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Abstract: We explore the intersection of neural dynamics and the effects of psychedelics in light of
distinct timescales in a framework integrating concepts from dynamics, complexity, and plasticity. We
call this framework neural geometrodynamics for its parallels with general relativity’s description of
the interplay of spacetime and matter. The geometry of trajectories within the dynamical landscape of
“fast time” dynamics are shaped by the structure of a differential equation and its connectivity param-
eters, which themselves evolve over “slow time” driven by state-dependent and state-independent
plasticity mechanisms. Finally, the adjustment of plasticity processes (metaplasticity) takes place in
an “ultraslow” time scale. Psychedelics flatten the neural landscape, leading to heightened entropy
and complexity of neural dynamics, as observed in neuroimaging and modeling studies linking
increases in complexity with a disruption of functional integration. We highlight the relationship
between criticality, the complexity of fast neural dynamics, and synaptic plasticity. Pathological, rigid,
or “canalized” neural dynamics result in an ultrastable confined repertoire, allowing slower plastic
changes to consolidate them further. However, under the influence of psychedelics, the destabilizing
emergence of complex dynamics leads to a more fluid and adaptable neural state in a process that is
amplified by the plasticity-enhancing effects of psychedelics. This shift manifests as an acute systemic
increase of disorder and a possibly longer-lasting increase in complexity affecting both short-term
dynamics and long-term plastic processes. Our framework offers a holistic perspective on the acute
effects of these substances and their potential long-term impacts on neural structure and function.

Keywords: plasticity; psychedelics; complexity

1. Introduction

In this paper, we explore new perspectives to interpret changes in the brain’s land-
scape and connectivity, focusing on the subtle interplay between structural and dynamical
aspects across timescales (fast, slow, and ultraslow). Our primary goal is to present a
framework that enhances the understanding of the intricate relationships among brain
dynamics, complexity, structure, and plasticity. This framework, which we call “neural
geometrodynamics”, draws on principles from non-linear dynamics and is further inspired
by conceptual links to general relativity in physics.

In describing neural dynamics, we will refer to the mathematical formalism of neural
mass models (NMMs), although other computational neuroscience formulations are equally
relevant [1,2]. Neural mass models have been extensively utilized to model various brain
activities, from localized brain functions to the coordinated activity observed in different
brain regions. By employing mathematical formulations that include essential features like
synaptic connectivity and neuronal excitability, NMMs enable the simulation and analysis
of complex brain activities in various dynamic regimes [3]. NMMs are particularly useful
because they provide a link between the mesoscopic physiological scale and macroscopic
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brain function, allowing for the connection of effects on neurons at the molecular level,
such as those of psychedelics, with those of whole-brain connectivity [4,5].

Analyzing the effects of psychoactive neuroplastogens (psychedelics such as psilo-
cybin or LSD) serves as an illustrative case of the framework, given the immediate and
potentially lasting plastic changes these substances can provoke in the brain [6]. By altering
neural dynamics and connectivity, psychedelics are thought to induce both transient and
sustained shifts in cognition and perception [7]. Several studies underscore the role of
psychedelics in inducing neuroplasticity with antidepressant effects, revealing mechanisms
at molecular, synaptic, and dendritic levels [8,9], and with significant potential for treating
neuropsychiatric disorders [10,11], although the duration and permanence of these effects
remain to be fully understood.

Recent conceptual perspectives have enhanced our understanding of the brain’s
response to psychedelics, combining biological, dynamical systems, complexity science,
and artificial intelligence viewpoints. The REBUS (RElaxed Beliefs Under pSychedelics)
framework [12], grounded in the Free Energy Principle (FEP) and the entropic and anarchic
brain models, offers a perspective on the effects of psychedelics on the brain whereby
psychedelic action results in the collapse of brain functional hierarchies or, in other words,
in the “flattening of the landscape” of brain’s dynamics to allow the brain state to escape a
deep local minimum. The term annealing is also used in this context in relation to physical
annealing in metallurgy and simulated annealing in numerical optimization [13].

Consequently, it has been argued that the observed expansion of the repertoire of
functional patterns elicited by hallucinogenic substances can be associated with an increase
in entropy in brain dynamics [14,15], with the brain moving to a more disordered state
from a relaxation of high-level cognitive priors [12,16]. This may lead to a favorable context
for conducting psychotherapy [12,17,18]. Studies on functional neuroimaging regarding
psilocybin and LSD effects have shown initial evidence of the mechanistic alterations on
brain dynamics at the network level, with the majority of the findings suggesting a relative
weakening of usual functional configurations giving place to an increase of brain entropy,
global functional integration, and more flexible brain dynamics [14,19–28]. As mentioned
above, these changes are traditionally reflected in the complexity of neural dynamics, which
can be evaluated using various techniques such as criticality measures [29,30], complexity
measures [31], connectome harmonic decomposition [22–24], control theory [25] and Ising
(or spinglass) modeling [32,33].

For example, Ising modeling of psychedelics has shown that the increased complexity
of brain dynamics under LSD (e.g., increased Ising temperature, Lempel-Ziv, and the Block
Decomposition Method complexity) is associated with a decrease of interhemispheric
connectivity—especially homotopic links [34], corroborating earlier modeling studies
suggesting the central role of long-range connections in controlling phase transitions [35].

The observed push of brain dynamics towards disorder and away from criticality
aligns with the REBUS and FEP frameworks, which link the vividness of experience
to the entropy of brain activity. At the same time, the notion that a wakeful brain ex-
hibits dimensionality reduction and criticality features that are disrupted by the effect of
psychedelics is also predicted by an algorithmic perspective on consciousness [16,36,37],
where the psychedelic shift towards disorder is associated with a disruption of the world-
modeling/world-tracking circuits in the brain.

Another feature of brain dynamics related to the collapse of higher-order cognitive
functions under psychedelics in the REBUS framework is the hierarchical organization
along the uni- to trans-modal functional gradient [38]. This asymmetry in neural activity
reflects the bottom-up and top-down information flows in cognitive processing [39,40]. This
has been suggested to be intimately linked to non-equilibrium dynamics in thermodynamic-
inspired frameworks where the level of hierarchy is related to the amount of brain signal ir-
reversibility as well as entropy production [41–43]. Indeed it has been demonstrated that the
principal functional gradient collapses under the influence of various psychedelics [44–46].
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A related perspective for this paper is the CANAL framework [11] for describing
the pathological plasticity of “being stuck in a rut” in certain mood disorders and the
potential therapeutic role of psychedelics through the concept of metaplasticity. In contrast
to psychedelics, these changes are reflected in neural dynamics with brain signatures of ex-
cessively rigid and highly ordered functional states [47]. The CANAL framework has been
further extended by establishing connections with deep artificial neural networks (Deep
CANAL [48]) to introduce a distinction between two distinct pathological phenomena—one
related to fast brain dynamics and their slow and ultraslow counterparts. These distinctions
will be naturally integrated into the presented framework (see the Appendix A Figure A1
relating the concepts in the different frameworks).

While the discussion is centered on the effects of psychedelics, the framework pro-
posed here extends more generally to other phenomena related to plasticity, including
neurodevelopment, pathological plasticity in mood disorders [49], and interventions that
alter brain dynamics like transcranial brain stimulation (tES) [50], transcranial magnetic
stimulation (TMS), or electroconvulsive therapy (ECT).

In what follows, we formalize the notions of brain dynamics, plasticity, and their
associated timescales and subsequently use them to study the impact of psychedelics on
the brain. In the last section, we draw connections between the framework and concepts
from general relativity in physics. We hope these parallels will illuminate the complex
relationship between the structure and function of brain dynamics. Figure 1 illustrates the
reciprocal dynamics between brain states and connectivity as conceptualized in the neural
geometrodynamics framework.

Brain state 

x(𝑡0)

Brain connectivity

𝑤(𝑡0)
Brain connectivity

𝑤(𝑡1)Brain state 

x(𝑡1)

Plasticity

ሶ𝑤

Figure 1. Neural Geometrodynamics: a dynamic interplay between brain states and connectivity.
A central element in the discussion is the dynamic interplay between brain state (x) and connectivity
(w), where the dynamics of brain states is driven by neural connectivity while, simultaneously, state
dynamics influence and reshape connectivity through neural plasticity mechanisms. The central
arrow represents the passage of time and the effects of external forcing (from, e.g., drugs, brain
stimulation, or sensory inputs), with plastic effects that alter connectivity (ẇ, with the overdot
standing for the time derivative).

2. Dynamics across Timescales

The state of a system can be defined by a set of coordinates in phase space: a multidi-
mensional manifold in which each dimension corresponds to one of the variables. For a
single particle moving in one dimension, the phase space is two-dimensional, with one axis
representing its position and the other representing its momentum. For example, Figure 2
illustrates the phase space of a pendulum with friction. In phase space, and perhaps after
some transient period, the possible trajectories of the states of the system lie in a reduced or
invariant manifold (an attractor, see Box 1 for a glossary of terms), which we may refer to as
the “geometry” or latent “structure” of the phase space. Together, the structure (geometry
and topology) of the phase space with its invariant properties can be referred to as the
dynamical landscape, where the depth or shallowness of the “valleys” can, in some cases,
be interpreted as the stability of the state in that location given some stochastic forcing. For
example, in mechanics, the landscape can be labeled by potential energy isolines, e.g., in
a physical system such as in the pendulum example in Figure 2 (bottom right), or their
generalization, Lyapunov functions [51]. For definitions and explanations of key terms
used in this discussion, see the Glossary in Box 1.
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Box 1. Glossary.

State of the system: Depending on the context, the state of the system is defined by the
coordinates x (Equation (1), fast time view) or by the full set of dynamical variables (x, w,
θ)—see Equations (1)–(3).
Entropy: Statistical mechanics: the number of microscopic states corresponding to a given
macroscopic state (after coarse-graining), i.e., the information required to specify a specific
microstate in the macrostate. Information theory: a property of a probability distribution
function quantifying the uncertainty or unpredictability of a system.
Complexity: A multifaceted term associated with systems that exhibit rich, varied behavior
and entropy. In algorithmic complexity, this is defined as the length of the shortest program
capable of generating a dataset (Kolmogorov complexity). Characteristics of complex systems
include nonlinearity, emergence, self-organization, and adaptability.
Critical point: Dynamics: parameter space point where a qualitative change in behavior occurs
(bifurcation point, e.g., stability of equilibria, emergence of oscillations, or shift from order to
chaos). Statistical mechanics: phase transition where the system exhibits changes in macroscopic
properties at certain critical parameters (e.g., temperature), exhibiting scale-invariant behavior
and critical phenomena like diverging correlation lengths and susceptibilities. These notions
may interconnect, with bifurcation points in large systems leading to phase transitions.
Temperature: In the context of Ising or spinglass models, it represents a parameter controlling the
degree of randomness or disorder in the system. It is analogous to thermodynamic temperature
and influences the probability of spin configurations. Higher temperatures typically correspond to
increased disorder and higher entropy states, facilitating transitions between different spin states.
Effective connectivity (or connectivity for short): In our high-level formulation, this is symbol-
ized by w. It represents the connectivity relevant to state dynamics. It is affected by multiple
elements, including the structural connectome, the number of synapses per fiber in the connec-
tome, and the synaptic state (which may be affected by neuromodulatory signals or drugs).
Plasticity: The ability of the system to change its effective connectivity (w), which may vary over time.
Metaplasticity: The ability of the system to change its plasticity over time (dynamics of plasticity).
State or Activity-dependent plasticity: Mechanism for changing the connectivity (w) as a
function of the state (fast) dynamics and other parameters (α). See Equation (2).
State or Activity-independent plasticity: Mechanism for changing the connectivity (w) inde-
pendently of state dynamics, as a function of some parameters (γ). See Equation (2).
Connectodynamics: Equations governing the dynamics of w in slow or ultraslow time.
Fast time: Timescale associated to state dynamics pertaining to x.
Slow time: Timescale associated to connectivity dynamics pertaining to w.
Ultraslow time: Timescale associated to plasticity dynamics pertaining to θ = (α, γ)—v.
Equation (3).
Phase space: Mathematical space, also called state space, where each point represents a possible
state of a system, characterized by its coordinates or variables.
Geometry and topology of reduced phase space: State trajectories lie in a submanifold of
phase space (the reduced or invariant manifold). We call the geometry of this submanifold and
its topology the “structure of phase space” or “geometry of dynamical landscape”.
Topology: The study of properties of spaces that remain unchanged under continuous defor-
mation, like stretching or bending, without tearing or gluing. It’s about the ‘shape’ of space in a
very broad sense. In contrast, geometry deals with the precise properties of shapes and spaces,
like distances, angles, and sizes. While geometry measures and compares exact dimensions,
topology is concerned with the fundamental aspects of connectivity and continuity.
Invariant manifold: A submanifold within (embedded into) the phase space that remains
preserved or invariant under the dynamics of a system. That is, points within it can move but
are constrained to the manifold. Includes stable, unstable, and other invariant manifolds.
Stable manifold or attractor: A type of invariant manifold defined as a subset of the phase
space to which trajectories of a dynamical system converge or tend to approach over time.
Unstable Manifold or Repellor: A type of invariant manifold defined as a subset of the phase
space from which trajectories diverge over time.
Latent space: A compressed, reduced-dimensional data representation (see Box 2).
Topological tipping point: A sharp transition in the topology of attractors due to changes in
system inputs or parameters.
Betti numbers: In algebraic topology, Betti numbers are integral invariants that describe the
topological features of a space. In simple terms, the n-th Betti number refers to the number of
n-dimensional “holes” in a topological space.
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Box 2. The manifold hypothesis and latent spaces.

The dimension of the phase (or state) space is determined by the number of independent
variables required to specify the complete state of the system and the future evolution of the
system. The Manifold hypothesis posits that high-dimensional data, such as neuroimaging
data, can be compressed into a reduced number of parameters due to the presence of a
low-dimensional invariant manifold within the high-dimensional phase space [52,53].
Invariant manifolds can take various forms, such as stable manifolds or attractors and
unstable manifolds. In attractors, small perturbations or deviations from the manifold are
typically damped out, and trajectories converge towards it. They can be thought of as
lower-dimensional submanifolds within the phase space that capture the system’s long-term
behavior or steady state. Such attractors are sometimes loosely referred to as the “latent space”
of the dynamical system, although the term is also used in other related ways. In the related
context of deep learning with variational autoencoders, latent space is the compressive
projection or embedding of the original high-dimensional data or some data derivatives (e.g.,
functional connectivity [54,55]) into a lower-dimensional space. This mapping, which exploits
the underlying invariant manifold structure, can help reveal patterns, similarities, or
relationships that may be obscured or difficult to discern in the original high-dimensional
space. If the latent space is designed to capture the full dynamics of the data (i.e., is constructed
directly from time series) across different states and topological tipping points, it can be
interpreted as a representation of the invariant manifolds underlying system.

Figure 2. Dynamics of a pendulum with friction. Time series, phase space, and energy landscape.
Attractors in phase space are sets to which the system evolves after a long enough time. In the case
of the pendulum with friction, it is a point in the valley in the “energy” landscape (more generally,
defined by the level sets of a Lyapunov function).

2.1. Fast Time: Neural Dynamics

Here, we discuss the first equation in neural geometrodynamics in the context of
neural mass models, though the ideas are applicable more extensively in computational
neuroscience. The standard equation we use in neural mass modeling is a multidimensional
ODE of the form

ẋ = f
(
x; w, η(t)

)
(1)

with x ∈ Rn and where w denotes connectivity parameters and where, as usual, a dot over
a variable denotes its time derivative. The above equation governs dynamics at short time
scales (seconds or less) when the connectivity parameters w are assumed to be constant.

The external input term η(t) makes the equations non-autonomous (an autonomous
ODE does not explicitly depend on time). This term can refer to external forces providing
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random kicks to the trajectory or to a more steady and purposeful forcing from unspec-
ified internal systems, external inputs from sensory systems, or external electric fields,
for example.

We may think of this equation describing phenomena in fast time scales as providing
the “structure” for the dynamics of the neuronal population state. The fast timescale is
set by synaptic transmission (milliseconds) and by ephaptic coupling (electromagnetic
waves) [56–59] on a nanosecond or subnanosecond scale [58].

Equation (1) characterizes the dynamical landscape, which is established through
the geometric structure of the phase space, where trajectories are shaped by the given
set of ordinary differential equations. The landscape is determined by the functional
form of f (x; w, η(t)) and by the parameters w, and is analogous to the Neural Activation
Landscape proposed in [48]. In the REBUS model [12], w would correspond to the weights
or precision assigned to priors/beliefs from the Free Energy perspective, while from the
Entropic Brain perspective w would correspond to the weights of the effective connectivity
between neuronal populations on the macroscopic scale.

More specifically, we talk about the landscape as defined by the manifold generated
by the motion of trajectories with coordinates x ∈ Rn. Typically, trajectories lie in a reduced
manifold of dimensionality lower than Rn. The fact that such a reduced space exists means
that it can be generated by coordinates in a reduced latent space. The geometry and
topology of this reduced space in different states provide a synthetic description of the
dynamics and are of special interest [37].

2.2. Slow Time: Connectodynamics

The landscape, like that on planet Earth, may appear to be static; however, in reality
it is not fixed. It flows in slow time; thus, we can consider changes in connectivity in the
system, which is now w = w(t). We refer to the potential for such changes as the plasticity
of the system. The general form of this equation is ẇ = g(x, w; θ), with θ standing for the set
of parameters controlling the plasticity.

To be more concrete, we can think of two types of process: one that modifies the
connectivity parameters independently of the system’s state (ψ), and another that is a
function of the state (e.g., Hebbian plasticity [60], h). We express this by writing

ẇ = ψ(w; γ) + h(x, w; α). (2)

(with the second term understood as not separable into parts where any part is a function
of only w). This decomposition separates out state-dependent (via the term h(x, w; α)) and
state-independent plasticity (with ψ(w; γ)) processes. The set of parameters θ is similarly
decomposed as θ = (α, γ): we separate out the plasticity-controlling parameters in order to
differentiate the state-dependent (α) and state-independent (γ) plasticity control parameters
(e.g., Hebbian vs. drug-enhanced structural plasticity [11]). The parameters (α, γ) may vary
in time to reflect, for example, the effects of drugs. The dynamics of these parameters are
formalized in the next section.

Hebbian plasticity is the most prominent example of state-dependent plasticity [60].
State dependence implies that state-related concepts such as system temperature, phase
transitions, and critical phenomena are relevant for the study of the dynamics of plasticity.
In particular, within the scope of slower “slow time” (taking place over many hours), we
include homeostatic plasticity [61–64], which may itself target desired complexity states as a
homeostatic goal [65,66]. In the case of state-independent plasticity, there are numerous
candidates for these plastic processes, such as heterosynaptic plasticity [67] or critical-
period plasticity [68].

In summary, the functions h and ψ with parameters α and γ regulate connectodynamics,
defining where and how fast the effective connectivity will change in a state-dependent or
state-independent way.

These connectodynamics differential equations define a new dynamical landscape,
which we can call the plasticity landscape (analogous to the Synaptic Weight Landscape
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in [48]). The state w in this plasticity landscape will determine the shape of the neural
dynamics landscape.

2.3. Ultraslow Time: Metaplasticity

Plasticity is required to adapt to a changing environment [69], and the environment
may change at different rates at different times. Plasticity in the healthy brain should match
this variation in the character of dynamics accordingly. This is analogous to the situation
in biology, where optimal mutation rates ensure successful adaptation in a tradeoff with
genetic integrity [70]. More specifically, the plasticity-regulating parameters α and γ in
Equation (2) should adapt to changes in the environmental conditions.

In pathological cases, plasticity levels can either become overly exuberant, reflecting
the notion of catastrophic forgetting in artificial neural networks, or impoverished and
rigid, reflecting general plasticity loss [48]. These scenarios can be tentatively related to
certain neurological and psychiatric conditions. For example, reduced plasticity could
underlie conditions such as major depressive disorder, obsessive-compulsive disorder,
anxiety, or substance abuse [48,71].

To account for the dynamics of plasticity, we allow the plasticity parameters to be
dynamic, i.e.,

θ̇ = ξ(x, w, θ; µ(t)) (3)

This equation is again state-dependent, allowing the system to respond to changes in the
neural dynamics (with state dynamics as drivers of plasticity parameter regulation [72]),
including critical phenomena (changes in criticality regime [65]) and complexity. Plasticity
dynamics reflect changes in the parameters regulating state-dependent (Hebbian) plasticity
(changes in α) during neurodevelopment, and state-independent plasticity, such as the
ones induced by psychedelics in the acute or post-acute phases (changes in γ). Finally, this
equation is a function of other parameters and non-autonomous terms (µ(t)), reflecting
external perturbations of the system, such as those from drugs. We provide analogies in
the context of sailing and electrodynamics in Appendix A to further clarify these concepts.

The dynamics of plasticity presented above reflect a physiological principle well
described by Abraham et al. in the definition of metaplasticity [73]:

Metaplasticity [ . . . ] is manifested as a change in the ability to induce subse-
quent synaptic plasticity, such as long-term potentiation or depression. Thus,
metaplasticity is a higher-order form of synaptic plasticity [73].

Thus, metaplasticity and its counterparts are terms used in neuroscience to refer to the
plasticity of synaptic plasticity. That is, the idea that the ability of synapses to strengthen
or weaken in response to increases or decreases in their activity (which is called synaptic
plasticity) can be modulated based on the history of the synaptic activity or other factors
(e.g., age, neuromodulatory systems, drugs, or lifestyle [74]). Metaplasticity has important
implications for the learning and memory of an organism, as it can regulate the ability of
synaptic plasticity to change and adapt over time as required by its environmental context.

We call the set of Equations (1)–(3)—somewhat whimsically—the equations for neural
geometrodynamics in reference to the equations of general relativity in physics. We recall
that general relativity provides equations defining the dynamics of spacetime geometry
(via the “metric”) coupled with matter [75]. Section 4 elaborates further on this parallel.

3. Dynamics under Psychedelics

Psychedelics like psilocybin and LSD act as agonists or partial agonists for serotonin 5-
hydroxytryptamine 2A (5-HT2A) receptors, specifically targeting Layer V cortical pyramidal
neurons [11,12,14,76,77], leading to increased neuronal excitability through an increase
in excitatory postsynaptic currents and discharge rates in pyramidal neurons [12]. The
highest expression of 5-HT2ARs is found on the apical dendrites of Layer 5 pyramidal
cells in both cortical and subcortical structures [12,78]. In the cortex, 5-HT2A receptors
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are strongly expressed along a steep anteroposterior gradient [79]. When psychedelics
bind to these receptors, they can lead to a gradual increase of the excitability of these
pyramidal neurons—depolarizing them and making them more susceptible to excitatory
inputs such as those associated with glutamate receptors [79]—much as the gain knob in
an amplifier. This increased excitability and susceptibility to inputs can lead to changes
in the firing patterns of these neurons and alterations in the overall neural circuit activity.
Recognized for their potent and immediate impact on the brain, these drugs cause a swift
reconfiguration of neural dynamics. As we explain, this immediate effect is represented
in our model by state-independent alterations in the connectivity parameters (w) (see
Figure 3).
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Figure 3. Geometrodynamics of the acute and post-acute plastic effects of psychedelics. The acute
plastic effects can be represented by rapid state-independent changes in connectivity parameters,
i.e., the term ψ(w; γ) in Equation (3). This results in the flattening or de-weighting of the dynamical
landscape. Such flattening allows for the exploration of a wider range of states, eventually creating
new minima through state-dependent plasticity, represented by the term h(x, w; α) in Equation (3). As
the psychedelic action fades out, the landscape gradually transitions towards its initial state, though
with lasting changes due to the creation of new attractors during the acute state. The post-acute
plastic effects can be described as a “window of enhanced plasticity”. These transitions are brought
about by changes of the parameters γ and α, each controlling the behavior of state-independent and
state-dependent plasticity, respectively. In this post-acute phase, the landscape is more malleable to
internal and external influences.

How are these effects represented in Equations (1) and (2)? If we include the neuromod-
ulatory nodes in our model—the dorsal raphe and median raphe nuclei in the brainstem
are the source of most serotonergic neurons projecting throughout the brain [79]—, the
modulation of serotonin receptors could be represented by changes in neuromodulatory
connectivity (the subset of w parameters in the model connecting the raphe nuclei to other
nodes). Alternatively, if neuromodulatory nodes are not explicitly included in the model,
for the purposes at hand, we can think of the changes in the excitability of the nodes
affected by neuromodulatory inputs as leading to changes in their effective connectivity
(w) to other nodes (e.g., through an increase of the connectivity of glutamatergic synapses
into Layer 5 pyramidal cells).

The abrupt shift induced by psychedelics can be thought of as a transformation of the
phase space geometry that allows the neural state to explore new trajectories. This process
manifests in an increase of complexity and disorder, which can be measured using various
tools in different modalities, e.g., EEG or fMRI BOLD, and with measures such as entropy,
fractal dimension, algorithmic complexity, etc. [29,31,34,80]). The decrease in effective
connectivity under LSD (especially in interhemispheric homotopic connections), as inferred
using Ising modeling of BOLD signals measured using fMRI imaging, is associated with a
subsequent increase in algorithmic complexity [34].
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Psychedelic-induced changes in connectivity can correspond to a flattening of the
dynamical landscape [12] or a destabilization of it [48].In our framework, the alteration
of effective connectivity results in an immediate and state-independent remodeling of the
dynamical landscape during the acute phase of psychedelics, which is represented by the
term ψ(w; γ) in the connectodynamics equation (Equation (2)). Notably, in the REBUS
model and the Entropic Brain perspective [12], the weights of the effective connectivity
during the psychedelic-induced state are “flattened” or “de-weighted”, representing a
more symmetrical and non-hierarchical connectivity profile.

The instantaneous modification of the landscape is, however, ephemeral, gradually
fading as the acute effects of the psychedelic wears off. The system returns to near its
original geometrical configuration, though with lasting influences brought about by the
plastic changes resulting from the exploration of new trajectories in the acute phase. These
residual changes are captured by the state-dependent plasticity term h(x, w; α), which
reflects changes in connectivity due to Hebbian plasticity that arise from the co-activation
of neurons during the acute psychedelic stage.

In the literature, there is an increasing body of evidence suggesting a post-acute
phase following psychedelic exposure characterized by a period of enhanced plastic-
ity [7,11,12,81,82]. This phase can be interpreted as an extended window of malleability of
the landscape, which could have profound implications for learning and therapy. Such
a window of plasticity has been related to increased neurogenesis and upregulation of
Brain-Derived Neurotropic Factor (BDNF) in humans and mice [8]. The activity-dependent
release of BDNF plays a crucial role in selectively strengthening active synapses while weak-
ening inactive ones, a critical process for Hebbian-type plasticity. Intriguingly, recent studies
with mice have found psychedelic-induced changes in plasticity and antidepressant-like
behavior dependent on the increase of endogenous BDNF and TrkB binding (the receptor
of BDNF) that are independent of the activation of 5-HT2A [9,10].

In terms of our model, these two pathways correspond to changes in connectivity
through Equation (2) due to a temporary modulation of the parameters γ and α (i.e.,
metaplasticity; see Equation (3)) that upregulates state-independent and state-dependent
plasticity processes, respectively. The strong acute-phase increase of state-independent
plasticity (ψ) would be directly associated with the activation of serotonergic receptors,
as discussed above, with a possible gradual decrease during the post-acute phase (the
solid white line in Figure 3). The sustained increase of state-dependent plasticity (h) in
the post-acute phase (the dashed black line in Figure 3) would be linked to dendritic
growth, neurogenesis, upregulation of BDNF, and other related changes. This means that
in the post-acute period the landscape would be more responsive to state changes (itself
being influenced by external factors), offering a potential mechanism for the long-lasting
changes reported after psychedelic experiences. Such external influences are modeled
by the external input term η(t) in the state equation (Equation (1)), and can represent
environmental/sensory inputs, psychotherapy, or neuromodulatory brain stimulation
techniques such as transcranial electrical current stimulation (tES).

Dynamics of Psychedelics and Psychopathology

Recently, psychedelic medicine has emerged as a promising direction for treating
mental disorders such as depression and addiction [83]. The nuanced interaction between
the brain’s neurophysiology and emergent brain activity underlies the pathophysiology of
mood disorders, often resulting in a persistent and maladaptive rigidity in cognitive and
emotional processes [84]. Such changes to the brain’s neurophysiology can be explained
through the CANAL framework, whereby pathological plasticity, often caused by a trau-
matic event asserts itself and dominates brain activity, driving the brain state to become
“stuck in a rut” [11], i.e., a deepening minimum in the dynamical landscape (see Figure 4).

The interplay between external inputs, neural (fast time) dynamics, and connectivity
(slow time) dynamics can drive the system into a joint stable and canalized state of lower
complexity. Under the influence of psychedelics, more diverse and complex dynamics
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destabilize the plasticity equilibrium point, leading to a more fluid and adaptable neural
state in a process that is amplified by the plasticity-enhancing effects of psychedelics. This
shift manifests as an acute systemic increase of disorder, and possibly as a longer-lasting
increase in complexity (Ising temperature, Lempel-Ziv complexity, etc.) that affects both
short-term dynamics and long-term plastic processes.

The CANAL framework offers insight into the neural mechanisms underlying the
persistence of various brain disorders. In particular, psychedelics may mediate their effects
by altering the balance between stability and plasticity in neural networks through meta-
plasticity, and thereby act as potential therapeutic treatments. By acting on the serotonergic
receptors, they trigger a cascade of neurochemical events that subsequently facilitate the
reorganization of entrenched neural patterns. As discussed above, this alteration of the
neural network during the acute phase (connectodynamics) can be interpreted as a rapid
deformation or flattening of the landscape that allows the trapped state to escape and
access more adaptive cognitive and emotional patterns. The rapid increase in complexity (a
change in the dynamics) is itself a likely driver of metaplasticity. The acute phase is believed
to be followed by an extended window of malleability of the landscape, otherwise known
as a “window of plasticity”, where treatments such as psychotherapy and transcranial
electrical stimulation can further alter the pathological rigidity characteristic of various
brain disorders (see Figure 4).
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Figure 4. Psychedelics and psychopathology: a dynamical systems perspective. From left to
right, we provide three views of the transition from health to canalization following a traumatic
event and back to a healthy state following the acute effects and post-acute effects of psychedelics
and psychotherapy. The top row provides the neural network (NN) and effective connectivity
(EC) view. The circles represent nodes in the network and the edge connectivity between them,
with the edge thickness representing the connectivity strength between the nodes. The middle
row provides the landscape view, with three schematic minima and colors depicting the valence of
each corresponding state (positive, neutral, or negative). The bottom row represents the transition
probabilities across states and how they change across the different phases. Due to traumatic events,
excessive canalization may result in a pathological landscape, reflected as deepening of a negative
valence minimum in which the state may become trapped. During the acute psychedelic state,
this landscape becomes deformed, enabling the state to escape. Moreover, plasticity is enhanced
during the acute and post-acute phases, benefiting interventions such as psychotherapy and brain
stimulation (i.e., changes in effective connectivity). Not shown here is the possibility that a deeper
transformation of the landscape may take place during the acute phase (see the discussion on the
wormhole analogy in Section 4).
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4. Neural Geometrodynamics and General Relativity

A parallel can be drawn between neural geometrodynamics and Einstein’s equations
of general relativity—the original geometrodynamics. Both frameworks involve the dy-
namical interaction between structure and resulting activity, each influencing and being
influenced by the other. The Einstein field equations, including the cosmological constant
Λ, are

Rµν −
1
2

gµνR + Λgµν =
8πG

c4 Tµν. (4)

Here, gµν is the metric tensor, Rµν = Rµν[gµν] is the Ricci curvature tensor and a function
of gµν, R[gµν] is the Ricci scalar (or curvature scalar) and a function of gµν, and Tµν is the
stress–energy tensor, a function of the mass and energy distribution (all the indices refer to
spacetime dimensions), which is sometimes called the energy–momentum tensor. This is a
central concept in general relativity that encapsulates the distribution and flow of energy
and momentum in spacetime; its components include the energy density, momentum
density, and stress (pressure and shear stress) within a given region. In addition, G is the
gravitational constant, c is the speed of light, and Λ is the cosmological constant. These
equations describe the fundamental interaction of gravitation as a result of spacetime
being curved by matter and energy. Specifically, they equate local spacetime curvature (on
the left-hand side) with the local energy and momentum within that spacetime (on the
right-hand side).

To complete these equations, the geodesic equation portrays how particles (matter) move
in this curved spacetime, encapsulated by the notion that particles follow the straightest
possible paths (geodesics) in curved spacetime:

d2xµ

dτ2 + Γµ
ρσ

dxρ

dτ

dxσ

dτ
= 0 (5)

where xµ are the coordinates of the particle, τ is the proper time along the particle’s
path, and Γµ

ρσ[gµν] are the Christoffel symbols, which are a function of gµν and encode the
connection (a mathematical object that describes how vectors change as they are parallel
transported along curves in spacetime). The stress–energy tensor Tµν can be computed
from the state of the particles to close the system of equations. For example, for N particles
it is provided by Tµν = ∑i miu

µ
i uν

i δ(x − xi), where mi and ui are the mass and velocity of
the ith particle. More generally, the stress–energy tensor represents the state of matter and
energy, which corresponds to x in our neural model. The metric gµν, which specifies the
geometry of spacetime, is akin to the connectivity w, which shapes the structure of the
space where fast dynamics occur.

In the context of neural mass models, the state equation ẋ = f (x; w) is analogous to
the geodesic equation: “the state of the system evolves according to the landscape geometry
specified by the parameters w”. On the other hand, the connectodynamics equation
ẇ = h(x, w; θ) (with θ standing for plasticity parameters) is analogous to Einstein’s field
equations; the parameters w, which describe the “structure” of the space where dynamics
take place, evolve according to the current state of the system x and its ‘readiness’ for
plasticity (parametrized by θ).

The analogy to psychedelic effects in general relativity can be clarified further. The
neural effects of psychedelics, as we understand them, start with a disruption of connectiv-
ity in a spatially dependent manner. Since the analog of w is g (the metric), in cosmological
terms, we would first see a dynamic deformation of spacetime independent of the mass
distribution (state-independent plasticity). Spacetime would “flatten”. This would cause
the mass in the universe to escape from gravitational wells following new geodesics (just
as the state in the brain will explore new regions of phase space), in turn creating further
deformations of spacetime (state-dependent plasticity).

We emphasize that this comparison is largely metaphorical and therefore limited: the
mutual influence between particles and spacetime in general relativity is akin to the state
of the neural system and its underlying connectivity parameters. In both cases, dynamics
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and structure are intertwined (see Figure 5). However, as an example of the limitations
of the analogy, the slow and fast nature of the different variables is interchanged in the
two formulations, with spacetime responding faster (at the speed of light) to changes in the
distribution of energy than the stress-energy tensor itself.

General Relativity Neural Geometrodynamics

Spacetime
Mass

Geodesic equation Brain State equation

Einstein’s field equation Connectodynamics equation

Brain Connectivity

Brain state

Figure 5. General Relativity and Neural Geometrodynamics. Left: Equations for general rela-
tivity (the original geometrodynamics), coupling the dynamics of matter with those of spacetime.
Right: Equations for neural geometrodynamics, coupling neural state and connectivity. Only the
fast time and slow time equations are shown (ultraslow time endows the “constants” appearing in
these equations with dynamics).

4.1. Metaplasticity and Variable Constants in Cosmology

In our neural mass model framework, the concept of metaplasticity is introduced to
refer to dynamic variations in the plasticity control constants, in the connectodynamics
equation, namely, θ. This set of constants can be represented as evolving over time as a
function of the state of the system or other relevant variables:

θ̇ = ξ(x, w, θ; λ), (6)

where ξ defines the evolution of the plasticity control constants with parameters λ.
Analogously, in the realm of general relativity and cosmology, it has been speculated

that the fundamental constants such as the speed of light c, gravitational constant G, or
cosmological constant Λ, may in fact be dynamic. Although not part of the mainstream
cosmological model, theories proposing variable constants such as the “Variable Speed of
Light” (VSL) or “Variable Cosmological Constant” provide an intriguing parallel. For in-
stance, within VSL theories the speed of light c is postulated to vary over cosmological time
scales. Certain hypothetical dynamical equations could dictate the dynamical evolution of
these constants. Although these theories are quite speculative and do not form a part of
mainstream physics, they offer an interesting perspective on the concept of metaplasticity
and its potential implications for the dynamical evolution of neural mass models and the
structure of their landscapes.

4.2. Psychedelics as Wormholes in the Neural Landscape

In the parallel between general relativity and neural geometrodynamics, we see
the effects of psychedelics as a deformation of the neural landscape (spacetime) that
allows the brain state (of a particle or set of particles) to escape from a local minimum
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and transition to another location in the landscape (spacetime). Although transitions
may be smooth and respect the topology of the landscape [85,86], deformations of the
landscape may be more extreme as well, i.e., sharp transitions through a topological
tipping point of the dynamical landscape. The creation of a wormhole (in 4D or higher
dimensional spaces) would alter the topological structure of the manifold it inhabits and
the associated Betti numbers. This may be due to external inputs (η(t)) when the system
is non-autonomous [87], e.g., due to sensory or brain stimulatory effects. As we have
discussed, this may be due to connectivity dynamics.

Wormholes, a term coined by John A. Wheeler [88] (sometimes called Einstein–Rosen
bridges), are solutions to the Einstein field equations of general relativity which certain
models suggest could exist under specific conditions. The creation of a wormhole in general
relativity can be viewed as a profound deformation of spacetime, bending and connecting
distant parts of the universe in such a way that matter/energy (such as an astronaut) can
travel vast distances in an instant. This change in the geometry and topology of spacetime
can be likened to the effect of psychedelics on the human mind. Just as a wormhole alters
the structure of spacetime, psychedelics may radically deform the dynamical landscape of
neural dynamics, creating connections across distant landscape locations. In the same way
that the astronaut would use a wormhole to bypass vast stretches of space, the deformation
caused by psychedelics may allow the state of the brain to “tunnel out” and escape from a
local minimum or stuck pattern of thought, providing access to new areas of the landscape,
new perspectives, and potentially unexplored territories of consciousness. Both phenomena
are characterized by a fundamental transformation that enables traversal into otherwise
inaccessible regions, whether in physical space or the brain’s dynamical landscape; see
Figure 6 for a sketch of this concept.

Pathological 

attractor

(current state)

Healthy 

attractor

Psychedelics

Geometry of the 

dynamical landscape 

Psychedelic 

wormhole

After-effect

Pathological 

attractor

Healthy 

attractor

(new state)

Figure 6. A hypothetical psychedelic wormhole. On the left, the landscape is characterized by a deep
pathological attractor which leads the neural state to become trapped. After ingestion of psychedelics
(middle) a radical transformation of the neural landscape takes place, with the formation of a
wormhole connecting the pathological attractor to another healthier attractor location and allowing
the neural state to tunnel out. After the acute effects wear off (right panel), the landscape returns
near to its original topology and geometry, but the activity-dependent plasticity reshapes it into a less
pathological geometry.

4.3. Characterizing the Landscape

An important challenge in the program of neural geometrodynamics is to explore
practical methods with which to characterize the landscape. Here, we can again draw
inspiration from physics and mathematics.

The roots of this approach can be traced back to the 19th century, when Carl Friedrich
Gauss pioneered the field of differential geometry. Gauss’s Theorema Egregium demon-
strated that the curvature of a surface could be determined entirely by measurements within
the surface, without any reference to the surrounding space [89]. This seminal insight has
laid the groundwork for understanding manifolds in various contexts, including the theory
of relativity. In the era of general relativity, the interplay between geometry and physics
was further enriched. Differential geometry and algebraic topology, which comes into
play when one is interested in the global properties of the manifold, such as its shape,
connectedness, and the presence of holes [90,91], became essential in describing the fabric
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of spacetime itself. It enabled physicists to conceptualize how mass and energy warp the
geometry of spacetime, thereby influencing the motion of objects.

In our current endeavor, these ideas find application in characterizing the complex
dynamical landscapes of neural data. Modern tools from deep learning, such as varia-
tional autoencoders, can be used to unravel the reduced spaces underlying neuroimaging
or neurophysiological data [54,55], while dynamical systems theory in concert with dif-
ferential geometry, group theory, and algebraic topology data analysis [92] offer robust
frameworks to understand and characterize them [87,93–97]. Topological data analysis can
also be used to explore the graphs associated with model space, for example, the structural
(connectome) or effective connectivity between regions in the brain (see [98] for a recent
review). Topological methods have already been successfully employed to analyze detailed
microscopic models [95], to study the relationship of criticality and topology in models [99],
and to characterize functional brain networks derived from neuroimaging data [85,86,98].

World-tracking constraints force the brain as a dynamical system to mirror the sym-
metry in the data [37], a requirement that translates into constraints on structural and
dynamical aspects of the system (and which can be analyzed using Lie group theory).
This suggests leveraging the known links between topology and Lie groups [100]. The
convergence of these mathematical techniques extends to neuroscience the fruitful exercise
in physics of linking geometry and topology.

Finally, it would be interesting to explore if hierarchical data processing systems
such as the brain display dynamical manifolds with hierarchical structure, including
topology. This possibility is intuitive given the connections between the notions of criticality,
information processing, and hierarchical organization [34,101]. In this sense, the effects
of psychedelics, which are seen to increase the temperature of the system [34] and the
complexity of dynamics, should be reflected as an increase in the topological complexity of
the associated dynamical attractors, as we discussed above with the analogy to wormholes.

The relationship between hierarchy and topological complexity could be analyzed,
for example, by exploring artificial neural networks carrying out hierarchical processing
(any generative deep network trained on real-world data would do, in principle). Such
networks could then be used to generate neural activation data and analyze, for instance,
whether the depth of the network (the number of layers in its hierarchical architecture) is
reflected in the topology (e.g., in Betti numbers) associated with the data or its latent space.

5. Conclusions

In this paper, we have defined the umbrella of neural geometrodynamics to study
the coupling of state dynamics, their complexity, geometry, and topology with plastic
phenomena. We have enriched the discussion by framing it in the context of the acute and
longer-lasting effects of psychedelics.

As a source of inspiration, we have established a parallel with other mathematical
theories of nature, specifically, general relativity, where dynamics and the “kinematic
theater” are intertwined.

Although we can think of the “geometry” in neural geometrodynamics as referring
to the structure imposed by connectivity on the state dynamics (paralleling the role of the
metric in general relativity), it is more appropriate to think of it as the geometry of the
reduced phase space (or invariant manifold) where state trajectories ultimately lie, which
is where the term reaches its fuller meaning. Because the fluid geometry and topology of
the invariant manifolds underlying apparently complex neural dynamics may be strongly
related to brain function and first-person (structured) experience [16], further research
should focus on creating and characterizing these fascinating mathematical structures.
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Appendix A

Appendix A.1. A Nautical Analogy

To illustrate the interconnected dynamics of neural states, connectodynamics, and
metaplasticity, consider a toy sailing boat navigating a circular pond. The boat moves
through the pond, creating ripples that propagate across the water’s surface, eventually
reflecting off the pond’s boundaries. These reflected ripples, in turn, influence the boat’s
trajectory. This mirrors the dynamics of brain states, analogous to neural dynamics ex-
pressed by the equation ẋ = f (x; w, η(t)), where the boat’s position represents the state x
and the water surface’s geometry reflects the effective connectivity w. The term η(t) may
be associated with an external force such as the wind.

The changes in the geometry of the water surface caused by the boat’s movement
symbolize connectodynamics. This is captured by the plasticity equation ẇ = g(x, w; θ),
where the evolving connectivity parameters w depend on the boat’s position x and other
factors. The boat’s position and the water’s surface geometry are intrinsically linked, akin
to brain state and effective connectivity.

Further, imagine that other external factors, such as temperature fluctuations or
changes in water viscosity, modify the water’s molecular structure over time. For ex-
ample, a temperature decrease nearing freezing could alter the water structure (density and
viscosity [102]) in the pond and how the boat’s movement affects the water geometry. This
change in the water’s properties symbolizes the dynamics of plasticity, or metaplasticity, as
described by θ̇ = ξ(x, w, θ; µ(t)).

Appendix A.2. Classical Dynamics of Particles and Fields

Here, we provide the equations for other systems; one can think of part of the equation
describing the geometry of a space-providing subsystem (“kinematic theater”) and another
describing the subsystem moving in this space, influenced by the structure and affecting its
geometry in return. Several such examples can be found in physics.

Appendix A.2.1. Non-Relativistic Electrodynamics

The non-relativistic dynamics of N-charged particles and the associated electromag-
netic field are described by the coupling of Newton’s second law and Maxwell’s equations.
The charged particles are influenced by the electromagnetic field while generating it at the
same time. This can lead to problematic scenarios, such as the self-interaction problem, in
which charged particles generate an electromagnetic field; if one considers a particle’s inter-
action with its own field, paradoxical or unphysical results can arise. This self-interaction
leads to divergences in calculations, and until recently has been a longstanding challenge
in classical electrodynamics [103].

The motion of the ith electron is provided by mi
d2ri
dt2 = Fi, where Fi = qi(E + vi × B) is

the Lorentz force. The electromagnetic field obeys Maxwell’s equations:
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∇ · E =
ρ

ε0
,

∇ · B = 0,

∇× E = −∂B
∂t

,

∇× B = µ0J + µ0ε0
∂E
∂t

,

where ρ(r, t) = ∑i qiδ(r − ri(t)) and J(r, t) = ∑i qivi(t)δ(r − ri(t)) are the charge and
current densities, respectively.

Appendix A.2.2. Relativistic Equations

While Maxwell’s equations are relativistic (i.e., they transform properly under Lorentz
transformations), Newton’s equation is not. For the relativistic version, the field strength
tensor Fµν is defined in terms of the four-potential Aµ [104]:

Fµν = ∂µ Aν − ∂ν Aµ.

The dual tensor F̃µν is defined in terms of Fαβ, and the Levi-Civita symbol εµναβ:

F̃µν =
1
2

εµναβFαβ.

The homogeneous Maxwell’s equations are provided by

∂µ F̃µν = 0

and the inhomogeneous Maxwell’s equations by

∂µFµν = µ0 Jν,

where Jν is the four-current vector, which we now define for a particular case. Given a
distribution of N particles, each with charge qi and four-velocity uµ

i , the four-current Jµ at
position x and time t is provided by

Jµ(x, t) =
N

∑
i=1

qiu
µ
i δ3(x − xi(t)),

where xi(t) is the position of the i-th particle at time t and δ3 is the three-dimensional Dirac
delta function.

In its relativistic form, the equation of motion for a charged particle in an electromag-
netic field (commonly known as the Lorentz force equation) is

dpµ

dτ
= qFµνuν.

Here, pµ is the four-momentum of the particle, uν is the four-velocity of the particle, Fµν is
the electromagnetic field tensor, and q is the charge of the particle. The equation describes
how the four-momentum of the particle changes with the proper time τ under the influence
of the electromagnetic field.

Appendix A.3. Modeling Plasticity in Neural Mass Models

In this section, we provide a brief overview of plasticity mechanisms and how they
relate to the terms in the formalism, namely, the functions h and ψ; see Table A1 for a
summary. Including plasticity in Neuronal Mass Models (NMMs) allows for the modeling
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of time-varying connectivity strengths that reflect the learning and adaptation processes
observed in biological neuronal networks.

Table A1. Summary of Different Types of Neural Plasticity Phenomena. State-dependent Plasticity
(h) refers to changes in neural connections that depend on the current state or activity of the neurons
involved. For example, functional plasticity often relies on specific patterns of neural activity to induce
changes in synaptic strength. State-independent Plasticity (ψ) refers to changes that are not directly
dependent on the specific activity state of the neurons; for example, acute psychedelic-induced
plasticity acts on the serotonergic neuroreceptors, thereby acting on brain networks regardless of
specific activity patterns. Certain forms of plasticity, such as structural plasticity and metaplasticity,
may exhibit characteristics of both state-dependent and state-independent plasticity depending on
the context and specific mechanisms involved. Finally, metaplasticity refers to the adaptability or
dynamics of plasticity mechanisms.

Type Time Scale Mechanism Effects State-Dependence

Functional or
dynamical Plasticity

Milliseconds to
minutes

Changes in strength/efficiency
of synapses (e.g., Hebbian plas-
ticity, LTP, LTD)

Short and long-term
memory, fine-tuning of
connections

State-dependent (h)

Acute
Psychedelic-induced
Plasticity

Minutes
to Hours

Targeting of serotonergic neu-
roreceptors especially the 5-
HT2A with a result in overall
excitability [7,11,12,81]

Flattens or de-weights
the dynamical
landscape

State-independent (ψ)

Homeostatic Plasticity Hours to days

Regulation of overall excitabil-
ity to maintain stability (e.g.,
adjusting synapse strength for
E/I balance)

Balances and stabilizes
network State-dependent (h)

Structural Plasticity
(e.g., post-acute
psychedelic-induced
plasticity)

Hours to years

Larger physical changes in
neurons (e.g., dendrite growth,
synapse formation) through an
increase of endogenous BDNF
and via TrkB binding (the re-
ceptor of BDNF) [82]

Long-term memory,
development Depends on context

Metaplasticity Various, often
longer-term

Changes in mechanisms govern-
ing synaptic plasticity (e.g., mod-
ulation of thresholds/rules)

Regulates other forms
of plasticity, “plasticity
of plasticity” [73]

Depends on context

Appendix A.3.1. Functional Plasticity

The simplest and most common way to include synaptic plasticity is through Hebbian
learning rules. Hebbian plasticity, a type of functional plasticity, follows the principle
that “neurons that fire together wire together” [60]. It can be included in NMM using
the equation

ẇij = ηxixj − δwij, (A1)

where wij is the synaptic strength from neuron j to neuron i, xi and xj are the neuronal
activities, and η and δ are parameters controlling the learning and decay rates.

Appendix A.3.2. Homeostatic Plasticity

Homeostatic plasticity, a form of plasticity that adjusts synaptic strengths to keep the
overall activity of a neuron or network within a certain range, can be included in an NMM
using the equation [61–65]

ẇij = η(xi − xtarget)xj − δwij, (A2)

where xtarget is the target activity level.
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Appendix A.3.3. Structural Plasticity

Structural plasticity, where the actual number, dendrites, and arrangement of synapses
change over time, can be represented in NMMs by modifying or even adding rows and
columns from the w adjacency matrix to represent the formation or elimination of synapses
or even fibers.

Appendix A.3.4. Empirically-Derived Structural Plasticity

NMMs can be used to infer structural changes to plasticity without explicitly de-
scribing the plastic mechanism per se. For example, in the post-acute psychedelic state,
NMMs can be used to infer the plastic changes to wij by optimizing the modeled functional
connectivity FSmodel

ij to approximate the empirical functional connectivity FSmodel
ij with a

certain learning rate ϵ, as in the following equation:

wij = wij + ϵ(FSempirical
ij − FSmodel

ij ). (A3)

Such optimization can be computed through, for example, gradient descent methods with
priors on the topology of structural connectivity between brain regions [105]. Recent
methods have further extended this framework by adding time-shifted correlation [42] to
the optimization as a better description of the overall brain state (in this case, the post-acute
psychedelic state).

Including these forms of plasticity in NMMs allows for more realistic modeling of
neural systems that can better capture their adaptive nature along with the impact of
learning and experience on synaptic connections.
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Figure A1. Conceptual funnel of terms between the NGD (neural geometrodynamics), Deep
CANAL [48], CANAL [11], and REBUS [12] frameworks. The figure provides an overview of the
different frameworks discussed in the paper and how the concepts in each relate to each other,
including their chronological evolution. We wish to stress that there is no one-to-one mapping
between the concepts as different frameworks build and expand on the previous work in a non-trivial
way. In red, we highlight the main conceptual leaps between the frameworks. See the main text or
the references for a definition of all the terms, variables, and acronyms used.
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