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Abstract: Slope Entropy (SlpEn) is a novel method recently proposed in the field of time series entropy
estimation. In addition to the well-known embedded dimension parameter, m, used in other methods,
it applies two additional thresholds, denoted as δ and γ, to derive a symbolic representation of a data
subsequence. The original paper introducing SlpEn provided some guidelines for recommended
specific values of these two parameters, which have been successfully followed in subsequent studies.
However, a deeper understanding of the role of these thresholds is necessary to explore the potential
for further SlpEn optimisations. Some works have already addressed the role of δ, but in this
paper, we extend this investigation to include the role of γ and explore the impact of using an
asymmetric scheme to select threshold values. We conduct a comparative analysis between the
standard SlpEn method as initially proposed and an optimised version obtained through a grid
search to maximise signal classification performance based on SlpEn. The results confirm that the
optimised version achieves higher time series classification accuracy, albeit at the cost of significantly
increased computational complexity.

Keywords: Slope Entropy; time series classification; parameter optimisation

1. Introduction

Time series entropy analysis plays a fundamental role in various scientific domains,
ranging from biology and medicine to finance and many engineering fields [1–6]. It
provides valuable insights into the complexity and predictability of such time series, and can
be used as a distinguishing feature for signal classification [7–10].

For example, Permutation Entropy (PE) [11], a popular method in this time series
analysis framework, provides a means to quantify the disorder or randomness in a time
series by examining the order of values within the series. It has found applications in those
diverse domains stated before and is valuable for characterising complex systems [12,13].
Specifically, it has been successfully used in medicine [14–17], engineering [3,18–20], eco-
nomics [21–23], and natural sciences [5,24,25], to cite just a few examples.

Sample Entropy (SampEn) is another widely used technique for assessing the regular-
ity and self-similarity of time series data. It measures the similarity of subsequences within
the time series, making it a useful tool for detecting complex patterns and anomalies in
various applications. In the domain of healthcare and biomedical research, SampEn aids in
the assessment of heart rate variability [26], electroencephalography (EEG) data [27], and,
in general, the detection of pathological conditions, contributing to improved patient diag-
nostics and monitoring. In finance, SampEn proves valuable in modelling and forecasting
financial time series, helping analysts make informed decisions in an ever-changing market
landscape [28]. Furthermore, in the realm of environmental science, SampEn can also sup-
port the identification of complex patterns in climatic data, facilitating better understanding
and management of the underlying interacting processes [29].
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Among these and many other entropy estimation methods available nowadays, Slope
Entropy (SlpEn) has emerged as a novel approach that shows promise in capturing the
intricate patterns of time series data for such classification purposes. SlpEn, introduced
in the work by [30], incorporates two additional input parameters, thresholds δ and γ,
to derive a symbolic representation of data subsequences according to the differences
between consecutive time series samples, as will be described in detail later in Section 2.2.
This characteristic of SlpEn allows for a more refined and customised analysis of time
series patterns, although it also entails more input parameters than other methods, such as
PE [11,31].

The original SlpEn paper provided initial guidelines for selecting specific values of δ
and γ and facilitating adoption, guidelines which have since been successfully applied in
subsequent SlpEn studies [32,33]. A few other works have already explored the influence
of the δ parameter value on SlpEn classification potential [34], but a thorough investigation
into the roles of both δ and γ is still essential to fully exploit SlpEn’s capabilities. This is
the same kind of performance characterisation analysis that has been performed for other
entropy methods in the past.

In order to illustrate this point, let us consider again methods PE and SampEn. On
one hand, in the case of PE, parameter influence or selection has also been the focus of
many studies, like [31,35]. Algorithm speed is also crucial in many applications, and
characterisation and improvements in this regard are also frequent, like the study [36].
On the other hand, in the case of SampEn, there are studies to optimise input parameter
threshold r to improve the detection of cardiovascular diseases using RR interval time
series [37]. Similarly, the work [38] describes how to optimise all SampEn parameters N, m,
and r, for the prediction of paroxysmal atrial fibrillation (AF) termination and the electrical
cardioversion outcome in persistent AF. In terms of computational cost optimisations, there
are also studies like [39]. There are even specific studies to optimise the implementation of
SampEn in wearable devices [27].

In this paper, we aim to expand the knowledge of SlpEn by conducting a more ambi-
tious analysis of its δ and γ parameters’ influence on time series classification performance
and exploring the possible benefits of employing an asymmetric scheme to choose the
threshold values. In other words, employing different threshold values for positive and
negative differences between consecutive samples. This will certainly double the number
of thresholds, but we hypothesise that this way, it will be possible to improve the matching
between SlpEn capabilities and features of the time series under analysis.

We compared the classification accuracy achieved, defined later, using the standard
SlpEn method [30] with that from an improved version obtained by applying the asym-
metric scheme mentioned above. Both methods used a grid parameter search to maximise
signal classification accuracy instead of just the recommended input values. To evaluate
the effectiveness of the optimised version, we considered publicly available benchmark
datasets from different domains, as described in Section 2.1.

The expected contributions of this paper are twofold: Firstly, we shed light on the roles
of δ and γ in the SlpEn method, providing more insights into their significance and poten-
tial for fine-tuning in difficult signal classification problems. Secondly, we demonstrated
that the optimised version of SlpEn achieves higher classification accuracy, although at a
significantly increased computational cost that will not probably pay-off in all cases. This
trade-off between accuracy and computational complexity will have to be balanced, allow-
ing researchers to make informed decisions based on specific application requirements.

The rest of the paper is organised as follows: Section 2, Materials and Methods,
presents a comprehensive review of the specific time series datasets used in the experiments,
addressing different application fields. This section also contains a detailed description of
the SlpEn method in its original version and the variations that are applied in the present
study, including the experimental setup and the grid search procedure for optimising
SlpEn. In Section 3, we present the results of the comparative analysis in terms of signal
classification accuracy achieved in each case. The discussion takes place in Section 4, where
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we evaluate the implications of employing an asymmetric scheme for threshold selection.
Finally, Section 5 concludes the paper and highlights potential future research directions to
further enhance SlpEn’s applicability and performance in diverse scientific contexts.

2. Materials and Methods

This section presents first the time series utilised in the experiments. All of these
datasets are publicly available and have been extensively employed in numerous similar
studies. They hold a well-established reputation as representative time series for analysis,
facilitating direct result comparison with previous research. Furthermore, the dataset
selection is characterised by its diversity and variation, mitigating potential interpretation
biases and ensuring a higher potential for generalisation.

Once the experimental datasets have been introduced, this section also describes in
detail the method under analysis, Slope Entropy. Specifically, we introduce the standard
method based on input parameters m, δ, and γ, and then we describe the modifications
proposed to use an extended asymmetrical version of the two thresholds. These two ver-
sions will be the objective of the comparative classification accuracy performance analysis
carried out in the experiments section (Section 3).

2.1. Datasets

As stated above, in order to assess the efficacy and resilience of the proposed SlpEn
improvements, it is imperative to conduct experiments on diverse datasets exhibiting
variations in length, level of ties, and regularity, among other time series properties. Thus,
the specific datasets utilised in the present study are:

• The Bern–Barcelona EEG database [40]. This database comprises a collection of both fo-
cal and non-focal time series extracted from seizure-free recordings of patients afflicted
with pharmacoresistant focal-onset epilepsy. For the purpose of our experiments, we
employed 50 records, each possessing a length of 10,240 data points, sampled at a
frequency of 512 Hz. This database has also been used in works such as [41], which
includes a review of results achieved in other classification studies based on time
series from this same database.

• The Fantasia RR database [42]: It presents a meticulously curated repository com-
prising a total of 40 individual time series, thoughtfully stratified into two cohorts of
20 records each (mature subjects and a counterpart assembly of youthful subjects). All
subjects were, in principle, healthy, thereby obviating possible confounding health-
related factors. They were monitored over an extended period of 120 min, with a
sampling frequency of 250 Hz. This database has been used in many studies, such
as [43,44].

• The Ford A dataset [45]: It is a repository of data gleaned from an automotive subsys-
tem. The principal objective underpinning its creation was the empirical evaluation of
the efficacy of classification schemes upon the acoustic characteristics of engine noise.
Within the ambit of this experimental undertaking, a corpus of 40 discrete records was
selected and subsequently employed for analysis from each distinct class.

• The House Twenty dataset [46,47]: It is a compendium of temporal sequences ema-
nating from 40 distinct domestic entities. They are part of the Personalised Retrofit
Decision Support Tools for UK Homes using Smart Home Technology (REFIT) project.
This dataset includes data from 40 households, divided into two classes with 20 each:
The first class represents the consumption of electricity in general, and the second
class represents the specific electrical consumption of dryers and washing machines.
We also used this dataset in our previous work [34].

• The PAF (Paroxysmal Atrial Fibrillation) prediction dataset [48]: This dataset com-
prises discrete 5-min temporal recordings corresponding to patients diagnosed with
PAF. These temporal records were classified into two distinct categories: The first
pertains to recordings that immediately precede the onset of a PAF episode, while the
second encompasses instances temporally distant from any PAF manifestation. Each
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classification category comprises a total of 25 distinct files. This is a very well-known
dataset used in a myriad of scientific works [49–51].

• The Worms two-class dataset [52,53]: It contains a time series intrinsically linked to
the locomotive patterns exhibited by a distinct species of worm used in the realm
of behavioural genetics research. We selected records from two classes: mutant and
non-mutant worms. The first type contains 75 records of 900 samples, and the second
type has 105 records with the same time series length. As with previous datasets, there
are other works that used time series from this one [54,55].

• The Bonn EEG dataset [56,57]. This dataset encapsulates a corpus of 4097 electroen-
cephalograms, each one with a duration of 23.6 s. These instances are distinctly
categorised into five salient classes (A, B, C, D, and E), reflecting the underlying diver-
sity of neural activity scenarios under consideration. Specifically, the classes include
healthy subjects with eyes open (Class A) and those with eyes closed (Class B). Other
instances pertain to epileptic subjects classified as Class C, D, and E (see further details
in [57]). For the scope of the specific experiments in the present paper, the focus was
directed solely towards classes D and E (seizure-free periods at the epileptogenic zone,
and seizure activity from the hippocampal focus), with 100 records from each class.
There are many examples available of works using this same dataset [58–60].

• The Synthetic database. As its name suggests, it is a collection of datasets that have
been generated artificially by a computer. It is composed of three different sets:
Synth1, Synth2, and Synth3. Each one of them is composed of two classes; the first
one is generated by a normal (Gaussian) distribution, while the other is based on a
uniform distribution. Each class contains 20 time series with a length of 3000 samples.
Regarding the parameters used to generate the series, Synth1 uses mean = 0 and
standard deviation equal to 5 (SD = 5) for its Gaussian class. Synth2’s Gaussian class
uses mean = 0 and SD = 10. In the case of Synth3, mean = 0 and SD = 20. On the
other hand, the uniform distribution used to generate the second class uses the same
parameters for all three datasets, drawing samples uniformly from the range [−1, 1].
It has been included for reference purposes, but it is not used in all the experiments
since it is not as illustrative as the real datasets.

The classification accuracy employed refers to the proportion of correctly classified
time series instances relative to the total number of instances in each experimental dataset.
It directly reflects the capability of the chosen feature, SlpEn, to capture and represent
the distinguishing characteristics of different classes in the time series data. A higher
classification accuracy indicates that the model is more effective in correctly identifying the
classes of time series instances.

Accuracy =
Number of Correctly Classified Instances

Total Number of Instances
=

TP + TN
TP + TN + FP + FN

(1)

where:

• TP (True Positives) are instances correctly identified as belonging to a particular class.
• TN (True Negatives) are instances correctly identified as not belonging to that class.
• FP (False Positives) are instances incorrectly identified as belonging to that class.
• FN (False Negatives) are instances incorrectly identified as not belonging to that class.

2.2. Slope Entropy

SlpEn [30] is an entropy calculation method based on extracting symbolic subse-
quences applying a set of thresholds to amplitude differences between consecutive time
series samples. To the resulting histogram of relative frequencies of each subsequence,
a Shannon entropy-like expression is then applied to acquire the final SlpEn result. This
method is applied to an input time series x given input parameters N, m, γ and δ. Namely,
the objective is to compute SlpEn(N, m, γ, δ), as described next.

We consider the input time series as an N−length vector x containing a set of samples
xi, defined as x = {x0, x1, x2, . . . , xN−1}, xi ∈ R, 0 ≤ i < N. This time series is iteratively
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divided into overlapping data epochs of length m, xj = {xj+0, xj+1, . . . , xj+m−1}, 0 ≤ j <
N − m + 1, j increased after each iteration as j → j + 1.

Then, for each of these subsequences, an associated symbolic pattern is created, xj →
yj, with yj = {y0 = f (xj+1 − xj+0), y1 = f (xj+2 − xj+1) . . . , ym−2 = f (xj+m−1 − xj+m−2)},
using symbols from a set S = {+2,+1, 0,−1,−2} (or any other alphabet containing
5 different and unique symbols). These symbols are assigned by a thresholding function f ,
based on two thresholds γ and δ that in principle can take any positive real value, but with
δ < γ, and the following rules (for 0 ≤ k < m − 1):

• If xj+k+1 − xj+k > γ, the symbol assigned to the current active symbolic pattern
position is +2 (or just 2), yk = {+2}.

• Else, if xj+k+1 − xj+k > δ, the symbol assigned to the current active symbolic pattern
position is +1 (or just 1), yk = {+1}.

• Else, if |xj+k+1 − xj+k| ≤ δ, the case when two consecutive values are very similar (de-
pending on threshold δ), which includes the case for ties when δ = 0 [61], the symbol
assigned to the current active symbolic pattern position is 0, yk = {0}.

• Else, if xj+k+1 − xj+k < −δ but xj+k+1 − xj+k ≥ −γ, the symbol assigned to the
current active symbolic pattern position is −1, yk = {−1}.

• Otherwise, the symbol assigned is −2, region where xj+k+1 − xj+k < −γ, yk = {−2}.

Graphically, the thresholding regions described above can be represented as shown in
Figure 1. This is the standard symmetric SlpEn approach described in its original paper,
and the one used so far in other scientific studies.

Figure 1. Graphical representation of the standard SlpEn thresholding process. This is a symmetric
approach that uses the same absolute values for the thresholds in case of positive and negative
gradients (an infinite gradient would correspond to a vertical line).

Once the computation of all the symbolic patterns has been completed, the total num-
ber of occurrences for each one is calculated (histogram bin height) and then normalised by
the number of unique different patterns found. Each resulting value, for similarity with
other methods, is referred to as pk. Finally, the SlpEn for x using input parameters m, δ, γ,
is obtained from a Shannon entropy expression:

SlpEn(x, m, γ, δ) = −∑
∀k

pklog pk (2)
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In principle, the role of threshold δ is to account for possible ties [30], and the role of
threshold γ is to distinguish between high and low consecutive samples’ gradients. In its
standard configuration described in the SlpEn original paper, δ was recommended to be a
small value, 0.001, and γ, depending on input time series normalisation, to be a constant
value in the vicinity of 1.0. Moreover, these thresholds were used for both positive and
negative gradients, simply changing the sign. This is the symmetrical baseline scheme that
has demonstrated its good performance in terms of classification accuracy in a number of
studies already, like [9,33,62,63].

However, what remains to be studied is the impact on such performance that a finer
tuning of the input parameters δ and γ could have, and that is what is investigated in
the present paper. We propose to modify the SlpEn standard algorithm by considering
different thresholds for positive and negative gradients and other variations like omitting
the δ parameter, as described in the next Section 3. This is the possible SlpEn variation
suggested to improve its classification potential. Graphically, this new approach is depicted
in Figure 2 using two values for the γ parameter, γ1 and γ2.

Figure 2. Graphical representation of the SlpEn thresholding process modification. This is an
asymmetric approach that uses different absolute values for the thresholds in case of positive and
negative gradients (no modifications for δ). If we wanted to remove δ from the method, that would
just entail no {0} region, it would be absorbed by regions {+1} and {−1} with boundary at 0
slope line.

Example: Let us take the same input time series used in [11], x = {4, 7, 9, 10, 6, 11, 3}.
If γ = 2.5, δ = 0.001, and embedded dimension m is set to 4, this results in 4 subsequences
that can be extracted from x:

• x0 = {4, 7, 9, 10}. In order to obtain the symbolic representation of this subsequence,
we compute 7 − 4 = 3, 9 − 7 = 2, 10 − 9 = 1. Applying the thresholding method
described above results in a symbolic pattern y0 = {+2,+1,+1}.

• x1 = {7, 9, 10, 6}. In order to obtain the symbolic representation of this subsequence,
we compute 9 − 7 = 2, 10 − 9 = 1, 6 − 10 = −4. Applying the thresholding method
described above results in a symbolic pattern y1 = {+1,+1,−2}.

• x2 = {9, 10, 6, 11}. In order to obtain the symbolic representation of this subsequence,
we compute 10 − 9 = 1, 6 − 10 = −4, 11 − 6 = 5. Applying the thresholding method
described above results in a symbolic pattern y2 = {+1,−2,+2}.
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• x3 = {10, 6, 11, 3}. In order to obtain the symbolic representation of this subsequence,
we compute 6− 10 = −4, 11− 6 = 5, 3− 11 = −8. Applying the thresholding method
described above results in a symbolic pattern y3 = {−2,+2,−2}.

Since we have found 4 different patterns, the values for pk in Equation (2) are p0 =
p1 = p2 = p3 = 1

4 . Therefore, the final SlpEn result is:

SlpEn(x, 4, 2.5, 0.001) = −4 ∗ 1
4

log
1
4
= 1.3863 (3)

3. Experiments and Results
3.1. Experiments

In order to fully characterise the behaviour of SlpEn using an asymmetrical scheme
for the input parameters, conducting a grid search for all possible input parameter values
would be necessary. However, due to its substantial computational cost, such an exhaustive
search was not feasible.

To strike a balance between the objectives of the paper and the temporal demands
of the experiments, we opted to limit the scope. Accordingly, we maintained symmetry
in the δ parameter and introduced a modification for the γ parameter. Specifically, we
considered two values: γ1 for positive gradients and γ2 for negative gradients. The grid
search for these parameters involved varying m between 3 and 9 (with a step of 1), δ
between 0.05 and 1.00 (without exceeding γ1 or γ2), and γ1 and γ2 between 0.05 and 1.00
(in increments of 0.05). This grid search yielded the optimal input parameter configuration
for achieving maximum classification accuracy when comparing the two classes in each
complete dataset using SlpEn. On a Microsoft Windows 10 machine with an Intel Core i7
10th generation processor and 64 GB of RAM, utilising the Python programming language,
the computation times for the asymmetric experiments were, for instance, 11,503 s for
dataset Worms two-class, and 1342 s for the PAF prediction dataset.

To further mitigate computational costs, we adopted a strategy similar to the approach
outlined in [34]. Specifically, we conducted additional experiments where the δ parameter
was omitted, reducing the complexity of the grid search by one order of magnitude and the
computational time accordingly.

We proceeded with a second set of experiments under the same conditions as stated
above to evaluate performance in scenarios that align more closely with real-world clas-
sification applications. For this purpose, we allocated a random 30% of each dataset for
training (used during the grid search to identify the optimal input parameters) and re-
served the remaining 70% for validation. Each experiment was repeated ten times, and
the reported results in the following section represent the average classification perfor-
mance along with their corresponding standard deviations. This approach allowed us
to assess the generalisation capabilities of the experiments while avoiding the pitfalls of
parameter overfitting.

The performance of the methods tested was quantified in terms of classification
accuracy: percentage of correctly classified time series based on a SlpEn feature for each
experimental dataset [64].

3.2. Results

Tables 1 and 2 present the classification accuracy achieved using the asymmetric SlpEn
version detailed in the previous subsection. In Table 1, we employed a symmetric version of
δ to mitigate computational costs while introducing two asymmetric versions of γ. Table 2
showcases results from an alternative approach where δ was completely omitted from the
algorithm, following the methodology of [34]. These tables juxtapose our results with those
obtained using the standard (baseline) SlpEn method, allowing for a visual assessment of
the potential improvements in terms of time series classification accuracy. Additionally,
both tables incorporate a column featuring the optimal parameter configuration determined
through a comprehensive grid search.
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Table 1. Classification accuracy achieved of the asymmetrical γ with symmetric δ SlpEn version,
for each dataset. Baseline results are also reported for comparison, as well as the optimal input
parameter configuration that maximises accuracy.

Dataset Baseline SlpEn with δ Parameters

Bern–Barcelona 80% 81% m = 7, γ1 = 0.35, γ2 = −0.20, δ = 0.10
Fantasia 85% 89% m = 5, γ1 = 0.50, γ2 = −0.45, δ = 0.05
Ford A 83% 94% m = 3, γ1 = 0.45, γ2 = −0.20, δ = 0.05

House Twenty 95% 97% m = 5, γ1 = 0.20, γ2 = −0.20, δ = 0.50
PAF prediction 76% 84% m = 6, γ1 = 0.55, γ2 = −0.20, δ = 0.10

Worms two-class 70% 92% m = 3, γ1 = 0.80, γ2 = −0.80, δ = 0.75
Bonn EEG 94% 95% m = 9, γ1 = 0.20, γ2 = −0.85, δ = 0.05

Synth1 92% 95% m = 8, γ1 = 0.70, γ2 = −0.75, δ = 0.05
Synth2 87% 89% m = 8, γ1 = 0.75, γ2 = −0.70, δ = 0.05
Synth3 95% 95% m = 8, γ1 = 0.60, γ2 = −0.70, δ = 0.05

Table 2. Classification accuracy achieved of the asymmetrical γ without δ SlpEn version, for each
dataset. Baseline results are also reported for comparison, as well as the optimal input parameter
configuration that maximises accuracy.

Dataset Baseline SlpEn without δ Parameters

Bern–Barcelona 76% 77% m = 7, γ1 = 0.20, γ2 = −0.20
Fantasia 82% 89% m = 5, γ1 = 0.50, γ2 = −0.45
Ford A 82% 94% m = 3, γ1 = 0.20, γ2 = −0.45

House Twenty 95% 95% m = 7, γ1 = 0.60, γ2 = −0.65
PAF prediction 76% 80% m = 6, γ1 = 0.55, γ2 = −0.20

Worms two-class 69% 72% m = 6, γ1 = 0.30, γ2 = −0.45
Bonn EEG 93% 93% m = 9, γ1 = 0.20, γ2 = −0.80

Synth1 89% 89% m = 8, γ1 = 0.65, γ2 = −0.70
Synth2 87% 89% m = 8, γ1 = 0.75, γ2 = −0.70
Synth3 86% 89% m = 8, γ1 = 0.65, γ2 = −0.70

Table 3 reports the results of the second set of experiments, utilising a training subset
comprising a random 30% of the time series and a validation subset encompassing the
remaining 70%. This approach was applied to both the cases with and without δ, each
repeated across 10 random realisations for every dataset.

Table 3. Mean and standard deviation of classification accuracy using the asymmetrical approach
with and without δ after repeating the training–testing experiment 10 times.

Dataset SlpEn with δ SlpEn without δ

Mean sd Mean sd

Bern–Barcelona 76.81% 1.82 68.04% 2.98
Fantasia 78.15% 3.66 75.18% 3.63
Ford A 93.87% 2.30 93.98% 2.00

House Twenty 97.36% 0.00 75.25% 1.44
PAF prediction 72.36% 2.77 65.62% 2.17

Worms two-class 92.02% 1.18 69.49% 1.63
Bonn EEG 85.41% 4.42 81.63% 7.01

Synth1 75.70% 3.21 69.54% 5.26
Synth2 71.02% 2.11 68.34% 4.80
Synth3 72.06% 3.31 70.63% 3.60

4. Discussion

The original SlpEn method [30] proposed a symmetrical scheme for the input thresh-
olding parameter γ, and also for δ, but this last one keeping its value constant at 0.001 or
−0.001. The intention with δ was, in principle, to simply account for similar consecutive
sample values that were hypothesised to create ambiguities when computing symbolic
representations [65]. However, later studies demonstrated that ties do not exert a significant
negative impact on classification accuracy [61], and therefore, we subsequently studied if,
as a first step for SlpEn simplification, that parameter could just be omitted [34]. Obviously,
removing a parameter will never improve classification performance if the tests are carried
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out under the same conditions; at most, it can equal the accuracy achieved (removing a
parameter is equivalent to including its 0 value in a grid search). What is crucial is to assess
if there is a significant performance degradation and whether the saved computational cost
pays off.

This work is a continuation of that first SlpEn characterisation study to better under-
stand how SlpEn can be improved both in terms of computational burden and classification
accuracy. In this regard, the results presented in Tables 1–3 offer valuable insights into
the performance of the asymmetrical SlpEn variant compared to the baseline method.
The two modifications of the asymmetrical approach, with and without the δ parameter,
for complete datasets or for training–validation partitions, were systematically examined
across multiple datasets.

From Table 1, it is evident that introducing asymmetry in the γ parameter while main-
taining symmetry in δ (albeit at different values) led to improved classification accuracy
across several datasets, as could be expected. Notably, the accuracy enhancements achieved
by this approach were consistent across all datasets tested, reinforcing the validity of this
approach in terms of classification accuracy. These improvements span from just 1% for the
Bern–Barcelona database to a very significant 22% for the Worms two–class dataset.

Table 2 introduces a different perspective. By entirely omitting the δ parameter, the
complexity of the grid search was significantly reduced. In this case, the approach managed
to maintain or even exceed the accuracy levels attained by the baseline method across the
experimental datasets, although, as expected, the accuracy was lower than when using
δ (both cases in Table 1). This result aligns with the findings in [34], underscoring the
feasibility of adopting this strategy to reduce computational costs, knowing the accuracy
will not be severely affected.

Table 3 encapsulates the mean and standard deviation classification accuracy resulting
from the training–validation experiments. In general, the accuracy achieved in these
experiments is lower than in Tables 1 and 2 since the optimal parameters are computed
using only 30% of the datasets. However, the observed consistency in performance supports
the generalisation capabilities of both asymmetrical SlpEn approaches, corroborating their
effectiveness in real-world classification tasks. There is a specific case, the Ford A dataset,
for which the results seem to be counterintuitive; they improved when removing the δ
parameter. However, this is completely normal since the training and test datasets were
randomly generated 10 times for each experiment, and therefore, they were supposed not
to contain the same records. Thus, by coincidence, the actual partial datasets could have
been more favourable for classification in one case than in the other. If the performance is
additionally very similar with and without δ; there can be a kind of inversion effect as in
this case.

Overall, the outcomes of the experiments highlight the potential benefits of asymmet-
rical parameter configurations in the SlpEn method. The observed accuracy improvements
underscore the importance of tailoring parameter settings to the dataset characteristics,
enabling better exploitation of underlying patterns. However, the main weakness of the
variations proposed is the significant increment in computational cost. Although the com-
putations using the standard SlpEn method took a few seconds or minutes at most, adding
the asymmetric version implied hours of computational time. We recommend sticking to
the standard SlpEn method to achieve a very good trade-off between time and accuracy, and
only in specific cases where accuracy is of utmost importance or where the basic method is
unable to yield a satisfying classification, resorting to asymmetric parameter versions.

5. Conclusions

This study has addressed an exploration of an asymmetrical variant of the SlpEn
method aimed at enhancing time series classification accuracy. Our experimentation utilised
two distinctive approaches: one retaining symmetry exclusively in the δ parameter while
introducing asymmetry solely in the γ parameter, and the other adopting the methodology
outlined in [34], omitting the δ parameter entirely but introducing asymmetry in γ. The
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study also includes a training–validation subset scheme. The findings offer valuable
insights into the potential advantages and trade-offs associated with these asymmetrical
SlpEn variants.

In general, the results emphasise that a higher degree of parameter customisation con-
sistently leads to improved classification accuracy across all cases. This level of flexibility
enables enhanced pattern recognition and classification performance. Researchers are en-
couraged to consider asymmetrical configurations carefully, tailoring the SlpEn method to
match their specific requirements, accounting for dataset characteristics and computational
constraints. Notably, when the baseline SlpEn method already achieves high classification
accuracy, further improvements via parameter expansion may be limited.

Additionally, our findings suggest a hypothesis worth exploring further: Narrowband
signals, such as those from the Fantasia, Ford A, PAF, and Worms datasets, exhibit a more
substantial potential for increased classification accuracy compared to broadband signals
like EEG data. Future studies should delve deeper into this hypothesis to gain a more
comprehensive understanding.

Regarding computational cost optimisations, it is evident that potential enhancements
may involve refining the SlpEn calculation algorithm, employing faster programming
languages, utilising more powerful computing hardware, or exploring parallel processing
techniques. Furthermore, efficient grid search strategies beyond brute-force methods or
entirely novel input parameter optimisation schemes could significantly contribute to the
field. Future research endeavours are encouraged to investigate these optimisation avenues
for the proposed methods, extending their applicability to diverse domains and datasets.
Such efforts will surely contribute to advancing the characterisation of SlpEn-based time
series classification methods.
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