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Abstract: In this work, we theoretically study a finite and undamped two-mode optomechanical
model consisting of a high quality optical cavity containing a thin, elastic, and dielectric membrane.
The main objective is to investigate the precursors of quantum phase transition in such a model by
studying the behavior of some observables in the ground state. By controlling the coupling between
membrane and modes, we find that the two lowest energy eigenstates become degenerate, as is
indicated by the behavior of the mean value of some operators and by other quantifiers as a function
of the coupling. Such degenerate states are characterized by a coherent superposition of eigenstates
describing one of the two modes preferentially populated and the membrane dislocated from its
equilibrium position due the radiation pressure (Schrödinger’s cat states). The delocalization of
the compound system photons+membrane results in an increase in fluctuations as measured by
Robertson-Schrödinger uncertainty relations.

Keywords: finite systems; optomechanical systems; Dicke model

1. Introduction

Optomechanical systems are characterized by the coupling between radiation and
matter. In general, this coupling is established by the interaction of radiation pressure
with some mechanical degree of freedom [1–4]. The increasing development of techniques
in experimental quantum optics has made it possible to control and handle the interac-
tion between electromagnetic fields and macroscopic mechanical devices at the quantum
scale [2].

An example of a simple optomechanical system consists in a moving mirror which
is coupled to a spring and is hit by photons. In order to optimize the interaction between
the light and the mechanical oscillator, photons can be trapped in an optical cavity in
which one of the mirrors is free to oscillate. Photons undergo multiple reflections between
the mirrors, increasing the interaction time with the moving mirror, thus increasing the
radiation pressure on it. In an optical cavity with a moving mirror, the natural frequency of
the electromagnetic mode is determined by the size of the cavity. This feature is known as
parametric coupling [2,5].

Optomechanical systems have attracted increasing attention in recent years. Many
experiments and theoretical models have been proposed in order to better understand fun-
damental aspects of the interaction between radiation and matter, more specifically those
associated with macroscopic mechanical systems and electromagnetic fields at the quan-
tum scale. As examples, we cite quantum non-demolition measurements of a mechanical

Entropy 2024, 26, 87. https://doi.org/10.3390/e26010087 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26010087
https://doi.org/10.3390/e26010087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-0932-2204
https://orcid.org/0000-0002-4575-5293
https://doi.org/10.3390/e26010087
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26010087?type=check_update&version=2


Entropy 2024, 26, 87 2 of 19

quadrature [6,7], photon antibunching [8], cooling of mechanical modes to their funda-
mental state [9–12], optomechanically induced transparency [13], macroscopic quantum
superposition in mechanical systems [14–16], quantum-coherent coupling of a mechanical
oscillator to an optical cavity mode [17], quantum entanglement between electromagnetic
fields and a mechanical oscillator [18], and quantum sensors of mechanical motion [19–21].
Moreover, optomechanical systems have great potential for practical applications, such
as radio-frequency oscillators [22,23], optical memories [13], high sensitivity probes of
acceleration [24], and magnetic fields [25].

In this work, we theoretically study a model for a high quality optical cavity with fixed
mirrors and an elastic dielectric membrane within it, as depicted in Figure 1. Two electro-
magnetic modes are produced inside the cavity, one on each side of the membrane. As the
membrane’s transmission amplitude is not null, the modes can exchange photons. Addi-
tionally, the radiation pressure causes the membrane to vibrate, affecting the frequencies of
the modes on each side [26,27], as a consequence of parametric coupling.

Figure 1. Setup of the two-mode optomechanical system. A thin, elastic, and dielectric membrane is
placed in the middle of a high-Q optical cavity. As a result, two modes are formed: one at left and the
other at right position of the membrane, with frequencies ωa and ωb. If the equilibrium position of
the membrane is symmetric with respect to the mirrors, we can consider ωa = ωb = ω0. This system
allows photons to be transmitted from one mode to another at a rate g. The system is completely
isolated and the membrane is frictionless: losses or pumping of photons and phonons to or from the
environment are not considered.

This kind of two-mode optomechanical model can be treated as a realization of the
N-atoms Dicke model by properly mapping the field operators into pseudospin operators.
Accordingly, the two modes are mapped into the atomic component of the Dicke model
whereas the membrane is associated with the corresponding field component [27]. In
thermodynamic limit, such models are known to present quantum phase transition (QPT)
and spontaneous Z2-symmetry breaking [27–30] depending on the value of parameters.
QPT and symmetry breaking are phenomena usually assigned to macroscopic systems and
the mentioned thermodynamic limit starts from a finite system, i.e., a system formed by a
finite number N of components occupying a finite volume V, and take the limits N → ∞
and V → ∞, so that N/V is kept finite. However, some attention has been paid to the
precursors of these macroscopic phenomena in their corresponding finite systems [31–36].
Such precursors are related with changes undergone by the finite system as some parameter
or potential is varied. This is the situation studied here, since we consider a two-mode
optomechanical model with a finite number of photons.

In this work, we observe how the ground state of the corresponding Hamiltonian
of the “membrane-in-the-middle” optomechanical model is affected as one of the system
parameters is varied. In general, it is expected that the appearance of some kind of non-
analyticity in ground state will occur at the critical point. Such a non-analyticity can
manifest itself in the mean values of some chosen observables—e.g., the imbalance in the
photon number stored in the two modes—and in the fidelity susceptibility. For this case,
there are two parameters of interest that could be used to access the precursors of QPT or
symmetry breaking: the reflectivity of the membrane and the coupling between the field
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and the membrane resulting from the radiation pressure. We chose to keep constant the
membrane reflectivity, whereas the coupling field-membrane is varied. This study takes
into account a very idealized situation: the optomechanical system is perfectly isolated
from the environment, i.e., photon leakage or the entry of thermal photons throughout
the mirrors or dissipative forces on the membrane are not considered. Moreover, optical
fields inside the cavity are not pumped by external sources. We recognize that such
simplifications are not verified in experiments involving optomechanical devices. Despite
this, the optomechanical system is studied in a full quantum frame, without resorting to
semiclassical approximations or similar methods.

This work is organized as follows: in Section 2, we present the two-mode optome-
chanical model and map it into the Dicke model; in Section 3, we present the investigation
of this model close to the appearance of non-analyticities in the ground state; and the last
section is reserved for the final remarks and conclusion.

2. The Model

In this paper, we follow the schematic and nomenclature adopted in Ref. [27]. Consider
a high-Q optical cavity of length L which has a highly reflective dielectric membrane placed
equidistant between its two mirrors, as shown in Figure 1. The membrane is elastic and able
to vibrate like a drum skin. We consider only two cavity modes in this study: one assigned
to the right side, with frequency ωa, and one assigned to the left side of the membrane, with
frequency ωb. We assume that these frequencies are equal when the membrane is localized
at the center of the high-Q cavity, i.e., ωa = ωb = ω0. As an additional approximation, we
assume the system is perfectly isolated. Thus, we do not take into account losses due to
friction or imperfections of the mirrors. Moreover, the cavity modes are not fed by any kind
of external pump.

As is shown below, this two-mode optomechanical model can be mapped into the
well-known Dicke model, which describes the interaction between a number of two-level
atoms with an electromagnetic field. Note that dissipation has been theoretically considered
in studies of the Dicke model [37–40], based on mean field or semiclassical approaches.
Such works unveil novel and interesting properties absent in the undamped case, e.g., if
collective damping of atoms are taken into account, bicritical transitions or coexistence of
two or more phases are predicted [37,38]. Experimental simulations of dissipative Dicke
models were performed using ultracold atoms confined to high-finesse cavities [41,42]. The
present work adopts the approximation of closed system that is not prevalent in quantum
optomechanical models. However, we consider the case of a finite size system and we
employ a full quantum mechanical approach as an initial characterization the two-mode
optomechanical model. The studies in the dissipative Dicke model domain cited just above
point out the inclusion of dissipation and optical pump as a natural extension of our work,
and suggest the two-mode optomechanical model as a promising platform to realize novel
phenomena, as hysteresis and multiphase transitions.

The membrane is modeled as a mechanical harmonic oscillator with natural frequency
ω and undergoes displacement due to a radiation pressure proportional to the photon
number difference (imbalance) between the right and left modes. Further, the frequencies
of these modes instantaneously depend on the position of the membrane. Assuming that
the mode frequencies depend linearly on the membrane displacement, the full quantum
description of this model is given by the Hamiltonian

Ĥ =
p̂2

2m
+

mω2 x̂2

2
+ h̄g

(
â† b̂ + b̂† â

)
+

2
L

h̄ω0 x̂(n̂a − n̂b), (1)

where m stands for the mass of the mechanical oscillator, and x̂ and p̂ are its position and
linear momentum operators, respectively. Photon annihilation (creation) operators of the
right and left cavity modes are respectively represented by â (â†) and b̂ (b̂†), and n̂a = â† â
and n̂b = b̂† b̂ are their corresponding photon number operators. The operators â, â†, b̂,
b̂† satisfy the usual bosonic commutation relations,

[
â, â†] =

[
b̂, b̂†

]
= 1 and

[
â, b̂

]
= 0.
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From now on, for the sake of brevity, we describe the right and left cavity modes as a and
b modes, respectively. Finally, the coupling constant g is related to the reflectivity of the
membrane, assumed close to unity. g measures the rate that the modes swap photons and
is given by

g =
c
√

2(1 − r)
L

, (2)

where c stands for the velocity of light in the vacuum, the full cavity length L, and the
membrane’s intensity reflectivity r, which in turn depends on the refractive index and the
thickness of the membrane (for more information, see [26,43]). Defining the dimensionless
operators X̂ = x̂

√
mω/h̄ and P̂ = p̂/

√
mh̄ω, the phonon annihilation and creation opera-

tors are respectively given by ĉ = 1/
√

2
(
X̂ + iP̂

)
and ĉ† = 1/

√
2
(
X̂ − iP̂

)
. Additionally,

the phonon number operator is defined by n̂c = ĉ† ĉ. Providing these definitions and

establishing Ĥ′ = Ĥ
h̄ω and the dimensionless parameters g′ = g/ω and λ = 2

L

√
h̄ω2

0
mω3 , the

Hamiltonian in Equation (1) can be rewritten as

Ĥ′ = n̂c + 2g′Ŝx +
√

2λ
(

ĉ + ĉ†
)

Ŝz. (3)

In the equation above, to establish the correspondence with the Dicke model, we use the
pseudospin operators, defined as

Ŝx =
1
2

(
â† b̂ + b̂† â

)
, (4)

Ŝy =
1
2i

(
â† b̂ − b̂† â

)
, (5)

Ŝz =
1
2
(n̂a − n̂b). (6)

The operators above obey the usual commutation relations of the SU(2) algebra, i.e.,[
Ŝi, Ŝj

]
= iεijkŜk, with i, j, k take values in {x, y, z}. Here, εijk stands for the Lévi-Civita

symbol.
The Hamiltonian in Equation (3) has similarities with the corresponding Hamiltonian

of the Dicke model [44–48], except by the Ŝx ↔ Ŝz swapping, which can be viewed as a
rotation of the spin operators around the y-axis. Here, the membrane plays the role of the
field and the a and b modes play the role of atoms in Dicke’s original model.

3. Degeneracy and Photon Trapping

The results presented in this section were obtained by the diagonalization of the
Hamiltonian Ĥ′. The observable n̂a + n̂b commutes with the Hamiltonian Ĥ′ and the
quantum number S is associated to the total number of photons stored in both modes.
In fact, since the eigenvalues of the photon imbalance operator Ŝz defined in Equation (6)
runs from −S (all photons found in b-mode) to S (all photons in a-mode), the number
of photons stored in the cavity is equal to 2S. Thus, when establishing a given value to
S, we define a particular subspace of the global space of states characterized to collect
the eigenstates of n̂a + n̂b with the same eigenvalue 2S. When we refer to the ground
state of Ĥ′ for a fixed S, we refer to the lowest energy eigenstate of Ĥ′ restricted to a
particular subspace.

On the other hand, the number of phonons, represented by n̂c, is not preserved in
the dynamics governed by the Hamiltonian Ĥ′. This fact imposes some challenges to the
numerical diagonalization of Ĥ′, since the exact expansion of any of its eigenstates using
the eigenvectors of n̂c produces an infinity number of unknown coefficients. For diagonal-
ization to be feasible, truncation in this expansion is imposed, limiting the number of eigen-
vectors of n̂c in an expansion of an eigenstate of Ĥ′. We define this truncation as Nmax, and
thus the basis used in the numerical diagonalization is the set {|m, nc⟩}m=−S...S,nc=0...Nmax

.
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However, as discussed by Chen and coworkers in Ref. [49], the energy of the ground state
of Ĥ′ does not converge quickly as the number of terms included in the ground state
expansion increases.

3.1. Photon Imbalance Close to Critical Transition

We study the mean value of this observable, represented by the operator Ŝz, evaluated
in the ground state |Ψ0⟩ of the Hamiltonian given by Equation (3),

〈
Ŝz
〉
= ⟨Ψ0|Ŝz|Ψ0⟩.

The parameter λ that controls the coupling among the membrane and the modes is varied
and g′ is kept constant and equal to 1/2. As pointed out by Mumford and coworkers [27],
in typical optomechanical systems, g′ ≫ 1, even the intensity reflectivity r is very close to
the unity. To reach g′ ≈ 1, the natural vibration frequency of the membrane should be in
the order of tens of MHz. This fact can impose some obstacles to experimental realization
of this model. Such a proceeding is repeated for several values of the quantum number S.
The numerical diagonalization of the Hamiltonian Ĥ′ is feasible by defining a truncation
of the number of excitations (phonons) of the mechanical part, Nmax. To renormalize the
coupling among membrane and modes, we define u = λ

√
S.

As the parameter λ is varied, the system undergoes a significant change: the two
lowest energy eigenstates of Ĥ′ become degenerate. Degeneracy occurs for a critical value
given by λ1 = 1/(2

√
S). This value can be determined using the corresponding classical

Hamiltonian of Ĥ′ obtained taking the limit of the number of stored photons going to
infinite. This evaluation can be found in Appendix A. The occurrence of such a degeneracy
can be detected by the way the mean value of some observables changes as λ is varied.
Figure 2 shows the mean value of the imbalance operator squared Ŝ2

z as a function of u.
As one can see, a change in

〈
Ŝ2

z
〉
/S2 is observed for u1 ≈ 1/2, as u is increased: it goes

from small positive values to a value close to 1, regardless of the number of photons stored
in the cavity.

0
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0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

〈 Ŝ
2 z

〉
/S

2

u

Mean value of Ŝ2
z as a function of λ

S = 10
S = 15
S = 20
S = 25
S = 30
S = 40

Figure 2. Mean value of the operator Ŝ2
z (i.e., squared photon imbalance operator) as a function of

u in the ground state of the Hamiltonian of Equation (3) for several values of the quantum number
S: 10 (black), 15 (blue), 20 (red), 25 (green), 30 (magenta), and 40 (brown). For all curves, g′ = 1/2
and Nmax = 5S.

However, there are observables that are insensitive to the occurrence of degeneracy.
One particularly interesting example is the imbalance operator Ŝz itself. The dependence of
the mean value of this operator on the parameter λ is shown in Figure 3. As the value of u
is increased,

∣∣〈Ŝz
〉∣∣ changes abruptly from zero to positive values for u = u2, depending
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on the number of stored photons. After this abrupt change,
∣∣〈Ŝz

〉∣∣/S tends to a value
close to the unity, which means that the chosen ground state describes one of the two
modes preferentially occupied. It is important to emphasize that such abrupt changes are
not related to changes in the system, since they result from the diagonalization process.
Nevertheless, they shed some light on some aspects of the two degenerate lowest energy
eigenstates, as will be discussed below.

As discussed in Appendix B, the numerical diagonalization procedure of Ĥ′ can either
pick up the eigenstate that describes a-mode preferentially populated,

〈
Ŝz
〉
/S ≃ 1, or pick

up that eigenstate describing b-mode populated,
〈
Ŝz
〉
/S ≃ −1. For each value of λ greater

than λ2, such a procedure can choose one or other eigenstate to represent |Ψ0⟩.

0

0.1

0.2
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0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

∣ ∣ ∣〈 Ŝ
z

〉∣ ∣ ∣
/S

u

Mean value of Ŝz as a function of λ

S = 10
S = 15
S = 20
S = 25
S = 30
S = 40

Figure 3. Modulus of mean value of the operator Ŝz (photon imbalance) as a function of u in the
ground state of the Hamiltonian of Equation (3) for several values of the quantum number S: 10
(black), 15 (blue), 20 (red), 25 (green), 30 (magenta), and 40 (brown). For all curves, g′ = 1/2,
and Nmax = 5S.

To suppress random abrupt jumps in the evaluation of the mean value of Ŝz, a slight
modification is implemented in the algorithm used to diagonalize Ĥ′. The two lowest
energy degenerate eigenstates, |Ψ0(λn)⟩ and |Ψ1(λn)⟩ obtained for the current value of
the control parameter, λn, are compared with the previous reference eigenstate |Ψr(λn−1)⟩.
As λn is close to λn−1, one of the two lowest energy eigenstates, |Ψ0(λn)⟩ or |Ψ1(λn)⟩,
has considerable overlap with |Ψr(λn−1)⟩ and the other is almost orthogonal to it. Thus,
the lowest energy state exhibing greatest overlap with the previous reference state will be
chosen as the current reference eigenstate. Adopting this procedure, the mean value of the
imbalance operator Ŝz as a function of λ is evaluated in the current ground state of Ĥ′ and
the results are shown in Figure 3.

The abrupt changes in curves of Figure 3 can be understood as a result of the diag-
onalization process. They occur for values of the coupling parameter λ2 that depends
on S, and is greater than the value λ1, for which the two lowest energy eigenstates be-
come degenerate, i.e., λ2 > λ1. In this case, the two lowest energy eigenstates |Ψ0⟩
and |Ψ1⟩ define a two-dimensional eigensubspace, W = span{|Ψ0⟩, |Ψ1⟩}. Any state
belonging to W can be picked up as the ground state by the diagonalization process.
Therefore, the abrupt changes observed in curves of Figure 3 occur because, after the
diagonalization process, a state that describes one of the two modes preferentially oc-
cupied is chosen in W . This can be better understood observing the distribution of the
coefficients cm,nc given by the expansion of the ground state in the computational ba-



Entropy 2024, 26, 87 7 of 19

sis. Figures 4 and 5 show such a distribution for three different situations with S = 15.
To this end, states of the computational basis are arranged in an ascending order as follows:
|m = −15, nc = 0⟩, |m = −15, nc = 1⟩, . . . , |m = −15, nc = Nmax⟩, . . . , |m = 15, nc = Nmax⟩.
Hence, coefficients associated with negative values of m appear on the left side of the graphs,
while coefficients assigned to positive values of m appear on the right side. Before de-
generacy, as shown in Figure 4 for u = 0.4, the coefficients are symmetrically distributed
along the entire horizontal axis, exhibiting more significant values on the central part,
where m ∼ 0.

After degeneracy sets in, the distribution of the coefficients changes its shape. In fact,
the coefficients vanish in the central part and are non-zero at the extremities of the graphs,
as can be seen in Figure 5. This figure exhibits the coefficient distributions for both de-
generate lowest energy eigenstates in two situations: after the degeneracy but before the
abrupt change observed in Figure 3 (u = 0.7) and after the abrupt change (u = 0.9). In the
first situation, for both eigenstates, non-vanishing coefficients appear on both extremities
of the graph. However, for the other situation, with u = 0.9, non-vanishing coefficients
are concentrated at one extremity of the graph for one of the eigenstates, while for the
other eigenstate, the coefficients are concentrated at the other extremity. Thus, for u = 0.9,
the eigenstate with coefficients distributed at the left extremity yields

〈
Ŝz
〉
/S ≈ −1 whereas

the eigenstate with coefficients distributed at the right extremity yields
〈
Ŝz
〉
/S ≈ 1. In

the situation where degeneracy has established but the abrupt change of
〈
Ŝz
〉

has not yet
occurred, the ground state describes a coherent superposition of these two eigenstates (a
kind of Schrödinger’s cat state) that describes the photons preferentially occupying one of
the modes.

We emphasize that the abrupt change observed in the curves of Figure 3 is not a
result of any physical process, but rather it is a product of the diagonalization algorithm.
For example, if an experimental realization of this system is performed in such way that
the coupling parameter λ is adiabatically varied, it is unreasonable to expect this abrupt
change to occur.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500

|c m
,n

c
|

(m,nc)

Absolute value of coefficients cm,nc of the ground state for u = 0.4

Figure 4. Modules of the coefficients cm,nc of the ground state of Ĥ′ with respect to the computa-
tional basis {|m, nc⟩}m=−S...S,nc=0...Nmax

for u = 0.4. Here, S = 15 and Nmax = 5S. States in the
computational basis are ordered in ascending order as |m = −15, nc = 0⟩, |m = −15, nc = 1⟩, . . . ,
|m = −15, nc = 75⟩, . . . , |m = 15, nc = 75⟩. Numbers in the horizontal axis label states of the compu-
tational basis following this ordering. Variables are discrete and lines are guides to the eye.
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Coefficients cm,nc of the lowest energy eigenstates for u = 0.7
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Coefficients cm,nc of the lowest energy eigenstates for u = 0.9
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Figure 5. Coefficient distributions for the two lowest energy eigenstates of Ĥ′ with respect to
the computational basis {|m, nc⟩}m=−S...S,nc=0...Nmax

for u = 0.7 (top) and u = 0.9 (bottom). Here,
S = 15 and Nmax = 5S. States in the computational basis are ordered in ascending order as
|m = −15, nc = 0⟩, |m = −15, nc = 1⟩, . . . , |m = −15, nc = 75⟩, . . . , |m = 15, nc = 75⟩. Numbers in
the horizontal axis label states of the computational basis following this ordering. Variables are
discrete and lines are guides to the eye.

3.2. Fidelity Susceptibility

Fidelity between the pure states |ϕ⟩ and |ψ⟩ measures how indistinguishable such
states are. It can be measured by the overlap

F(ψ, ϕ) = |⟨ψ|ϕ⟩|.
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As discussed above, for λ < λ1, the ground state |Ψ0⟩ of the Hamiltonian H′ describes
both modes approximately equally populated, whilst for λ > λ2, |Ψ0⟩ it describes one of the
two modes preferentially populated. As the physical situations described by |Ψ0⟩ are very
different for λ < λ1 and for λ > λ2, we expect a small overlap between the ground states
immediately before and immediately after the onset of degeneracy and the occurrence of
the abrupt change shown in Figure 3. In other words, considering ϵ positive and sufficiently
small, we expect fidelity F(λ − ϵ, λ + ϵ) ≡ |⟨Ψ0(λ − ϵ)|Ψ0(λ + ϵ)⟩| suffering a significant
decay for λ = λ1 and λ = λ2 if compared with other values of λ.

For our purposes, instead of using direct fidelity, we opt to work with an inherited
measure — the fidelity susceptibility [27,50–56]. Defining the fidelity between the ground
states |Ψ0(λ)⟩ and |Ψ0(λ + δ)⟩ as F(λ, δ), the fidelity susceptibility is given by

χF(λ) ≡ −1
2

∂2F(λ, δ)

∂δ2

∣∣∣∣
δ=0

. (7)

Figure 6 shows the results of numerical evaluation of fidelity susceptibility as a
function of the parameter λ for several values of the quantum number S. For values of
λ < λ1, χF is approximately constant and close to zero. As λ increases, but still keeping
smaller than the critical value, a bump arises around u = 1/2, signalizing the appearance
of degeneracy of the two lowest energy eigenstates. At the critical value λ2, χF exhibits a
high peak that quickly drops and, for λ > λ2, becomes approximately constant. As the
quantum number S increases, these peaks seem to accumulate around a given value of the
parameter λ — the critical value λ1 corresponding to the appearance of degeneracy. The
peak signalizes that the two lowest energy and degenerate eigenstates now describe photons
stored in one mode and the other empty instead of describing a quantum superposition of
such eigenstates.
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Figure 6. Fidelity susceptibility χF between ground states of the Hamiltonian of Equation (3) as
a function of the parameter λ (u) for several values of S. We use Nmax = 5S as truncation of the
maximum number of phonons considered in our simulations. Here, λ = u/

√
S. Different colors

were attributed to different values of S: 10 (black), 15 (blue), 20 (red), 25 (green), 30 (magenta), and
40 (brown).
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3.3. Fluctuations

Order parameters are quantities selected to distinguish two different phases of a given
macroscopic system and, to be measurable, fluctuations of these quantities must be mild
compared with their measured values when the system is found in any of its phases [31,57].
At the transition point, it is expected that such fluctuations diverge. A question that
naturally arises is how fluctuations behave when a finite system undergoes changes similar
to those applied to the corresponding macroscopic system during a phase transition.

In order to shed some light on the role of fluctuations on the model studied here, we
evaluate the Robertson-Schrödinger (RS) uncertainty relation [58,59] for the membrane’s
observables X̂ and P̂ as the coupling parameter λ is varied for different values of S. In the
Dicke model, fluctuations have been used as an indicator of chaos [60] and of quantum
phase transition in the mean field approximation [61]. The variances of these observables
were evaluated in the ground state of the Hamiltonian Ĥ′. The results are presented in
Figure 7. RS uncertainty is given by

σ2
Xσ2

P − σ2
XP ≥ 1

4
, (8)

where σ2
X =

〈
X̂2〉 −

〈
X̂
〉2 and σ2

P =
〈

P̂2〉 −
〈

P̂
〉2 stand for the variances of X̂ and P̂

operators, whilst σXP = 1
2
〈

X̂P̂ + P̂X̂
〉
−

〈
X̂
〉〈

P̂
〉

stands for the corresponding covariance.
According to Figure 7, if λ is lower than λ1 or greater than λ2, then fluctuations are relatively
small. However, at the critical value λ1, when degeneracy appears, fluctuations start to
increase quasi-linearly until λ reaches the value λ2, corresponding to a situation in which
the ground state describes one of the modes preferentially populated. When this value
is reached, fluctuations quickly drop and remain constant after that. Note that, as the
quantum number S increases, i.e., as the number of stored photons increases, fluctuations
grow more rapidly with λ.
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RS uncertainty relation for X̂ and P̂ as a function of λ
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Figure 7. Fluctuations of membrane’s observables X̂ and P̂ measured by RS uncertainty relation as
a function of the parameter λ (u) in the ground state of the Hamiltonian Ĥ′, for several values of S.
We use Nmax = 5S as truncation of the maximum number of phonons considered in our simulations.
Here, λ = u/

√
S. Different colors were attributed to different values of S: 10 (black), 15 (blue),

20 (red), 25 (green), 30 (magenta), and 40 (brown).
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The ground state is kind of a Schrödinger’s cat state when λ runs in the range [λ1, λ2]
and, due to the delocalization, the position-momentum uncertainty relation increases. In
this situation, the ground state is a coherent superposition of states describing photons
trapped in one mode and the membrane displaced from its rest position as a result of
the radiation pressure. As a byproduct of the diagonalization process, when λ > λ2,
the ground state is now a localized state, as if the expected superposition had collapsed
into one of the states that form it.

3.4. Mean Force on the Membrane

Establishing an analogy with classical physics, let us define a “force on membrane”
operator as the corresponding time derivative of the membrane linear momentum. From the
Hamiltonian given by Equation (1), we have

d
dt

p̂ = − 1
ih̄
[
p̂, Ĥ

]

= −mω2 x̂ − 2
L

h̄ω0(n̂a − n̂b),

or, in terms of dimensionless operators and parameters,

d
dτ

P̂ = −X̂ − λ(n̂a − n̂b) = − 1√
2

(
ĉ + ĉ†

)
− 2λŜz, (9)

where τ = ωt is a dimensionless time. Let us define the dimensionless force operator as
F̂ = d

dτ P̂. We recognize two contributions to F̂ in Equation (9): the first term represents
the elastic restoring force (we called it harmonic contribution); the second term is due
to the radiation pressure acting on the membrane and it is proportional to the photon
imbalance of the a and b modes. To analyze how the force on the membrane is affected as
the parameter λ varies, we evaluated its mean value in the ground state of the Hamiltonian
given by Equation (3). As expected, the two different contributions to F̂ are opposite.

Figure 8 shows the mean value of these two contributions,
〈

F̂harm
〉
= −

〈
X̂
〉

and〈
F̂rad

〉
= −λ⟨n̂a − n̂b⟩, as a function of λ. For λ < λ2, the mean values of these contribu-

tions are close to zero and, when the value λ2 is reached, both suffer an abrupt jump. The
mean values of the harmonic and radiation pressure contributions linearly grow with λ for
λ > λ2, and they keep the same absolute magnitude, but opposite signs. Thus, the restoring
harmonic force equilibrates the force applied on the membrane by the radiation pressure
resulting from the imbalance in the photon population of the two modes. As a consequence,
for any value of the coupling parameter λ, the mean value of the force on membrane is
null. For λ > λ2, for each value of λ, in the chosen ground state, the membrane reaches an
equilibrium position, given by

〈
X̂
〉
= −λ⟨n̂a − n̂b⟩ ≈ ±2λS. (10)

The signal “±” in the right hand side of the above equation is due to the degeneracy of the
two lowest energy eigenstates. As discussed, each one of these eigenstates describes one of
the two modes populated for λ > λ2.
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Figure 8. Mean values of the two contributions to the force on the membrane F̂ as functions of the
parameter λ (u) for several values of S in the ground state of the Hamiltonian of Equation (3): F̂harm

(harmonic contribution—continuous line) and F̂rad (radiation pressure contribution—dashed line).
We use Nmax = 5S as truncation of the maximum number of phonons considered in our simulations.
Here, λ = u/

√
S. Different colors were attributed to different values of S: 10 (black), 15 (blue),

20 (red), 25 (green), 30 (magenta), and 40 (brown).

4. Conclusions

In this work, we studied a two-mode optomechanical model that is equivalent to
the well-known N-atom Dicke model of quantum optics. The Dicke model has a richness
of phenomena, such as QPT and its classical limit can exhibits chaos. Using such an
equivalence, we analyze the behavior of mean values of three chosen observables with
respect to the parameter λ that measures the coupling between the membrane and the light
modes in the ground state of the Hamiltonian (3).

The numerical results presented in previous section show the existence of two differ-
ent values of the coupling parameter λ for which the two-mode optomechanical system
undergoes significant changes. For λ = λ1 ≈ 1/(2

√
S), the two lowest energy eigenstates

of the Hamiltonian Ĥ′ become degenerate. For a second value λ2 > λ1, the ground state
describes one of the two cavity modes preferentially populated. In fact, they are a product
of the diagonalization process of the Hamiltonian Ĥ′. After the onset of degeneracy, for λ in
[λ1, λ2], the algorithm used to diagonalize Ĥ′ chooses ground states that are characterized
as coherent superpositions of eigenstates that describe one of the two modes preferentially
occupied. Let such eigenstates be identified as |Ψ+⟩ and |Ψ−⟩, with each of them describing
photons populating one of the modes, i.e., ⟨Ψ±|Ŝz|Ψ±⟩ ≈ ±S and ⟨Ψ±|Ψ∓⟩ = 0. Soon
after the degeneracy, the two lowest energy eingenstates are coherent superpositions of
|Ψ+⟩ and |Ψ−⟩. Nevertheless, for λ > λ2, the roles of these lowest energy eigenstates are
played by |Ψ+⟩ and |Ψ−⟩ themselves. The value of λ2 depends on the quantum number S,
or in other words, on the total number of photons stored in the cavity.

As shown in Figure 6, as the parameter λ varies, fidelity susceptibility χF curve exhibits
a bump followed by a high peak that quickly drops. The bump announces the settlement
of degeneracy between the two lowest energy eigenstates of Ĥ′, whilst the peak signalizes
that the ground state describes the trapping of photons in one of the two modes, a numerical
effect, as pointed out above. Note that, as the number of stored photons increases, the
distance between the bump and the peak diminishes. Such a behavior is confirmed by the
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numerical calculations of
〈
Ŝz
〉
(λ) and χF(λ). The settlement of degeneracy can be verified

in Figure A2 in Appendix B which shows the energy separation δ of the two lowest energy
eigenstates as a function of λ. Despite how imbalance Ŝz is insensitive to the emergence of
degeneracy, imbalance squared is sensitive, as can be verified in Figure 2.

Finally, we were able to verify how the force on the membrane F̂ is affected close to
λ2 for different values of S. F̂ has two opposite contributions, analogous to a Newtonian
pair of action-reaction forces: one of them proportional to the membrane position X̂ (re-
lated to the harmonic restoring force) and the other proportional to the photon imbalance
Ŝz =

1
2 (n̂a − n̂b) (assigned to the radiation pressure). For lower values of λ, both contribu-

tions to
〈

F̂
〉

are close to zero, because both modes are equally occupied. At λ = λ2, both
contributions jumps to non-null opposite values with the same absolute magnitude. After
the transition, in the ground state, both contributions linearly grow with λ, keeping the
same absolute magnitude but with opposite signals. Thus, the mean value of F̂ is kept null,
regardless of the value of λ . However, in this situation, as a reaction of the restoring force
to the radiation pressure, the membrane reaches a new equilibrium position that depends
on the total number of photons stored in the cavity. Resembling the Newton’s third law of
motion, even after the the photon trapping in one mode, the mean value of the net force on
the membrane in the ground state is null, and as a reaction to the force due to the radiation
pressure, the membrane reaches a new equilibrium position that depends on the number of
photons stored in the cavity. This behavior can be considered as a finite-size correspondent
of the buckling phase transition in symmetric optomechanical cavities, for which a recent
experimental test was recently reported in Ref. [62].

As emphasized throughout this work, we consider the closed system approximation in
our model that may make its experimental test difficult, considering the current state-of-art
of experiments involving optomechanical devices. A test of this model could be carried out
on a device similar to that described in Ref. [62]. However, a superconducting cavity could
be needed to increase the lifetime of photons stored there. Therefore, such a device would
require cryogenic and vacuum systems. Furthermore, cryogenics would be necessary to
reduce the presence of thermal excitations in both the cavity and the membrane.
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Appendix A. Calculation of the Critical Value λ1

Changes in the structure of energy levels of a quantum Hamiltonian can be sig-
nalized by changes in the structure of the corresponding classical phase space [63,64].
As we discussed above, when the coupling parameter λ reaches first critical value λ1,
the optomechanical model exhibits degeneracy. To calculate the value of λ1, we resort
to the thermodynamic limit of the Hamiltonian given Equation (3). Defining Ĥ ≡ Ĥ′/S,
we obtain

Ĥ = γ̂†γ̂ + 2g′ ŝx +
√

2u
(

γ̂† + γ̂
)

ŝz, (A1)

https://osf.io/y9ust/?view_only=af4bec4f9e4b48e29f5aa5e708abaef6
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where γ̂ ≡ ĉ/
√

S, and ŝi ≡ Ŝi/S, for i = x, y, z, are the new operators, and u ≡ λ
√

S is the
renormalized coupling parameter. Note that, in the limit of S → ∞, which is equivalent to
the number of stored photons in the cavity going to infinity, the commutation relations are
given by

lim
S→∞

[
γ̂†, γ̂

]
= lim

S→∞

1
S

[
ĉ†, ĉ

]
= lim

S→∞

1
S
= 0, (A2)

lim
S→∞

[
ŝi, ŝj

]
= lim

S→∞

1
S2

[
Ŝi, Ŝj

]
= lim

S→∞

1
S2 εijkŜk = 0, (A3)

where εijk stands for the antisymmetric Levi-Civita symbol. In the limit S → ∞, operators
in the Hamiltonian (A1) can be substituted by c-number functions giving origin to the
classical Hamiltonian

H = lim
S→∞

Ĥ = γ∗γ + 2g′
√

1 − s2
z cos ϕ +

√
2u(γ∗ + γ)sz. (A4)

Here, γ = limS→∞ γ̂, γ∗ = limS→∞ γ̂†, sz = limS→∞ Ŝz, with −1 ≤ sz ≤ 1, and ϕ,
with 0 ≤ ϕ ≤ π, are the dynamical variables of this classical Hamiltonian. To keep the
renormalized coupling parameter u finite as S goes to infinite, λ goes to zero.

The classical Hamiltonian in Equation (A4) depends on four dynamical variables.
The classical phase space is embedded in a four-dimensional space, so as the parameters
vary, the structure of the orbits along with the nature of the critical points also change.
The critical points of the Hamiltonian H can be evaluated by

∂H
∂γ

= γ∗ +
√

2usz, (A5)

∂H
∂γ∗ = γ +

√
2usz, (A6)

∂H
∂sz

= −2g′sz cos ϕ√
1 − s2

z
+
√

2u(γ∗ + γ) (A7)

∂H
∂ϕ

= −2g′
√

1 − s2
z sin ϕ. (A8)

Making null or undefined the derivatives in Equations (A5)–(A8), we obtain the following
set of critical points:

γ = γ∗ = 0, sz = 0, ϕ = 0 or π, (A9)

γ = γ∗ = ±u

√
2
(

1 − g′2

4u4

)
, sz = ∓

√
1 − g′2

4u4 , ϕ = 0 or π, and (A10)

γ = γ∗ = ±
√

2u, sz = ∓1, and ϕ is undefined. (A11)

In our simulations, we made g′ = 1/2. Thus, assuming sz real, the critical point in
Equation (A10) should only be considered for u ≥ 1/2. For u = 1/2, Equations (A9)
and (A10) represents the same critical point, and as u takes values greater than 1/2, such
critical points separate.

The Hessian matrix corresponding to the Hamiltonian H is

H(γ, γ∗, sz, ϕ) =




1 0
√

2u 0
0 1

√
2u 0√

2u
√

2u − 2g′ cos ϕ

(1−s2
z)

3/2
2g′sz sin ϕ√

1−s2
z

0 0 2g′sz sin ϕ√
1−s2

z
−2g′

√
1 − s2

z cos ϕ




. (A12)
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Equation (A9) provides two critical points, one for ϕ = 0 and the other for ϕ = π. For g′ =
1/2, we have det H(0, 0, 0, 0) = 1 + 4u2, that is always positive whatever the value of u. In
this case, Hessian matrix H is not positive defined nor negative defined, and the critical
point in Equation (A9) for ϕ = 0 corresponds to a saddle point. However, det H(0, 0, 0, π) =
1 − 4u2, that is positive for 0 ≤ u < 1/2 and negative for u > 1/2. Note that the nature of
this last critical point changes if u = 1/2. In fact, for 0 ≤ u < 1/2, H is positive defined
(local minimum) but, for u > 1/2, positiveness/negativeness of H is not defined (saddle

point). For the case of Equation (A10), we define γ̃ = u
√

2
(

1 − g′2
4u4

)
and s̃z =

√
1 − g′2

4u4 .

This equation provides four critical points depending on the value taken for ϕ and the
signal chosen for γ and sz. Thus, for g′ = 1/2, we have

det H(±γ̃,±γ̃∗,∓s̃z, π) = 8u4 − 1/2

and
det H(±γ̃,±γ̃∗,∓s̃z, 0) = 8u4 + 1/2

As mentioned above, these critical points are meaningless if u < 1/2. For u > 1/2, the criti-
cal points in Equation (A10) for ϕ = 0 are saddle points, since positiveness/negativeness
of H is not defined. However, for ϕ = π and for u > 1/2, the critical points in Equa-
tion (A10) are local minima, by virtue of the positiveness of H. In short, the critical point
γ = γ∗ = 0, sz = 0, ϕ = π is a local minimum for 0 < u < 1/2 and turns into a saddle
point for u > 1/2, and two new local minima simmetrically localized around it appear

at γ = γ∗ = ±u
√

2
(

1 − g′2
4u4

)
, sz = ∓

√
1 − g′2

4u4 , ϕ = π. Again, the nature of the critical

points related with ϕ = π is changed when u reaches the value 1/2. In our simulations, de-
generacy occurs for u ≈ 1/2, in agreement with the critical value found using the classical
version of the Hamiltonian Ĥ′.

Appendix B. Some Aspects of Diagonalization of the Two-Mode Optomechanical
Model Hamiltonian

We start with the Hamiltonian that describes the interaction of the two-mode of the
electromagnetic field with a membrane, given by Equation (3). Introducing the generalized
displacement operator

D̂
(
ξ̂
)
= exp

(
ξ̂ ĉ† − ξ̂† ĉ

)
, (A13)

that, when acting on ĉ and ĉ†, yields [65]

D̂
(
ξ̂
)
ĉD̂†(ξ̂

)
= ĉ − ξ̂, and D̂

(
ξ̂
)
ĉ†D̂†(ξ̂

)
= ĉ† − ξ̂†, (A14)

where
ξ̂ = αŜz. (A15)

D̂
(
ξ̂
)

is unitary, since D̂†(ξ̂
)
= D̂−1(ξ̂

)
= D̂

(
−ξ̂

)
. Now, consider the Hamiltonian

ĥ = n̂c − 2λ2Ŝ2
z . (A16)

{|m, nc⟩ ≡ |m⟩ ⊗ |nc⟩}, with nc = 0, 1, . . . , and −S ≤ m ≤ S, is the set of eigenstates of ĥ
with eigenvalues Enc ,m = nc − 2λ2m2. Making α =

√
2λ in (A15), we define

h̃ = D̂†(ξ̂
)
ĥD̂

(
ξ̂
)
=

(
ĉ† +

√
2λŜz

)(
ĉ +

√
2λŜz

)
− 2λ2Ŝ2

z = n̂c +
√

2λŜz

(
ĉ + ĉ†

)
. (A17)



Entropy 2024, 26, 87 16 of 19

Note that h̃ = Ĥ′ − 2g′Ŝx. Moreover, the eigenstates of h̃ form the set {|m;−ξm, nc⟩ ≡
|m⟩ ⊗ |−ξm, nc⟩}, where |−ξm, nc⟩ ≡ D̂†(ξm)|nc⟩, with ξm =

√
2λm, is a displaced number

state [66,67]. The respective eigenvalues are

Enc ,m = nc − 2λ2m2 = nc − ξ2
m. (A18)

Note that the eigenstates with m ̸= 0 are at least twofold degenerate. In fact, for a given nc,
the states |m;−ξm, nc⟩ and |−m;−ξ−m, nc⟩, m ̸= 0, have the same energy Enc ,m = Enc ,−m. In
particular, the ground state of h̃ is twofold degenerate with energy E0,−S = E0,S = −2λ2S2.
To illustrate the convergence of the lowest eigenenergy of Ĥ′ to the corresponding one of h̃
as λ grows, Figure A1 shows the difference between them. As nc = 0, the ground state
of h̃ is

∣∣∣±S,±
√

2λS
〉
= |±S⟩ ⊗

∣∣∣±
√

2λS
〉

, where
∣∣∣±

√
2λS

〉
stands for the coherent state

D̂
(
±
√

2λS
)
|0⟩.
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Figure A1. Difference between the energies of the ground states of Ĥ′ and h̃. We use Nmax = 15S
as truncation of the maximum number of phonons considered in our simulations. Here, λ = u/

√
S.

Different colors and symbols were attributed to different values of S: 5 (black plus), 10 (blue cross),
15 (red asterisk), 20 (green square), and 25 (magenta circle).

In this work, we chose the ordinary phonon number states |nc⟩ to diagonalize the
Hamiltonian Ĥ′. As the dimension of the Hilbert space associated to the mechanical
subsystem is infinite, some truncation must be adopted for the quantum number nc in the
numerical diagonalization of Ĥ′. Assume

|ψ⟩ =
S

∑
m=−S

Nmax

∑
nc=0

cm,nc |m, nc⟩ (A19)

as an unknown eigenvector of Ĥ′ associated to an unknown eigenvalue ϵ, Ĥ′|ψ⟩ = ϵ|ψ⟩.
The range of the quantum number nc was truncated by Nmax, i.e., 0 ≤ nc ≤ Nmax. There
are (2S + 1)(Nmax + 1) unknown coefficients {cm,nc} to determine, alongside ϵ itself. These
unknowns are numerically obtained by solving a set of linear equations represented by

S

∑
m=−S

Nmax

∑
nc=0

H′
m′ ,n′

c ;m,nc
cm,nc = ϵcm′ ,n′

c
. (A20)
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Naturally, the choice of phonon number truncation Nmax affects the computation
time used in the numerical diagonalization. Moreover, this choice affects the quality of
the evaluation of mean values of observables in the ground state with respect to the
coupling parameter λ (or its equivalent u). If the targeted observable acts on the two-mode
subsystem space, the respective mean value converges quickly with Nmax, as it happens
with the photon imbalance Ŝz. However, the convergence is slow if the targeted observable
acts on the membrane subsystem space. In other words, the value chosen for Nmax limits
the range of variation for u. In our simulations, we adopt Nmax = 5S, which has been
shown suitable to preserve the convergence of mean values of observables as u varies in
the interval [0, 1].
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Figure A2. Energy separation of ground and first excited states with respect to λ (u), δ(λ) =

E1(λ)− E0(λ), for different values of S. Note that the energy separation is zero for values of λ greater
than a critical value. For all curves, g′ = 1/2, Nmax = 15S and λ = u/

√
S. Different colors and

symbols were attributed to different values of S: 5 (black plus), 10 (blue cross), 15 (red asterisk),
20 (green square), and 25 (magenta circle).

Another point to be considered when diagonalizing the Hamiltonian Ĥ′ is the ap-
pearance of degenerate states for sufficiently large values of λ/g. To confirm the presence
of the degeneracy, we evaluated the energy separation of ground and first excited states
with respect to λ, δ(λ) = E1(λ)− E0(λ) for different values of S. In Figure A2, we plot
curves of δ(λ) for different values of S. For a fixed S, the energy separation goes to zero
as λ is increased, reaching zero at λ1, and is kept equal to zero if λ > λ1. The degeneracy
affects the “choice” of one of the degenerated states as the ground state by our numerical
treatment. In fact, if degeneracy is settled, the algorithm can choose any state living in a
two-dimensional eigensubspace as a ground state. Under the degeneracy and for larger
values of λ, the algorithm chooses states that describe photons occupying one of the modes.
For moderate values, the ground state is a coherent superposition of these last ones.
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