
Citation: de Tinguy, D.; Van de Maele,

T.; Verbelen, T.; Dhoedt, B. Spatial and

Temporal Hierarchy for Autonomous

Navigation Using Active Inference in

Minigrid Environment. Entropy 2024,

26, 83. https://doi.org/10.3390/

e26010083

Academic Editor: Chintha

Tellambura

Received: 11 December 2023

Revised: 5 January 2024

Accepted: 12 January 2024

Published: 18 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Spatial and Temporal Hierarchy for Autonomous Navigation
Using Active Inference in Minigrid Environment
Daria de Tinguy 1,* , Toon Van de Maele 2, Tim Verbelen 2,* and Bart Dhoedt 1

1 IMEC, Ghent University, 9000 Gent, Belgium; bart.dhoedt@ugent.be
2 VERSES AI Research Lab, Los Angeles, CA 90016, USA; toon.vandemaele@verses.ai
* Correspondence: daria.detinguy@ugent.be (D.d.T.); tim.verbelen@verses.ai (T.V.)

Abstract: Robust evidence suggests that humans explore their environment using a combination
of topological landmarks and coarse-grained path integration. This approach relies on identifiable
environmental features (topological landmarks) in tandem with estimations of distance and direction
(coarse-grained path integration) to construct cognitive maps of the surroundings. This cognitive
map is believed to exhibit a hierarchical structure, allowing efficient planning when solving complex
navigation tasks. Inspired by human behaviour, this paper presents a scalable hierarchical active
inference model for autonomous navigation, exploration, and goal-oriented behaviour. The model
uses visual observation and motion perception to combine curiosity-driven exploration with goal-
oriented behaviour. Motion is planned using different levels of reasoning, i.e., from context to place
to motion. This allows for efficient navigation in new spaces and rapid progress toward a target.
By incorporating these human navigational strategies and their hierarchical representation of the
environment, this model proposes a new solution for autonomous navigation and exploration. The
approach is validated through simulations in a mini-grid environment.

Keywords: active inference; autonomous navigation; spatial hierarchy; temporal hierarchy; predictive
coding

1. Introduction

The development of autonomous systems that can navigate in their environment is a
crucial step towards building intelligent agents that can interact with the real world. Just
as animals possess the ability to navigate their surroundings, developing navigation skills
in artificial agents has been a topic of great interest in the field of robotics and artificial
intelligence [1–3]. This has led to the exploration of various approaches, including taking
inspiration from animal navigation strategies (e.g., building cognitive maps [4]), as well
as state-of-the-art techniques using neural networks [5]. However, despite significant
advancements, there are still limitations in both non-neural-network- and neural-network-
based navigation approaches [2,3].

In the animal kingdom, cognitive mapping plays a crucial role in navigation. Cog-
nitive maps allow animals to understand the spatial layout of their surroundings [6–8],
remember key locations, solve ambiguities from context [9], and plan efficient routes [9,10].
By leveraging cognitive mapping strategies, animals can successfully navigate complex
environments, adapt to changes, and return to previously visited places.

In the field of robotics, traditional approaches have been explored to develop naviga-
tion systems. These approaches often rely on explicit mapping and planning techniques,
such as grid-based [11,12] and/or topological maps [13,14], to guide agent movement.
While these methods have shown some success, they suffer from limitations in handling
complex spatial relationships and dynamic environments as well as scalability issues as the
environment grows larger [2,3,15].
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To overcome the limitations of these non-neural network approaches, recent advance-
ments have focused on utilising neural networks for navigation [5,16–18]. Neural-network-
based models, trained on large datasets, have shown promise in learning navigational
policies directly from raw sensory input. These models can capture complex spatial re-
lationships and make decisions based on learned representations. However, the current
neural-network-based navigation approaches also face challenges, including the need for
extensive training data, limitations in generalisation to unseen environments, distinguish-
ing aliased areas, and the difficulty of handling dynamic and changing environments [2].

To address these challenges, we propose building world models based on active
inference. Active inference is a framework allowing agents to actively gather informa-
tion through perception, select and execute actions in their environment, and learn from
accumulated experiences [19,20]. World models, within this framework, form internal
representations of the world. Agents endowed with a world model and engaged in active
exploration continually update their internal understanding of the environment, empow-
ering them to make well-informed decisions and predictions [21,22]. This principled
approach enables continuous belief updates and active information gathering, facilitating
effective navigation [20].

Noting that biological agents are building hierarchically structured models, we con-
struct multi-level world models as hierarchical active inference. Hierarchical active infer-
ence warrants agents to utilise layers of world models, facilitating a higher level of spatial
abstraction and temporal coarse-graining. It enables learning complex relationships in the
environment and allows more efficient decision-making processes and robust navigation
capabilities [23]. By incorporating hierarchical structures into active inference-based navi-
gation systems, agents can effectively handle complex environments and perform tasks
with greater adaptability [24].

In this paper, in order to improve the agent’s ability to navigate autonomously and
intelligently, we propose a hierarchical active inference model composed of three layers.
Our proposed system’s highest layer is able to learn the environment structure, remember
the relationship between places, and navigate without prior training in a familiar yet new
world. The second layer, the allocentric model, learns to predict the local structure of
rooms, while the lowest level, our egocentric model, considers the dynamic limitations of
the environment. We aim to enhance the agent’s ability to navigate through complex and
dynamic environments while maintaining scalability and adaptability.

Our contributions can be summarised as follows:

• We present a system combining hierarchical active inference with world modelling for
task-agnostic autonomous navigation.

• Our system uses pixel-based visual observations, which show promise for real-world
scenarios.

• Our model learns the structure of the environment and its dynamic limitations in order
to form an internal map of the full environment independently of its size, without
requiring more computation as the environment scales up.

• Our system can plan long-term without worrying about look-ahead limitations.
• We evaluate the system in a mini-grid room maze environment [25], showing the

efficiency of our method for exploration and goal-related tasks, compared against
other reinforcement learning (RL) models and other baselines.

• We quantitatively and qualitatively assess our work, showing how our hierarchical
active inference world model fares in accomplishing given tasks, how it resists aliasing,
and how it learns the structure of the environment.

The subsequent sections of this paper delve into the details of our proposed approach,
including the theoretical foundations of active inference and hierarchical active inference,
the architecture of our navigation system, experimental results, and a comprehensive
discussion of the advantages and limitations of our approach.
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2. Related Work

Navigating complex environments is a fundamental challenge for both humans and
artificial agents. To solve navigation, traditional approaches often address simultaneous lo-
calisation and mapping (SLAM) by building a metric (grid) map [11,12] and/or topological
map of the environment [13,14]. Although there is progress in this area, Placed et al. [3] state
that active SLAM may still fail to be fully autonomous in complex environments. The
current approaches are also still lacking in distinct capabilities important for navigation,
such as predicting the uncertainty over robot location, abstracting over features of the
environment (e.g., having a semantic map instead of a precise 3D map), and reasoning
in dynamic, changing spaces. The recent studies have explored the adoption of machine
learning techniques to add autonomy and adaptive skills in order to learn how to han-
dle new scenarios in real-world situations. Reinforcement learning (RL) typically relies
on rewards to stimulate agents to navigate and explore. In contrast, our model breaks
away from this convention, as it does not necessitate the explicit definition of a reward
during agent training. Moreover, despite the success of recent machine learning, these
techniques typically require a considerable amount of training data to build accurate envi-
ronment models. This training data can be obtained from simulation [26,27]; provided by
humans (either by labelling, as in the works in [28,29] or by demonstration, as in [30]); or
by gathering data in an experimental setting [16,31,32]. These methods all aim to predict
the consequences of actions in the environment but typically generalise poorly across
environments. As such, they require considerable human intervention when deployed
in new settings [2]. We aim to reduce both the human intervention and the quantity of
data required for training by simultaneously familiarising the agent with the structure and
dynamics found in its environment.

When designing an autonomous adaptable system, nature is a source of inspiration.
Tolman’s cognitive map theory [33] proposes that brains build a unified representation of
the spatial environment to support memory and guide future actions. More recent studies
postulate that humans create mental representations of spatial layouts to navigate [6],
integrating routes and landmarks into cognitive maps [7]. Additionally, the research into
neural mechanisms suggests that spatial memory is constructed in map-like representa-
tions fragmented into sub-maps with local reference frames [34]; meanwhile, hierarchical
planning is processed in the human brain during navigation tasks [9]. The studies of Bala-
guer et al. [9] and Tomov et al. [10] show that hierarchical representations are essential for
efficient planning for solving navigation tasks. Hierarchies provide a structured approach
for agents to learn complex environments, breaking down planning into manageable levels
of abstraction and enhancing navigation capabilities, both spatially (sub-maps) and tem-
porally (time-scales). Thus, our model incorporates these elements as the foundation of
its operation.

The concept of hierarchical models has gained interest in navigation research [13,24].
Hierarchical structures enable agents to learn complex relationships within the environment,
leading to more efficient decision-making and enhancing adaptability in dynamic scenarios.
There are two main types of hierarchy, both considered in our work: temporal—planning
over a sequence of timesteps [35–38]—and spatial—planning over structures [13,23,39,40].

In order to navigate without teaching the agent how to do so, we use the principled
approach of active inference (AIF), a framework combining perception, action, and learn-
ing. It is a promising avenue for autonomous navigation [22]. By actively exploring the
environment and formulating beliefs, agents can make informed decisions. Within this
framework, world models play a pivotal role in creating internal representations of the
environment and facilitating decision-making processes. A few models have proposed com-
bining AIF and hierarchical models for navigation. Safron et al. [41] proposes a hierarchical
model composed of two layers of complexity to learn the structure of the environment.
The lowest level infers the state of each step while the higher level represents locations,
created in a more coarse manner. Large, complex, aliased, and/or dynamic environments
are challenges to this model. Nozari et al. [42] construct a hierarchical system by using a
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dynamic Bayesian network (DBN) over a naive and an expert agent, in which the naive
agent learns temporal relationships, with the highest level capturing semantic information
about the environment and low-level distributions capturing rough sensory information
with their respective evolution through time. This system, however, requires expert data to
be trained by imitation learning, which limits the performance of the model to that of the
expert. Our study focuses on familiarising the model with environmental structures rather
than learning optimal policies within environments. This approach enhances the model’s
autonomy and adaptability to dynamic changes. Furthermore, the incorporation of spatial
and temporal hierarchical abstractions effectively mitigates aliasing ambiguity and extends
the agent’s planning horizon for improved decision-making.

Collectively, these studies provide insights into the cognitive mapping strategies used
by humans, the benefits of hierarchical representations in navigation, and the application
of active inference and world models to afford decision-making in the environment. The
concept of hierarchical active inference offers a possible foundation for achieving robust
and efficient navigation through complex and dynamic environments. Following this line
of thinking, our work proposes a new alternative to navigate in environments using pixel-
based hierarchical generative models to learn the world and active inference to navigate
through it.

3. Methods

This section presents a breakdown of the navigation framework proposed in this
work. It is divided into several subsections, starting with an exploration of world models
and their importance in capturing the environment. We then delve into active inference,
planning through inference, and our hierarchical active inference model. Next, we discuss
the specific components of our model, including the egocentric model, allocentric model,
and cognitive map. The subsection on navigation covers key mechanisms such as curiosity-
driven exploration, uncertainty resolution, and goal-reaching. Finally, we conclude with a
brief overview of the training process.

3.1. World Model

We will first introduce the concept of world models in the context of navigation. Any
agent, artificial or natural, can only sense its surroundings through sensory observations
and change its surroundings through actions. This concept of a statistical boundary, known
as a Markov blanket, plays a crucial role in defining the information flow between an agent
and its environment [20,43].

The agent’s world model can be defined as partially observable, corresponding to
a partially observable Markov decision process (POMDP). In the framework of active
inference, those world models are generative: they capture how hidden causes generate
observations through actions. Given a set of observations o and actions a, the agent creates
a latent state s, representing its belief about the world. This corresponds to the probability
distribution P(s̃|õ, ã, π), where tildes are used to denote sequences, defining the agent’s
belief states, observations, actions, and policies. In this formalism, a policy π is nothing
more than a series of actions at:T from time t up until some horizon T.

We assume the world model is Markovian without loss of generality, so that the agent’s
state st at time-step t is only influenced by the prior state st−1 and action at−1.

Technically, the generative model is factorised as follows, using the notation explained
above [37]:

P(s̃, õ, ã, π) = P(s0)P(π)
T

∏
t=1

P(ot|st)P(st|st−1, at−1)P(at−1|π) (1)
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3.2. Active Inference

The Markov blanket acts as a barrier between the agent and the environment, restrict-
ing the agent’s direct knowledge of the world’s state. Consequently, the agent must rely
on observations to gauge the effects of its actions. This necessitates Bayesian inferences
to revise beliefs about potential state values, based on observed actions and their corre-
sponding observations. In fact, the agent uses the posterior belief P(s̃|õ, ã) to infer its belief
state s [19].

In practice, calculating the true posterior in this form, derived purely from the Bayes
rule, is usually intractable directly from the given joint model in Equation (1).

To overcome this problem, the agent employs variational inference and approximates
the true posterior by some approximate posterior distribution Q(s̃|õ, ã), which is in a
tractable form [44].

The estimated posterior distribution can be decomposed as the model proposed in (1):

Q(s̃|õ, ã) = Q(s0|o0)
T

∏
t=1

Q(st|st−1, at−1, ot) (2)

This approximate posterior maps from observations and actions to internal states used to
reason about the world. We assume that the agent has access to a perfect proprioceptive
feedback channel, implying that all executed actions are fully observed. Therefore, the
policy π does not appear in Equation (2). For future time-steps, this assumption does not
hold, since the agent needs to infer the policy π to select actions from.

The agent is assumed to act according to the free energy principle, which states that
all agents aim to minimise their variational free energy [19]. Given our generative model,
we can formalise the variational free energy F in the following way [37]:

F = EQ(s̃|ã,õ)[logQ(s̃|ã, õ)− logP(s̃, ã, õ)]

= DKL[Q(s̃|ã, õ)||P(s̃|ã, õ)]︸ ︷︷ ︸
posterior approximation

− logP(õ)︸ ︷︷ ︸
log evidence

= DKL[Q(s̃|ã, õ)||P(s̃, ã)]︸ ︷︷ ︸
complexity

−EQ(s̃|ã,õ)[logP(õ|s̃)]︸ ︷︷ ︸
accuracy

(3)

This equation describes the perception process over past and present observations,
wherein minimising the variational free energy leads to the approximate posterior becoming
increasingly aligned with the true posterior beliefs. Essentially, this means that the process
involves forming beliefs about hidden states that offer a precise and concise explanation of
observed outcomes while minimising complexity. Complexity, in this case, is the difference
between prior and posterior beliefs, indicating how much one adjusts their belief when
moving from prior to posterior [39].

3.3. Planning as Inference

In active inference, agents are expected to take actions to minimise the free energy
in the future. Minimising free energy with respect to future observations encourages the
agent to obtain additional observations in order to maximise its evidence and can, thus,
be employed as a natural strategy for exploration. However, as future observations and
actions are not available to the agent, the agent minimises its expected free energy (EFE). To
calculate this expected free energy G, the effect of adopting several policies (i.e., sequences
of actions) on the future free energy is analysed.

G(π) = ∑
τ′

G(π, τ′) (4)

The expected free energy G(π, τ′) for a certain policy π and time-step τ′ in the future
for the generative model is defined as
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G(π, τ′) = EQ(oτ′ ,sτ′ |π)[ln(Q(sτ′ |π))− ln(Q(sτ′ |oτ′ , π))]︸ ︷︷ ︸
information gain term

−EQ(oτ′ ,sτ′ |π)[ln(P(oτ′))]︸ ︷︷ ︸
utility term

(5)

The expected free energy naturally balances the agent’s drive towards its preferences,
i.e., utility value, with the expected uncertainty of the path towards the goal, i.e., informa-
tion gain [24,45].

To navigate effectively using active inference, the agent considers the current knowl-
edge about the environment and selects policies taking into account the expected surprise
at future time-steps [46].

While the dependency on policies in the prior over states can be omitted, the agent’s
desire to attain its preferred world states remains evident, regardless of which policy it
pursues. The expected free energy is calculated for each future timestep the agent considers
and is then aggregated to infer the most likely sequence of actions to reach a preferred state.
This belief in policies is achieved through

P(π) = σ(−γG(π)) (6)

Where σ the softmax function is tempered with a temperature parameter γ, converting
the expected free energy of policies into a categorical distribution over policies. By using
active inference, planning is transformed into an inference problem, with beliefs about
policies proportionate to their expected free energy. The softmax temperature γ represents
the agent’s confidence in its current beliefs over policies. Overall, this inference allows
the agent to plan ahead and optimise its behaviour over time, taking into account the
uncertainty and complexity of the environment to achieve its goals. This is necessary for
high-level cognitive processes such as reasoning, planning, and decision-making [24,46].

3.4. A Hierarchical Active Inference Model

Active inference enables us to plan across a span of time; however, employing a
non-hierarchical model that captures the environment in a single state or layer exhibits
numerous limitations. Such models are often weak to aliasing as they lack sufficient
abstraction to distinguish identical observations. Second, they possess a short-term memory
and a necessarily limited horizon to infer policies, a measure taken to avoid intractable
calculations. Those two elements render long-term planning a challenging endeavour.
Moreover, those models often lack adaptability in case of unexpected changes in the
environment. Finally, the larger the environment is, the more computational resources
might be required for such a model to form a full comprehensive representation [45,47].

Therefore, in navigation, hierarchical models are sought after for resulting gains
in abstraction, generalisation, and adaptability by adding levels to capture hierarchical
structures and relationships [24,48].

Based on these motivations, we propose a hierarchical generative model consisting
of three layers of reasoning functioning at nested timescales, aiming for more flexible
reasoning over time and space (see Figure 1). In order of a decreasing level of abstraction,
the layers of the model are: (a) the cognitive map, creating a coherent topological map;
(b) the allocentric model, representing space; and (c) the egocentric model, modelling
motions. The structure of the environment is inferred over time by agglomerating visual
observations into representations of distinct places (e.g., rooms), while the highest level
discovers the connectivity structure of the maze as a graph. The notations used from
this point onward in this paper are described in Table 1. The full joint distribution of the
generative model can be written down as in Equation (7), where we explicitly index the
three distinct nested timescales with T, t, and τ, respectively:
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Figure 1. Our generative model unrolled in time and levels as defined in Equation (7). The left
figure shows the graphical model of the 3-layer hierarchical active inference model consisting of
(a) the cognitive map, (b) the allocentric model, and (c) the egocentric model, each operating at a
different time scale. The orange circles represent latent states that have to be inferred, the blue circles
denote observable outcomes, and the white circles are internal variables to be inferred. The right part
visualises the representation at each layer. The cognitive map is represented as (d) a topological graph
composed of all the locations (l) and their connections, in which each location is stored in a distinct
node. The allocentric model (e) infers place representations (z) by integrating sequences of state (s)
and poses (p), from which the room structure can be generated. The egocentric model (f) imagines
future observations given the current position, state (s), and possible actions (a). Here, (o) depicts
an actual observation (o), and the predicted observations of the possible actions turn left (i), move
forward (ii), and turn right (iii).

P(õ, z̃, s̃, l̃, π, π̃l , π̃p) = P(π)∏
T

P(zT , p0
T |lT)P(lT |π)P(πl)

∏
t

P(st
0|zT , pT

t )P(pT
t |πl , pT

0 )P(πp)

∏
τ

P(st
τ+1|st

τ , at
T)P(at

τ |πp)P(ot
τ , ct

τ |st
τ)

(7)

At the top layer of the generative model, we see the cognitive map, as depicted in
Figure 1a, which operates at the coarsest time scale (T). Each tick at this time scale cor-
responds to a distinct location (lT), integrating the initial positions (pT

0 ) of the place (zT).
These locations are represented as nodes in a topological graph, as shown in Figure 1d. As
the agent moves from one location to another, edges are added between nodes, effectively
learning the structure of the maze. To maintain the spatial relationship between locations,
the agent utilises a continuous attractor network (CAN), similar to [49], keeping track of its
relative rotation and translation. As a result, the cognitive map forms a comprehensive rep-
resentation of the environment, enabling the agent to navigate and gain an understanding
of its surroundings.

(ii)

Figure 1. Our generative model unrolled in time and levels as defined in Equation (7). The left
figure shows the graphical model of the 3-layer hierarchical active inference model consisting of
(a) the cognitive map, (b) the allocentric model, and (c) the egocentric model, each operating at a
different time scale. The orange circles represent latent states that have to be inferred, the blue circles
denote observable outcomes, and the white circles are internal variables to be inferred. The right part
visualises the representation at each layer. The cognitive map is represented as (d) a topological graph
composed of all the locations (l) and their connections, in which each location is stored in a distinct
node. The allocentric model (e) infers place representations (z) by integrating sequences of state (s)
and poses (p), from which the room structure can be generated. The egocentric model (f) imagines
future observations given the current position, state (s), and possible actions (a). Here, (o) depicts
an actual observation (o), and the predicted observations of the possible actions turn left (i), move
forward (ii), and turn right (iii).

P(õ, z̃, s̃, l̃, π, π̃l , π̃p) = P(π)∏
T

P(zT , p0
T |lT)P(lT |π)P(πl)

∏
t

P(st
0|zT , pT

t )P(pT
t |πl , pT

0 )P(πp)

∏
τ

P(st
τ+1|st

τ , at
T)P(at

τ |πp)P(ot
τ , ct

τ |st
τ)

(7)

At the top layer of the generative model, we see the cognitive map, as depicted in
Figure 1a, which operates at the coarsest time scale (T). Each tick at this time scale cor-
responds to a distinct location (lT), integrating the initial positions (pT

0 ) of the place (zT).
These locations are represented as nodes in a topological graph, as shown in Figure 1d. As
the agent moves from one location to another, edges are added between nodes, effectively
learning the structure of the maze. To maintain the spatial relationship between locations,
the agent utilises a continuous attractor network (CAN), similar to [49], keeping track of its
relative rotation and translation. As a result, the cognitive map forms a comprehensive rep-
resentation of the environment, enabling the agent to navigate and gain an understanding
of its surroundings.
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Table 1. Description of the variables used in our model.

Notation Associated Meaning

l location, experience

z place, room, allocentric state

p pose, position

s egocentric state

a action

o observation

c collision

πx policy, sequence of x

The middle layer, the allocentric model, depicted in Figure 1b, plays a vital role
in building a coherent representation of the environment, referred to as zT . This model
operates at a finer time scale (t), generating a belief about the place by integrating a sequence
of observations (sT

0:t) and poses (pT
0:t) to create this representation [50,51]. The resulting

place, as shown in Figure 1d, defines the environment based on accumulated observations.
When the agent transitions from one place to another and the current observations no
longer align with the previously formed prediction of the place, the allocentric model resets
its place description and gathers new evidence to construct a representation of the newly
discovered room (zT+1). This advancement corresponds to one tick on the coarser time
scale, and the mid-level time scale t is reset to 0.

The lowest layer is called the egocentric model, shown in Figure 1c, which operates at
the finest time scale (τ). This model utilises the prior state (st

τ) and current action (at
τ+1)

to infer the current observation (ot
τ+1) [37]. By considering its current position, the model

generates potential future trajectories while incorporating environmental constraints, such
as the inability to pass through walls. Figure 1f showcases the current observation at the
centre (o) and visualises the imagined potential observations if the agent were to turn
left (i), right (iii), or move forward (ii).

It is important to observe that these three levels operate at different time scales. In
spite of the fact that the full sequences of variables cover the same time period in the
environment, the different layers of the models function at separate levels of abstraction.
The higher-level operates on a coarser timescale, implying that numerous lower-level time
steps occur in a single higher-level step. The egocentric model operates on a fine-grained
time scale τ and is responsible for dynamic decisions and path integration. The allocentric
model operates on a coarser time scale t, where a sequence of poses p over a period of
time t updates a specific location place zT . In this model, at any time t, the pose pt and
place zT can give back the corresponding observation ot. At the topmost layer, the temporal
resolution is lowest, where a single tick of the clock corresponds to a distinct location l,
associated with the allocentric model at that time. This is carried out without accounting
for the intermediary time steps of the lower layers.

This hierarchical arrangement allows the agent to reason about its environment further
ahead, both temporally and spatially. In temporal terms, planning one step at the highest
level (such as aiming to change location) translates to planning over multiple steps at the
lower levels, and this pattern continues throughout the hierarchy. In spatial terms, the
environment is organised in levels of abstraction, becoming more detailed as one descends
the hierarchy (for instance, from connections between rooms to details of individual rooms).

In the following, we discuss the details of the models at each layer of the hierarchy
using a bottom-up approach.
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3.4.1. Egocentric Model

The egocentric model learns its latent state through the joint probability of the agent’s
observations, actions, policies, belief states and its corresponding approximate posterior. It
comprises a transition model for factoring in actions when transitioning between states, a
likelihood model for generating pixel-based observations and estimating collision proba-
bility based on the state, and a posterior model for integrating past events into the present
state.

P(õ, c̃, s̃, ã) = P(s0)
T

∏
τ=1

P(sτ |sτ−1, aτ−1)
T

∏
τ=1

P(oτ , cτ |sτ)

Q(s̃|õ, c̃, ã) = Q(s0|o0)
T

∏
τ=1

Q(sτ |sτ−1, aτ−1, oτ)

(8)

The egocentric model continuously updates its beliefs about the state (s) by incorporating
the previous action (a) and the most recent visual observation (o) from the environment [37].
This belief correction process is described in Equation (8) and presented in Figure 2.

Figure 2. Generative model for the egocentric level: POMDP depicting the model transition from
past and present (up to timestep τ) to future (from timestep τ + 1). A state sτ is determined by the
corresponding observation oτ and influenced by the previous state sτ−1 and action aτ−1, generating
the supplementary collision observation cτ . The action, as well as both observations, are assumed
observable, indicated by the blue colour. In the future, the actions are defined by a policy π influencing
the new states in orange and new predictions in grey.

The incorporation of consecutive states forms the short-term memory of the model. It
acquires an inherent comprehension of the dynamics of the environment through a process
of trial and error, interacting with the environmental frontiers (e.g., walls). This learning
is accompanied by the notion of action and consequences introduced by active inference.
The observations of the model are visual observations (o) and dynamic collisions (c) in the
environment.

The egocentric model serves as the lowest level of the overall model and is responsible
for predicting the dynamic do-ability of policies. It discards any sequence of actions that
is deemed impossible based on its understanding of the environment. Additionally, the
egocentric model plays a crucial role in facilitating curiosity-driven exploration by making
short-term predictions when the agent is uncertain about the beliefs of the allocentric model.

3.4.2. Allocentric Model

The allocentric model is responsible for generating environment states that describe
the surroundings of the agent. It relies on generative query networks (GQN) [50,51]. To
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form a conception of the agent’s environment, its internal belief about the world is updated
through interactions with the world, resulting in places (latent state z) structured upon
positions (p) and corresponding observations (o) [50,51] as can be seen in Figure 3. The
corresponding joint probability distribution P(z, õ, p̃) defines, respectively, the agent’s belief
state, observations, poses, and the approximate posterior of this allocentric model:

P′(z, õ, p̃) = P(z)
T

∏
t=1

P(ot|pt, z)P(pt)

Q′(z|õ, p̃) =
T

∏
t=0

Q(z|ot, pt)

(9)

This model, therefore, condenses chunks of information into a concise description
of the environment. In this paper, we call one of these chunks a place, but it could
also represent a context, as defined by Neacsu et al. [39]. In order to correctly condense
information into the appropriate place, sequences of states at the lower level are separated
using an event boundary based on the prediction error [52,53]. Each formed place (state
z) represents a static structure of the environment. A dynamic environment results in
new places being generated. The process of updating or generating a new place involves
evaluating the agent’s estimated global position within the cognitive map. This assessment
results in closing the loop if the place is recognised or creating a new belief if it is not.

Each new place has its own local reference frame, created with a believed pose as
the origin.

Figure 3. Generative model for the allocentric level as a Bayesian network. One place is considered
and described by a latent variable z. The observations ot depend on both the place described by z
and the agent’s position pt. From 0 to t, the positions are visited and are used to infer a belief over
the joint distribution. The future viewpoint pt+1 has not been visited or observed yet. The observed
variables are shown in blue, while the inferred variables are shown in white, and the predictions are
presented in grey.

3.4.3. Cognitive Map

The cognitive map is responsible for memorising places and matching them with their
relative positions in global space. It does this by creating nodes that we call experience
or location. The creation of several experiences generates a metric-topological map of
the environment, allowing the system to integrate the notion of distance and connections
between locations.

A continuous attractor network (CAN) is employed to handle motion integration.
This network processes successive actions across time steps, allowing the estimation of the
agent’s translation and rotation within a 3D grid [49]. The CAN’s architecture, featuring in-
terconnected units with both excitatory and inhibitory connections, emulates the behaviour
observed in navigation neurons known as grid cells, found in various mammals [54], in-
ternally measuring the expected difference in the robot’s pose (i.e., its coordinates x, y,
and relative rotation over the z-axis). The CAN wraps around its edges, accommodating
traversing spaces larger than the number of grid cells. The activation value of each grid cell
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represents the model’s belief in the robot’s relative pose, and multiple active cells indicate
varying beliefs over multiple hypotheses. The most highly activated cell represents the
current most likely pose. Motion and proprioceptive translation modify cell activity, while
view-cell linkage modifies activity when a place’s latent state (z) differs significantly from
others. This is determined through a cosine similarity score.

When a representation of an experience is stimulated, it adds an activation to the
CAN at the stored pose estimate [41,55]. Each new combination of position and place (z)
generated by the allocentric model develops a new experience in the cognitive map that is
represented by nodes in a topological graph. Such a node integrates the view cell (place),
the position, and the pose cell of the visited location [40]. Each place reference frame is
mapped in the cognitive map global reference frame by remembering the local pose origin
of the place reference frame and associating it with the location’s global position. When the
agent starts moving for the first time, the global frame is created with this first motion as
the origin of the global reference frame.

When navigating, context is considered for closing loops. Meaning that when the
current belief aligns with a past experience’s place, the corresponding view cell activates.
However, to resolve potential aliasing, the agent also considers its global position. If the
position is determined to be too far from past experiences (based on a set threshold), a
new place is created. This new place will adapt to new visual input without affecting the
existing view cell associated with the past experience.

3.5. Navigation

The model is trained to learn the structure of the environment and should, therefore, be
able to accomplish a variety of navigation tasks, regulated through active inference. There-
fore, the agent can realise the following navigation tasks without needing any additional
training.

Exploration. The agent is able to explore an environment by evaluating the surprise
it can obtain from predicted paths.

Reaching goals. The agent can be given an observation as a preference and try to
recall any past location matching this observation and plan the optimal path toward it or
search for it.

To find a suitable navigation policy, we need to evaluate a range of policies, each
considering a number of actions. To this end, we define a look-ahead parameter, defining
the number of future actions when evaluating the candidate policy. Considering each
possible action at each position is intractable with increasing look-ahead values, we limit
the search to straight-line policies, as shown in Figure 4.

Figure 4. Illustration depicting L-shaped paths encompassing the upper right quadrant of an area
surrounding the agent. The chosen look-ahead distance in this scenario is 2.

To establish those effective policies, we imagine a square perimeter around the agent
with a width equal to the desired look-ahead. This square boundary is subsequently divided
into segments, each regarded as distinct objectives. Our coverage approach involves
crafting L-shaped paths originating from the agent’s position and extending towards these
segmented goals. By incrementally elongating the vector initiating from the agent, we
ensure thorough area coverage. This strategy results in every position within the square
area being approached from two divergent directions, as illustrated in Figure 4, within a
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quarter of the square area. This methodology allows us to employ extended look-ahead
distances without risking intractable calculations.

Once those policies are generated, the egocentric model evaluates their plausibility and
truncates any sequence of actions leading to a collision with a wall. Using those plausible
policies, the agent’s navigation is guided by active inference. When the agent holds a high
level of confidence in its world belief, its actions are determined by the variable weights in
the following equation, leading it to either explore or pursue a specific goal.

G(π, T, τ) = W1 ·EQ′(oτ ,zT |π)[ln(Q
′(zT |π))− ln(Q′(zT |oτ , π))]︸ ︷︷ ︸

Allocentric Exploration

+ W3 ·EQ′(oτ |π)[ln(P′(oτ |g))]︸ ︷︷ ︸
Allocentric Preference seeking

+ W2 ·EQ(oτ ,sτ |π)[ln(Q(sτ |π))− ln(Q(sτ |oτ , π))]︸ ︷︷ ︸
Egocentric Exploration

+ W4 ·EQ(oτ |π)[ln(P(oτ |g))]︸ ︷︷ ︸
Egocentric Preference seeking

(10)

With Q′ and P′ being the approximate posterior and prior of the allocentric model and
Q and P being the approximate posterior and prior of the egocentric model. The weights
Wi in Equation (10) are treated as adaptive model parameters. However, instead of being
trained, they are increased or reduced depending on the certitude of the policies to lead to
an estimated output, considering preferences when pertinent. This effectively regulates
the different parts of the expected free energy depending on the current situation. If we
have defined a preferred observation g, it effectively drives the agent toward reaching
such an observation. Both the egocentric and allocentric models are used to infer the
presence of the objective, using the same log preference mechanism. The egocentric model
corrects possibly wrong memories of the allocentric model on the goal position in the
immediate vicinity by out-weighting—with W4—the allocentric model predictions when
there is a discrepancy between the two. Therefore, while the egocentric model is trusted
to infer the objective in its immediate vicinity, the allocentric model is trusted to search
this objective in memory through all the previously visited places, from the latest to the
oldest. For long-term planning between several places, the model aims to reach the place
containing this preferred observation using active inference over the places leading toward
the goal. Concretely, it means that there is little uncertainty, and the EFE is dominated by the
utility term; hence, we use a shortest path algorithm such as Dijkstra [56] to determine the
quickest path considering the distance between places, the number of places to cross, and
the probability of a connection between places, allowing for a more greedy or conservative
approach depending on the weight we put on probable and improbable connections
between places. In this work, the inference is set as conservative, and unconnected places
are considered unlikely to lead toward the objective faster. The agent moves from place to
place by setting position observations leading from one place to the next as sub-objective C
in Equation (10). It moves by searching for this preferred observation g while considering
the direction it is headed toward to generate appropriate policies.

In the absence of any preference, the agent does not prioritise any particular observa-
tion; thus, the weights (W3 and W4) associated with preference seeking in both models are
zero, prompting the agent to engage in exploration instead.

During exploration, the agent focuses on maximising the predicted information gain
based on the expected posterior. Since the agent considers having a clear understanding
of the environment after characterising a place, the uncertainty in observations becomes
less relevant. As with preference seeking, if the allocentric model fails to identify a relevant
policy to explore new territories, the egocentric model encourages the agent to venture
beyond its familiar surroundings. It is important to recall that a latent state z describes
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one place and does not encompass the whole environment. Once the model considers
that a place does not explain the observations anymore, it resets its beliefs and forms a
new place. To imagine passing from one place to another, the cognitive map considers the
agent-predicted location to shift the place of reference, which results in unvisited locations
being much more attractive, as they have highly unexpected predictions, in contrast with
visited places. An example of each layer’s predictive ability is shown in Section 4.3

When transitioning between places, the allocentric model’s confidence in the current
place may drop below a pre-defined mean squared error (MSE) threshold between the
prediction and the next step observation. In general, a number of steps are needed to build
up confidence in the place visited given the observations. During this phase, Equation (10)
is not employed for navigation. Instead, our primary goal is to ascertain the most accurate
representation of the environment. To achieve this, the agent formulates hypotheses,
involving new and memorised places zn and poses pt, which potentially account for the
observed data. The model strives to acquire additional data to converge towards a single
hypothesis, accurately determining its spatial position.

In order to ascertain the best actions for acquiring observations that aid in convergence,
Equation (11) is applied to each probable hypothesis n.

G(π, n) = W · ∑
t>i

EQ′(zn ,pt |o0:i+t ,π)[ln(Q
′(zn, pt|π)− ln(Q′(zn, pt|o0:i+t, π))]︸ ︷︷ ︸

information gain

−EQ′(zn ,pt |o0:i+t ,π)

[
ln(P(ot))

]︸ ︷︷ ︸
expected utility

(11)

Hypotheses are weighted based on their alignment with the egocentric model’s predic-
tions. A hypothesis gains weight if its predictions closely match the expected observations.
If no hypothesis stands out, they are considered equally probable.

Whatever the situation we are in, the leading policy is then inferred through

P(π) = σ(−γG(π)) (12)

This effectively casts the planning as an inference problem, and beliefs over policies
are proportional to the expected free energy. γ offers a useful balance as it enables the
elimination of policies that are highly unlikely, improving the efficiency of planning while
also being relatively conservative [46].

3.6. Training

In order to effectively train this hierarchical model, the two lower-level models are
considered independent and trained in parallel. To optimise the two ego-allocentric neural
network models, we first obtain a dataset of sequences of action–observation pairs by
interacting with the environment. This can be obtained, for instance, using a random policy,
A-star-like policies, or even by human demonstrations. In this paper, the model was trained
on a mini-grid environment consisting of 9 squared rooms in a layout consisting of 3 rows
and 3 columns. Each room is composed of a number of tiles going from 4 × 4 to 7 × 7 tiles.
Each room is assigned a colour at random from a set of four: red, green, blue, and purple,
and connects to adjacent rooms by aisles of fixed length randomly placed, separated by a
closed door in the middle. In addition, white tiles may be present at random positions in
the map. The agent could start a training sequence from any door (or near door) position.
An example of a randomly generated training environment is given in Figure 5. When the
agent faces a door, it automatically opens and closes once the agent is no longer facing it
(either by passing through or turning away). This feature allows the agent to focus on its
motion behaviour. The training was realised in 100 environments per room width going
from 4 tiles to 7 tiles. The agent has a top view of the environment covering a window
of 7 by 7 tiles, including its own occupied tile. It cannot see behind itself nor through
walls or closed doors. The observation the agent interprets is an RGB pixel rendering of
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shape 3 × 56 × 56 (see Appendix A.4 Figure A3 for an illustration of an observation). The
allocentric model is trained on 1000 sequences per room size (4 to 7 tiles), each sequence
has a random length of between 15 and 40 observations in a room that is separated between
learning the room structure and predicting the observations given the pose and learned
place (posterior). The model is optimised through the loss

L =
T

∑
t=0

DKL[Q′ϕ(z|ot, pt)||N (0, 1)] + ||ôt − ot||2 (13)

The approximate posterior Q’ is modelled by the factorisation of the posteriors after
each observation. The belief over z can then be acquired by multiplying the posterior beliefs
over z for every observation. We train an encoder neural network with parameters ϕ to
enable the determination of the posterior state z based on a single observation and pose
combination (ok, sk). The likelihood is optimised using the MSE, which involves the real
observation ok and the predicted observation ôk [51]. To determine a position, the previous
position and the agent’s action are used to infer the next position. Then, a random set of
(position, observation) pairs is shuffled to form the predictions used to optimise the model.

Figure 5. Example of a randomly generated map composed of 3 by 3 rooms of 7 tiles width each.
Four white tiles are randomly disseminated in the environment. The red triangle represents the agent,
and the highlighted squared area around the agent is its field of view.

The egocentric model is trained on 100 sequences of 400 steps per room size, and each
full sequence is cut into sub-sequences of 20 steps. At each step, the model predicts what
the observation should be and compares it to the real observation, improving its posterior
and prior model parameters θ and ϕ through the loss function

L =
T

∑
t=1

DKL[Qϕ(st|st−1, at−1, ot)||Pθ(st|st−1, at−1)]− log[Pξ(ot|st)] (14)

This model is trained by minimising, in one part, the difference between the expected
belief state given the last action and previous history and the estimated posterior state
obtained given that action, observation, and updated history. In the second part, the differ-
ence between the reconstructed observation and the input observation is minimised [24],
effectively optimising the likelihood parameters ξ. Both the egocentric and allocentric
models are optimised using Adam [57].

The cognitive map, originally designed for navigation in mini-grid environments [25],
can be re-scaled or adapted to different environments without the need for additional training.

4. Results

The objective of this paper is to propose a navigation model based on active inference
theory in new similar-looking environments to which task requirements could be added.
There is no definite benchmark to assess task-agnostic models; thus, our model is evaluated
upon its particular ability to

• Imagine and reconstruct the environments the agent visited
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• Create paths in complex environments
• Disambiguate visual aliases
• Use memory to navigate

In addition, the ability to explore an environment, as well as goal-reaching capabilities,
are compared to competing approaches.

The model is tested in diverse mini-grid maze environments composed of connected
rooms. Our agent is modelled to achieve autonomous navigation given only pixel-based
observations.

To evaluate the effectiveness of the proposed model, a series of tests have been realised,
each focusing on a specific aspect of the model. Those experiments range from evaluating
the models composing the system to assessing its overall navigation performance. Even
though the testing grounds are similar to the training set, all the tests were performed on
environments the agent never saw during training.

4.1. Space Representation

The model’s capacity to describe the observed place is critical to enable higher-level
inferences. Therefore, the fewer observations it requires to achieve convergence to an
accurate, or at the very least distinctive, representation of the environment, the more
effectively it can recognise a place and navigate through it from various viewpoints. The
model’s rapid convergence is crucial, but it also needs to maintain adaptability, which
involves the capability to incorporate new information about the place in its belief (such as
discovering new corridors).

The following two figures demonstrate the place representation accuracy and conver-
gence speed.

Figure 6 illustrates the inference process of place descriptions. Within approximately
three steps, the main features of the environment are captured reasonably accurately
based on the accumulated observations. Even when encountering a new aisle for the first
time at step 11, the model is able to adapt and generate a well-imagined representation.
Each observation corresponds to the red agent’s clear field of view, as depicted in the
agent position row (2nd row) of the figure (more details about the observations are in
Appendix A.4).

Figure 6. Evolution of the place representation in a room as new observations are provided by the
moving agent (red triangle). The model is able to correctly reconstruct the structure of the room as
observations are collected.

Figure 7 shows the agent consistently achieving a stable place description in about
three observations in rooms having dimensions it has seen during training (rooms of 4
to 7 tiles width). Interestingly, the agent also exhibits the ability to accurately reconstruct
larger rooms, even though it did not encounter such room dimensions during training.
In particular, stable place descriptions for rooms composed of 8 × 8 tiles are attained in
approximately five steps. This showcases the agent’s allocentric model generalisation
abilities beyond the limits of its training. The experiment was conducted over 125 runs in
25 environments with the agent tasked to predict observations from unvisited poses after
each new motion. Figure 8 demonstrates the significance of the MSE value, used as a metric
for this experiment, by displaying examples of predicted observations and their attributed
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MSE values. In our experiments, to settle on a place to improve over successive steps, we
set the MSE threshold to 0.5; thus, a prediction error above this threshold induces a reset of
the current place and discards the previously accumulated observations and poses.

Figure 7. Prediction error of unvisited positions over 25 runs by room size, starting from step 0 where
the models have no observation.

Figure 8. Observation ground truth, predicted observation, and MSE between observations.

The model demonstrates its ability to differentiate empty rooms based on their size,
colour, and shape.

4.2. Navigation

Our navigation tests are focused on evaluating the model’s ability to complete a well-
defined task, such as forming a spatial map through exploration in an aliased environment.
The agent is set to perform two tasks, environment exploration and goal reaching, without
any additional training after learning the structure of familiar rooms.

Baseline. To establish a baseline for the navigation tasks, we compare our method
against:

• C-BET [16], an RL algorithm combining model-based planning with uncertainty
estimation for efficient exploration and decision-making.

• Random network distillation (RND) [58], integrates intrinsic curiosity-driven explo-
ration to incentivise the agent’s visitation of novel states, meant to foster a deeper
understanding of the environment.

• Curiosity [59], leverages information gain as an intrinsic reward signal, encouraging
the agent to explore areas of uncertainty and novelty.

• Count-based exploration [60] uses a counting mechanism to track state visitations,
guiding the agent toward less explored regions.

• Dreamerv3 [5] represents an advanced iteration of world models for RL, offering the
potential to enhance navigation by predicting and simulating future trajectories for
improved decision-making.

• A-star algorithm (Oracle) [61] is a path planning algorithm to which the full layout
of the environment and its starting position is given to plan the ideal path to take
between two points.
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Most of these models propose different RL-based exploration strategies for robotics
navigation. All baselines have been trained and tested on the exact same environments as
our model. For each model training detail, we refer to Appendix A.

The test environments consist of maze-like rooms that progressively increase in scale,
ranging from 9 rooms up to 20 rooms, all with a width of 4 tiles.

4.2.1. Exploration Behaviour

We evaluate to what extent the hierarchical active inference model enables our agent
to efficiently explore the environment. Without a preferred state leading the model toward
an objective, the agent is purely driven by epistemic foraging, i.e., maximising information
gain, effectively driving exploration [20].

Our evaluation involves comparing the performance of our model against various
models such as C-BET, Count, Curiosity, RND models, and an Oracle. These models
are tasked with exploring fully new environments with configurations ranging from 9 to
20 rooms. While the oracle possesses complete knowledge of the environment and its initial
position, other models are only equipped with their top-down view observations (and, in
the case of the RL models, extrinsic rewards). The RL models are encouraged to explore
until they locate a predefined goal (white tile); however, the reward associated with the
white tile is muted to encourage continued exploration. Notably, the DreamerV3 model
faces challenges in effective exploration due to its reliance on visual observations of the
white tile for reward extraction. Consequently, an adapted environment without the white
tile or specific training would be necessary to employ DreamerV3 as an exploration-oriented
agent in this study.

Across more than 30 runs by environment scale, our model demonstrates efficient
exploration in terms of coverage and speed, comparable to C-BET and notably outperform-
ing other RL models in all tested environments, as depicted in Figure 9, where we can
see the percentage of area covered along steps in the environment. Moreover, the agent
successfully achieves the desired level of exploration more frequently than any other model
across all configurations, as demonstrated in Table 2. For an exploration attempt to be
considered successful, the agents must observe a minimum of 90% of the observable envi-
ronment. This criterion ensures that all rooms are observed at least once without imposing
a penalty on the models for not capturing every single corner. Since the agents cannot see
through walls (see Appendix A.4), entering a room may result in missing the adjacent wall
corners, but these corners hold limited importance for the agent’s objective. As an unlikely
example, missing all the corner tiles of each room results in 9% of the environment not
being observed (thus, no matter the scale of the environment). In this exploration task,
the oracle stops exploring as soon as the exploration task is finished (exploring 90% of the
maze), as can be seen in Figure 9, giving a good idea of what the ideal exploration should
look like and the threshold they have to reach. However, to further analyse them, the other
agents are requested to continue exploring upon completion of the task, thus, leading to
over 90% maze coverage in the figures.

Table 2. The success rate of each model across all runs in each environment is defined as the
percentage of runs where the exploration covers at least 90% of the environment.

Success Rate (%) Models

Environment Configuration Ours C-BET RND Curiosity Count

3 × 3 rooms 93 81 16 32 13

3 × 4 rooms 94 87 16 19 0

4 × 4 rooms 91 81 26 16 0

4 × 5 rooms 81 74 7 23 3
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(a) (b)

(c) (d)
Figure 9. The average exploration coverage across all test instances (>30 runs) for each model
computed for a given environment’s scale. The oracle stops exploring as soon as the exploration task
is finished (exploring 90% of the maze). (a) coverage as the exploration progress of all models in
3 by 3 room environments. (b) coverage as the exploration progress of all models in 3 by 4 room
environments. (c) coverage as the exploration progress of all models in 4 by 4 room environments.
(d) coverage as the exploration progress of all models in 4 by 5 room environments.

4.2.2. Preference Seeking Behaviour

To evaluate the exploitative behaviour of the models, we configure all the models
mentioned in the baseline to navigate towards the single white tile within the environment.
This is conducted across environments of increasing size, ranging from 9 to 20 rooms.
Goal-directed behaviour is induced in our model by setting a preferred observation (i.e., the
white tile), as typically occurs in active inference [1,20]. In our model, the preference for the
white tile within the environment is not explicitly provided. Instead, the model is tasked
with the objective of identifying a white tile based on its conceptual understanding of what
the colour white represents. This approach enables the model to search for and recognise
white tiles in its generated observations without direct access to the real observation in the
tested environment. In the other RL models, an extrinsic and intrinsic reward is associated
with this white tile in the environment, motivating the agents to explore until they reach
this tile. The task is considered successful when the agent steps on the single white tile
of the maze. A run is considered a failure if the agent has not reached the goal in under
X number of steps, X depending on the world size. All models, except the oracle, start
without knowing their position relative to the goal position in the environment. They need
to explore until they find the objective. Figure 10 displays all the results by environment.
The first column shows how much the models explore on average before reaching the goal
and their success rate in diverse environments. Our model requires, on average, fewer steps
than the other models to reach the goal, with the exception of the Count model. However,
we can observe that Count also has the lowest success rate. The Count model often fails
to reach the goal when it requires crossing several rooms. Overall our model reaches the
white tile 89% of the time over all environments (see Table 3). Dreamerv3 is showing a
poor performance because of over-fitting, not adapting well to new room configurations,
and white tile placement it has never seen during training. This observation suggests that
Dreamerv3 might require either a comparatively higher degree of human intervention or an
extended dataset to effectively operate within our environment compared to other models.
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(a) 3 by 3 room environments.

(b) 3 by 4 room environments.

(c) 4 by 4 room environments.

(d) 4 by 5 room environments.

Figure 10. For environments ranging from (a) 3 × 3 to (d) 4 × 5 rooms, the results are presented in
three graphs. The first column displays goal-reaching success rates and average steps. The second
column illustrates the normalised deviations of each model’s performance compared to the oracle,
while the third column shows the distribution of success and failure based on normalised step
deviations compared to the oracle.

The second column illustrates the proportion of goal attainment as the number of
steps progressed relative to the oracle’s optimal trajectory, normalised for comparison. Our
model stands among the most efficient models to reach the goal rapidly, with 80% of the
runs reaching the objective in less than ten times the steps taken by the oracle in most
environments, except in the 4 by 5 room mazes.

Finally, the third column provides additional information about the proportion of
success and failure according to the relative number of steps the oracle needs to reach the
goal. From this plot, we can observe that most models are more likely to fail when the goal
is far from the starting position. Our model, C-BET, Count, and Curiosity models show
some failures at relative step 0 or before. This can be linked to the model returning an error
due to excessive CPU consumption (in the case of C-BET, Count, and Curiosity) or by the
agent believing a non-white tile to be white and sticking to it, terminating the task.

Our model’s capacity to re-localise itself after positional disturbances allows us to
conduct a supplementary experiment we call “ours wt prior”. After permitting the model
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to explore the environment, we teleport the agent back to its initial position and task it
with seeking the goal. This experimental setup is exclusive to our model, which relies on a
topological internal map for localisation. In contrast, other models in the baseline depend
on sequential memory.

Intuitively, one might expect the model to achieve the goal more efficiently due to its
internal map. Effectively, we observe that in 3 by 3 room mazes, 80% of successful runs
reach the goal in less than three times the steps taken by the oracle, over 86% successful
runs in total. However, the overall success rate is lower than the goal-seeking experiments
without a prior. This discrepancy arises from various factors such as the quality of the map
and navigation errors. The map generated during exploration can sometimes be imprecise,
leading the agent to form erroneous assumptions about the location of the objective or
guiding it along sub-optimal paths. When the model seeks a goal while having a prior
understanding of the environment, it might pursue an incorrect objective approximately
35% of the time. In contrast, without any prior knowledge, the agent chases an erroneous
objective around 29% of the time over all environments and runs. Additionally, in this
condition, the agent seeks a path that surely leads to the objective and does not extrapolate
over possible shortcuts. Therefore, if the shortest path leading to the goal goes through
rooms that are not directly connected in the cognitive map, the path will not be optimal.
Furthermore, the agent, guided by its priors, may not recognise a room while progressing
towards the goal. This can result in the creation of a new experience that lacks proper
connections to nearby rooms. Consequently, the agent might attempt to establish links
with familiar rooms or backtrack in an effort to reach the room it did not initially recognise,
wasting steps on those tasks. The agent’s dependence on stochastic settings can lead to
both failures and successes in similar situations, accounting for these varied outcomes.
Despite that, the setting shows promise with a success rate comparable to other models.

Table 3. The success rate of each model across all environments and runs.

Models Oracle Ours C-BET RND Curiosity Ours
wt Prior DreamerV3 Count

success rate (%) 100% 89% 86% 81% 79% 76% 72% 31%

4.3. Qualitative Assessments

Visual assessments of a specific environment are conducted to gain insights into the
benefits of using a cognitive map for navigation. These assessments also involve evaluating
the generated cognitive maps in comparison to the actual environment. Additionally, we
compare exploration paths taken by various models to gain insights into their navigation
strategies. Those few situations allow for a deeper insight into understanding the general
behaviour of the model, including our own, shedding light on their navigation capabilities
and the accuracy of our model’s internal representation. A final consideration was given to
the memory efficiency of each model during testing, and supplementary information on
system requirements during training is available in Appendix A.1.

Our hierarchical model facilitates accurate predictions over extended timescales, over
which the agent navigates between different rooms. In contrast, recurrent state space mod-
els commonly struggle when tasked to predict observations across room boundaries [50]
or over long look-ahead windows [40]. Figure 11 illustrates the prediction capabilities of
each layer over a prolonged imagined trajectory within a familiar environment. The figure
showcases the predictions that each layer of the model creates as we project the imagination
into the future, up to the point of transitioning to a new room and beyond. The last row
demonstrates how the egocentric model gradually loses the spatial layout information
over time, making it more suitable for short-term planning. The third row highlights the
allocentric model’s limitation to a single place in the environment, failing to recognise the
subsequent room given current beliefs. Finally, in the second row, the cognitive map’s
imagined trajectory accounts for the agent’s location and is capable of summoning the
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appropriate place representation while estimating the agent’s motion across space and
time. The first row displays the ground truth trajectory, which aligns quite closely with the
expectations of the cognitive map.

Figure 11. A trajectory leading toward a previously visited room is imagined by each model’s layer.
From bottom to top, the egocentric model, characterised by its short-term memory, gradually loses
information as time progresses. This is evident from step 2 onward, where the front aisle is no longer
present after the agent makes a few turns without visual input. In contrast, the allocentric model
maintains the place description over time but encounters difficulty once it moves beyond the current
place it occupies. The cognitive map, possessing knowledge of the connections between locations,
accurately deduces the expected place behind the door, resulting in a prediction remarkably similar
to the ground truth.

In order to navigate autonomously, an agent has to localise itself and correct its
position given the visual information and its internal beliefs over the place. We performed
navigation in a highly aliased mini-grid maze composed of four connected rooms having
either the same colour, the same configuration, or the same colour and configuration but
a single white tile of difference. Those four rooms are depicted in Figure 12A. The full
Figure 12 illustrates the agent’s exploration of the rooms and its ability to distinguish them
without getting confused while entering rooms from a different aisle than previously.

Effectively, when the agent identifies a new place, it creates a new experience for it
by considering its location. Figure 12B. displays each newly generated experience with
a distinct ID and colour. To determine whether it enters a new place or comes back to
a known one, it considers the probability of describing the current observations given
each place, as can be seen in Figure 12C. The bars represent how many hypotheses are
considered at each step, and the lines represent the probability of the place being a new
one or a previously visited one. The colour of the lines corresponds to the experience’s
attributed colour in Figure 12B, blue lines being new unidentified places. Figure 12D.
displays the internal representation of the places the agent uses. We can see that the rooms
are accurately imagined, and even that a hesitation in an aisle position in Experience 1 is
not enough to lose the agent.

In this context, the agent was able to successfully navigate and differentiate between
rooms in a novel, highly aliased environment. The agent’s ability to recognise previously
visited rooms, even when entering from a new door, indicates its ability to maintain a
spatial memory of the environment.
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Figure 12. Navigation samples of the agent looping clockwise and anti-clockwise (thus, entering
from a different door) in a new environment of 2 by 2 rooms over 142 steps. The clockwise navigation
corresponds to a fully new exploration generating new places (see (C)), while the anti-clockwise
loop leads through explored places. (A) a new world composed of 4 similar-looking rooms (colour
or/and shapes), (B) the model associated with each room to a different experience ID corresponding
to the place, (C) the probability of a new place being created (in blue, the most probable place among
all possibilities) or an existing place being deemed the most probable to explain the environment.
The grey bars represent how many new places are considered at once. The number of simultaneous
hypotheses being considered can be read on the right part of the plot. (D) the imagined place
generated for each experience id. We can see that Experience 1 is not fully accurate, yet it is enough
to distinguish it from the other rooms given real observations.

Extending the experiment depicted in Figure 12, Figure 13 presents the complete
trajectory’s information gain according to the model. The graph exhibits a distinct pattern
when exploring or exploiting, with the agent initially exploring the four rooms, as indicated
by the fluctuating blue line, then retracing its path in identified rooms, indicated by colours
relative to their ID. The information gain increases as the agent enters a new room, remains
relatively steady while traversing within a place, and decreases during transitions between
different places. When the agent retraces its steps at approximately step 100, the information
gain becomes minimal, indicating that the agent has already gained knowledge about these
locations. The info gain is higher or lower depending on how well it predicted the next
observation, meaning the better its initial belief over the place, the lower the maximum
accumulated information gain.

Throughout its exploration, the agent’s curiosity plays a pivotal role, highlighting
the significance of information gain in directing the agent’s exploration towards unvisited
areas rather than revisiting familiar places.

Figure 13. Information gain for each visited place. The blue curve corresponds to a new place being
visited, while the coloured curves correspond to previously visited places, as presented in Figure 12.
The first 100 steps correspond to the exploration of the agent of 4 different rooms, while the rest of
the navigation corresponds to the re-visiting of those places. The information gain in a previously
visited place is much lower than in a new room.
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Figure 14 provides a direct comparison between the accuracy of the cognitive map’s
room reconstruction and the corresponding physical environment. This comparison reveals
that the estimated map closely aligns with the actual map, with only minor discrepancies
observed in some blurry passageways and a slight misplacement of the aisle in the bottom
right room. This shows how important global position estimation is as the cognitive map
uses the believed location to distinguish between two similar-looking rooms (purple rooms
in the second column or blue rooms in the third column). This alignment between real and
imagined maps underscores the fidelity of our model’s internal representation in capturing
the structural layout of the environment.

(a) Ground truth map of an environment. (b) Reconstruction by the hierarchical model.

Figure 14. (a) displays the real map, while (b) is a composition of a cognitive map’s room representations.

A correct internal mapping and layout structure definition allows our model to ex-
hibit sensible decision-making when it comes to exploring the environment. Figure 15
presents an illustrative example of path generation for each exploration model in the same
environment. The paths are represented by consecutive discrete steps from one tile to
the next, with the progression from black (initial steps) to white (final steps). The oracle
Figure 15a shows the most ideal path to observe 95% of the environment. Although lacking
initial knowledge of the overall environment layout, our model demonstrates intriguing
behaviour, as evidenced in Figure 15b. It exhibits a looping pattern, passing from the third
to the first room. Upon realising the familiarity of the first room, the model subsequently
alters its course to return to the third room and then explore the fourth room instead. It
results in a complete exploration (100% of the tiles observed) in 212 steps, 151 steps less
than C-BET Figure 15c. The Count model displays its inability to intelligently use doors to
reach new rooms, over-exploring the same environment again and again. Its inefficiency
probably comes from the observations being very aliased.

Our study demonstrates the capabilities of our agent to identify rooms rapidly and
navigate to new places and back while resolving aliases and recognising previously visited
environments, even when entering from a new location.

Finally, we observed computational constraints during testing. All the RL models
presented in this study show a direct correlation between the number of steps in the
environment and memory usage. Those RL methods use memory buffers to navigate
efficiently. This often results in failure if the allowed memory capacity is insufficient to
realise the task at hand. In contrast, our approach offers a more efficient solution, requiring
less than 1 Gbyte of memory space, as well as avoiding scalability issues with respect to
environment dimensions. Table 4 displays the peak memory requirements for each model
across all tasks, with each run allocating a maximum of 1500 steps to complete the task.

Independently of those results, it seems relevant to remark that all the evaluated sys-
tems are computationally slow. The RL models become increasingly slower as the number
of steps grows, attributable to the memory buffer. Our method experiences delays between
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steps due to hypotheses calculations and policy evaluations, which are not parallelised and
can scale significantly based on the space dimensions and look-ahead parameters.

(a) (b)

(c) (d)

(e) (f)

Figure 15. Paths taken by each model during an exploration run in the same 3 by 4 room environment.
(a) The oracle path observed 95% (561tiles) of the maze in 145 steps. (b) Our model path observed
100% of the environment in 212 steps (585tiles). (c) The C-BET model path observed 100% of the
environment in 363 steps (585 seen tiles). (d) The Curiosity model path observed 100% of the
environment in 400 steps (585 seen tiles). (e) The RND model path observed 62% of the environment
in 900 steps (364 seen tiles). (f) The Count model path observed 40% of the environment in 900 steps
(235 seen tiles).
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Table 4. Every model exhibits distinct system requirements. The following table highlights the most
demanding criteria necessary for achieving successful exploration or goal seeking across the 4 by
5 room environments’ configuration.

Model n◦ CPU n◦ GPU Used
Memory (G)

Ours 2 0 1

Dreamerv3 2 1 28

C-BET 2 0 12

RND 2 0 9

Curiosity 2 0 11

Count 2 0 8

5. Discussion

We conclude with a comprehensive assessment of the proposed hierarchical active
inference model for autonomous navigation, considering its strengths and limitations. We
outline the key contributions of our work and discuss potential future works.

Hierarchical active inference model. Our proposal introduces a three-layered hierar-
chical active inference model:

• The cognitive map provides a unified spatial representation and memorises location
characteristics.

• The allocentric model creates discrete spatial representations.
• The egocentric model assesses policy plausibility, considering dynamic limitations.

These layers collaborate at different time scales: the high level oversees the whole
environment through locations, the allocentric model refines place representations as it
changes position, and the egocentric model imagines action consequences.

Low computational demands. Our hierarchical active inference model has low com-
putational demands, regardless of the environment’s scale. This efficiency is particularly
valuable as environments scale up, making our approach a potential solution for real-world
applications.

Scalability. Our model efficiently learns spatial layouts and their connectivity. There
exists the potential for our approach to adapt to novel scenarios by incorporating diverse
environments into its learning process, thus, expanding allocentric representations. Fur-
thermore, the possibility of introducing additional higher layers could facilitate greater
abstraction, transitioning from room-level learning to broader structural insights.

Task-agnostic. The system does not require task-specific training, promoting adapt-
ability in diverse navigational scenarios. It learns environmental structures and generalises
to new scenarios, demonstrating its applicability to various objectives.

Visual-based navigation. Leveraging visual cues should enhance our model’s real-
world applicability.

Aliasing resistant. We show resistance to aliases, distinguishing between identical
places and, thus, ideally supporting robust navigation.

While our approach offers several advantages, it is also important to acknowledge its
limitations:

Environment adaptation. Our model requires adaptation to fully new environments
for optimal performance. Training the allocentric model on room-specific data restricts
navigation to familiar settings. To mitigate this and generalise to arbitrary environments,
we could consider splitting the data by unsupervised clustering [62] or by using the model’s
prediction error to chunk the data into separate spaces [53].

Recognition of changed environments. Our proposal might struggle to detect en-
vironmental changes like altered tile colours, although this may not significantly impact
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navigation performance as a new place will replace or be added with the previous one in
the cognitive map. This remains an area for improvement.

In light of the features of our model listed above, as well as its limitations, our
work offers a principled, biologically plausible approach to autonomous navigation. The
integration of hierarchical active inference and world modelling enables our agent to
navigate and explore an environment efficiently. Our model focuses on learning the
structure of the environment and leveraging visual cues, aligning with the way animals
navigate their surroundings, contributing to its real-world applicability.

Our experimental evaluation in mini-grid room maze environments showcases the
effectiveness of our method in exploration and goal-related tasks. When compared to
other reinforcement learning (RL) models such as C-Bet [16], Count [60], Curiosity [59],
RND [58], and DreamerV3 [5], our hierarchical active inference world model consistently
demonstrates competitive performance in exploration speed and coverage, as well as
efficiency in reaching goals. Moreover, qualitative assessments show how accurate the
cognitive map can be compared to the real environment and how the agent is able to
differentiate aliased locations and use information gain to optimise navigation.

Our comprehensive assessment, both quantitative and qualitative, underscores the
adaptability and resilience of our approach. As we move forward, there are several avenues
for future research. The model’s adaptation to new environments could be optimised,
and methods for handling changes in familiar environments can be explored further.
Additionally, exploration and goal-seeking tasks could be improved by adding a layer
of comprehension to our cognitive map by integrating possible unexplored rooms when
planning, in the form of potential places to visit [63]. Finally, the scalability and flexibility of
our hierarchical structure could be extended to more complex, dynamic or realist scenarios
such as Memory maze [64] or Habitat [65] to step toward real applications. This would
require us to consider new challenges in place determination.

In conclusion, by combining principles of active inference and hierarchical learning,
our hierarchical active inference model presents a preliminary solution, which promises to
enhance autonomous agents’ ability to navigate complex environments.
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Appendix A. Training Procedures

Each model necessitated specific considerations, which we outline below. We begin
with an overview of the training system (see Table A1), followed by a description of the
hyperparameters used for each model, highlighting any deviations from their source paper.
Finally, we describe the observations used for each system.

Appendix A.1. System Requirements

Each system required a different training time to reach the optimal behaviour. All
the RL models were trained to optimise their policy, in contrast to ours, which moved
randomly to learn the structure of the environment.
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Table A1. Training characteristics for considered models. Insights into the training specifics of all
models are provided, encompassing their respective training duration until reaching their finalised
versions. Unfortunately, the information pertaining to RAM utilisation by the egocentric model is
unavailable.

Model Training
Time (h) n◦ CPU n◦ GPU Used

RAM (G)
Used

Memory (G) GPU Type

Ours
egocentric 32 4 1 ? 12 GTX 980

Ours
allocentric 95 2 1 2.5 20 GTX 1080

Dreamerv3 411 5 2 10 30 GTX 1080 Ti

C-BET 232 10 1 2.6 32 GTX 980

RND 117 6 1 2.7 10 GTX 980

Curiosity 90 6 1 3 10 GTX 980

Count 141 6 1 2.7 11 GTX 980

Appendix A.2. Dataset

Uniformity in training conditions was achieved by conducting training sessions for all
models within identical environments, facilitated by the consistent application of a shared
seed to generate these environments. The training environments consisted of mini-grid
room mazes of 3 by 3 room configurations. These mazes were characterised by a range
of room sizes, spanning from 4-tile width to 7-tile width, thereby constituting a total of
100 distinct rooms per room size.

Appendix A.3. Hyper-Parameters

All the benchmark models were trained using pre-set hyper-parameters, with C-BET,
Count, Curiosity, and RND using the parameters described in Parisi et al. [16]. DreamerV3
uses the parameters proposed in Hafner et al. [5]; however, the behaviour of the model was
modified from the original, setting an Exploring task behaviour and a Greedy exploration
behaviour, as the original configuration was underperforming in our scenarios.

Our model was trained using the hyper-parameters in Table A2 for the allocentric
model and Table A3 for the egocentric model.

Table A2. Allocentric model parameters.

Layer Neurons/Filters Stride

PositionalEncoder Linear 9

Posterior

Convolutional 16 1 // (kernel:1)
Convolutional 32 2
Convolutional 64 2
Convolutional 128 2

Linear 2× 32

Likelihood

Concatenation
Linear 256 × 4 × 4

Upsample
Convolutional 128 1

Upsample
Convolutional 64 1

Upsample
Convolutional 32 1

Upsample
Convolutional 3 1
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Figure A1. Schematic view of the generative model. The left part is the encoder that produces a
latent distribution for every (observation, position) pair. This encoder consists of convolutional layers
interleaved with FILM [66] layers that condition the positions. This transforms the intermediate
representation to encompass the spatial information from the viewpoint. The latent distributions are
combined to form an aggregated distribution over the latent space. A sampled vector is concatenated
with the query position, from which the decoder generates a novel/predicted observation. The
decoder mimics the encoder architecture, upsampling the image and processing it with convolutional
layers, interfiled with a FILM layer that conditions the concatenated information vector.

Figure A2. The generative model is parameterised by 3 neural networks. The transition model infers
the prior probability of going from state st−1 to st under action at−1. The posterior models the same
transition while also incorporating the current observation ot. Finally, the likelihood model decodes
a state sample st to a distribution over possible observations. These models are used recurrently,
meaning they are reused every time-step to generate new estimates [37].
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Table A3. Egocentric model parameters.

Layer Neurons/Filters Stride

Prior
Concatenation

LSTM 256
Linear 2 × 32

Posterior

Convolutional 8 2
Convolutional 16 2
Convolutional 32 2
Concatenation

Linear 256
Linear 64

Image_Likelihood

Linear 256
Linear 32 × 7 × 7

Upsample
Convolutional 16 1

Upsample
Convolutional 8 1

Upsample
Convolutional 3 1

Collision_Likelihood
Linear 16
Linear 8
Linear 1

Appendix A.4. Model Observations

All models use the agent’s top-down vision of the agent, consisting of 7 by 7 tiles with
the agent placed at the bottom centre of the image, as shown in Figure A3. Our model and
DreamerV3 use an RGB view of the environment, while C-BET, Count, Curiosity, and RND
use a one-hot encoded view of the environment, as well as an extrinsic reward when the
agent passes over the single white tile in the environment. We can point out that the agent
cannot see through walls in an RGB image. We can see in Figure A3a the environment
and the agent’s field of view represented by lighter colours. Figure A3b shows the actual
observation seen by the agent.

The number of actions C-BET could take was greatly reduced compared to the original
work, limiting it to actions such as forward, left, right, and standby. This was realised to
maximise the similarity with our model and avoid a possible difference in performance
due to an extended action space.

Figure A3. (a) cropped top-down view of the environment, (b) the RGB view of the agent. Each tile
of the environment is composed of 8 by 8 pixels, generating a 56 by 56 total image. (c) The equivalent
one-hot encoded view as a matrix. The numbers and colours are only relevant for the example.

All RL models had a sparse reward system, with an extrinsic reward generated only
when passing on the white tile placed in the environment. Our model does not require
rewards, and the goal we desire to set during the testing could be any kind of observation.
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