual blocks,
between layers and their subsequent counterparts (as depicted in Figure 1) below. These
residual blocks enable the network to capture latent information conducive to learning
deeper hierarchical structures. To augment the capability for extracting profound features,
contemporary ResNet models are typically designed with an emphasis on increased depth.
However, due to the limited geographical scope of our remote-sensing dataset, primarily
focusing on the Beijing region, we refrained from constructing an excessively deep ResNet.
Our ResNet architecture, illustrated in Figure 1 below, comprises a convolutional layer
for dimension embedding, multiple residual blocks for feature extraction, two pooling
layers, and two fully connected layers for dimension alignment. From Figure 2, we adopted
two primary types of residual blocks: identity blocks and convolutional blocks. The iden-
tity blocks reduce the number of trainable parameters through parameter-free identity
shortcuts, while the convolutional blocks employ one-dimensional convolutions for dimen-
sion matching. To mitigate the parameter count during training, both types of residual
blocks are integrated into our architecture. Each residual block consists of three conven-
tional 2D convolutional layers utilized for feature extraction and batch normalization layers
to ensure smooth gradient propagation. The kernel sizes within the convolutional layers
are, respectively, 1 × 1, 3 × 3, and 1 × 1.
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Figure 2. (a) Identity block in ResNet; (b) Convolution block in ResNet.

3.3. Dynamic Spatio-Temporal Graph Convolution Network

Considering the significant modal disparities between multi-station time-series data
and remote-sensing images, the approach to feature extraction should also diverge. We
propose a dynamic spatio-temporal graph convolution network (DSTGCN) for extracting
spatio-temporal features from time-series data, positioning DSTGCN as an advancement
of STGCN. As depicted in Figure 1 below, DSTGCN comprises multiple spatio-temporal
convolutional blocks. Each block includes a graph convolutional layer for capturing
spatial features among stations, a temporal convolutional block for extracting long-range
temporal dependencies, and a temporal attention mechanism to redistribute weights,
emphasizing crucial time steps. Diverging from STGCN, which utilizes station latitude
and longitude distances to construct a static graph, DSTGCN employs DTW distance for
constructing a dynamic graph based on time series within the time window. This choice
better accommodates variations in pollutant diffusion scenarios.

3.3.1. Dynamic Graph Construction

The spatial correlation between stations is highly dynamic, and the dispersion of air
pollutants varies under different meteorological conditions. Therefore, relying solely on
static graphs makes it challenging to capture the intricate dynamic spatial correlations.
We utilize sparse dynamic time warping (DTW) distance to construct dynamic graphs.
DTW, referenced in [44], stands as a comprehensively adopted approach to gauge the
similarity of two time series. This method involves facilitating warped alignment and
calculating distances between time points across two time series to ascertain their resem-
blance. Let Ti = {T 1

i , T 2
i , . . . , T m

i } and Tj = {T 1
j , T 2

j , . . . , T m
j } represent two time series

for station i and station j, each comprising m time steps. Here, T t
i and T t

j denote two points
at time step t in the respective time series. The DTW method calculates the Euclidean
distance between every pair of time points in Ti and Tj, resulting in an accumulated dis-
tance matrix represented as d. Subsequently, it updates the warping matrix D using the
following equation:

D(T t
i , T t

j ) = d(T t
i , T t

j ) + min


D(T t−1

i , T t
j )

D(T t−1
i , T t−1

j )

D(T t
i , T t−1

j )

(2)

Derived from the warped path W , the optimal path is computed to establish a sequence
of neighboring matrix entries matching between Ti and Tj. This path aims to minimize the
overall distance between Ti and Tj. Denoted as W = {W1,W2, . . . ,WK}, with K being the
count of elements in W and following the condition max(|Ti|, |Tj|) ≤ K ≤ min(|Ti|, |Tj|),
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DTW seeks the optimal path amidst numerous possibilities to minimize the overall distance.
The DTW distance formula between two time series, Ti and Tj, is expressed as

DTW(Ti, Tj) = min
W

 1
K

√√√√ K

∑
k=1

Wk

 (3)

As shown in Figure 3, we utilize the DTW distance among PM2.5 time series from
various monitoring stations to create the dynamic graph’s adjacency matrix. It is crucial to
highlight that these time series are segmented into time windows, enabling the construction
of adjacency matrices across distinct time intervals. This method improves the model’s
ability to adjust to the ever-changing temporal patterns in time-series data. The graph
construction formula employing DTW distance is outlined as follows:

A =



A1,1 · · · A1,N
...

...
· · · Ai,j · · ·

...
...

AN,1 · · · AN,N

 (4)

Ai,j =

 exp

(
−

DTW
(

x
PM2.5
i ,x

PM2.5
j

)2

φ2

)
, exp

(
−

DTW
(

x
PM2.5
i ,x

PM2.5
j

)2

φ2

)
≥ ϵ

0, Otherwise

(5)

where Ai,j is the element in the i-th row and j-th column of the adjacency matrix A; xPM2.5
i

and xPM2.5
j , respectively, denote the PM2.5 time series of monitoring station i and monitoring

station j; DTW(xPM2.5
i , xPM2.5

j ) is the DTW distance between the PM2.5 sequence of stations i
and j; φ is the variance of the Gaussian kernel; and ϵ is the threshold value. It is noteworthy
that the dynamic graph adjacency matrix generated for each time window is distinct. The
adjacency matrix utilized for subsequent GCN layers to extract spatial features undergoes
variations as the time window slides.
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Figure 3. Utilizing DTW distance to compute the similarity between two PM2.5 time series for the
generation of the matrix element of dynamic graph (illustrated by A1,N).
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3.3.2. Graph Convolutional Network Layer

Traditional CNNs excel in handling regularized features such as images, videos, and
audio features because these characteristics can be represented in a grid-like format. How-
ever, the distribution of real spatial stations comprises irregular, non-Euclidean spatial
graphs, making it difficult for traditional CNN models to capture the underlying spatial
dependencies among monitoring stations. To tackle this issue, the graph convolutional net-
work (GCN) layer is introduced to process data structured in graphs, extending CNNs from
their traditional use with data organized in regular grids to data organized in graph struc-
tures. We opt to utilize GCN to capture the implicit spatial dependencies among stations.

Given the adjacency matrix of dynamic graph A ∈ RN×N and the graph signal
matrix H(l) ∈ RT×N×F(l)

, GCN constructs convolutional filters in the spectral domain to
capture spatial features from A and H. These convolutional filters aggregate first-order
neighboring information of each node to capture spatial dependencies between nodes. GCN
can stack multiple convolutional filters to aggregate more information from higher-order
neighborhoods, and this process can be represented as:

H(l+1) = GCN(H(l)) = ReLU
(

D̃− 1
2 ÃD̃− 1

2 H(l)W(l)
)

(6)

where F(l) represents the number of features in the graph signal, W(l) ∈ RF(l)×F(l+1)
is

the trainable weight matrix of the l-th layer, Ã = A + IN is the adjacency matrix with
self-connections, D̃ii = ∑N

j=1 Ãij is the degree matrix, and ReLU is the activation function.

3.3.3. Temporal Convolution Network Block

After conducting graph convolution operations to capture the neighboring information
of each node in the spatial dimension of the graph, we employ a TCN block to capture
correlations and update the node signals. TCN employs convolutional operations to
process time-series data, utilizing sliding windows of convolutional kernels to capture
patterns and relationships across different time steps within the sequence. This parallelized
architecture facilitates quicker training of TCN and enables more effective handling of
lengthy sequences without relying on recurrent structures [45]. As depicted in Figure 4,
the TCN block comprises two causal dilated convolutional layers designed to capture
long-range temporal dependencies. Additionally, it includes two weight normalization
layers to prevent overfitting and introduces the ReLU activation function to incorporate
non-linearity. It also contains a shortcut to ensure smooth gradient propagation. As
shown in Figure 5, causal dilation convolution is a variant of the standard one-dimensional
convolution. Instead of convolving all elements, it employs a dilation strategy, skipping
some elements to achieve a larger receptive field. For a univariate input sequence i in a
single dimension, the dilated convolution with kernel w can be expressed as:

Convdil
Kt
(i) = (i ∗dil w)(t) =

Kt−1

∑
kt=0

w(kt)i(t − dil · k) (7)

where Kt is the kernel size, dil is the dilation rate, and i(t) is the t-th element of input
sequence. Employing multiple dilated convolutions allows networks to possess extensive
receptive fields, capturing long-range temporal dependencies while maintaining a reduced
number of layers. Specifically, as the quantity of stacked layers grows, the network’s depth
also increases. The TCN block can be expressed as follows:

TCN(H) = WN
(

Convdil
Kt

(
ReLU

(
WN

(
Convdil

Kt
(H)

))))
+ Conv1×1(H) (8)

where H denotes the input of the TCN block, WN denotes the weight normalization layer,
and Conv1×1 denotes the 1 × 1 convolution layer.
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Figure 5. Example of casual dilation convolution with dilation rate 2, 4, 6, 8.

3.3.4. Temporal Attention

The temporal attention mechanism is a frequently utilized technique tailored for time-
series data processing. Its fundamental concept revolves around integrating a mechanism
within the model to emphasize crucial information across various time steps. We employed
the temporal attention mechanism to capture dependencies between time steps and redis-
tribute weights to pivotal time steps. This mechanism allows the model to concentrate on
the most pertinent time steps, and its formulation can be articulated as follows:

E = VeReLU
((

(H)TW1

)
W2((H)W3)

T + be

)
E′

i,j =
exp

(
Ei,j
)

∑T
j=1 exp

(
Ei,j
)

Tatt(H) = E′H

(9)

where H is the input feature matrix; W1, W2, and W3 are the trainable weight matrices; Ve is
the trainable weight vector; be is the trainable bias vector; E is the attention matrix; E

′
is the

normalized attention matrix; and Tatt is the temporal attention function.

3.3.5. Spatio-Temporal Convolutional Block

To integrate spatial and temporal features, we employ a spatio-temporal convolu-
tional block (STConv block) when handling time-series data, combined with a constructed
dynamic graph for processing. The STConv block can be stacked or expanded based on
the specific scale and complexity; in this paper, we opted for a two-layer stack. As illus-
trated in Figure 1 below, each STConv block comprises a graph convolutional layer, a TCN
block, and a temporal attention mechanism, effectively extracting latent spatio-temporal
features. Additionally, layer normalization is applied within each STConv block to prevent
overfitting. The formula for the STConv block can be expressed as:

STConv(H) = LN(TATT(TCN(GCN(H)))) (10)
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where H denotes the input of the STConv block, and LN denotes the layer normalization
layer. After two layers of ST-CONV blocks, convolutional layers and fully connected layers
are employed for dimension alignment, ensuring consistency in the dimensions of the two
modalities for subsequent fusion.

3.4. Feature Fusion and Prediction

After extracting the visual features and spatio-temporal features using ResNet and
DSTGCN, respectively, a method based on parameter matrices is applied to merge the
outputs of the aforementioned models [46]. The process of the fusion layer can be described
as follows:

z = σ(HSTWST + HVWV + bz )

HF = z ⊙ HST + (1 − z)⊙ HV
(11)

where HST and HV are the outputs of DSTGCN and ResNet, respectively; WST and WV are
the trainable weight matrices of DSTGCN and ResNet, respectively; bz is the trainable bias
vector. σ denotes the sigmoid function; ⊙ denotes the element-wise product; and HF is the
fused feature matrix. The resultant fused feature matrix HF is then processed through a
fully connected layer and a 1D convolution layer to produce the final prediction results.

Ŷ = FC(ReLU(Conv(HF))) (12)

where Ŷ is the predicted value of the air quality data, FC denotes the fully connected layer,
Conv denotes the 1D convolution layer, and ReLU is the activation function.

3.5. Loss Function

The loss function serves to quantify the disparity between the predicted and actual
values, playing a pivotal role in the model’s efficacy. Its selection significantly impacts
the model’s performance. In this study, we employ the mean squared error (MSE) as our
chosen loss function, defined by the following formula:

MSE =
1

Ns

Ns

∑
i=1

(ŷi − yi)
2 (13)

where Ns denotes the count of training samples, ŷi is the predicted value of the i-th training
sample, and yi is the actual value of the i-th training sample.

4. Experiments and Results
4.1. Dataset
4.1.1. Time-Series Dataset

This paper selects Beijing and Tianjin in China, as the focal cities to evaluate the
model’s predictive performance regarding PM2.5 pollutant concentration. The time-series
data comprise two categories: air quality data and meteorological data. The air quality
data are provided by the China National Monitoring Center (http://www.cnmc.cn/ssj/
accessed on 1 September 2023), while the meteorological data originate from the National
Climatic Data Center (https://www.ncdc.noaa.gov/NCDC accessed on 1 September 2023).
The air quality data for Beijing comprise historical hourly records from 34 national air
quality monitoring stations spanning from 1 January 2018, to 1 January 2021, encompassing
a total of 26,280 time steps. For Tianjin, the air quality data include historical hourly records
from 27 air quality monitoring stations covering the period from 1 May 2014, to 1 May
2015, amounting to a total of 8760 time steps. Each monitoring station records six hourly
air pollutant concentrations (PM2.5, PM10, SO2, NO2, CO, and O3). These monitoring
stations are distributed across various districts within Beijing and Tianjin, as illustrated in
Figure 6. The meteorological data comprise four hourly factors (temperature, air pressure,
dew point temperature, and wind speed). It is worth noting that the temporal resolution
of time-series data is hourly.

http://www.cnmc.cn/ssj/
https://www.ncdc.noaa.gov/NCDC
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Owing to issues such as sensor malfunctions or equipment maintenance at moni-
toring stations, the time-series data across various monitoring stations exhibit missing
values. In the Beijing dataset, there are approximately 924 missing time steps, accounting
for approximately 4% of the total data volume. Meanwhile, the Tianjin dataset exhibits
around 633 missing time steps, constituting approximately 6% of the total data volume.
While handling missing values within the dataset pertaining to atmospheric pollutant
concentrations and meteorological factors, if data for a single time step are absent, the data
from the preceding time step are utilized for imputation. In instances of continuous missing
data spanning multiple time steps, assuming a uniform trend within this period, arithmetic
sequence data are employed for filling in the gaps. The remaining missing values are
addressed using linear interpolation. Eventually, all missing values are adequately filled.

The Beijing dataset is partitioned into training, validation, and testing sets in a ratio
of 7:1:2. The data were partitioned based on chronological order. The specific temporal
ranges are as follows: the training set spans from 1 January 2018 to 5 February 2021, the
validation set ranges from 6 February 2021 to 23 April 2021, and the test set covers the
period from 24 April 2021 to 31 December 2021. The Tianjin dataset is partitioned into
training, validation, and testing sets in a ratio of 8:1:1. The specific temporal ranges are
delineated as follows: the training set spans from 1 May 2014 to 17 February 2015, the
validation set covers the period from 18 February 2021 to 25 March 2021, and the test
set encompasses the timeframe from 26 March 2021 to 1 May 2015. To standardize the
data and facilitate quicker model convergence, we apply Z-score normalization to scale
the dataset.

(a) (b)

Figure 6. (a) Geographical distribution of 34 monitoring stations in the Beijing dataset. The white
areas denote the main urban areas of Beijing; (b) Geographical distribution of 27 monitoring stations
in the Tianjin dataset.

4.1.2. Remote-Sensing Images’ Dataset

In this paper, the remote-sensing images are sourced from ChinaHighPM2.5 [11,12].
ChinaHighPM2.5 encapsulates high-resolution, fully covered, high-quality, and long-term
remote-sensing images of ground-level air pollutants in China, collectively known as
ChinaHighAirPollutants (CHAP). The CHAP dataset comprises seamless (100% spatial
coverage) 1-km ground-level PM2.5 remote-sensing images on a daily, monthly, and yearly
basis, spanning from 2000 to 2021.

For the Beijing dataset, we curated a set of images collected daily between 2018 and
2021 to serve as inputs for the model. For the Tianjin dataset, we opted for images acquired
daily from 1 May 2014, to 1 May 2015, for model input. As the original remote-sensing
images are in NetCDF format, we initially utilized Python programs to convert the format
into TIFF image files. Subsequently, we performed geographic cropping based on the
coordinates of Beijing and Tianjin (Beijing’s longitude ranging from 115.7° E to 117.4° E,
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and latitude from 39.4° N to 41.6° N; Tianjin’s longitude ranging from 116.3° E to 118.2° E,
and latitude from 38.5° N to 40.3° N), resulting in images with a resolution of 220 × 210
and 210 × 200 pixels. To facilitate the model input, we conducted central cropping, image
normalization, and removal of redundant image channels from the processed images.
These operations were carried out to prepare the images with a resolution of 210 × 210 and
200 × 200 for the model input. The samples of remote-sensing images from Beijing and
Tianjin are illustrated in Figures 7 and 8.

Figure 7. Samples of processed remote-sensing images for Beijing.

Figure 8. Samples of processed remote-sensing images for Tianjin.

4.2. Evaluation Criteria

To assess the predictive error of the proposed model, this paper employs two com-
monly used error metrics for time-series forecasting: root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage error (MAPE). The formulas for these
three metrics are as follows:

RMSE =

√√√√ 1
Ns

N

∑
i=1

(ŷi − yi)
2

MAE =
1

Ns

N

∑
i=1

|ŷi − yi|

MAPE =
1

Ns

N

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣
(14)
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where Ns is the number of samples, ŷi is the predicted value of the i-th sample, and yi is
the actual value of the i-th sample.

4.3. Model Parameter Configurations

In the experiment, we utilized the data from the preceding 24 h (T = 24) to forecast
future PM2.5 pollutant concentration for the subsequent 24 h (τ = 24). The input of the
model also encompassed remote-sensing images, specifically cropped images from the day
before the prediction date, with a resolution of 210 × 210 or 200 × 200 pixels. In ResNet, we
extensively employed 3 × 3 and 1 × 1 two-dimensional convolutional layers, culminating
in the utilization of an average pooling layer with a size of 34 (set to 27 during the training
on the Tianjin dataset). In DSTGCN, we employ the ChebyshevGCN layer [47] for spatial
feature extraction, setting the graph convolution order K = 2. Furthermore, in the TCN
block, we set the dilation rates for dilated convolutions to 2 and 4. Temporal attention
was implemented through a multi-headed attention mechanism with eight attention heads.
Regarding the model’s training strategy, we configured the learning rate and batch size
to 0.001 and 32, respectively. To prevent model overfitting, an early stopping strategy
was adopted; training ceased if the validation loss did not decrease for ten consecutive
iterations. L2 regularization with a weight of 0.001 was introduced into the loss function.
Additionally, a dropout layer was employed with a parameter of 0.3. The Adam optimizer
was chosen to optimize the weights of the model. The maximum iterations were set to 100,
and the best-performing model weights were selected based on validation loss. PyTorch
1.12 framework was employed for model training. Table 1 shows the detailed hardware
configurations.

Table 1. Hardware configurations used in experiment.

Environment Configuration

Operating system Ubuntu 22.04 OS
CPU Intel i5-13600KF 3.5 GHZ
GPU NVIDIA RTX4080 16 G
RAM 32 G

Hard disk SN-850 1 TB
Python version 3.9.12

4.4. Performance Comparison

To showcase the predictive performance of the proposed Res-GCN model, seven
baseline models were selected for comparison. All baseline models were trained and tested
using identical training, validation, and testing time-series datasets. Detailed information
regarding the selected baseline models is provided below:

1. ARIMA [20]: Autoregressive integrated moving average model, comprehensively
used as an interpretable statistical model for time-series forecasting.

2. SVR [48]: Support vector regression model, a machine learning model that utilizes
support vectors for regression tasks.

3. DNN: Deep neural network, a basic deep-learning model that consists of multiple
densely fully connected layers with ReLU activation function.

4. LSTM [49]: Long short-term memory model, an RNN variant extensively utilized for
processing and learning from time-series data.

5. CNN-LSTM [50]: A combined model using CNN for handling spatial features and
LSTM for capturing temporal characteristics.

6. TCN [45]: Temporal convolutional network, primarily composed of stacked dilated
convolutional layers and residual blocks. Compared to LSTM, it excels in capturing
long-range temporal dependencies.
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7. STGCN [51]: Specifically designed GNN model for spatio-temporal graph prediction.
It leverages GCN and temporal gate convolution to capture hidden spatio-temporal
correlations.

8. Informer [52]: A Transformer-based model for time-series forecasting. It utilizes a
prob-sparse self-attention mechanism to capture long-range temporal dependencies.

9. STSGCN [53]: A spatio-temporal graph prediction model based on graph neural
networks. It combines local graphs from multiple time steps to construct a large
synchronized graph, utilizing GCN to extract spatio-temporal dependencies from the
synchronized graph.

Five training runs were conducted for both the Res-GCN and baseline models, and
the average test set metrics for each method were reported, as depicted in Table 2. Specifi-
cally, Table 2 illustrates the MAE, RMSE, and MAPE metrics for the prediction of future
PM2.5 air pollutant concentrations at 1-h, 8-h, 16-hr, and 24-h horizons by the Res-GCN
model and other baseline models. In most cases, the proposed Res-GCN outperformed the
baseline model across the three evaluation metrics. Notably, DNN exhibited approximately
10% lower MAE compared to SVR, indicating that deep-learning methods generally out-
perform statistical and machine-learning methods (ARIMA and SVR). Moreover, LSTM
demonstrated superior predictive performance compared to DNN, suggesting that RNN
models can better capture temporal characteristics compared to models solely comprising
densely fully connected layers. Models combining multiple methods, such as CNN-LSTM,
displayed enhanced predictive capabilities, outperforming single models like LSTM and
TCN by effectively capturing multivariate features. As the forecasting horizon increased,
STGCN and Res-GCN exhibited relatively smaller fluctuations in MAE and RMSE errors
compared to ARIMA, SVR, DNN, and LSTM. Informer leverages a probability-sparse self-
attention mechanism to enhance the Transformer architecture. In comparison to STGCN,
it exhibits superior predictive performance. STSGCN employs multiple local graphs to
construct a comprehensive synchronous graph, thereby achieving a larger spatio-temporal
receptive field. In contrast to STGCN, it demonstrates superior spatio-temporal capture
capabilities. The observation underscores the impact of GNN-based models in predicting,
indicating their capability to capture spatial correlations among monitoring stations and
demonstrating efficacy in long-term forecasting. Furthermore, leveraging additional modal
data from remote-sensing images, Res-GCN acquired richer visual features pertaining
to finer-scale pollutant dispersion. Irrespective of the forecasting horizon, it consistently
achieved the lowest error.

We conducted visualization of PM2.5 prediction curves for the S3 Guanyuan station
in Beijing over the forthcoming two-week period using the aforementioned baselines
(excluding ARIMA). As illustrated in Figure 9, nearly all models proficiently captured the
trend of the one-hour prediction task time series. However, models like DNN and LSTM
displayed oscillations in their prediction curves, notably deviating from the actual curve.
Conversely, CNN-LSTM and STGCN effectively captured the trend while maintaining
errors within a reasonable range. Among the models, STGCN and Res-GCN appeared more
effective compared to CNN and RNN-based models, possibly due to the utilization of GCN
networks, which efficiently extract spatial characteristics among the stations. Res-GCN
demonstrated superiority in trend prediction, exhibiting lower errors and achieving a
balance between trend prediction and minimizing deviation from the actual values.
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Table 2. Predictive performance of Res-GCN and other baselines on two datasets.

τ = 1 τ = 8 τ = 16 τ = 24

Beijing MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 13.22 19.12 0.40 17.88 25.58 0.63 22.33 31.22 0.86 25.55 35.55 1.34
SVR 11.48 16.22 0.37 15.98 23.88 0.57 20.22 28.36 0.83 23.24 34.22 1.28

DNN 10.22 14.02 0.36 14.58 22.28 0.54 18.02 25.55 0.78 21.44 30.12 1.25
LSTM 7.32 11.02 0.34 13.12 19.24 0.52 16.06 21.89 0.76 18.23 26.1 1.22
TCN 6.96 10.48 0.32 12.02 18.28 0.50 15.55 21.02 0.74 17.68 25.22 1.18

CNN-LSTM 6.88 10.52 0.28 11.24 17.02 0.46 14.88 20.23 0.70 16.56 23.78 1.18
STGCN 6.22 9.56 0.27 10.98 15.22 0.45 14.22 19.84 0.68 16.24 23.65 1.04

Informer 5.32 8.23 0.29 10.22 14.22 0.44 14.02 19.64 0.64 16.12 23.72 1.02
STSGCN 5.63 8.66 0.26 10.34 14.31 0.44 13.88 19.22 0.63 15.33 22.12 0.96
Res-GCN 5.30 7.80 0.24 9.54 14.05 0.42 13.25 18.19 0.61 15.22 20.97 0.93

Tianjin MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA 19.16 28.12 0.42 27.22 35.62 0.57 33.34 40.22 0.80 36.55 45.25 1.07
SVR 16.68 26.34 0.38 25.66 34.55 0.53 31.56 38.32 0.76 34.46 43.22 0.98

DNN 15.44 25.46 0.36 24.57 33.12 0.51 31.02 37.55 0.68 33.24 42.14 0.94
LSTM 14.77 22.72 0.36 23.28 32.02 0.54 28.22 35.49 0.65 30.23 40.12 0.88
TCN 14.67 22.62 0.37 22.88 31.56 0.51 27.84 34.89 0.64 29.47 38.80 0.84

CNN-LSTM 14.44 22.12 0.35 22.46 30.11 0.49 26.58 33.78 0.62 29.02 38.56 0.82
STGCN 13.12 21.12 0.32 21.58 29.11 0.49 25.22 33.42 0.61 28.34 38.06 0.84

Informer 11.92 19.12 0.31 21.22 28.84 0.50 24.88 33.11 0.62 27.99 38.02 0.78
STSGCN 11.12 19.26 0.24 20.42 28.33 0.45 24.02 32.88 0.59 27.12 37.56 0.72
Res-GCN 11.44 19.02 0.24 19.88 28.05 0.44 23.43 31.82 0.58 26.99 36.88 0.70

Figure 9. One-hour predictions and actual PM2.5 values for different models on Beijing dataset.
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4.5. Model Component Analysis

In this section, we conducted ablation experiments on two datasets to evaluate the
effectiveness of the ResNet and DSTGCN components within the model. ResNet is utilized
to extract relevant visual features from remote-sensing images, while DSTGCN focuses on
extracting impactful spatio-temporal features from time-series data. We chose to remove
ResNet (w/o ResNet) and DSTGCN (w/o DSTGCN) from the Res-GCN model, creating
two variants. The w/o ResNet variant represents the scenario where the model lacks input
from remote-sensing images, while the w/o DSTGCN variant signifies the absence of input
from time-series data. This experiment also validates the contributions of the two data
sources to the model’s performance. Table 3 presents the performance of Res-GCN and
its variants in predicting PM2.5 air pollutant concentrations at different temporal scales.
From the results, a certain decline in predictive performance is observed upon removing
ResNet, emphasizing the crucial role of augmented remote-sensing image data as a data
source in model building. Remote-sensing images encapsulate rich visual information that
effectively assists the model in capturing additional details, thereby enhancing predictive
performance. Conversely, removing DSTGCN results in a noticeable deterioration in
predictive performance. This underscores the pivotal role of time-series data in multi-
station air quality prediction tasks. Without time-series data, the model struggles to grasp
the fundamental spatio-temporal feature crucial for precise air quality predictions. The
role of remote-sensing images primarily serves as an auxiliary in capturing more latent
visual information. This visual information includes more fine-grained details of pollutant
dispersion, effectively aiding the model in enhancing predictive performance. In conclusion,
the strategic use of ResNet for extracting visual information from remote-sensing image
data, coupled with the utilization of DSTGCN for capturing spatio-temporal dependencies
in air quality data, constitutes an effective design for enhancing short-term and long-term
prediction capabilities.

Table 3. Predictive performance of Res-GCN and its variants on two datasets.

τ = 1 τ = 8 τ = 16 τ = 24

Beijing MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

w/o DSTGCN 11.22 17.76 0.38 14.24 22.12 0.60 21.92 27.78 0.81 25.64 34.45 1.12
w/o ResNet 5.99 8.88 0.27 10.33 14.84 0.46 14.02 19.23 0.65 16.22 22.22 0.97

Res-GCN 5.30 7.80 0.24 9.54 14.05 0.42 13.25 18.19 0.61 15.22 20.97 0.93

Tianjin MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

w/o DSTGCN 27.88 38.88 0.42 30.24 45.23 0.62 36.92 49.78 0.73 41.64 55.45 0.94
w/o ResNet 12.22 21.34 0.25 21.02 29.88 0.48 25.24 33.23 0.61 28.83 38.96 0.74

Res-GCN 11.44 19.02 0.24 19.88 28.05 0.44 23.43 31.82 0.58 26.99 36.88 0.70

4.6. Different Graph Construction Methods’ Comparison

In this section, a performance comparison is conducted between different methods
used to construct the graph adjacency matrix. Specifically, we selected the employment
of Euclidean distance, Pearson correlation, Spearman correlation, and DTW distance for
graph construction and compared their respective performances. The comparison of the
graph construction methods, specifically DTW against the other methods, is presented in
Table 4. It is evident that utilizing DTW distance for graph construction outperforms other
methods in predicting PM2.5 air pollutant concentrations across various ranges. Particularly
noteworthy is the method employing the geographical coordinates of the stations, which
exhibited the poorest performance. This can be attributed to the geographical station
construction method solely considering fixed geographic information while neglecting
the intricate trend variations within the time series. Consequently, the constructed graph
struggled to capture dynamism. Conversely, the utilization of DTW distance for graph
construction proved superior to the two correlation-based methods. This indirectly suggests
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that DTW distance, to some extent, encapsulates the similarity between the lengths of the
two time series. In contrast, the two correlation methods only address the linear correlation
between features, resulting in a similarity measure that does not emphasize dynamic
temporal patterns. The results indicate that encoding dynamic spatial relations between
stations using DTW distance is effective and can enhance the short-term and long-term
predictive capabilities for improving air quality.

As shown in Figures 10 and 11, we visualized the dynamic graphs generated by DTW
distance. It can be observed that selecting different time windows for time series results in
different dynamic graphs. This ensures that the generated graph matrix can more flexibly
adapt to the GCN layer to capture dynamic spatial features.

Figure 10. Heat map visualization of the dynamic graph adjacency matrices generated by using DTW
distance on Beijing dataset.

Figure 11. Heat map visualization of the dynamic graph adjacency matrices generated by using DTW
distance on Tianjin dataset.

Table 4. Comparison of different graph construction methods on two datasets.

τ = 1 τ = 8 τ = 16 τ = 24

Beijing MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Euclidean distance (static) 5.88 9.12 0.27 9.99 14.84 0.45 13.66 18.76 0.65 15.46 22.02 0.97
Pearson 5.66 8.98 0.26 9.82 14.28 0.43 13.32 18.44 0.63 15.22 21.44 0.95

Spearman 5.72 8.77 0.26 9.77 14.22 0.44 13.34 18.56 0.63 15.34 21.76 0.94
SDTW 5.30 7.80 0.24 9.54 14.05 0.42 13.25 18.19 0.61 15.22 20.97 0.93

Tianjin MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Euclidean distance (static) 12.02 20.23 0.26 21.10 29.02 0.47 24.22 33.07 0.61 28.18 38.12 0.74
Pearson 11.64 19.53 0.25 20.16 28.45 0.46 24.02 32.48 0.59 27.42 37.54 0.73

Spearman 11.67 19.42 0.25 20.12 28.66 0.45 23.89 32.56 0.59 27.44 37.66 0.72
SDTW 11.44 19.02 0.24 19.88 28.05 0.44 23.43 31.82 0.58 26.99 36.88 0.70
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4.7. Multi-Station Prediction Performance

Figure 12 depicts the predicted PM2.5 concentration curves at six monitoring stations
in Beijing (S12 Dongsi, S8 Tiantan, S3 Guanyuan, S4 Wanshouxigong, S5 Aotizhongxing,
S6 Nongzhanguan) over a one-hour period. Figure 13 illustrates the predicted PM2.5
concentration curves at six monitoring stations in Tianjin (S1 HuaiHeDao, S8 QinJianDao,
S3 FuKangRoad, S5 NanJingRoad, S6 XiangShanDao, S7 XinHuaRoad) over a one-hour
period. Res-GCN demonstrates outstanding generalization abilities in forecasting complex
and non-stationary PM2.5 air pollutant data. This suggests that the model is not restricted
to specific stations or data types but can adapt to various data patterns. The model
performs exceptionally well in individual station prediction tasks and equally achieves
significant advancements in multi-station air quality prediction. This underscores Res-
GCN’s capability to integrate multi-station data and achieve accurate predictions, providing
substantial support for precise air quality forecasting within urban areas.

Figure 12. Visualization of one-hour PM2.5 concentration prediction curve for multiple stations in the
Beijing dataset.
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Figure 13. Visualization of one-hour PM2.5 concentration prediction curve for multiple stations in the
Tianjin dataset.

5. Conclusions

In this paper, we present a new multi-modal prediction model named Res-GCN, de-
signed to improve the accuracy of air quality predictions by integrating multiple modalities
of data, including multi-station time-series data and remote-sensing images. Res-GCN
consists of two key components: ResNet and DSTGCN. Primarily, ResNet effectively ex-
tracts representative visual features of fine-grained pollutant dispersion in remote-sensing
images through the stacking of residual blocks. This enables the model to comprehensively
understand and articulate the visual information pertaining to the impact of air quality.
To capture dynamic spatio-temporal dependencies in time-series data, DSTGCN employs
DTW distance to generate dynamic graphs, offering a flexible encoding of spatial correla-
tions between monitoring stations. By integrating graph Convolutional networks (GCNs)
and temporal convolutional networks (TCN) with temporal attention, DSTGCN effectively
extracts spatio-temporal features from the time-series data. In summary, Res-GCN, by
simultaneously capturing two different modalities of data, namely multisite time-series
data and image data, can comprehensively learn the complex and dynamic relationships be-
tween air pollutants and their surrounding environment. The experimental results on two
real-world datasets indicate that Res-GCN exhibits significant improvements, ranging from
30% to 40%, in predicting short-term and long-term air quality data compared to statistical
and machine learning models such as ARIMA and SVR. In contrast to traditional deep-
learning models (DNN, LSTM, TCN, CNN-LSTM), Res-GCN demonstrates a performance
enhancement of 20–30% in predictive accuracy. Moreover, when compared to machine
learning models, Res-GCN outperforms them. In comparison to the graph network model
STGCN, Res-GCN achieves a performance increase ranging from 6% to 15%. Additionally,
when compared to the best baseline models (Informer, STSGCN), Res-GCN shows a 5–6%
improvement. In comparison to mono-modal models, Res-GCN significantly improves
performance, providing more accurate information for the prevention and management
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of air pollutants. By notifying citizens and communities about potential air quality risks,
Res-GCN shows potential for enhancing public health outcomes.

In the future, we will further explore the potential of Res-GCN in other fields, such
as traffic prediction and urban planning. Additionally, we will explore the possibility
of integrating other data, such as points of interest, to further enhance the predictive
performance of Res-GCN.

Author Contributions: Conceptualization, H.X.; methodology, H.X.; investigation, H.X. and Z.W.;
data curation, H.X., Z.W. and X.C. (Xingyi Chen); writing—original draft preparation, H.X.; writing—
review and editing, X.C. (Xiaoxia Chen) and F.D.; funding acquisition, X.C. (Xiaoxia Chen) and F.D.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Zhejiang Provincial Natural Science Foundation, China,
under Grant LY21F030004; the National Natural Science Foundation of China, under Grant 61803214;
the Natural Science Foundation of Ningbo, China, under Grant 2019A610451; and the Ningbo
University Foundation, China, under Grant XYL20027.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available upon request from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Yang, H.; Zhang, Y.; Li, G. Air quality index prediction using a new hybrid model considering multiple influencing factors: A

case study in China. Atmos. Pollut. Res. 2023, 14, 101677. [CrossRef]
2. Franklin, B.A.; Brook, R.; Pope, C.A., III. Air pollution and cardiovascular disease. Curr. Probl. Cardiol. 2015, 40, 207–238.

[CrossRef] [PubMed]
3. Guan, W.J.; Zheng, X.Y.; Chung, K.F.; Zhong, N.S. Impact of air pollution on the burden of chronic respiratory diseases in China:

Time for urgent action. Lancet 2016, 388, 1939–1951. [CrossRef] [PubMed]
4. Jiang, P.; Yang, J.; Huang, C.; Liu, H. The contribution of socioeconomic factors to PM2.5 pollution in urban China. Environ. Pollut.

2018, 233, 977–985. [CrossRef] [PubMed]
5. Ma, J.; Ding, Y.; Cheng, J.C.; Jiang, F.; Tan, Y.; Gan, V.J.; Wan, Z. Identification of high impact factors of air quality on a national

scale using big data and machine learning techniques. J. Clean. Prod. 2020, 244, 118955. [CrossRef]
6. Jain, S.; Presto, A.A.; Zimmerman, N. Spatial Modeling of Daily PM2.5, NO2, and CO Concentrations Measured by a Low-

Cost Sensor Network: Comparison of Linear, Machine Learning, and Hybrid Land Use Models. Environ. Sci. Technol. 2021,
55, 8631–8641. [CrossRef] [PubMed]

7. Liu, Q.; Kampffmeyer, M.; Jenssen, R.; Salberg, A.B. Dense Dilated Convolutions’ Merging Network for Land Cover Classification.
IEEE Trans. Geosci. Remote. Sens. 2020, 58, 6309–6320. [CrossRef]

8. Benaissi, L.; Tarek, A.; Tobi, A.; Ibouh, H.; Zaid, K.; Elamari, K.; Hibti, M. Geological mapping and mining prospecting in the
Aouli inlier (Eastern Meseta, Morocco) based on remote sensing and geographic information systems (GIS). China Geol. 2022,
5, 614–625. [CrossRef]

9. Song, P.; Li, J.; An, Z.; Fan, H.; Fan, L. CTMFNet: CNN and Transformer Multiscale Fusion Network of Remote Sensing Urban
Scene Imagery. IEEE Trans. Geosci. Remote. Sens. 2023, 61, 5900314. [CrossRef]

10. Wang, Y.; Bashir, S.M.A.; Khan, M.; Ullah, Q.; Wang, R.; Song, Y.; Guo, Z.; Niu, Y. Remote sensing image super-resolution and
object detection: Benchmark and state of the art. Expert Syst. Appl. 2022, 197, 116793. [CrossRef]

11. Wei, J.; Li, Z.; Cribb, M.; Huang, W.; Xue, W.; Sun, L.; Guo, J.; Peng, Y.; Li, J.; Lyapustin, A.; et al. Improved 1 km resolution
PM2.5 estimates across China using enhanced space–time extremely randomized trees. Atmos. Chem. Phys. 2020, 20, 3273–3289.
[CrossRef]

12. Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data
records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote. Sens. Environ. 2021, 252, 112136.
[CrossRef]

13. Wu, J.; Ma, J.; Liang, F.; Dong, W.; Shi, G.; Lin, W. End-to-End Blind Image Quality Prediction With Cascaded Deep Neural
Network. IEEE Trans. Image Process. 2020, 29, 7414–7426. [CrossRef]

14. Sun, S.; Yu, T.; Xu, J.; Zhou, W.; Chen, Z. GraphIQA: Learning Distortion Graph Representations for Blind Image Quality
Assessment. IEEE Trans. Multimed. 2023, 25, 2912–2925. [CrossRef]

15. Liu, J.; Zhou, W.; Li, X.; Xu, J.; Chen, Z. LIQA: Lifelong Blind Image Quality Assessment. IEEE Trans. Multimed. 2023,
25, 5358–5373. [CrossRef]

http://doi.org/10.1016/j.apr.2023.101677
http://dx.doi.org/10.1016/j.cpcardiol.2015.01.003
http://www.ncbi.nlm.nih.gov/pubmed/25882781
http://dx.doi.org/10.1016/S0140-6736(16)31597-5
http://www.ncbi.nlm.nih.gov/pubmed/27751401
http://dx.doi.org/10.1016/j.envpol.2017.09.090
http://www.ncbi.nlm.nih.gov/pubmed/29079025
http://dx.doi.org/10.1016/j.jclepro.2019.118955
http://dx.doi.org/10.1021/acs.est.1c02653
http://www.ncbi.nlm.nih.gov/pubmed/34133134
http://dx.doi.org/10.1109/TGRS.2020.2976658
http://dx.doi.org/10.31035/cg2022035
http://dx.doi.org/10.1109/TGRS.2022.3232143
http://dx.doi.org/10.1016/j.eswa.2022.116793
http://dx.doi.org/10.5194/acp-20-3273-2020
http://dx.doi.org/10.1016/j.rse.2020.112136
http://dx.doi.org/10.1109/TIP.2020.3002478
http://dx.doi.org/10.1109/TMM.2022.3152942
http://dx.doi.org/10.1109/TMM.2022.3190700


Entropy 2024, 26, 91 21 of 22

16. Yang, J.; Wang, Z.; Huang, B.; Deng, L. Continuous Learning for Blind Image Quality Assessment with Contrastive Transformer.
In Proceedings of the ICASSP 2023—2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Rhodes Island, Greece, 4–9 June 2023; pp. 1–5. [CrossRef]

17. Su, S.; Yan, Q.; Zhu, Y.; Sun, J.; Zhang, Y. From Distortion Manifold to Perceptual Quality: A Data Efficient Blind Image Quality
Assessment Approach. Pattern Recognit. 2023, 133, 109047. [CrossRef]

18. Saha, A.; Mishra, S.; Bovik, A.C. Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023;
pp. 5846–5855.

19. Zhou, W.; Wu, X.; Ding, S.; Cheng, Y. Predictive analysis of the air quality indicators in the Yangtze River Delta in China: An
application of a novel seasonal grey model. Sci. Total. Environ. 2020, 748, 141428. [CrossRef] [PubMed]

20. Gopu, P.; Panda, R.R.; Nagwani, N.K. Time Series Analysis Using ARIMA Model for Air Pollution Prediction in Hyderabad City
of India. In Soft Computing and Signal Processing; Reddy, V.S., Prasad, V.K., Wang, J., Reddy, K.T.V., Eds.; Springer: Singapore, 2021;
pp. 47–56. [CrossRef]

21. Ma, J.; Yu, Z.; Qu, Y.; Xu, J.; Cao, Y. Application of the XGBoost Machine Learning Method in PM2.5 Prediction: A Case Study of
Shanghai. Aerosol Air Qual. Res. 2020, 20, 128–138. [CrossRef]

22. Liu, C.; Pan, G.; Song, D.; Wei, H. Air Quality Index Forecasting via Genetic Algorithm-Based Improved Extreme Learning
Machine. IEEE Access 2023, 11, 67086–67097. [CrossRef]

23. Patel, K.; Bhandari, S.; Gani, S.; Kumar, P.; Baig, N.; Habib, G.; Apte, J.; Hildebrandt Ruiz, L. Factors influencing ambient
particulate matter in Delhi, India: Insights from machine learning. Aerosol Sci. Technol. 2023, 57, 546–561. [CrossRef]

24. Lei, T.M.T.; Ng, S.C.W.; Siu, S.W.I. Application of ANN, XGBoost, and Other ML Methods to Forecast Air Quality in Macau.
Sustainability 2023, 15, 5341. [CrossRef]

25. Yi, X.; Zhang, J.; Wang, Z.; Li, T.; Zheng, Y. Deep Distributed Fusion Network for Air Quality Prediction. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 19–23 August 2018;
KDD ’18, pp. 965–973. [CrossRef]

26. Wang, J.; Li, J.; Wang, X.; Wang, J.; Huang, M. Air quality prediction using CT-LSTM. Neural Comput. Appl. 2021, 33, 4779–4792.
[CrossRef]

27. Chen, H.; Guan, M.; Li, H. Air Quality Prediction Based on Integrated Dual LSTM Model. IEEE Access 2021, 9, 93285–93297.
[CrossRef]

28. Chiang, Y.L.; Hsieh, C.L.; Huang, H.Y.; Wang, J.C.; Chou, C.Y.; Sun, C.H.; Wen, T.H.; Juang, J.Y.; Jiang, J.A. Urban Area PM2.5
Prediction with Machine Methods: An On-Board Monitoring System. In Proceedings of the 2018 12th International Conference
on Sensing Technology (ICST), Limerick, Ireland, 4–6 December 2018; pp. 25–30. [CrossRef]

29. Wu, Q.; Lin, H. Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM
neural network. Sustain. Cities Soc. 2019, 50, 101657. [CrossRef]

30. Yan, R.; Liao, J.; Yang, J.; Sun, W.; Nong, M.; Li, F. Multi-hour and multi-site air quality index forecasting in Beijing using CNN,
LSTM, CNN-LSTM, and spatiotemporal clustering. Expert Syst. Appl. 2021, 169, 114513. [CrossRef]

31. Cheng, X.; Zhang, W.; Wenzel, A.; Chen, J. Stacked ResNet-LSTM and CORAL model for multi-site air quality prediction. Neural
Comput. Appl. 2022, 34, 13849–13866. [CrossRef]

32. Liang, Y.; Ke, S.; Zhang, J.; Yi, X.; Zheng, Y. GeoMAN: Multi-level Attention Networks for Geo-sensory Time Series Prediction. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018;
pp. 3428–3434. [CrossRef]

33. Lin, S.; Zhao, J.; Li, J.; Liu, X.; Zhang, Y.; Wang, S.; Mei, Q.; Chen, Z.; Gao, Y. A Spatial-Temporal Causal Convolution Network
Framework for Accurate and Fine-Grained PM2.5 Concentration Prediction. Entropy 2022, 24, 1125. [CrossRef] [PubMed]

34. Hu, Y.; Chen, X.; Xia, H. A hybrid prediction model of air quality for sparse station based on spatio-temporal feature extraction.
Atmos. Pollut. Res. 2023, 14, 101765. [CrossRef]

35. Huang, Y.; Ying, J.J.C.; Tseng, V.S. Spatio-attention embedded recurrent neural network for air quality prediction. Knowl.-Based
Syst. 2021, 233, 107416. [CrossRef]

36. Ge, L.; Wu, K.; Zeng, Y.; Chang, F.; Wang, Y.; Li, S. Multi-scale spatiotemporal graph convolution network for air quality
prediction. Appl. Intell. 2021, 51, 3491–3505. [CrossRef]

37. Jin, X.B.; Wang, Z.Y.; Kong, J.L.; Bai, Y.T.; Su, T.L.; Ma, H.J.; Chakrabarti, P. Deep Spatio-Temporal Graph Network with
Self-Optimization for Air Quality Prediction. Entropy 2023, 25, 247. [CrossRef] [PubMed]

38. Xiao, X.; Jin, Z.; Wang, S.; Xu, J.; Peng, Z.; Wang, R.; Shao, W.; Hui, Y. A dual-path dynamic directed graph convolutional network
for air quality prediction. Sci. Total Environ. 2022, 827, 154298. [CrossRef] [PubMed]

39. Wang, C.; Zhu, Y.; Zang, T.; Liu, H.; Yu, J. Modeling Inter-Station Relationships with Attentive Temporal Graph Convolutional
Network for Air Quality Prediction. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining,
New York, NY, USA, 8–12 March 2021; WSDM ’21, pp. 616–634. [CrossRef]

40. Chen, X.; Hu, Y.; Dong, F.; Chen, K.; Xia, H. A multi-graph spatial-temporal attention network for air-quality prediction. Process.
Saf. Environ. Prot. 2024, 181, 442–451. : 10.1016/j.psep.2023.11.040 [CrossRef]

41. Han, L.; Sun, Z.; He, J.; Hao, Y.; Tang, Q.; Zhang, X.; Zheng, C.; Miao, S. Seasonal variation in health impacts associated with
visibility in Beijing, China. Sci. Total Environ. 2020, 730, 139149. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/ICASSP49357.2023.10096042
http://dx.doi.org/10.1016/j.patcog.2022.109047
http://dx.doi.org/10.1016/j.scitotenv.2020.141428
http://www.ncbi.nlm.nih.gov/pubmed/33113673
http://dx.doi.org/10.1007/978-981-33-6912-2_5
http://dx.doi.org/10.4209/aaqr.2019.08.0408
http://dx.doi.org/10.1109/ACCESS.2023.3291146
http://dx.doi.org/10.1080/02786826.2023.2193237
http://dx.doi.org/10.3390/su15065341
http://dx.doi.org/10.1145/3219819.3219822
http://dx.doi.org/10.1007/s00521-020-05535-w
http://dx.doi.org/10.1109/ACCESS.2021.3093430
http://dx.doi.org/10.1109/ICSensT.2018.8603564
http://dx.doi.org/10.1016/j.scs.2019.101657
http://dx.doi.org/10.1016/j.eswa.2020.114513
http://dx.doi.org/10.1007/s00521-022-07175-8
http://dx.doi.org/10.24963/ijcai.2018/476
http://dx.doi.org/10.3390/e24081125
http://www.ncbi.nlm.nih.gov/pubmed/36010788
http://dx.doi.org/10.1016/j.apr.2023.101765
http://dx.doi.org/10.1016/j.knosys.2021.107416
http://dx.doi.org/10.1007/s10489-020-02054-y
http://dx.doi.org/10.3390/e25020247
http://www.ncbi.nlm.nih.gov/pubmed/36832613
http://dx.doi.org/10.1016/j.scitotenv.2022.154298
http://www.ncbi.nlm.nih.gov/pubmed/35271925
http://dx.doi.org/10.1145/3437963.3441731
http://dx.doi.org/10.1016/j.psep.2023.11.040
http://dx.doi.org/10.1016/j.scitotenv.2020.139149
http://www.ncbi.nlm.nih.gov/pubmed/32416509


Entropy 2024, 26, 91 22 of 22

42. Yadav, A.K.; Shirin, S.; Emmanouil, C.; Jamal, A. Effect of Seasonal and Meteorological Variability of Air Pollution in Singrauli
Coalfield. Aerosol Sci. Eng. 2022, 6, 61–70. [CrossRef]

43. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [CrossRef]

44. Al-Naymat, G.; Chawla, S.; Taheri, J. SparseDTW: A Novel Approach to Speed up Dynamic Time Warping. arXiv 2012,
arXiv:1201.2969.

45. Samal, K.K.R.; Panda, A.K.; Babu, K.S.; Das, S.K. Multi-output TCN autoencoder for long-term pollution forecasting for multiple
sites. Urban Clim. 2021, 39, 100943. [CrossRef]

46. Zheng, C.; Fan, X.; Wang, C.; Qi, J. GMAN: A Graph Multi-Attention Network for Traffic Prediction. Proc. Aaai Conf. Artif. Intell.
2020, 34, 1234–1241. [CrossRef]

47. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.
In Advances in Neural Information Processing Systems; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran
Associates, Inc.: New York, NY, USA, 2016; Volume 29.

48. Liu, B.C.; Binaykia, A.; Chang, P.C.; Tiwari, M.K.; Tsao, C.C. Urban air quality forecasting based on multi-dimensional
collaborative Support Vector Regression (SVR): A case study of Beijing-Tianjin-Shijiazhuang. PLoS ONE 2017, 12, e0179763.
[CrossRef]

49. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
50. Zhang, Q.; Lam, J.C.; Li, V.O.; Han, Y. Deep-AIR: A Hybrid CNN-LSTM Framework forFine-Grained Air Pollution Forecast.

arXiv 2020, arXiv:2001.11957.
51. Yu, B.; Yin, H.; Zhu, Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. In

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. International Joint Conferences on
Artificial Intelligence Organization, Stockholm, Sweden, 13–19 July 2018; IJCAI-2018. [CrossRef]

52. Feng, Y.; Kim, J.S.; Yu, J.W.; Ri, K.C.; Yun, S.J.; Han, I.N.; Qi, Z.; Wang, X. Spatiotemporal informer: A new approach based on
spatiotemporal embedding and attention for air quality forecasting. Environ. Pollut. 2023, 336, 122402. [CrossRef] [PubMed]

53. Song, C.; Lin, Y.; Guo, S.; Wan, H. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-
temporal network data forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, America, 7–12
February 2020; Volume 34, pp. 914–921. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s41810-021-00124-3
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1016/j.uclim.2021.100943
http://dx.doi.org/10.1609/aaai.v34i01.5477
http://dx.doi.org/10.1371/journal.pone.0179763
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.24963/ijcai.2018/505
http://dx.doi.org/10.1016/j.envpol.2023.122402
http://www.ncbi.nlm.nih.gov/pubmed/37597418
http://dx.doi.org/10.1609/aaai.v34i01.5438

	Introduction
	Problem Statement
	Methodology
	Overview
	Residual Network
	Dynamic Spatio-Temporal Graph Convolution Network
	Dynamic Graph Construction
	Graph Convolutional Network Layer
	Temporal Convolution Network Block
	Temporal Attention
	Spatio-Temporal Convolutional Block

	Feature Fusion and Prediction
	Loss Function

	Experiments and Results
	Dataset
	Time-Series Dataset
	Remote-Sensing Images' Dataset

	Evaluation Criteria
	Model Parameter Configurations
	Performance Comparison
	Model Component Analysis
	Different Graph Construction Methods' Comparison
	Multi-Station Prediction Performance

	Conclusions
	References

