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Abstract: It has been over 100 years since the discovery of one of the most fundamental statistical
tests: the Student’s t test. However, reliable conventional and objective Bayesian procedures are still
essential for routine practice. In this work, we proposed an objective and robust Bayesian approach
for hypothesis testing for one-sample and two-sample mean comparisons when the assumption of
equal variances holds. The newly proposed Bayes factors are based on the intrinsic and Berger robust
prior. Additionally, we introduced a corrected version of the Bayesian Information Criterion (BIC),
denoted BIC-TESS, which is based on the effective sample size (TESS), for comparing two population
means. We studied our developed Bayes factors in several simulation experiments for hypothesis
testing. Our methodologies consistently provided strong evidence in favor of the null hypothesis in
the case of equal means and variances. Finally, we applied the methodology to the original Gosset
sleep data, concluding strong evidence favoring the hypothesis that the average sleep hours differed
between the two treatments. These methodologies exhibit finite sample consistency and demonstrate
consistent qualitative behavior, proving reasonably close to each other in practice, particularly for
moderate to large sample sizes.

Keywords: student’s t test; Bayes factors; intrinsic priors; robust prior

1. Introduction

One of the fundamental topics in statistics revolves around the one-sample population
means and the comparison of two-sample means. The go-to method for addressing this
question is typically the Student’s t test [1]. Conducting a hypothesis test for the population
mean holds significant importance in the scientific research community and various fields
where making inferences about population parameters is pivotal. Frequentists heavily rely
on p-values to determine whether to reject or not reject the null hypothesis [2]. However,
p-values, along with significance testing based on fixed α-levels, tend to exaggerate evi-
dence against null hypotheses for large sample sizes and lack the operational meaning of a
probability [3–5]. While the Bayesian approach has gained attention in hypothesis testing
and model selection [6,7], its application in essential statistics topics remains somewhat
limited [8]. This raises the question: Why is a Bayesian Student’s t test necessary? We argue
for two main reasons. Firstly, Bayesian tests provide evidence for a hypothesis of interest
that naturally adapts to any sample size. Secondly, the Bayes factor can be easily converted
to posterior model probabilities and support one of the testing frameworks. Another crucial
consideration is that scientific questions often have a Bayesian nature, such as, “What is the
probability that these two treatments differ?”.

Bayesian hypothesis testing and model selection have been undergoing extensive
development because of recent advances in the creation of ”default” Bayes factors that
can be used in the absence of substantial subjective prior information [5,9–11]. The study
in [12] proposed some arguments for the choice of the prior, such as (i) the fact that it
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is located around zero, (ii) the scale parameter σ, (iii) the fact that it is symmetric, and
(iv) that it should have no moments. Bayes factors are attractive in terms of interpretation
as odds, and the direct probability of the posterior model is readily understandable by
general users of statistics [13]. Methods based on conjugate priors for the Student’s t test
have a long history. Perhaps the most transparent approach for the two-sample Student’s t
is in [14]. However, natural conjugate priors do not lead to robust procedures; they have
tails that are typically of the same form as the likelihood function and will hence remain
influential when the likelihood function is concentrated in the prior tails, which can lead to
inconsistency [15]. This conjugate Bayes factor for comparing two samples based on the
Student’s t is finite sample-inconsistent, i.e., it does not go to zero when the estimates go
to infinity.

In this work, we proposed an objective and robust Bayes factor for testing the hypoth-
esis of one-sample and two-sample means based on the t-statistic. Our Bayes factors can be
easily implemented, allowing researchers to determine support for a particular hypothesis.
This manuscript proceeds as follows. In Section 2, we derive these objectives and robust
Bayes factors for one-sample and two-sample scenarios and demonstrate their finite sample
consistency. In Section 3, we compare our Bayes factors with existing methodologies under
several experimental frameworks. In Section 4, we apply our methodologies to real-life
datasets such as the original Gosset sleep data and to comparisons of changes in blood
pressure in mice according to their assigned diet. We conclude this work with a discussion
in Section 5.

2. Methodology

Statistical inference for the mean (one or two samples) has an important rule in
statistics and several fields. For instance, it is very common to test in terms of the average
or population mean. Suppose that we are comparing two hypotheses, H0 : θ0 ∈ Θ vs. H1 :
θ1 ∈ Θ. Suppose that we have available prior densities πi, i = 1, 2 for each hypothesis
and let fi(x|θi) be the probability density function under the ith hypothesis. Define the
marginal or predictive densities for each hypothesis of interest (or model),

mi(x) =
∫

fi(x|θi)πi(θi)dθi, (1)

which are sometimes called the evidence of the ith hypothesis or model. The Bayes factor
for comparing H0 to H1 is then given by

B01 =
m0(x)
m1(x)

=

∫
f0(x|θ0)π0(θ0)dθ0∫
f1(x|θ1)π1(θ1)dθ1

. (2)

The interpretation of the Bayes factor proceeds as follows. If B01 > 1, then the evidence
is in favor of the null hypothesis, while B01 < 1 gives evidence in favor of the alternative
hypothesis. If prior probabilities P(Hi) i = 0, 1 of the hypotheses are available, then one can
compute the posterior probabilities of it from the Bayes factors. The posterior probability
of H0, given the data x, is

P(H0|x) =
m0(x)P(H0)

∑1
j=0 mj(x)P(Hj)

=
1

1 + P(H1)
P(H0)

B10

; (3)

where B10 = 1/B01.

2.1. One-Sample Mean Hypothesis Testing

A one-sample hypothesis test for the population mean is one of the most fundamental
statistics topics, either as an introductory topic or to address research questions. Suppose
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we have a random sample from a normal distribution, i.e., X1, . . . , Xn ∼ N(µ, σ2), with an
unknown standard deviation σ > 0. We are interested in testing for the population mean µ.

H0 : µ = µ0 vs. H1 : µ ̸= µ0. (4)

A Bayesian approach to test this hypothesis is based on the theory of intrinsic pri-
ors [16,17]. The authors begin with the noninformative priors for the null and alternative
hypotheses, πN

0 (σ) = 1/σ and πN
1 (µ, σ) = 1/σ2. After some calculations, the authors

showed that the conditional proper intrinsic prior under the alternative Hypothesis H1 is
given by

π I(µ|σ) = 1
2
√

πσ

1 − e−µ2/σ2

(µ2/σ2)
.

One can express πI(µ, σ) = π(µ|σ)π(σ). The resulting intrinsic prior under H1 is
defined as

π I
1(µ, σ) = π I

1(µ|σ)/σ =
1

2
√

π

1 − e−µ2/σ2

µ2 .

The approximate Bayes factors based on the intrinsic prior (BIP
01 ) for a one-sample

population mean are

BIP
01 ≈ BN

01 ·
πN

1 (µ̂, σ̂)

π I
1(µ̂, σ̂)

(1 + o(1)).

Here, µ̂ and σ̂ are the Maximum Likelihood Estimators (MLEs) under H1. The resulting
Bayes factor for the hypothesis in (4) is

BIP
01 ≈

√
2n
(

1 +
t2

n − 1

)−n/2 t2/(n − 1)
1 − e−t2/(n−1)

; (5)

where t = (x̄ − µ0)/s/
√

n, where x̄ is the sample mean and s is the sample standard
deviation. Larges values of B01 give evidence in favor of the null hypothesis. Also, we
can transform these Bayes factors using the natural logarithm scale (2 log B01), and values
above 3 give some evidence in favor of the null hypothesis, while values above 10 give
stronger evidence in favor of the null hypothesis; see [13].

This Bayes factor satisfies the finite sample consistency principle. Suppose that we
are comparing the alternative hypothesis with the null hypothesis, H0 : β = 0. As the least
squares estimate β̂ (and the noncentrality parameter) goes to infinity, so that one becomes
sure that H0 is wrong, the Bayes factor of H0 to H1 goes to zero.

Theorem 1. For a fixed sample size n ≥ 2, the Bayes factor based on the intrinsic prior (BIP
01 ) for

the one-sample mean µ is finite sample-consistent.

Proof. For a fixed sample, n ≥ 2, and letting t2 → ∞ or equivalently |t| → ∞, the Bayes
factor based on the intrinsic prior goes to 0, i.e.,

lim
|t|→∞

BIP
01 → 0; or equivalently lim

|t|→∞
P(H0|x) → 0.

The Bayes Factor based on the intrinsic prior BIP
01 is finite sample consistent.

Robust Bayes Factor for the One-Sample Test for the Mean

Even though the Bayes Factor constructed using the intrinsic prior is finite sample-
consistent, it is only an approximation. Evidence has been found that priors with flatter
tails than those of the likelihood function tend to be fairly robust, [18,19]. The robust
prior proposed here is developed by [20]; we call it the Berger robust prior. This prior is
hierarchical; by such a choice, we can obtain robustness while keeping the calculations
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relatively simple, and the computations are exact. The definition of this robust prior,
denoted πR(ξ), can be defined as follows:

1. ξ|λ ∼ Np(µ, B(λ)), where B(λ) = ρλ−1(b + d)− d and ρ = p+1
p+3 .

2. λ has a density π(λ) = 1
2 λ−1/2 on (0, 1).

where p is the rank of the design matrix. Recall that we are interested in testing (4); therefore,
under the null hypothesis, the likelihood is in the form

f0(x|µ0, σ) = (2π)−n/2σ−n exp
{
−∑n

i=1(xi − µ0)
2

2σ2

}
.

The noninformative prior under the null hypothesis is πN(σ) = 1/σ. The marginal
density m(x) under the null hypothesis is given by

m0(x) =
∫

f0(x|σ)πN(σ)dσ =
∫ ∞

0
(2π)−nσ−ne−

SS2
0

2σ2 σ−1dσ

= (2π)−n/2(SS2
0)

−n/2Γ
(n

2

)
;

(6)

where SS2
0 = ∑n

i=1(xi − µ0)
2, the sums of squares under H0 and Γ(·) is the gamma function.

Similarly, we can obtain an alternative likelihood under the alternative Hypothesis H1:

f1(x|µ, σ) = (2π)−n/2σ−n exp

{
−SS2

1
2σ2 − n(µ − x̄)2

2σ2

}
.

Here, x̄ = n−1 ∑n
i=1 xi is the sample mean and SS2

1 = ∑n
i=1(xi − x̄)2 is the sum of

squares under the alternative. The Berger robust prior will be considered under the
alternative hypothesis π1(µ, σ) = πR(µ|σ)/σ. The marginal density under H1 is

m1(x) =
∫

f1(x|µ, σ)π1(µ, σ)dµdσ =
∫

f1(x|µ, σ)πR(µ|σ) 1
σ

dµdσ

=
(2π)−n/2

n · (x̄ − µ0)2

√
n + 1

2

Γ((n − 2)/2)

2( s2

2 )
(n−2)/2

− Γ((n − 2)/2)

2( s2

2 + (x̄−µ0)2

(n+1)/n )
(n−2)/2

.
(7)

Computing the ratio of the marginals from (6) and (7), the Bayes factor based on the
Berger robust prior is given by

BR
01 =

√
2

n + 1
n − 2
n − 1

t2
(

1 +
t2

n − 2

)−n/2(
1 −

(
1 +

2t2

n2 − 1

)−(n−2)/2)−1

. (8)

Here, t = (x̄ − µ0)/(s/
√

n) is the usual t-statistic with n − 1 degrees of freedom,
where x̄ and s are the sample mean and sample standard deviation, respectively.

Theorem 2. For a fixed sample size n ≥ 3, the Bayes factor based on the Berger robust prior (BR
01)

for the one-sample mean µ is finite sample-consistent.

Proof. For a fixed sample, n ≥ 3, and letting t2 → ∞, or equivalently |t| → ∞, the Bayes
factor based on the Berger robust prior goes to 0, i.e.,

lim
|t|→∞

BR
01 → 0; or equivalently lim

|t|→∞
P(H0|x) → 0.

The Bayes factor based on the Berger robust prior BR
01 is finite sample-consistent.
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Unlike the Bayes factor derived with the intrinsic prior, this robust Bayes factor has a
closed form. We conclude the derivations for the Bayesian approach based on the intrinsic
and robust prior that are finite sample-consistent. We now extend the objective and robust
Bayesian approach to the two-sample scenarios.

2.2. Two-Sample Mean Hypothesis Test

Another fundamental research question of interest is whether or not the two groups
are similar. This problem is usually addressed in the two-sample Student’s t test to compare
if these groups differ in means. Let X1, . . . , Xn1 ∼ N(µ1, σ2) and let Y1, . . . , Yn2 ∼ N(µ2, σ2)
independent of X with σ > 0 unknown. At first, we noticed that we were assuming that
these two samples arise from a normal distribution with different means but equal variances.
It is common interest to determine if these two samples are equal, or at least that they do
not differ in location. To answer this, a hypothesis test for comparing two-sample means
is performed, i.e., H0 : µ1 = µ2 against H1 : µ1 ̸= µ2. To answer this question, Ref. [14]
proposed the conjugate Bayes factor. This Bayes factor is based on the conjugate prior:
(µ1 − µ2)/σ = δ/σ|σ ∼ N(λ, σ2

δ ). Centering the prior assessment on the null hypothesis,
i.e., making λ = 0, is usually a very reasonable choice. Then, the conjugate Bayes factor

is simplified as BC
01 =

[
1+t2

ν/ν

1+t2
ν/(ν(1+nδσ2

δ ))

]−(ν+1)/2√
1 + nδσ2

δ . However, this Bayes factor

is not finite sample-consistent, as |t| → ∞, or t2 → ∞; the BC
01 does not go to zero, or

equivalently, the posterior probability of the null hypothesis P(H0|data) does not go to
zero. In fact, as |t| → ∞, then BC

01 →
(
1 + nδσ2

δ

)−ν/2
> 0, where nδ = 1/(1/n1 + 1/n2)

and ν = n1 + n2 − 2 are the degrees of freedom.

2.2.1. Intrinsic Bayes Factor for Two-Sample Means

To address the limitation of the conjugate prior, our first approach is based on the
theory of intrinsic priors introduced in [16,17]. Similar to the one-sample case, the method
is to dig out a prior that yields, for moderate to large sample sizes, results equivalent to an
established method for scaling the intrinsic Bayes factors. The resulting set of equations
typically has solutions, at least in the nested hypothesis scenario, which is our case, and
has been successfully applied coupled with the intrinsic Bayes factor method. Consider the
hypotheses tests for the comparison of two populations means with unknown and equal
variance σ2 > 0, H0 : µ1 = µ2 vs. H1 : µ1 ̸= µ2. Let δ0 = (µ1 + µ2)/2 and δ1 = (µ1 − µ2)/2,
then µ1 = δ0 + δ1 and µ2 = δ0 − δ1. This transformation leads us to the following design
matrix X based on the training samples:

Xµ =

[
12×1 02×1
02×1 12×1

][
µ1
µ2

]
=

[
14×1|

[
12×1
−12×1

]][
δ0
δ1

]
=
[
X0(l) : X1(l)

]
δ;

where 1k×1 and 0k×1 are vectors of 1’s and 0’s of length k. The parameter of non-centrality
can be computed as

λ(l) = σ−2δt
1Xt

1(l)
(

I − X0(l)
[
Xt

0(l)X0(l)
]−1Xt

0

)
X1(l)δ1

= σ−2
(

µ1 − µ2

2

)2
· 4 =

(µ1 − µ2)
2

σ2 ;
(9)

which becomes, in the comparison of two means, λ(l) = (µ1 − µ2)
2/σ2. Following the

general theory of the intrinsic Bayes factor for linear models [16,17], we have that an
intrinsic prior is of the following form:

π I(λ(l)|σ) = 1√
2πσ

(1 − e−λ(l)/2)

λ(l)
.
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Substitution from λ(l) using the non-centrality parameter of (9), then the transforma-
tion to the conditional of the parameter under the simple test, is H0 : δ1 = 0 vs. H1 : δ1 ̸= 0.
The conditional intrinsic prior for the hypothesis test is

π I
1(δ1|σ) =

1 − e−8δ2
1 /σ2

4
√

2π(δ2
1/σ)

. (10)

This conditional prior is proper, i.e.,
∫

π I
1(δ1|σ)dδ1 = 1 and it satisfies the condition

discussed by [12]. The intrinsic prior, under the alternative Hypothesis H1, is of the
form π I

1(δ1, δ0, σ) = π I
1(δ1|δ0, σ) · π I

1(δ0, σ), where π I
1(δ0, σ) = 1/σ, i.e.,

π I
1(δ0, δ1, σ) =

1
σ
· 1 − e−8δ2

1 /σ2

4
√

2πδ2
1/σ

=
1 − e−8δ2

1 /σ2

4
√

2πδ2
1

. (11)

Setting up this framework, we can derive the intrinsic Bayes factor to compare two-
sample means. We will first obtain the marginal density under the null hypothesis m0(x, y).
First, consider the joint likelihood function of the two samples under the null Hypothe-
sis H0:

f0(x, y|δ0, σ) = (2π)−n/2σ−n exp

{
−

S2
x + S2

y + n1(x̄ − δ0)
2 + n2(ȳ − δ0)

2

2σ2

}
.

Here, x̄ is the sample mean of the first group, ȳ is the sample mean of the first group,
and S2

x = ∑n1
i=1(xi − x̄)2, S2

y = ∑n2
i=1(yi − ȳ)2 are the sums of squares under the null

hypothesis. The marginal density using the non-informative prior πN(δ0, σ) = 1/σ is
computed as

m0(x, y) =
∫ ∫

f0(x, y|δ0, σ)π(δ0, σ)dδ0dσ

=
2(n−3)/2Γ

(
n−1

2

)
(S2

x + S2
y)

−(n−1)/2
(

1 + t2

n−2

)−(n−1)/2

√
n

,

(12)

where t = (x̄ − ȳ)/(Sp
√

nδ), where n = n1 + n2, Sp is the pooled standard deviation, i.e.,
S2

p = (S2
x + S2

y)/(n − 2) and nδ = 1/n1 + 1/n2. Similarly, the joint likelihood function of
the two samples under the alternative Hypothesis H1 is given by

f1(x, y|δ0, δ1, σ) = (2π)−n/2σ−n exp

{
−

S2
x + S2

y + n1(x̄ − (δ0 + δ1))
2 + n2(ȳ − (δ0 − δ1))

2

2σ2

}
.

The marginal density using the intrinsic prior π I(δ0, δ1, σ) defined in (11) is given by

m1(x, y) =
∫ ∫ ∫

f1(x, y|δ0, δ1, σ)π I(δ0, δ1, σ)dδ0dδ1dσ. (13)

As in the one-sample framework, this Bayes factor can be approximated using the non-
informative prior πN(δ0, δ1, σ) = 1/σ2 in the asymptotic result as

m1(x, y) ≈ mN
1 (x, y)

π I(δ̂0, δ̂1, σ̂)

πN(δ̂0, δ̂1, σ̂)

=
∫ ∫ ∫

f1(x, y|δ0, δ1, σ)πN(δ0, δ1, σ)dδ0dδ1dσ
π I(δ̂0, δ̂1, σ̂)

πN(δ̂0, δ̂1, σ̂)

=

√
π2(n−3)/2−1/2Γ

(
n−1

2

)
(S2

x + S2
y)

−(n−1)/2

√
n1n2

.

(14)
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Using (12) and (14), we can compute BN
01:

BN
01 =

mN
0 (x, y)

mN
1 (x, y)

=

√
2

πnδ

(
1 +

t2

n − 2

)−(n−1)/2

; (15)

where t2 = (x̄− ȳ)2/(Spnδ), Sp is the pooled estimate of the variance, S2
p = (S2

x + S2
y)/(n− 2)

and nδ = (1/n1 + 1/n2). Let δ̂1 and σ̂2 be the corresponding maximum likelihood estimator
(MLE). Let δ̂1 = (x̄ − ȳ)/2 and σ̂2 = (S2

x + S2
y)/n = (n − 2)/nS2

p; where S2
p is the variance

pooled estimates and n = n1 + n2. We can express the δ̂2
1/σ̂2 = nδnt2/(n − 2) in terms of

the t-statistic. Then, the approximate intrinsic Bayes factor BIP
01 can be obtained by

BIP
01 ≈ BN

01
πN(δ̂0, δ̂1, σ̂)

π I(δ̂0, δ̂1, σ̂)
=

√
2

πnδ

(
1 +

t2

n − 2

)−(n−1)/2
δ̂2

1/σ̂2

1−e−8δ̂2
1 /σ̂2

4
√

2π

=

√
nδnt2

n − 2

(
1 +

t2

n − 2

)−(n−1)/2(
1 + coth

(
nδnt2

n − 2

))
.

(16)

Here, t = (x̄ − ȳ)/(Sp
√

nδ) and coth(·) is the hyperbolic cotangent function defined
as coth(x) = (e2x + 1)/(e2x − 1).

Theorem 3. For a fixed sample size n ≥ 4, the Bayes factor based on the intrinsic prior (BIP
01 ) for

the comparison of two population means is finite sample-consistent.

Proof. For a fixed sample, n ≥ 4, and letting t2 → ∞, or equivalently |t| → ∞, the Bayes
factor based on the intrinsic prior goes to 0, i.e.,

lim
|t|→∞

BIP
01 → 0; or equivalently lim

|t|→∞
P(H0|x) → 0.

The Bayes factor based on the intrinsic prior BIP
01 is finite sample-consistent.

2.2.2. Robust Bayes Factor for the Comparison of Two-Sample Means

Consider observations of a random sample from group 1 and group 2 of size n1 and n2,
respectively. We assume these groups have common variance (σ2

1 = σ2
2 = σ2), respectively.

The model of interest in this case, yij = µ + αi + εij, with εij ∼ N(0, σ2), for i = 1, 2 and
j = 1, . . . , ni. We want to compare H0 : α1 = α2 against H0 : α1 ̸= α2. Further, consider the
constraint that α1 + α2 = 0; then, the design matrix X can be written as

X =

[
1n×1 |

[
1/n11n1×1
−1/n21n2×1

]]
;

This leads us to consider the following hypothesis, H0 : α1 = 0 vs. H1 : α1 ̸= 0. The
reference’s priors, under the null hypothesis H0 and alternative hypothesis H1: πN

0 (µ, σ) =
1/σ and πN

1 (µ, α1, σ) = 1/σ. First, we proceed to find the marginal density under H0.
Consider the joint likelihood function under the null Hypothesis H0:

f0(y1, y2|µ, σ) = (2π)−n/2σ−n exp

{
−SS2

0 + n1(ȳ1. − µ)2 + n2(ȳ2. − µ)2

2σ2

}
.

Here, y1 = (y11, . . . , y1n1) and y2 = (y21, . . . , y2n2), ȳi. is the sample mean of the ith
group, and SS2

0 is the sum of squares under the null hypothesis. The marginal density
under the null hypothesis m0(y1, y2) is given by
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m0(y1, y2) =
∫ ∫

f0(y|µ, σ)σ−1 dµdσ

=
Γ((n − 1)/2)√

n
(π)−(n−1)/2

2
(SS2

0)
−(n−1)/2

(
1 +

t2

n − 2

)−(n−1)/2

.
(17)

where t2 = (ȳ1. − ȳ2.)
2/(Spnδ). Here, Sp is the sample pooled estimate of the variance,

S2
p = (S2

1 + S2
2)/(n − 2), and nδ = (1/n1 + 1/n2). For the alternative Hypothesis H1, we

first consider the joint likelihood of group 1 and group 2:

f1(y1, y2|µ, α, σ) = (2π)−n/2σ−n exp

{(
S2

1 + S2
2 + n1(ȳ1. − (µ + α))2 + n2(ȳ2. − (µ − α))2)

2σ2

}
.

The marginal density m1(y1, y2) is given by

m1(y1, y2) =
∫ ∫ ∫

f1(y|µ, α, σ)× σ−1πR(α) dµdαdσ

=

√
nδ(b + d)
(2π)(n−2)

Γ((n − 3)/2)
4
√

πnα̂2

(S2
1 + S2

2
2

)−(n−3)/2

−
(

S2
1 + S2

2
2

+
α̂2

b + d

)−(n−3)/2
.

(18)

Here, α̂ = (ȳ1. − ȳ2.)/2. The robust Bayes factor is obtained by computing the ratio of the
marginal densities of (17) and (18):

BR
01 =

√
8nδ

b + d

(
t2(n − 3)
4(n − 2)

)(
1 +

t2

n − 2

)−(n−1)/2(
1 −

(
1 +

t2nδ

2(n − 2)(b + d)

)−(n−3)/2)−1

. (19)

To finish the calculation of the robust Bayes factor BR
01, the term b + d has to be defined.

Therefore, we propose using the effective sample size (TESS) ne
o of [21]. The first factor

d = 0.25nδ · σ2, and the second factor b is b = ne
o · d = 0.25σ2

(
max

{∣∣∣ 1
n1

∣∣∣, ∣∣∣− 1
n2

∣∣∣})−2
; then,

b + d = 0.25σ2 ×
[

nδ +
(

max
{∣∣∣ 1

n1

∣∣∣, ∣∣∣− 1
n2

∣∣∣})−2
]
= 0.25σ2 × (d∗ + b∗). Derivation of TESS

is displayed in Appendix A.1.

Theorem 4. For a fixed sample size n ≥ 4, the Bayes factor based on the robust prior (BR
01) for the

comparison of two populations means is finite sample-consistent.

Proof. For a fixed sample, n ≥ 4, and letting t2 → ∞, or equivalently |t| → ∞, the Bayes
factor based on the Berger robust prior goes to 0, i.e.,

lim
|t|→∞

BR
01 → 0; or equivalently lim

|t|→∞
P(H0|x) → 0.

The Bayes factor based on the Berger robust prior BR
01 is finite sample-consistent.

The Berger robust prior yields the following (exact) expression for the correction of
the main term (for group i):

πR(ξi|di, bi) =
1√

2π(di + bi)

[1 − exp(− ξ2
i

(di+bi)
)]

√
2ξ2

i /(di + bi)
.

Making the change of variables ξi =
√

8(di + bi) β∗/σ and η = σ then taking
the Jacobian,

|J| =
∣∣∣∣∣
√

8(di+bi)
σ

−
√

8(di+bi)β∗

σ2

0 1

∣∣∣∣∣ =
∣∣∣∣∣
√

8(di + bi)

σ

∣∣∣∣∣.
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the conditional intrinsic prior of Equation (10) is exactly recovered; πI(β∗|σ) = πR(ξi|di, bi)|J|.
This established a correspondence between the intrinsic and Berger’s robust priors for the
Student’s t test.

2.2.3. The Effective Sample Size Bayesian Information Criterion (BIC-TESS)

Our final Bayes factor for comparing two-sample means is a variation of the Bayesian
Information Criterion (BIC) of [22]. The BIC is a popular method to determine the best
model in a set of competing models. However, in comparing the two-sample means, the
BIC does not consider the information available in both groups but rather the entire sample.
Here, we proposed replacing the sample size n with TESS. This may be used to form what
may be claimed to be the corrected BIC or BIC-TESS. It can be demonstrated that BIC with
TESS is:

BTESS
01 =

√
ne

o

(
1 +

t2

n − 2

)−n/2

, (20)

where ne
o is defined by [11]. Derivation of TESS is in Appendix A.1. If we have a balanced

situation, where n1 = n2, the BIC-TESS is similar to the regular BIC. If the situation is
unbalanced, the BIC-TESS is stabilized, since as n2 → ∞, the BTESS

01 → √
n1.

Theorem 5. For a fixed sample size n ≥ 3, the corrected BIC (BTESS
01 ) for the two-sample mean µ is

finite sample-consistent.

Proof. For a fixed sample, n ≥ 3, and letting t2 → ∞, or equivalently |t| → ∞, the Bayesian
Information Criterion constructed with TESS goes to 0, i.e.,

lim
|t|→∞

BTESS
01 → 0; or equivalently lim

|t|→∞
P(H0|x) → 0.

The corrected Bayesian Information Criterion is BTESS
01 is finite sample-consistent.

In Figure 1, we compare the asymptotic behavior of the Bayes factors and the posterior
probability of the null hypothesis when the samples are balanced (n1 ≈ n2) and unbalanced
(n1 << n2). The Bayes factor, based on the Berger robust prior (dark red), is very close in
the range of evidence to the intrinsic Bayes factor (green) and the BIC-TESS (light orange).
The robust Bayes factor, the intrinsic Bayes factor, and the BIC-TESS are relatively closed
when the situation is balanced. In the unbalanced scenario, the robust Bayes factor and the
BIC-TESS remain relatively close, while the intrinsic Bayes factor slightly increases. The
conjugate Bayes factor (blue) is represented with different values of the prior variance σ2

δ ;
darker color means higher values for the prior variance. Recall that the conjugate Bayes
factor is not finite sample-consistent, and its behavior depends on the choice of σ2

δ .
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Figure 1. Results in terms of 2 log(B01) and posterior probability for the finite sample consistency.

3. Simulation Experiments
Experiments for the One- and Two-Sample Mean Comparisons

We generated 500 datasets from random samples taken from a normal distribution,
Student’s t distribution with one degree of freedom, and gamma distribution. For each of
these distributions, the mean and standard deviation values were set to µ1 = 5 and σ1 = 3.
The second group was created with a combination of several parameters for the location;
the mean values were µ2 ∈ {µ1, 1.5µ1, 2µ1}, and for the standard deviation of the second
group, σ2 ∈ {σ1, 2σ1, 3σ1}. In the case of the Student’s t distribution, both groups were
simulated with ν = 1 degrees of freedom. The simulated gamma samples were obtained
using the method of moments for the shape parameter, with αi = µ2

i /σ2
i , and the scale

parameter, with βi = σ2
i /µi, for i = 1, 2.

We compared our methodologies with several Bayes factors used when comparing
two population means, displayed in Table 1. BS

01 is the classical Bayesian Information
Criterion (BIC) of [22], (BZS

01 ) is based on the Zellner and Siow prior [23], the two-sample
Student’s t Bayes factor of [14] is based on the conjugate prior with σ2

δ = 1/3, the arithmetic
Bayes factor (BEIA

10 ) of [24], and [12]’s Bayes Factor (BJ
01) for the comparison of two-sample

means with equal variances. One set of these Bayes factors—the BIC of Schwartz and the
Zellner and Siow Bayes factors—depends only on the sample size n. The other set, based
on the conjugate prior, intrinsic, Berger’s (here called robust), and finally, the modified
Jeffrey’s prior, depends on the term nδ = 1/n1 + 1/n2. In our experiments, we do not
consider the constant 2/5 for BJ

01, since we believe it satisfies the condition that the sam-
ples arise from the same distribution; for more details about the use of the constant 2/5,
see [12]. We also studied these Bayes factors in unbalanced situations. Heavily unbalanced
samples are interesting not only from a theoretical point of view but also because they are
often observed in practice in observational studies; the results of these are displayed in
Figures A1–A3.
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Performance was compared using the twice natural base logarithm Bayes factors
(2 log(B01)) for comparing the null hypothesis (µ1 = µ2) against the alternative (µ1 ̸= µ2).
This transformation allows the interpretation to be on the same scale as the deviance and
likelihood ratio test statistics, as discussed in [13].

Table 1. Bayes factors based on the one- and two-sample means based on the Student’s t test. The
third column applies only to the two-sample comparison and is limiting when t2 → 0 and n2 → ∞.

O
ne

Sa
m

pl
e BIP

01 ≈ √
2n
(

1 + t2

n−1

)− n
2 t2

n−1 (1 − e−t2/(n−1))−1 -

BR
01 =

√
2

n+1
n−2
n−1 t2

(
1 + t2

n−1

)− n
2
(

1 −
(

1 + 2t2

n2−1

)− n−2
2
)−1

-

Tw
o

Sa
m

pl
es

BIP
01 ≈ √

nδnt2

n−2

(
1 + t2

n−2

)−(n−1)/2(
1 + coth

(
nδnt2

n−2

)) √
n1

BR
01 =

√
8nδ
b+d

(
t2(n−3)
4(n−2)

)(
1 + t2

n−2

)−(n−1)/2
(

1 −
(

1 + t2nδ

2(n−2)(b+d)

)−(n−3)/2
)−1 √

2(1 + n3
1)

BTESS
01 = √

ne
o

(
1 + t2

n−2

)−n/2 √
n1

BJ
01 ≈ 2

5

√
πnδ

2

(
1 + t2

n−2

)−(n−1)/2 2
5

√
πn1

2

BC∗
01 =

[
1+t2/(n−2)

1+t2/((n−2))(1+σ2
δ nδ))

]−(n−1)/2√
1 + σ2

δ nδ

√
1 + n1σ2

δ

BS
01 ≈ √

n
(

1 + t2

n−2

)−n/2 ∞

BZS
01 ≈

√
π(n−2)

2

(
1 + t2

n−2

)−(n−3)/2 ∞

BEIA∗∗
01 ≈ π−1

√
nδ/(3η̂)S(n−1)/2(S2

1 + S2
2)

−(n−2)/2 Γ((n−2)/2)
Γ((n−1)/2) ×

∫ 1
0 (1 − x)−1/2e−δ̂/2xdx -

* Ref. [14] defines nδ = (1/n1 + 1/n2)
−1. ** Ref. [24] defines η̂ = (S2

1 + S2
2)/n and δ̂ = 2/3(ȳ1. − ȳ2.)

2/η̂, and S is
the sum of square of the two samples combined.

Figure 2 displays the results for the evidence based on the normal distributions when
testing whether two-sample means are equal (µ1 = µ2). The red line represents the cut-off
for 10 (strong evidence), the yellow line for 6 (positive evidence), and the green for 2 (weak
evidence). In the actual case when the means are equal, the Bayes factors based on the
intrinsic prior and robust prior show strong evidence in favor of the null hypothesis. The
average 2 log(B01) based on the intrinsic prior shows strong evidence in favor of the null
hypothesis (11.3 ± 1.59), while the Bayes factor based on the robust prior gives strong
evidence in favor of the true case (10.61 ± 1.59), all above the red line. BIC-TESS also
strongly supports the true case (9.9 ± 1.61). The other Bayes factors provide positive
evidence for the true case, with averages ranging from 2.54 to 3.93. Even when the means
were equal, and the samples had larger variance (σ2 = 3σ1), our objectives and robust Bayes
factors provided strong evidence in favor of the true case, with the average above 10. The
intrinsic Bayes factor and the robust prior were above 90%, showing either strong or very
strong evidence in favor of the null hypothesis when the means were equal; see Table A2
for a detailed comparison.

In the Student’s t random samples, when testing whether two-sample means are equal
(µ1 = µ2), we can observe in Figure 3 the results when the means are equal. The Bayes
Factors based on the intrinsic prior and robust prior show strong evidence in favor of the
null hypothesis. The average 2 log(B01) based on the intrinsic prior, robust prior, and BIC-
TESS shows strong evidence in favor of the null hypothesis (averages above 10), with values
of 11.41, 10.72, and 10.02; dispersion was relatively low, ranging from 1.01 to 1.03. The
competing Bayes factors provide slightly positive evidence for the true case, with averages
ranging from 2.65 to 4.04. It is interesting to see that in the case of µ2 = 2µ1, our Bayes factor
gave positive evidence above the yellow line but was very variable; the sample standard
deviation ranged from 4.98 to 5.03. Finally, in the case of gamma samples, our Bayes factors
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gave strong evidence only when the means and the variances were equal. Departing from
any of these conditions gave strong evidence that the means were unequal; see Figure 4.
For more details about the simulation results’ numerical performance, see Table A1.

µ2 = 2µ1 and σ1 = σ2 µ2 = 2µ1 and σ2 = 2σ1 µ2 = 2µ1 and σ2 = 3σ1

µ2 = 1.5µ1 and σ1 = σ2 µ2 = 1.5µ1 and σ2 = 2σ1 µ2 = 1.5µ1 and σ2 = 3σ1

µ1 = µ2 and σ1 = σ2 µ1 = µ2 and σ2 = 2σ1 µ1 = µ2 and σ2 = 3σ1
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Figure 2. Evidence in the 2 log(B01) scale when comparing the population means of two samples that
arise from a normal distribution with several means and variances with equal sizes n1 = n2 = 50.
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Figure 3. Evidence in the 2 log(B01) scale when comparing the population means of two samples that
arise from a Student’s t with one degree of freedom with several means and variances with equal
sizes n1 = n2 = 50.
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Figure 4. Evidence in the 2 log(B01) scale when comparing the population means of two samples that
arise from a gamma distribution with several shapes and scales with equal sizes n1 = n2 = 50.

4. Application in Real Dataset

In this section, we applied the proposed one and two Bayes factors based on the
intrinsic, Berger, and robust priors, and BIC-TESS based on the Student’s t statistic.

4.1. Gosset Original Dataset

We first consider the century-long original Student’s t sleep data from [1,25] that still
raise interesting discussion; see [26,27]. In this study, the number of hours of sleep under
both drugs (Dextro and Laevo) was recorded for each patient. The difference in hours was
recorded to determine effectiveness, and the average number of hours of sleep gained by
using each drug (Dextro and Laevo) was measured. The authors concluded that, in usual
doses, Laevo was soporific, but Dextro was not. This analysis is treated as a paired sample,
since it compares the sleep hours between treatments. Paired samples lead us to the one
sample. The hypothesis of interest is H0 : µd = 0 versus H1 : µd ̸= 0; the test statistic is
t = −4.06 with a p-value of 0.002. At the 5% significance level, we can conclude that there
is a difference in the average sleep hours between Laevo and Dextro.
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However, the Gosset original dataset has not been addressed using an objective and
robust Bayesian approach. The value of the test statistics is the same as before, with n = 10.
The (2 log(B10)) was computed for the intrinsic and robust Bayes factor, along with the asso-
ciated posterior probabilities (P(H1|data)). The 2 log(BIP

10 ) = 5.858 and 2 log(BR
10) = 5.988

are positive, indicating strong evidence that the average sleep hours are different. Further,
the posterior probability based on the intrinsic prior is 0.949, and the posterior probability
based on the Berger robust prior is 0.952. Both posterior probabilities are above 90%,
suggesting strong evidence favoring the average sleep difference.

This dataset is considered as a paired sample, since the recorded number of sleep hours
belongs to the same participant. However, the treatments, Dextro and Laevo, might need
to be considered independently. If these are considered independently, then a two-sample
framework arises. We are interested in determining the sleep hours when receiving Laevo
versus when receiving Dextro. Assuming equal variances between Laevo and Dextro, the
hypothesis of interest is H0 : µL = µD versus H1 : µL ̸= µD, where µL is the average sleep
hours when receiving Laevo and µD is the average sleep hours when receiving Dextro. The
two-sample test statistic is t = −1.86 with a p-value of 0.079. At the 5% significance level,
we can conclude that there is no difference in the average sleep hours when using Laevo
versus Dextro. In our Bayesian approach, 2 log(BIP

10 ) = −4.33 and 2 log(BR
10) = −3.57,

indicating weak evidence that the average number of sleep hours differs between Laevo
and Dextro. Both posterior probabilities are above 15%, suggesting weak evidence that the
average number of sleep hours differs when using Laevo and Dextro.

4.2. Induced Hypertension on Mice According to Diet

Our first application consists of the data from [28], but they were analyzed in a
Bayesian framework using intrinsic priors by [24]. In this study, the researchers were
interested in how intermittent feeding affected the blood pressure of rats. The treatment
group consisted of eight rats fed intermittently for weeks, and at the final period, the rats’
blood pressure measurements were taken. The blood pressure measurements of a second
group of seven rats fed the usual way were defined as a control group. The hypothesis
of interest is that the average blood pressure is different when the rats have intermittent
fasting compared to those with their usual diet, i.e., H0 : µ1 = µ2 versus H1 : µ1 ̸= µ2.
At the 5% significance level, with a p-value = 0.044, one can conclude that there exists a
difference in the mean blood pressure level according to their feeding style.

The study in Ref. [24] computed the expected arithmetic Bayes factor that favors the
alternative hypothesis BEAI

10 = 2.035 with P(H1|(x, y)) = 0.671, providing support that
the average blood pressure measurements differ based on diet. Notably, the Bayes factors
based on the intrinsic priors and robust priors yield negative values, 2 log(BIP

10 ) = −2.412
and 2 log(BR

10) = −1.414, respectively, indicating evidence against H1. However, the corre-
sponding posterior probabilities (P(H1|x, y)) are 0.23 and 0.33, suggesting weak evidence
for the alternative hypothesis that the means are different. The corrected BICTESS suggests
weaker evidence against H1 with a 2 log(BTESS

10 ) = −0.3634 and a posterior probability of
P(H1|x, y) = 0.455. In contrast, the conjugate 2 log(BC

10) = 1.517 and 2 log(BEAI
10 ) = 1.421,

indicating very weak evidence in favor of H1. The associated posterior probability is 0.681.
The extreme observation in the intermittent group (115) was removed. The

2 log(BIP∗
10 ) = 2.347, suggesting evidence in favor of H1, while the posterior probability

of P(H1|(x∗, y∗)) = 0.764 indicates a moderate level of confidence in this conclusion. The
Bayes factor constructed with the Berger robust prior exhibits a higher 2 log(BR∗

10 ) = 3.535,
along with the posterior probability of P(H1|(x∗, y∗)) = 0.854, indicating stronger support
that the average of blood pressure differs by type of fasting. TESS models present even
higher 2 log(BTESS∗

10 ) = 5.041, respectively, with corresponding posterior probabilities of
0.926, indicating substantial evidence for H1.
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5. Discussion

In this work, we proposed the objective and robust Bayes factors for the one-sample
and two-sample comparisons. These newly proposed Bayes factors are finite sample-
consistent. Both the exact and approximate forms of the Bayes factors can be easily im-
plemented using any open-source or commercial software. Another advantage of using
Bayes factors is that the posterior probabilities of the hypothesis test are easily interpretable.
We reanalyzed the original study by [1] and the comparison of blood pressure in rats
according to different feeding types. Our objective and robust Bayes factors showed strong
evidence that the average number of hours differed between Laevo and Dextro in the
mouse application. When removing potential extreme values, we concluded that there is
strong evidence that the means differed. However, we reported weak evidence with the
complete dataset that these averages differed according to their diet. This might occur,
since the assumption of equal variances might not hold. Even though the samples might
have equal means, departing from the assumption of equal variances can lead in favor
of the wrong hypothesis. Although we have made a significant contribution, an aspect
that might alleviate this issue is deriving an objective and robust Bayes factor for the
Behrens–Fisher problem, i.e., unequal variances for both groups. Also, the Bayes factor
based on the intrinsic prior depends on the maximum likelihood estimate (MLE); perhaps
robust estimates can be considered, although a modified test statistic might arise. Another
possible extension is to develop an objective Bayes factor for the hypothesis of several equal
means; this will be an analysis of variance (ANOVA) approach in the frequentist approach.
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01 Bayes Factor based on the Berger’s Robust prior for measuring H0 vs. H1
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01 Bayes Factor based on the Zellner and Siow prior for measuring H0 vs. H1
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01 Bayes Factor expected arithmetic intrinsic prior for measuring H0 vs. H1

Appendix A

Appendix A.1. Calculation of the Effective Sample Size

We suggest using the effective sample size of [21] to define the robust Bayes factor and
BIC-Tess. The effective sample size for the parameter α, ne

o = C−1(X tΓ−1X)C−1. Let X be
the design matrix:

X =

[
1n×1 |

[
1/n11n1×1
−1/n21n2×1

]]
;
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where n = n1 + n2. Let X1 be the second column of the design matrix X1 =

[
1/n11n1×1
−1/n21n2×1

]
,

and let C1 = maxj

{∣∣∣ 1
n1σ

∣∣∣, ∣∣∣− 1
n2σ

∣∣∣}. Further, let Γ−1 = σ−2In×n, where In×n is an identity matrix
of size n. It follows from the definition of the effective sample size for the original α that

ne
o = C−1

1 (Xt
1Γ−1X1)C−1

1

= C−2
1

[
σ−2

n1
, · · · ,

σ−2

n1
,−σ−2

n2
, · · · ,−σ−2

n2

]
X

=
1

C2
1

[
σ−2

n2
1

n1 +
σ−2

n2
2

n2

]

= σ−2 ·
(

max
{∣∣∣∣ 1

n1σ

∣∣∣∣, ∣∣∣∣− 1
n2σ

∣∣∣∣})−2( 1
n1

+
1
n2

)
= σ−2 ·

(
max

{∣∣∣∣ 1
n1σ

∣∣∣∣, ∣∣∣∣− 1
n2σ

∣∣∣∣})−2
nδ

=

(
max

{∣∣∣∣ 1
n1

∣∣∣∣, ∣∣∣∣− 1
n2

∣∣∣∣})−2
nδ.

(A1)

Since σ > 0, max
{∣∣∣ 1

n1σ

∣∣∣, ∣∣∣− 1
n2σ

∣∣∣} = 1
σ max

{∣∣∣ 1
n1

∣∣∣, ∣∣∣− 1
n2

∣∣∣}. Then, the final expression of

the effective sample size is obtained. The definition of the unit information is d = 0.25nδ · σ2

and for b,

b = ne
o · d = 0.25σ2 ·

(
max

{∣∣∣∣ 1
n1

∣∣∣∣, ∣∣∣∣− 1
n2

∣∣∣∣})−2
. (A2)

The factors b and d will be defined as

b + d = 0.25σ2

[
nδ +

(
max

{∣∣∣∣ 1
n1

∣∣∣∣, ∣∣∣∣− 1
n2

∣∣∣∣})−2
]
= 0.25σ2(b∗ + d∗). (A3)

This last calculation defines the factors b and d for the Robust Bayesian Student’s t
test, BR

01.

Appendix A.2. Simulation Experiments

In the two-sample framework, we generated 500 datasets from a random sample
from a normal distribution with parameters µ1 = 5, σ1 = 3; the second group was cre-
ated with a combination of several parameters for the location. The mean values were
µ2 ∈ {µ1, 1.5µ1, 2µ1} for the standard deviation σ2 ∈ {σ1, 2σ1, 3σ1}. In the case of the
Student’s t with ν = 1 degrees of freedom, the gamma distribution was simulated using the
methods of moments for the shape parameter αi = µ2

i /σ2
i and scale parameter βi = σ2

i /µi
for i = 1, 2. We reported the twice natural base logarithm Bayes factors (2 log(B01)) for
comparing the null hypothesis (µ1 = µ2) against the alternative (µ1 ̸= µ2). This transforma-
tion allows the interpretation to be on the same scale as deviance and likelihood ratio test
statistics; see Ref. [13] for a deeper discussion.
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Table A1. Summary statistics (means ± standard deviation) for the balanced sample (n1 = n2 = 50) of the 2 log(B01) simulation experiments for the intrinsic priors
(IP), Berger robust prior (Robust), BIC based on the effective sample size (TESS), conjugate, Jeffrey’s, Schwarz, Zellner and Siow (ZS), and the expected arithmetic
intrinsic prior of [24].

µ1 = µ2 µ2 = 1.5µ1 µ2 = 2µ1

σ1 = σ2 σ2 = 2σ1 σ2 = 3σ1 σ1 = σ2 σ2 = 2σ1 σ2 = 3σ1 σ1 = σ2 σ2 = 2σ1 σ2 = 3σ1

N
or

m
al

IP 11.3 ± 1.59 11.44 ± 1.37 11.42 ± 1.24 −4.85 ± 7.44 4.85 ± 5.29 7.85 ± 4.18 −41.19 ± 11.66 −13.18 ± 8.77 −1.53 ± 7.19
Robust 10.61 ± 1.59 10.75 ± 1.38 10.73 ± 1.25 −5.55 ± 7.45 4.15 ± 5.29 7.15 ± 4.18 −41.94 ± 11.68 −13.9 ± 8.78 −2.23 ± 7.19
TESS 9.9 ± 1.61 10.04 ± 1.39 10.03 ± 1.26 −6.42 ± 7.53 3.38 ± 5.35 6.41 ± 4.22 −43.18 ± 11.8 −14.85 ± 8.87 −3.07 ± 7.27
Conjugate 1.23 ± 1.42 1.35 ± 1.23 1.34 ± 1.11 −13.02 ± 6.5 −4.5 ± 4.67 −1.84 ± 3.7 −43.99 ± 9.64 −20.27 ± 7.57 −10.11 ± 6.29
Jeffrey’s 2.54 ± 1.59 2.68 ± 1.38 2.66 ± 1.25 −13.62 ± 7.45 −3.92 ± 5.29 −0.91 ± 4.18 −50.01 ± 11.68 −21.97 ± 8.78 −10.3 ± 7.19
Schwarz’s 3.47 ± 1.61 3.61 ± 1.39 3.59 ± 1.26 −12.86 ± 7.53 −3.06 ± 5.35 −0.02 ± 4.22 −49.62 ± 11.8 −21.29 ± 8.87 −9.5 ± 7.27
ZS 3.93 ± 1.56 4.07 ± 1.35 4.05 ± 1.22 −11.9 ± 7.3 −2.4 ± 5.19 0.55 ± 4.1 −47.56 ± 11.44 −20.08 ± 8.61 −8.65 ± 7.05
EIA 3.4 ± 1.57 3.53 ± 1.35 3.51 ± 1.22 −12.45 ± 7.3 −2.94 ± 5.19 0 ± 4.1 −47.97 ± 11.36 −20.62 ± 8.59 −9.2 ± 7.04

St
ud

en
t-

t(
1)

IP 11.41 ± 1.01 11.46 ± 1.04 11.4 ± 1.22 10.55 ± 2.42 10.83 ± 2.01 11.09 ± 1.61 8.32 ± 4.98 9.05 ± 3.76 9.79 ± 2.97
Robust 10.72 ± 1.01 10.77 ± 1.04 10.7 ± 1.22 9.85 ± 2.42 10.13 ± 2.02 10.39 ± 1.62 7.62 ± 4.98 8.36 ± 3.77 9.09 ± 2.97
TESS 10.02 ± 1.03 10.06 ± 1.05 10 ± 1.23 9.14 ± 2.44 9.42 ± 2.04 9.69 ± 1.63 6.89 ± 5.03 7.63 ± 3.81 8.37 ± 3
Conjugate 1.33 ± 0.9 1.37 ± 0.93 1.31 ± 1.08 0.56 ± 2.15 0.81 ± 1.79 1.04 ± 1.44 −1.42 ± 4.4 −0.77 ± 3.34 −0.12 ± 2.63
Jeffrey’s 2.65 ± 1.01 2.7 ± 1.04 2.64 ± 1.22 1.79 ± 2.42 2.07 ± 2.02 2.33 ± 1.62 −0.44 ± 4.98 0.29 ± 3.77 1.03 ± 2.97
Schwarz’s 3.58 ± 1.03 3.63 ± 1.05 3.56 ± 1.23 2.7 ± 2.44 2.99 ± 2.04 3.25 ± 1.63 0.45 ± 5.03 1.19 ± 3.81 1.94 ± 3
ZS 4.04 ± 0.99 4.09 ± 1.02 4.03 ± 1.19 3.19 ± 2.37 3.47 ± 1.98 3.72 ± 1.58 1.01 ± 4.88 1.73 ± 3.69 2.45 ± 2.91
EIA 3.5 ± 1 3.55 ± 1.02 3.49 ± 1.19 2.65 ± 2.37 2.93 ± 1.98 3.18 ± 1.59 0.47 ± 4.88 1.19 ± 3.7 1.91 ± 2.91

G
am

m
a

IP 11.48 ± 1.26 −38.13 ± 9.19 −85.57 ± 13.22 4.16 ± 4.16 −5.59 ± 5.51 −40.51 ± 9.69 −1.33 ± 4.72 7.9 ± 3.41 −17.76 ± 7.26
Robust 10.79 ± 1.26 −38.87 ± 9.21 −86.4 ± 13.25 3.46 ± 4.16 −6.3 ± 5.52 −41.26 ± 9.7 −2.04 ± 4.73 7.2 ± 3.41 −18.48 ± 7.27
TESS 10.08 ± 1.27 −40.08 ± 9.3 −88.08 ± 13.38 2.68 ± 4.21 −7.18 ± 5.57 −42.49 ± 9.8 −2.87 ± 4.77 6.46 ± 3.44 −19.48 ± 7.34
Conjugate 1.39 ± 1.12 −41.48 ± 7.68 −79.22 ± 9.99 −5.11 ± 3.68 −13.69 ± 4.81 −43.46 ± 8.02 −9.96 ± 4.15 −1.8 ± 3.02 −24.24 ± 6.23
Jeffrey’s 2.72 ± 1.26 −46.94 ± 9.21 −94.46 ± 13.25 −4.6 ± 4.16 −14.37 ± 5.52 −49.33 ± 9.7 −10.1 ± 4.73 −0.86 ± 3.41 −26.55 ± 7.27
Schwarz 3.64 ± 1.27 −46.52 ± 9.3 −94.52 ± 13.38 −3.75 ± 4.21 −13.61 ± 5.57 −48.93 ± 9.8 −9.31 ± 4.77 0.02 ± 3.44 −25.92 ± 7.34
ZS 4.1 ± 1.23 −44.55 ± 9.02 −91.12 ± 12.98 −3.07 ± 4.08 −12.64 ± 5.4 −46.89 ± 9.51 −8.46 ± 4.63 0.59 ± 3.34 −24.57 ± 7.12
EIA 3.57 ± 1.24 −44.99 ± 8.97 −91.11 ± 12.83 −3.62 ± 4.08 −13.18 ± 5.4 −47.32 ± 9.44 −9.01 ± 4.63 0.05 ± 3.35 −25.1 ± 7.1
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Table A2. Frequency distribution for the balanced framework (n1 = n2 = 50) in the normal random variables of the 2 log(B01) based on the scale proposed by [13].
Intrinsic priors (IP), Berger robust prior (Robust), BIC based on the effective sample size (TESS), conjugate, Jeffrey’s, Schwarz, Zellner and Siow (ZS), and the
expected arithmetic intrinsic prior of [24].

µ1 = µ2

σ1 = σ2 σ2 = 2σ1 σ2 = 3σ1

Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative

IP 434 (86.8%) 56 (11.2%) 9 (1.8%) 1 (0.2%) 0 (0%) 439 (87.8%) 57 (11.4%) 4 (0.8%) 0 (0%) 0 (0%) 438 (87.6%) 60 (12%) 2 (0.4%) 0 (0%) 0 (0%)
Robust 400 (80%) 85 (17%) 13 (2.6%) 2 (0.4%) 0 (0%) 407 (81.4%) 85 (17%) 8 (1.6%) 0 (0%) 0 (0%) 402 (80.4%) 93 (18.6%) 5 (1%) 0 (0%) 0 (0%)
TESS 339 (67.8%) 141 (28.2%) 17 (3.4%) 3 (0.6%) 0 (0%) 344 (68.8%) 144 (28.8%) 12 (2.4%) 0 (0%) 0 (0%) 329 (65.8%) 164 (32.8%) 7 (1.4%) 0 (0%) 0 (0%)
Conjugate 0 (0%) 0 (0%) 171 (34.2%) 264 (52.8%) 65 (13%) 0 (0%) 0 (0%) 200 (40%) 241 (48.2%) 59 (11.8%) 0 (0%) 0 (0%) 182 (36.4%) 261 (52.2%) 57 (11.4%)
Jeffrey 0 (0%) 0 (0%) 392 (78.4%) 73 (14.6%) 35 (7%) 0 (0%) 0 (0%) 402 (80.4%) 68 (13.6%) 30 (6%) 0 (0%) 0 (0%) 396 (79.2%) 78 (15.6%) 26 (5.2%)
Schwarz 0 (0%) 0 (0%) 437 (87.4%) 40 (8%) 23 (4.6%) 0 (0%) 0 (0%) 444 (88.8%) 39 (7.8%) 17 (3.4%) 0 (0%) 0 (0%) 445 (89%) 45 (9%) 10 (2%)
ZS 0 (0%) 0 (0%) 452 (90.4%) 30 (6%) 18 (3.6%) 0 (0%) 0 (0%) 458 (91.6%) 31 (6.2%) 11 (2.2%) 0 (0%) 0 (0%) 459 (91.8%) 34 (6.8%) 7 (1.4%)
EIA 0 (0%) 0 (0%) 435 (87%) 42 (8.4%) 23 (4.6%) 0 (0%) 0 (0%) 444 (88.8%) 39 (7.8%) 17 (3.4%) 0 (0%) 0 (0%) 444 (88.8%) 46 (9.2%) 10 (2%)

µ2 = 1.5µ1

σ1 = σ2 σ2 = 2σ1 σ2 = 3σ1

Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative

IP 2 (0.4%) 19 (3.8%) 67 (13.4%) 48 (9.6%) 364 (72.8%) 69 (13.8%) 184 (36.8%) 110 (22%) 54 (10.8%) 83 (16.6%) 176 (35.2%) 195 (39%) 87 (17.4%) 21 (4.2%) 21 (4.2%)
Robust 1 (0.2%) 12 (2.4%) 60 (12%) 45 (9%) 382 (76.4%) 50 (10%) 176 (35.2%) 122 (24.4%) 52 (10.4%) 100 (20%) 137 (27.4%) 214 (42.8%) 97 (19.4%) 23 (4.6%) 29 (5.8%)
TESS 0 (0%) 11 (2.2%) 45 (9%) 45 (9%) 399 (79.8%) 24 (4.8%) 167 (33.4%) 137 (27.4%) 46 (9.2%) 126 (25.2%) 76 (15.2%) 248 (49.6%) 116 (23.2%) 26 (5.2%) 34 (6.8%)
Conjugate 0 (0%) 0 (0%) 0 (0%) 2 (0.4%) 498 (99.6%) 0 (0%) 0 (0%) 8 (1.6%) 63 (12.6%) 429 (85.8%) 0 (0%) 0 (0%) 36 (7.2%) 147 (29.4%) 317 (63.4%)
Jeffrey 0 (0%) 0 (0%) 1 (0.2%) 5 (1%) 494 (98.8%) 0 (0%) 0 (0%) 50 (10%) 77 (15.4%) 373 (74.6%) 0 (0%) 0 (0%) 132 (26.4%) 128 (25.6%) 240 (48%)
Schwarz 0 (0%) 0 (0%) 2 (0.4%) 9 (1.8%) 489 (97.8%) 0 (0%) 0 (0%) 77 (15.4%) 97 (19.4%) 326 (65.2%) 0 (0%) 0 (0%) 186 (37.2%) 117 (23.4%) 197 (39.4%)
ZS 0 (0%) 0 (0%) 3 (0.6%) 9 (1.8%) 488 (97.6%) 0 (0%) 0 (0%) 101 (20.2%) 96 (19.2%) 303 (60.6%) 0 (0%) 0 (0%) 228 (45.6%) 99 (19.8%) 173 (34.6%)
EIA 0 (0%) 0 (0%) 2 (0.4%) 9 (1.8%) 489 (97.8%) 0 (0%) 0 (0%) 74 (14.8%) 103 (20.6%) 323 (64.6%) 0 (0%) 0 (0%) 185 (37%) 119 (23.8%) 196 (39.2%)

µ2 = 2µ1

σ1 = σ2 σ2 = 2σ1 σ2 = 3σ1

Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative

IP 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 11 (2.2%) 13 (2.6%) 476 (95.2%) 12 (2.4%) 52 (10.4%) 109 (21.8%) 53 (10.6%) 274 (54.8%)
Robust 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 10 (2%) 9 (1.8%) 481 (96.2%) 5 (1%) 46 (9.2%) 102 (20.4%) 54 (10.8%) 293 (58.6%)
TESS 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 5 (1%) 12 (2.4%) 483 (96.6%) 5 (1%) 38 (7.6%) 90 (18%) 53 (10.6%) 314 (62.8%)
Conjugate 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 1 (0.2%) 11 (2.2%) 488 (97.6%)
Jeffrey 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 5 (1%) 19 (3.8%) 476 (95.2%)
Schwarz 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 13 (2.6%) 21 (4.2%) 466 (93.2%)
ZS 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 18 (3.6%) 25 (5%) 457 (91.4%)
EIA 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 13 (2.6%) 21 (4.2%) 466 (93.2%)
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Table A3. Frequency distribution for the balanced framework (n1 = n2 = 50) Student’s t random variables of the 2 log(B01) based on the scale proposed by [13].
Intrinsic priors (IP), Berger robust prior (Robust), BIC based on the effective sample size (TESS), conjugate, Jeffrey’s, Schwarz, Zellner and Siow (ZS), and the
expected arithmetic intrinsic prior of [24].

µ1 = µ2

σ1 = σ2 σ2 = 2σ1 σ2 = 3σ1

Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative

IP 456 (91.2%) 41 (8.2%) 3 (0.6%) 0 (0%) 0 (0%) 455 (91%) 44 (8.8%) 1 (0.2%) 0 (0%) 0 (0%) 448 (89.6%) 49 (9.8%) 3 (0.6%) 0 (0%) 0 (0%)
Robust 410 (82%) 87 (17.4%) 3 (0.6%) 0 (0%) 0 (0%) 416 (83.2%) 82 (16.4%) 2 (0.4%) 0 (0%) 0 (0%) 410 (82%) 83 (16.6%) 7 (1.4%) 0 (0%) 0 (0%)
TESS 310 (62%) 187 (37.4%) 3 (0.6%) 0 (0%) 0 (0%) 320 (64%) 178 (35.6%) 2 (0.4%) 0 (0%) 0 (0%) 310 (62%) 181 (36.2%) 8 (1.6%) 1 (0.2%) 0 (0%)
Conjugate 0 (0%) 0 (0%) 131 (26.2%) 326 (65.2%) 43 (8.6%) 0 (0%) 0 (0%) 156 (31.2%) 301 (60.2%) 43 (8.6%) 0 (0%) 0 (0%) 155 (31%) 297 (59.4%) 48 (9.6%)
Jeffrey 0 (0%) 0 (0%) 404 (80.8%) 85 (17%) 11 (2.2%) 0 (0%) 0 (0%) 412 (82.4%) 74 (14.8%) 14 (2.8%) 0 (0%) 0 (0%) 396 (79.2%) 86 (17.2%) 18 (3.6%)
Schwarz 0 (0%) 0 (0%) 459 (91.8%) 37 (7.4%) 4 (0.8%) 0 (0%) 0 (0%) 457 (91.4%) 39 (7.8%) 4 (0.8%) 0 (0%) 0 (0%) 454 (90.8%) 36 (7.2%) 10 (2%)
ZS 0 (0%) 0 (0%) 479 (95.8%) 18 (3.6%) 3 (0.6%) 0 (0%) 0 (0%) 474 (94.8%) 24 (4.8%) 2 (0.4%) 0 (0%) 0 (0%) 474 (94.8%) 17 (3.4%) 9 (1.8%)
EIA 0 (0%) 0 (0%) 457 (91.4%) 39 (7.8%) 4 (0.8%) 0 (0%) 0 (0%) 457 (91.4%) 39 (7.8%) 4 (0.8%) 0 (0%) 0 (0%) 454 (90.8%) 36 (7.2%) 10 (2%)

µ2 = 1.5µ1

σ1 = σ2 σ2 = 2σ1 σ2 = 3σ1

Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative

IP 378 (75.6%) 92 (18.4%) 22 (4.4%) 5 (1%) 3 (0.6%) 395 (79%) 88 (17.6%) 14 (2.8%) 1 (0.2%) 2 (0.4%) 421 (84.2%) 69 (13.8%) 10 (2%) 0 (0%) 0 (0%)
Robust 327 (65.4%) 132 (26.4%) 31 (6.2%) 5 (1%) 5 (1%) 347 (69.4%) 129 (25.8%) 19 (3.8%) 3 (0.6%) 2 (0.4%) 375 (75%) 111 (22.2%) 14 (2.8%) 0 (0%) 0 (0%)
TESS 259 (51.8%) 187 (37.4%) 39 (7.8%) 9 (1.8%) 6 (1.2%) 271 (54.2%) 199 (39.8%) 23 (4.6%) 4 (0.8%) 3 (0.6%) 284 (56.8%) 191 (38.2%) 24 (4.8%) 1 (0.2%) 0 (0%)
Conjugate 0 (0%) 0 (0%) 125 (25%) 259 (51.8%) 116 (23.2%) 0 (0%) 0 (0%) 109 (21.8%) 289 (57.8%) 102 (20.4%) 0 (0%) 0 (0%) 139 (27.8%) 283 (56.6%) 78 (15.6%)
Jeffrey 0 (0%) 0 (0%) 321 (64.2%) 102 (20.4%) 77 (15.4%) 0 (0%) 0 (0%) 342 (68.4%) 100 (20%) 58 (11.6%) 0 (0%) 0 (0%) 366 (73.2%) 90 (18%) 44 (8.8%)
Schwarz 0 (0%) 0 (0%) 387 (77.4%) 53 (10.6%) 60 (12%) 0 (0%) 0 (0%) 403 (80.6%) 60 (12%) 37 (7.4%) 0 (0%) 0 (0%) 424 (84.8%) 47 (9.4%) 29 (5.8%)
ZS 0 (0%) 0 (0%) 403 (80.6%) 46 (9.2%) 51 (10.2%) 0 (0%) 0 (0%) 426 (85.2%) 44 (8.8%) 30 (6%) 0 (0%) 0 (0%) 443 (88.6%) 32 (6.4%) 25 (5%)
EIA 0 (0%) 0 (0%) 387 (77.4%) 53 (10.6%) 60 (12%) 0 (0%) 0 (0%) 401 (80.2%) 63 (12.6%) 36 (7.2%) 0 (0%) 0 (0%) 423 (84.6%) 49 (9.8%) 28 (5.6%)

µ2 = 2µ1

σ1 = σ2 σ2 = 2σ1 σ2 = 3σ1

Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative

IP 264 (52.8%) 125 (25%) 60 (12%) 12 (2.4%) 39 (7.8%) 263 (52.6%) 144 (28.8%) 64 (12.8%) 11 (2.2%) 18 (3.6%) 324 (64.8%) 114 (22.8%) 48 (9.6%) 7 (1.4%) 7 (1.4%)
Robust 225 (45%) 150 (30%) 65 (13%) 18 (3.6%) 42 (8.4%) 231 (46.2%) 166 (33.2%) 72 (14.4%) 9 (1.8%) 22 (4.4%) 270 (54%) 157 (31.4%) 55 (11%) 8 (1.6%) 10 (2%)
TESS 162 (32.4%) 190 (38%) 79 (15.8%) 22 (4.4%) 47 (9.4%) 183 (36.6%) 196 (39.2%) 81 (16.2%) 16 (3.2%) 24 (4.8%) 183 (36.6%) 229 (45.8%) 64 (12.8%) 10 (2%) 14 (2.8%)
Conjugate 0 (0%) 0 (0%) 73 (14.6%) 194 (38.8%) 233 (46.6%) 0 (0%) 0 (0%) 73 (14.6%) 193 (38.6%) 234 (46.8%) 0 (0%) 0 (0%) 82 (16.4%) 245 (49%) 173 (34.6%)
Jeffrey 0 (0%) 0 (0%) 224 (44.8%) 87 (17.4%) 189 (37.8%) 0 (0%) 0 (0%) 229 (45.8%) 102 (20.4%) 169 (33.8%) 0 (0%) 0 (0%) 261 (52.2%) 110 (22%) 129 (25.8%)
Schwarz 0 (0%) 0 (0%) 268 (53.6%) 77 (15.4%) 155 (31%) 0 (0%) 0 (0%) 269 (53.8%) 98 (19.6%) 133 (26.6%) 0 (0%) 0 (0%) 330 (66%) 75 (15%) 95 (19%)
ZS 0 (0%) 0 (0%) 287 (57.4%) 72 (14.4%) 141 (28.2%) 0 (0%) 0 (0%) 298 (59.6%) 82 (16.4%) 120 (24%) 0 (0%) 0 (0%) 349 (69.8%) 64 (12.8%) 87 (17.4%)
EIA 0 (0%) 0 (0%) 268 (53.6%) 78 (15.6%) 154 (30.8%) 0 (0%) 0 (0%) 268 (53.6%) 100 (20%) 132 (26.4%) 0 (0%) 0 (0%) 330 (66%) 77 (15.4%) 93 (18.6%)
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Table A4. Frequency distribution for the balanced framework (n1 = n2 = 50) from the gamma random variables of the 2 log(B01) based on the scale proposed
by [13]. Intrinsic priors (IP), Berger robust prior (Robust), BIC based on the effective sample size (TESS), conjugate, Jeffrey’s, Schwarz, Zellner and Siow (ZS), and the
expected arithmetic intrinsic prior of [24].

µ1 = µ2

σ1 = σ2 σ2 = 2σ1 σ2 = 3σ1

Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative

IP 449 (89.8%) 49 (9.8%) 2 (0.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
Robust 417 (83.4%) 78 (15.6%) 5 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
TESS 348 (69.6%) 139 (27.8%) 13 (2.6%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
Conjugate 0 (0%) 0 (0%) 183 (36.6%) 268 (53.6%) 49 (9.8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
Jeffrey 0 (0%) 0 (0%) 412 (82.4%) 62 (12.4%) 26 (5.2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
Schwarz 0 (0%) 0 (0%) 452 (90.4%) 31 (6.2%) 17 (3.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
ZS 0 (0%) 0 (0%) 465 (93%) 25 (5%) 10 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
EIA 0 (0%) 0 (0%) 451 (90.2%) 32 (6.4%) 17 (3.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)

µ2 = 1.5µ1

σ1 = σ2 σ2 = 2σ1 σ2 = 3σ1

Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative

IP 30 (6%) 141 (28.2%) 186 (37.2%) 63 (12.6%) 80 (16%) 0 (0%) 3 (0.6%) 33 (6.6%) 35 (7%) 429 (85.8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
Robust 21 (4.2%) 119 (23.8%) 191 (38.2%) 68 (13.6%) 101 (20.2%) 0 (0%) 0 (0%) 22 (4.4%) 39 (7.8%) 439 (87.8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
TESS 8 (1.6%) 109 (21.8%) 186 (37.2%) 72 (14.4%) 125 (25%) 0 (0%) 0 (0%) 16 (3.2%) 33 (6.6%) 451 (90.2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
Conjugate 0 (0%) 0 (0%) 2 (0.4%) 32 (6.4%) 466 (93.2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
Jeffrey 0 (0%) 0 (0%) 19 (3.8%) 49 (9.8%) 432 (86.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
Schwarz 0 (0%) 0 (0%) 36 (7.2%) 63 (12.6%) 401 (80.2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
ZS 0 (0%) 0 (0%) 50 (10%) 73 (14.6%) 377 (75.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
EIA 0 (0%) 0 (0%) 35 (7%) 64 (12.8%) 401 (80.2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)

µ2 = 2µ1

σ1 = σ2 σ2 = 2σ1 σ2 = 3σ1

Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative Very Strong Strong Positive Weak Negative

IP 0 (0%) 19 (3.8%) 103 (20.6%) 86 (17.2%) 292 (58.4%) 148 (29.6%) 218 (43.6%) 103 (20.6%) 17 (3.4%) 14 (2.8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
Robust 0 (0%) 13 (2.6%) 87 (17.4%) 73 (14.6%) 327 (65.4%) 111 (22.2%) 229 (45.8%) 122 (24.4%) 16 (3.2%) 22 (4.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
TESS 0 (0%) 6 (1.2%) 71 (14.2%) 66 (13.2%) 357 (71.4%) 73 (14.6%) 239 (47.8%) 140 (28%) 21 (4.2%) 27 (5.4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
Conjugate 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%) 0 (0%) 0 (0%) 28 (5.6%) 124 (24.8%) 348 (69.6%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
Jeffrey 0 (0%) 0 (0%) 0 (0%) 2 (0.4%) 498 (99.6%) 0 (0%) 0 (0%) 107 (21.4%) 130 (26%) 263 (52.6%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
Schwarz 0 (0%) 0 (0%) 0 (0%) 5 (1%) 495 (99%) 0 (0%) 0 (0%) 157 (31.4%) 139 (27.8%) 204 (40.8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
ZS 0 (0%) 0 (0%) 0 (0%) 7 (1.4%) 493 (98.6%) 0 (0%) 0 (0%) 200 (40%) 115 (23%) 185 (37%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
EIA 0 (0%) 0 (0%) 0 (0%) 5 (1%) 495 (99%) 0 (0%) 0 (0%) 154 (30.8%) 143 (28.6%) 203 (40.6%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 500 (100%)
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Figure A1. Evidence in the 2 log(B01) scale when comparing the population means of two samples
that arise from normal distributions with several means and variances with equal sizes n1 = 50 and
n2 = 500. Intrinsic priors (IP), Berger robust prior (Robust), BIC based on the effective sample size
(TESS), conjugate, Jeffrey’s, Schwarz, Zellner and Siow (ZS), and the expected arithmetic intrinsic
prior of [24].
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Figure A2. Evidence in the 2 log(B01) scale when comparing the population means of two samples
that arise from a Student’s t distributions with several means and variances with equal sizes n1 = 50
and n2 = 500. Intrinsic priors (IP), Berger robust prior (Robust), BIC based on the effective sample
size (TESS), conjugate, Jeffrey’s, Schwarz, Zellner and Siow (ZS), and the expected arithmetic intrinsic
prior of [24].
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Figure A3. Evidence in the 2 log(B01) scale when comparing the population means of two samples
that arise from gamma random samples with several means and variances with equal sizes n1 = 50
and n2 = 500. Intrinsic priors (IP), Berger robust prior (Robust), BIC based on the effective sample
size (TESS), conjugate, Jeffrey’s, Schwarz, Zellner and Siow (ZS), and the expected arithmetic intrinsic
prior of [24].
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