
Citation: Leeney, W.; McConville, R.

Uncertainty in GNN Learning

Evaluations: A Comparison between

Measures for Quantifying

Randomness in GNN Community

Detection. Entropy 2024, 26, 78.

https://doi.org/10.3390/e26010078

Academic Editor: Hocine Cherifi

Received: 14 December 2023

Revised: 4 January 2024

Accepted: 15 January 2024

Published: 17 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Uncertainty in GNN Learning Evaluations: A Comparison
between Measures for Quantifying Randomness in GNN
Community Detection †

William Leeney * and Ryan McConville

School of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1TR, UK;
ryan.mcconville@bristol.ac.uk
* Correspondence: will.leeney@bristol.ac.uk
† This paper is an extended version of our paper published in The 12th International Conference on Complex

Networks and their Applications (2023).

Abstract: (1) The enhanced capability of graph neural networks (GNNs) in unsupervised community
detection of clustered nodes is attributed to their capacity to encode both the connectivity and feature
information spaces of graphs. The identification of latent communities holds practical significance in
various domains, from social networks to genomics. Current real-world performance benchmarks
are perplexing due to the multitude of decisions influencing GNN evaluations for this task. (2) Three
metrics are compared to assess the consistency of algorithm rankings in the presence of randomness.
The consistency and quality of performance between the results under a hyperparameter optimisation
with the default hyperparameters is evaluated. (3) The results compare hyperparameter optimisation
with default hyperparameters, revealing a significant performance loss when neglecting hyperpa-
rameter investigation. A comparison of metrics indicates that ties in ranks can substantially alter
the quantification of randomness. (4) Ensuring adherence to the same evaluation criteria may result
in notable differences in the reported performance of methods for this task. The W randomness
coefficient, based on the Wasserstein distance, is identified as providing the most robust assessment
of randomness.

Keywords: graph neural networks; community detection; hyperparameter optimisation; node clustering;
representation learning; benchmarks

1. Introduction

Graph neural networks (GNNs) have gained popularity as a neural network-based
approach for handling graph-structured data, leveraging their capacity to merge two infor-
mation sources through the propagation and aggregation of node feature encodings along
the network’s connectivity [1]. Nodes within a network can be organised into communities
based on similarities in associated features and/or edge density [2]. Analyzing the network
structure to identify clusters or communities of nodes proves valuable in addressing real-
world issues like misinformation detection [3], genomic feature discovery [4], and social
network or research recommendation [5]. We consider unsupervised neural approaches
to community detection that do not use any ground truth or labels during training to
optimise the loss functions. As an unsupervised task, the identification of node clusters
relies on latent patterns within the dataset rather than on “ground-truth” labels. Clustering
holds significance for emerging applications lacking associated ground truth. Evaluating
performance in discovering unknown information becomes crucial for applications where
label access is restricted. Many graph applications involve millions of nodes, and datasets
mimicking realistic scenarios exhibit low labeling rates [6].

Recently, Leeney and McConville [7] proposed a framework for fairly evaluating GNN
community detection algorithms and the importance of a hyperparameter optimisation

Entropy 2024, 26, 78. https://doi.org/10.3390/e26010078 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26010078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0000-6289-0326
https://orcid.org/0000-0002-7708-3110
https://doi.org/10.3390/e26010078
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26010078?type=check_update&version=1

Entropy 2024, 26, 78 2 of 12

procedure to performance comparisons. However, this is not done consistently across the
field, although benchmarks are widely considered as important. Confusion arising from
biased benchmarks and evaluation procedures distorts understanding of the research field.
Currently, resources, money, time, and energy training models are wasted on inconclusive
results which may have developed understanding in the field but go unpublished. Where
research findings inform policy decisions or medical practices, publication bias can lead
to decisions based on incomplete or biased evidence, in turn creating inefficiencies and
downstream harms. To accurately reflect the real-world capabilities of research, one may use
a common framework for evaluating proposed methods. To demonstrate the need for such a
framework in this setting, we measure the difference between using the default parameters
given by the original implementations to those optimised for under this framework. To
quantify the influence of randomness on results, we compare three metrics, two proposed
herein, for evaluating the consistency of algorithm rankings over different random seeds
which quantifies the robustness of results. Here, we also investigate how the quantification
of randomness is affected when ties in performance between two or more algorithms is
accounted for. Ties are can occur when out-of-memory errors occur or when a metric such
as conductance is optimised. In addition, we investigate how these metrics change as the
number of tests increase, showing how sensitive each is to the breadth of investigations.

Related Work

There is a recognition of the necessity for rigor in frameworks assessing machine
learning algorithms [8]. Several frameworks for assessing the performance of supervised
GNNs performing node classification, link prediction and graph classification exist [9–12].
Our focus lies in unsupervised community detection, a task that proves more challenging
to train and evaluate. While existing reviews on community detection offer insights, they
generally lack thorough evaluations. The absence of a standardised evaluation in this task
has been acknowledged in discussions concerning non-neural methods [13,14], but this
consideration does not currently extend to GNNs.

Su et al. [15] provide a taxonomy of existing node clustering methods, comparing
representative works in the GNN space, as well as deep non-negative matrix factorisation
and sparse filtering-based methods but do not empirically evaluate the methods discussed.
Chunaev [16] provides an overview of community detection methods but omits mention
of GNN methods. Tu et al. [17] provide an overview of network representation learning
for community detection and propose a novel method to incorporate node connectivity
and features, but do not compare GNN methods in the study. Ezugwu et al. [18] survey
clustering algorithms, providing an in-depth discussion of all applications of clustering
algorithms, but do not includes an investigation into methods that perform clustering on
graphs. There are many traditional community detection methods that are not based on
neural networks. Louvain [19] is a classic community detection algorithm that uses two
phases. In the modularity optimisation phase, nodes are randomly ordered then added
and removed from communities until there is no significant change in modularity; nodes
with the same community are collected and represented as a single node in community
aggregation. Leiden [20] is an extension of Louvain, designed to fix the tendency to discover
weakly connected communities. Leiden has some subtle differences, which include the
addition of a refinement of partitions phase in between the modularity optimisation and
community aggregation phases of Louvain. Rather than the greedy merging of Louvain
based on the largest increase in modularity, the chance of merging increases in proportion
to the modularity. Also, Leiden uses a ‘fast local move procedure’, whereby it only visits
the nodes whose neighbourhoods have been changed in the last iteration of the modularity
optimisation. Label Propagation [21] uses network structure to find communities of densely
connected nodes. This works by initialising every node with a unique label, and at every
iteration, each node is reassigned the label that the majority of its neighbours have. These
traditional methods are transductive [22], as they do not learn a function that can be applied
to unseen data, whereas in this work, we only consider inductive GNN methods which

Entropy 2024, 26, 78 3 of 12

produce a model that can predict community assignments for data that it has not been
trained on.

Various frameworks exist for evaluating performance, and the evaluation procedure
employed significantly influences the performance of all algorithms [23]. Under consistent
conditions, it has been demonstrated that simple models can exhibit improved performance
with a thorough exploration of the hyperparameter space [24]. This improvement may be
attributed to the impact of random initialisations on performance [11]. Importantly, relying
on results from papers without conducting the same hyperparameter optimisation across all
models introduces inconsistency and yields a misleading benchmark. The biased selection
of random seeds, which can skew performance, is considered unfair. Furthermore, not
training over the same number of epochs or neglecting model selection based on validation
set results leads to unfair comparisons, potentially resulting in inaccurate conclusions about
the effectiveness of models. Previous work in this space by Leeney and McConville [7]
proposed a framework for consistent community detection with GNNs and quantifying
the randomness in these investigations. In this work, we expand upon this metric of
randomness by considering the effect of ties in performance. We show the effect of ties on
ranking randomness and propose two new metrics that improve upon the previous work,
evaluating how sensitive each is to the scale of the investigation.

2. Methodology

This section details the procedure for evaluation; the problem that is aimed to solve;
the hyperparameter optimisation and the resources allocated to this investigation; the
algorithms that are being tested; the metrics of performance and datasets used.

The current method of evaluating algorithms suffers from various shortcomings that
impede the fairness and reliability of model comparisons. Establishing a consistent frame-
work provides a transparent and objective basis for comparing models. A standardised
benchmark practice contributes to transparency by thoroughly documenting the factors
influencing performance, encouraging researchers to engage in fair comparisons. To lever-
age results from previous research, it is essential to follow the exact evaluation procedure,
saving time and effort for practitioners. Establishing consistent practices is crucial, as there
is currently no reason for confidence in performance claims without a trustworthy evalua-
tion, fostering a deeper understanding and facilitating progress in the field. For this reason,
we follow the procedure established by Leeney and McConville [7].

None of the evaluated algorithms are deterministic, as each relies on randomness
for initializing the network. Thus, the consistency of a framework can be assessed by
considering the amount to which performance rankings change when different randomness
is introduced across all tests within the framework. Tests refer to the metric’s performance
on a specific dataset, and ranking indicates the algorithm’s placement relative to others. In
this context, different randomness means each distinct random seed used evaluating the
algorithms. To evaluate the consistency of results obtained by this framework, we compare
the existing coefficient of randomness with two new metrics. We investigate the effect of
performance ties on these metrics. In the existing metrics, ties are dealt with by awarding
each algorithm the lowest rank between those that share a rank. In this work, this is
compared with the scenario of awarding the mean rank of those that are tied. Ties are likely
to occur under certain metrics such as conductance, where the algorithm scores the optimal
value of 0. In addition, ties will occur where algorithms run out of memory in computation.
With this setup, the improved version of Kendall’s W coefficient of concordance [25] that
can account for ties is used to assess the consistency of rankings. In addition, we use the
Wasserstein distance to create another metric for quantifying the difference in rankings
due to random seeds. From Leeney and McConville [7], the W randomness coefficient
is calculated using the number of algorithms a, and random seeds n, along with tests of
performance that create rankings of algorithms, as defined by Equation (1):

W = 1 − 1
|T | ∑

t∈T

12S
n2(a3 − a)

. (1)

Entropy 2024, 26, 78 4 of 12

The sum of squared deviations S is calculated for all algorithms, and calculated
using the deviation from mean rank due for each random seed. This is averaged over all
metrics and datasets that make up the suite of tests T . Using the one minus means that if
the W is high, then randomness has affected the rankings, whereas a consistent ranking
procedure results in a lower number. By detailing the consistency of a framework across
the randomness evaluated, the robustness of the framework can be maintained, allowing
researchers to trust results and maintain credibility of their publications. However, this
metric does not account for ties in performance and deals with this by assigning the lowest
rank from all the algorithms that tie. Instead, an improvement to this is where, when there
are ties, each is given the average of the ranks that would have been given had no ties
occurred. Where there are a large number of ties, this reduces the value of W and allows us
to compute the correction equation as

Wt = 1 − 1
|T | ∑

t∈T

12 ∑a
i=1(R2

i)− 3n2a(a + 1)2

n2a(a2 − 1)− n ∑n
j=1(∑

gj
i=1(t

3
i − ti))

, (2)

where Ri is the sum of the ranks for algorithm i, gj is the number of groups of ties in the
rankings under seed j, and ti is the number of ties in that group.

The other metric that we propose is to calculate the overlap in ranking distributions.
This is normalised by the maximum difference that would occur when there is no un-
certainty in rank due to randomness as there would be no overlap between the ranking
distributions. Formally, we calculate the normalised Wasserstein distance [26,27] between
rank distributions over each of the test scenarios. Therefore, given the probability distri-
bution of the rank of an algorithm j as f j(r) over the discrete ranking space R, then the
cumulative distribution is denoted as Fj(r), and therefore, the Wasserstein distance between
two rank distributions is given by Equation (3):

W1(i, j) =
∫

Ra
|Fi(r), Fj(r)| dr . (3)

This leads us to the definition of the Ww Wasserstein randomness given by Equation (4),

Ww = 1 − 1
|T | ∑

t∈T

∑a
i=1 ∑i−1

j=1 W1(i, j)

∑a
v=1

v(v−1)
2

. (4)

We also need to compare the effectiveness of these coefficients in assessing the ran-
domness present in the investigations. To do this, we sample a number of tests from the
44 different coefficients ten times for each number of potential tests. This allows us to see
how the different coefficients converge to the true coefficient value found by computing
the metric over all tests.

To assess the quality of the results, we compare whether the performance is better
under the hyperparameters or the default reported by the original implementations. The
different parameter sets are given a rank by comparing the performance on every test. This
is then averaged across every test, to give the Framework Comparison Rank (FCR) [7].
Demonstrating that failing to optimise hyperparameters properly can result in sub-optimal
performance means that models that could have performed better with proper tuning may
appear inferior. This affects decision making and potentially leading to the adoption of
sub-optimal solutions. In the real world, this can have costly and damaging consequences,
and is especially critical in domains where model predictions impact decisions, such as
healthcare, finance, and autonomous vehicles.

2.1. Problem Definition

The problem definition of community detection on attributed graphs is defined as
follows. The graph, where N is the number of nodes in the graph, is represented as
G = (A, X), with the relational information of nodes modelled by the adjacency matrix
A ∈ RN×N . Given a set of nodes V and a set of edges E, let ei,j = (vi, vj) ∈ E denote the
edge that points from vj to vi. The graph is considered weighted, so the adjacency matrix

Entropy 2024, 26, 78 5 of 12

0 < Ai,j ≤ 1 if ei,j ∈ E and Ai,j = 0 if ei,j /∈ E. Also given is a set of node features X ∈ RN×d,
where d represents the number of different node attributes (or feature dimensions). The
objective is to partition the graph G into k clusters such that nodes in each partition, or
cluster, generally have similar structure and feature values. The only information typically
given to the algorithms at training time is the number of clusters k to partition the graph
into. Hard clustering is assumed, where each community detection algorithm must assign
each node a single community to which it belongs, such that P ∈ RN , and we evaluate
the clusters associated with each node using the labels given with each dataset, such that
L ∈ RN . Metrics that compare to the ground truth labels are allowed to be used for early
stopping and for hyperparameter optimisation.

2.2. Hyperparameter Optimisation Procedure

There are sweet spots of architecture combinations that are best for each dataset [28]
and the effects of not selecting hyperparameters (HPs) have been well-documented. Choos-
ing too wide of a HP interval or including uninformative HPs in the search space can
have an adverse effect on tuning outcomes in the given budget [29]. Thus, a HPO is
performed under feasible constraints in order to validate the hypothesis that HPO affects
the comparison of methods. It has been shown that grid search is not suited for searching
for HPs on a new dataset and that Bayesian approaches perform better than random [28].
There are a variety of Bayesian methods that can be used for hyperparameter selection.
One such is the Tree Parzen-Estimator (TPE) [30] that can retain the conditionality of
variables [29] and has been shown to be a good estimator given limited resources [31].
The multi-objective version of the TPE [32] is used to explore the multiple metrics of
performance investigated. Given a limited budget, the TPE is optimal, as it allows the
efficient exploration of parameters (Table 1).

Table 1. Resources are allocated an investigation, and those detailed are shared across all investiga-
tions. Algorithms that are designed to benefit from a small number of HPs should perform better, as
they can search more of the space within the given budget. All models are trained with 1× 2080 Ti
GPU on a server with 12 GB of RAM, and a 16core Xeon CPU.

Resource Associated Allocation

Optimiser Adam
Learning Rate {0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}
Weight Decay {0.05, 0.005, 0.0005, 0.0}
Max Epochs 5000

Patience {25, 100, 500, 1000}
Max Hyperparameter Trials 300

Seeds {42, 24, 976, 12345,98765,7, 856, 90, 672, 785}
Training/Validation Split 0.8

Train/Testing Split 0.8

In this framework, a modification to the nested cross-validation procedure is used
to match reasonable computational budgets, which is to optimise hyperparameters on
the first seed tested on and use those hyperparameters on the other seeds. Additionally,
it it beneficial to establish a common resource allocation such as number of epochs al-
lowed for in training or number of hyperparameter trials. Ensuring the same resources are
used in all investigations means that the relatively underfunded researchers can partic-
ipate in the field, democratising the access to contribution. Conversely, this also means
that highly funded researchers cannot bias their results by exploiting the resources they
have available.

2.3. Suite of Tests

A test of an algorithm in this framework is the performance under a metric on a
dataset. Algorithms are ranked on each test on every random seed used. For evaluation

Entropy 2024, 26, 78 6 of 12

purposes, some metrics require the ground truth, and others do not, although regardless,
this knowledge is not used during the training itself. Macro F1-score (F1) is calculated to
ensure that evaluations are not biased by the label distribution, as communities’ sizes are
often imbalanced. Normalised mutual information (NMI) is also used, which is the amount
of information that can be extracted from one distribution with respect to a second.

For unsupervised metrics, modularity and conductance are selected. Modularity
quantifies the deviation of the clustering from what would be observed in expectation
under a random graph. Conductance is the proportion of total edge volume that points
outside the cluster. These two metrics are unsupervised, as they are calculated using the
predicted cluster label and the adjacency matrix, without using any ground truth. Many
metrics are used in the framework, as they align with specific objectives and ensure that
evaluations reflect a clear and understandable assessment of performance.

Generalisation of performance on one dataset can often not be statistically valid and
lead to overfitting on a particular benchmark [33]; hence, multiple are used in this investiga-
tion. To fairly compare different GNN architectures, a range of graph topologies are used
to fairly represent potential applications. Each dataset can be summarised by commonly
used graph statistics: the average clustering coefficient [34] and closeness centrality [35].
The former is the proportion of all the connections that exist in a node’s neighbourhood
compared to a fully connected neighbourhood, averaged across all nodes. The latter is the
reciprocal of the mean shortest path distance from all other nodes in the graph. All datasets
are publicly available and have been used previously in GNN research [36].

Using many datasets for evaluation means that dataset bias is mitigated, which means
that the framework is better at assessing the generalisation capability of models to different
datasets. These datasets are detailed in Table 2; the following is a brief summary. Cora [37],
CiteSeer [38], and DBLP [39] are graphs of academic publications from various sources with
the features coming from words in publications and connectivity from citations. AMAC and
AMAP are extracted from the Amazon co-purchase graph [40]. Texas, Wisc, and Cornell are
extracted from web pages from computer science departments of various universities [41].
UAT, EAT, and BAT contain airport activity data collected from the National Civil Aviation
Agency, Statistical Office of the European Union and Bureau of Transportation Statistics [36].

Table 2. The datasets and associated statistics.

Datasets Nodes Edges Features Classes
Average

Clustering
Coefficient

Mean
Closeness
Centrality

AMAC [40] 13752 160124 767 10 0.157 0.264
AMAP [40] 7650 238163 745 8 0.404 0.242

BAT [36] 131 2077 81 4 0.636 0.469
CiteSeer [38] 3327 9104 3703 6 0.141 0.045

Cora [37] 2708 10556 1433 7 0.241 0.137
DBLP [39] 4057 7056 334 4 0.177 0.026
EAT [36] 399 11988 203 4 0.539 0.441
UAT [36] 1190 27198 239 4 0.501 0.332
Texas [41] 183 325 1703 5 0.198 0.344
Wisc [41] 251 515 1703 5 0.208 0.32

Cornell [41] 183 298 1703 5 0.167 0.326

2.4. Models

We consider a representative suite of GNNs, selected based on factors such as code
availability and re-implementation time. In addition to explicit community detection algo-
rithms, we also consider those that can learn an unsupervised representation of data, as
there is previous research that applies vector-based clustering algorithms to the represen-
tations [42]. The following are GNN architectures that learn representations of attributed
graphs without a comparison to any labels during the training process. All these methods
have hyperparameters which control trade-offs in optimisation.

Entropy 2024, 26, 78 7 of 12

Deep Attentional Embedded Graph Clustering (DAEGC) uses a k-means target to self-
supervise the clustering module to iteratively refine the clustering of node embeddings [43].
Deep Modularity Networks (DMoNs) use GCNs to maximise a modularity-based clustering
objective to optimise cluster assignments by a spectral relaxation of the problem [44].
Neighbourhood Contrast Framework for Attributed Graph Clustering (CAGC) [45] is
designed for attributed graph clustering with contrastive self-expression loss that selects
positive/negative pairs from the data and contrasts representations with its k-nearest
neighbours. Deep Graph Infomax (DGI) maximises mutual information between patch
representations of sub-graphs and the corresponding high-level summaries [46]. GRAph
Contrastive rEpresentation learning (GRACE) generates a corrupted view of the graph
by removing edges and learns node representations by maximising agreement across two
views [47]. Contrastive Multi-View Representation Learning on Graphs (MVGRL) argues
that the best employment of contrastive methods for graphs is achieved by contrasting
encodings from first-order neighbours and a general graph diffusion [48]. Bootstrapped
Graph Latents (BGRL) [49] uses a self-supervised bootstrap procedure by maintaining
two graph encoders; the online one learns to predict the representations of the target
encoder, which in itself is updated by an exponential moving average of the online encoder.
SelfGNN [50] also uses this principal but uses augmentations of the feature space to train
the network. Towards Unsupervised Deep Graph Structure Learning (SUBLIME) [51] is
an encoder with the bootstrapping principle applied over the feature space as well as
a contrastive scheme between the nearest neighbours. Variational Graph AutoEncoder
Reconstruction (VGAER) [52] reconstructs a modularity distribution using a cross-entropy-
based decoder from the encoding of a VGAE [53].

3. Evaluation and Discussion

The Framework Comparison Rank is the average rank when comparing performance
of the parameters found through hyperparameter optimisation versus the default values.
From Table 3, it can be seen that Framework Comparison Rank indicates that the hyper-
parameters that are optimised on average perform better. This validates the hypothesis
that the hyperparameter optimisation significantly impacts the evaluation of GNN-based
approaches to community detection.

Table 3. Here we show the quantification of intra-framework consistency using the W randomness
coefficient, W Randomness with Mean Ties, Tied W Randomness, W Wasserstein Randomness, and
inter-framework disparity using the Framework Comparison Rank. Low values for the Framework
Comparison Rank and all W randomness coefficients are preferred.

Results Default HPO

Framework Comparison Rank 1.829 1.171
W Randomness Coefficient 0.476 0.489

N Ties 10 200
W Randomness w/ Mean Ties 0.150 0.245

Tied Wt Randomness 0.150 0.229
Ww Wasserstein Randomness 0.072 0.127

The results of the hyperparameter optimisation and the default parameters are visu-
alised in Figure 1. From this, we can see the difference in performance under both sets of
hyperparameters. On some datasets, the default parameters work better than those opti-
mised, which means that under the reasonable budget assumed in this framework, they
are not reproducible. This adds strength to the claim that using the default parameters is
not credible. Without validation that these parameters can be recovered, results cannot be
trusted and mistakes are harder to identify. On the other side of this, often the hyperpa-
rameter optimisation performs better than the default values. Algorithms were published
knowing these parameters can be tuned to better performance. Using reasonable resources,
the performance can be increased, which means that without the optimisation procedure,

Entropy 2024, 26, 78 8 of 12

inaccurate or misleading comparisons are propagated. Reproducible findings are the solid
foundation that allows us to build on previous work and are a necessity for scientific validity.

daegc
dgi

dmon
grace

mvgrl
selfgnn

sublime

bgrl
vgaer

cagc
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Cora

daegc
dgi

dmon
grace

mvgrl
selfgnn

sublime

bgrl
vgaer

cagc
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 EAT

daegc
dgi

dmon
grace

mvgrl
selfgnn

sublime

bgrl
vgaer

cagc
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 UAT

daegc
dgi

dmon
grace

mvgrl
selfgnn

sublime

bgrl
vgaer

cagc
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CiteSeer

daegc
dgi

dmon
grace

mvgrl
selfgnn

sublime

bgrl
vgaer

cagc
0.0

0.2

0.4

0.6

0.8

Texas

daegc
dgi

dmon
grace

mvgrl
selfgnn

sublime

bgrl
vgaer

cagc
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
AMAC

daegc
dgi

dmon
grace

mvgrl
selfgnn

sublime

bgrl
vgaer

cagc
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 DBLP

daegc
dgi

dmon
grace

mvgrl
selfgnn

sublime

bgrl
vgaer

cagc
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Wisc

daegc
dgi

dmon
grace

mvgrl
selfgnn

sublime

bgrl
vgaer

cagc
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
AMAP

daegc
dgi

dmon
grace

mvgrl
selfgnn

sublime

bgrl
vgaer

cagc
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
BAT

daegc
dgi

dmon
grace

mvgrl
selfgnn

sublime

bgrl
vgaer

cagc
0.0

0.2

0.4

0.6

0.8

Cornell

f1
nmi
modularity
conductance
Default
Hyperparameters

Figure 1. The average performance and standard deviation of each metric averaged over every seed
tested on for all methods on all datasets. The hyperparameter investigation under our framework is
shown in colour compared with the default hyperparameters in dashed boxes. The lower the value for
conductance, the better. Out-of-memory occurrences happened on the AMAC dataset with the following
algorithms during HPO: DAEGC, SUBLIME, DGI, CAGC, VGAER, and CAGC under the default HPs.

The W randomness coefficient quantifies the consistency of rankings over the different
random seeds tested on, averaged over the suite of tests in the framework. With less devia-
tion of prediction under the presence of randomness, an evaluation finds a more confident
assessment of the best algorithm. A marginally higher W value using the optimised hyperpa-
rameters indicates that the default parameters are more consistent over randomness. There
is little difference in the coefficients for the original W randomness coefficient, which is
potentially due to the fact that the default parameters have been evaluated with a consistent
approach to model selection and constant resource allocation to training time. However,

Entropy 2024, 26, 78 9 of 12

when we account for the number of tied ranks, we find that the HPO has more tied ranks
over the investigation, due to out-of-memory occurrences or optimal conductance values.
This may be because the hyperparameter optimisation leads to better results, reducing the
difference between algorithms. This is supported by the W randomness coefficients that
account for ties, showing that the HPO is less consistent across randomness. By assessing
the W randomness coefficient, we can reduce the impact of biased evaluation procedures.
However, it is important to explain the reasons behind why randomness might be affecting
the results. The higher W for the hyperparameter analysis might be because algorithms
increase performance under the HPO. Therefore, when all methods are fairly evaluated
under a HPO, the spread of rankings may overlap more, which is not explicitly negative.
With this coefficient, researchers can quantify how reliable their results are, and therefore
the usability in real-world applications. This sets the baseline for consistency in evaluation
procedures and allows better understanding of relative method performance.

In Figure 2, we see the convergence of each metric as the number of tests increases.
There is significant overlap between the default and HPO investigation. When we use the
original W randomness coefficient but change how tied ranks are dealt with, by taking the
mean of the ties, we can see that the two distributions overlap less. This demonstrates that
how ties are dealt with does change quantification of randomness. Comparing this to the
Wt randomness coefficient, we can see that this metric does not affect the measurement of
randomness at the scale that is carried out herein. However, when comparing to the Ww,
it is clear that this coefficient has significantly less spread for a low number of tests and
converges quicker to the true value, as measured by the full breadth of the investigation.
Therefore, this metric can be used to provide a more accurate assessment of the amount of
randomness in the investigation and the robustness of the methods evaluated.

0 10 20 30 40
N Tests

0.0

0.2

0.4

0.6

W

Original W Randomness

HPO

Default

0 10 20 30 40
N Tests

0.0

0.2

0.4

0.6

W

W Randomness
w/ Mean Ties

HPO

Default

0 10 20 30 40
N Tests

0.0

0.2

0.4

0.6

W

Tied Wt Randomness

HPO

Default

0 10 20 30 40
N Tests

0.0

0.2

0.4

0.6

W

Ww Wasserstein Randomness

HPO

Default

Figure 2. Here, the different metrics of quantifying randomness are compared against samples of the
original testing space. The randomness in rankings over samples of experiments using the default hyper-
parameters is compared against the HPO results. The distinction between the original W randomness
coefficient proposed by Leeney and McConville [7] and the other metrics of randomness is that ties are
settled by taking the mean of the ranks rather than assigning the lowest rank to all algorithms.

Entropy 2024, 26, 78 10 of 12

Given different computational resources, performance rankings will vary. Future
iterations of the framework should experiment with the number of trials and impact of
over-reliance on specific seeds or extending the hyperparameter options to a continuous
distribution. Additionally, finding the best general algorithm will have to include a wide
range of different topologies or sizes of graphs that are not looked at, and we do not explore
other feature space landscapes or class distributions.

4. Conclusions

In this work, we demonstrate flaws with how GNN-based community detection meth-
ods are currently evaluated, leading to potentially misleading and confusing conclusions.
To address this, a framework was compared for providing a more consistent and fair evalu-
ation for GNN community detection. We provide further insight that consistent HPO is
key in this task by quantifying the difference in performance from HPO to reported values.
Finally, different metrics of assessing the consistency of rankings under the presence of
randomness are compared. It is found that the W Wasserstein randomness coefficient is the
most robust to samples of the full test investigation.

Author Contributions: Conceptualisation, W.L. and R.M.; methodology, W.L.; software, W.L.; valida-
tion, W.L. and R.M.; formal analysis, W.L.; investigation, W.L.; resources, W.L.; data curation, W.L.;
writing—original draft preparation, W.L.; writing—review and editing, W.L. and R.M.; visualisation,
W.L.; supervision, R.M.; project administration, R.M.; funding acquisition, R.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded by the EPSRC.

Data Availability Statement: Data are publicly available at https://github.com/yueliu1999/Awesome-
Deep-Graph-Clustering, (accesssed on 13 December 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

HPO Hyperparameter Optimisation
HPs Hyperparameters
F1 Macro F1-score
NMI Normalised Mutual Information
GNN Graph Neural Network
FCR Framework Comparison Rank
DAEGC Deep Attentional Embedded Graph Clustering
DMoN Deep Modularity Network
CAGC Neighbourhood Contrast Framework for Attributed Graph Clustering
DGI Deep Graph Infomax
GRACE GRAph Contrastive rEpresentation learning
MVGRL Contrastive Multi-View Representation Learning on Graphs
BGRL Bootstrapped Graph Latents
SUBLIME Towards Unsupervised Deep Graph Structure Learning
VGAER Variational Graph AutoEncoder Reconstruction

References
1. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907.
2. Schaeffer, S.E. Graph clustering. Comput. Sci. Rev. 2007, 1, 27–64. [CrossRef]
3. Monti, F.; Frasca, F.; Eynard, D.; Mannion, D.; Bronstein, M.M. Fake news detection on social media using geometric deep

learning. arXiv 2019, arXiv:1902.06673.
4. Cabreros, I.; Abbe, E.; Tsirigos, A. Detecting community structures in hi-c genomic data. In Proceedings of the 2016 Annual

Conference on Information Science and Systems (CISS), Princeton, NJ, USA, 16–18 March 2016; IEEE: Piscataway, NJ, USA, 2016;
pp. 584–589.

https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering
https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering
http://doi.org/10.1016/j.cosrev.2007.05.001

Entropy 2024, 26, 78 11 of 12

5. Yang, J.; McAuley, J.; Leskovec, J. Community detection in networks with node attributes. In Proceedings of the 2013 IEEE 13th
International Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1151–1156.

6. Hu, W.; Fey, M.; Ren, H.; Nakata, M.; Dong, Y.; Leskovec, J. Ogb-lsc: A large-scale challenge for machine learning on graphs.
arXiv 2021, arXiv:2103.09430.

7. Leeney, W.; McConville, R. Uncertainty in GNN Learning Evaluations: The Importance of a Consistent Benchmark for Community
Detection. In Proceedings of the Twelfth International Conference on Complex Networks & Their Applications, Menton Riviera,
France, 28–30 November 2023; Springer: Berlin/Heidelberg, Germany, 2023.

8. Pineau, J.; Vincent-Lamarre, P.; Sinha, K.; Larivière, V.; Beygelzimer, A.; d’Alché Buc, F.; Fox, E.; Larochelle, H. Improving
reproducibility in machine learning research (a report from the neurips 2019 reproducibility program). J. Mach. Learn. Res. 2021,
22, 7459–7478.

9. Dwivedi, V.P.; Joshi, C.K.; Laurent, T.; Bengio, Y.; Bresson, X. Benchmarking graph neural networks. arXiv 2020, arXiv:2003.00982.
10. Morris, C.; Kriege, N.M.; Bause, F.; Kersting, K.; Mutzel, P.; Neumann, M. Tudataset: A collection of benchmark datasets for

learning with graphs. arXiv 2020, arXiv:2007.08663.
11. Errica, F.; Podda, M.; Bacciu, D.; Micheli, A. A fair comparison of graph neural networks for graph classification. arXiv 2019,

arXiv:1912.09893.
12. Palowitch, J.; Tsitsulin, A.; Mayer, B.; Perozzi, B. GraphWorld: Fake Graphs Bring Real Insights for GNNs. arXiv 2022, arXiv:2203.00112.
13. Liu, F.; Xue, S.; Wu, J.; Zhou, C.; Hu, W.; Paris, C.; Nepal, S.; Yang, J.; Yu, P.S. Deep learning for community detection: progress,

challenges and opportunities. arXiv 2020, arXiv:2005.08225.
14. Jin, D.; Yu, Z.; Jiao, P.; Pan, S.; He, D.; Wu, J.; Yu, P.; Zhang, W. A survey of community detection approaches: From statistical

modeling to deep learning. IEEE Trans. Knowl. Data Eng. 2021, 35, 1149–1170. [CrossRef]
15. Su, X.; Xue, S.; Liu, F.; Wu, J.; Yang, J.; Zhou, C.; Hu, W.; Paris, C.; Nepal, S.; Jin, D.; et al. A comprehensive survey on community

detection with deep learning. IEEE Trans. Neural Netw. Learn. Syst. 2022, early access. [CrossRef] [PubMed]
16. Chunaev, P. Community detection in node-attributed social networks: A survey. Comput. Sci. Rev. 2020, 37, 100286. [CrossRef]
17. Tu, C.; Zeng, X.; Wang, H.; Zhang, Z.; Liu, Z.; Sun, M.; Zhang, B.; Lin, L. A unified framework for community detection and

network representation learning. IEEE Trans. Knowl. Data Eng. 2018, 31, 1051–1065. [CrossRef]
18. Ezugwu, A.E.; Ikotun, A.M.; Oyelade, O.O.; Abualigah, L.; Agushaka, J.O.; Eke, C.I.; Akinyelu, A.A. A comprehensive survey of

clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng.
Appl. Artif. Intell. 2022, 110, 104743. [CrossRef]

19. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory
Exp. 2008, 2008, P10008. [CrossRef]

20. Traag, V.A.; Waltman, L.; Van Eck, N.J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 2019, 9, 5233.
[CrossRef]

21. Raghavan, U.N.; Albert, R.; Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys.
Rev. E 2007, 76, 036106. [CrossRef]

22. Vapnik, V. Statistical Learning Theory; Wiley-Interscience: New York, NY, USA, 1998.
23. Zöller, M.A.; Huber, M.F. Benchmark and survey of automated machine learning frameworks. J. Artif. Intell. Res. 2021, 70, 409–472.

[CrossRef]
24. Shchur, O.; Mumme, M.; Bojchevski, A.; Günnemann, S. Pitfalls of graph neural network evaluation. arXiv 2018, arXiv:1811.05868.
25. Field, A.P. Kendall’s coefficient of concordance. Encycl. Stat. Behav. Sci. 2005, 2, 1010–1011.
26. Vallender, S. Calculation of the Wasserstein distance between probability distributions on the line. Theory Probab. Its Appl. 1974,

18, 784–786. [CrossRef]
27. Shen, J.; Qu, Y.; Zhang, W.; Yu, Y. Wasserstein distance guided representation learning for domain adaptation. In Proceedings of

the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32.
28. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
29. Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,

415, 295–316. [CrossRef]
30. Bergstra, J.; Yamins, D.; Cox, D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for

vision architectures. In Proceedings of the International Conference on Machine Learning, PMLR, Atlanta, GA, USA, 16–21 June
2013; pp. 115–123.

31. Yuan, Y.; Wang, W.; Pang, W. A systematic comparison study on hyperparameter optimisation of graph neural networks for
molecular property prediction. In Proceedings of the Genetic and Evolutionary Computation Conference, Lille, France, 10–14 July
2021; pp. 386–394.

32. Ozaki, Y.; Tanigaki, Y.; Watanabe, S.; Onishi, M. Multiobjective tree-structured parzen estimator for computationally expensive
optimization problems. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, Cancun, Mexico, 8–12
July 2020; pp. 533–541.

33. Salzberg, S.L. On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Min. Knowl. Discov. 1997, 1, 317–328.
[CrossRef]

34. Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442. [CrossRef] [PubMed]
35. Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994.

http://dx.doi.org/10.1109/TKDE.2021.3104155
http://dx.doi.org/10.1109/TNNLS.2021.3137396
http://www.ncbi.nlm.nih.gov/pubmed/35263257
http://dx.doi.org/10.1016/j.cosrev.2020.100286
http://dx.doi.org/10.1109/TKDE.2018.2852958
http://dx.doi.org/10.1016/j.engappai.2022.104743
http://dx.doi.org/10.1088/1742-5468/2008/10/P10008
http://dx.doi.org/10.1038/s41598-019-41695-z
http://dx.doi.org/10.1103/PhysRevE.76.036106
http://dx.doi.org/10.1613/jair.1.11854
http://dx.doi.org/10.1137/1118101
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1023/A:1009752403260
http://dx.doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998

Entropy 2024, 26, 78 12 of 12

36. Liu, Y.; Xia, J.; Zhou, S.; Wang, S.; Guo, X.; Yang, X.; Liang, K.; Tu, W.; Li, Z.S.; Liu, X. A Survey of Deep Graph Clustering:
Taxonomy, Challenge, and Application. arXiv 2022, arXiv:2211.12875.

37. McCallum, A.K.; Nigam, K.; Rennie, J.; Seymore, K. Automating the construction of internet portals with machine learning.
Inf. Retr. 2000, 3, 127–163. [CrossRef]

38. Giles, C.L.; Bollacker, K.D.; Lawrence, S. CiteSeer: An automatic citation indexing system. In Proceedings of the Third ACM
Conference on Digital Libraries, Pittsburgh, PA, USA, 23–26 June 1998; pp. 89–98.

39. Tang, J.; Zhang, J.; Yao, L.; Li, J.; Zhang, L.; Su, Z. Arnetminer: Extraction and mining of academic social networks. In Proceedings of
the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August
2008; pp. 990–998.

40. He, R.; McAuley, J. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In
Proceedings of the 25th International Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 507–517.

41. Craven, M.; McCallum, A.; PiPasquo, D.; Mitchell, T.; Freitag, D. Learning to Extract Symbolic Knowledge from the World Wide Web;
Technical Report; Carnegie Mellon School of Computer Science: Pittsburgh, PA, USA, 1998.

42. McConville, R.; Santos-Rodriguez, R.; Piechocki, R.J.; Craddock, I. N2d:(Not too) deep clustering via clustering the local manifold
of an autoencoded embedding. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan,
Italy, 10–15 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 5145–5152.

43. Wang, C.; Pan, S.; Hu, R.; Long, G.; Jiang, J.; Zhang, C. Attributed graph clustering: A deep attentional embedding approach.
arXiv 2019, arXiv:1906.06532.

44. Tsitsulin, A.; Palowitch, J.; Perozzi, B.; Müller, E. Graph clustering with graph neural networks. J. Mach. Learn. Res. 2023, 24, 1–21.
45. Wang, T.; Yang, G.; He, Q.; Zhang, Z.; Wu, J. NCAGC: A Neighborhood Contrast Framework for Attributed Graph Clustering.

arXiv 2022, arXiv:2206.07897.
46. Velickovic, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep Graph Infomax. ICLR (Poster) 2019, 2, 4.
47. Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; Wang, L. Deep graph contrastive representation learning. arXiv 2020, arXiv:2006.04131.
48. Hassani, K.; Khasahmadi, A.H. Contrastive multi-view representation learning on graphs. In Proceedings of the International

Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 4116–4126.
49. Thakoor, S.; Tallec, C.; Azar, M.G.; Munos, R.; Veličković, P.; Valko, M. Bootstrapped representation learning on graphs. In Proceedings

of the ICLR 2021 Workshop on Geometrical and Topological Representation Learning, 2021.
50. Kefato, Z.T.; Girdzijauskas, S. Self-supervised graph neural networks without explicit negative sampling. arXiv 2021, arXiv:2103.14958.
51. Liu, Y.; Zheng, Y.; Zhang, D.; Chen, H.; Peng, H.; Pan, S. Towards unsupervised deep graph structure learning. In Proceedings of

the ACM Web Conference 2022, Lyon, France, 25–29 April 2022; pp. 1392–1403.
52. Qiu, C.; Huang, Z.; Xu, W.; Li, H. VGAER: Graph Neural Network Reconstruction based Community Detection. In Proceedings

of the AAAI: DLG-AAAI’22, Virtual, 28 February–1 March 2022.
53. Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv 2016, arXiv:1611.07308.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1023/A:1009953814988

	Introduction
	Methodology
	Problem Definition
	Hyperparameter Optimisation Procedure
	Suite of Tests
	Models

	Evaluation and Discussion
	Conclusions
	References

