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Abstract: This paper presents an adaptive learning structure based on neural networks (NNs) to
solve the optimal robust control problem for nonlinear continuous-time systems with unknown
dynamics and disturbances. First, a system identifier is introduced to approximate the unknown
system matrices and disturbances with the help of NNs and parameter estimation techniques. To
obtain the optimal solution of the optimal robust control problem, a critic learning control structure
is proposed to compute the approximate controller. Unlike existing identifier-critic NNs learning
control methods, novel adaptive tuning laws based on Kreisselmeier’s regressor extension and
mixing technique are designed to estimate the unknown parameters of the two NNs under relaxed
persistence of excitation conditions. Furthermore, theoretical analysis is also given to prove the
significant relaxation of the proposed convergence conditions. Finally, effectiveness of the proposed
learning approach is demonstrated via a simulation study.

Keywords: optimal robust control; nonlinear systems; parameter estimation; neural networks
learning; relaxed PE conditions

1. Introduction

In the past several decades, much attention has been given to H∞ control problems,
wherein the aim is to eliminate the influence of disturbance on the system. H∞ control
mainly focuses on designing a robust controller to regulate and stabilize the system. In
practice, we should not only focus on the control performance, but also consider the
optimization of the system [1,2]. Therefore, optimal H∞ control problems will always be a
hot research topic.

Adaptive dynamic programming (ADP), as one of the optimal control methods, has
emerged as a powerful tool through which to deal with the optimal control problems of all
kinds of dynamic systems [3]. The ADP framework combines dynamic programming and
neural network approximation, and it has strong learning and adaptive ability. In this sense,
ADP has rapidly developed in the control community in recent years. Generally speaking,
the core of controller designs mainly concentrates on solving a Hamilton–Jacobi–Bellman
(HJB) equation for nonlinear systems or an algebraic Riccati equation for linear systems [4].
Unfortunately, the HJB equation contains nonlinear, partial differential parts, which are dif-
ficult to solve directly [5]. Therefore, many efforts have been made for finding approximate
solutions to the HJB equation using iterative or learning methods. Regarding the case of
iterative methods, the ADP can be classed into two categories: value iteration (VI) [6,7] and
policy iteration (PI) [8,9]. Regarding the case of learning-based methods, neural network
(NN) approximation is generally utilized to learn the optimal or suboptimal solutions to
the HJB equation. The standard learning frameworks include the following: actor–critic
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NNs and only-critic NNs. However, the abovementioned pieces of literature require par-
tial or full model information in the controller design loop. To avoid relying on system
models, many data-driven or model-free methods have been developed for improving the
existing ADP frameworks, that is, data-driven RL [7], integral RL (IRL) [10,11], and system
identification-based ADP methods [12–14].

More recently, excellent development has been realized with the use of ADP for the
robust controller designs of optimal H∞ control problems [15–17]. The main way through
which to solve optimal H∞ control problems is to model such problems as a two-player
zero-sum game (min–max optimization problem), where the controller and the disturbance
are viewed as players that try to find a controller to minimize the performance index
function in worst-case disturbance conditions [18,19]. However, the disadvantage of zero-
sum games is in judging the existence of the saddle point, which is generally difficult
to judged. In order to overcome this issue, an indirect method motivated by [20] was
developed by formulating an optimal regulation for a nominal system with new designs of
the cost/value function [21]. For instance, Yang et al. proposed an event-triggered robust
control strategy for nonlinear systems [22] using the indirect method. Xue et al. studied
a tracking control problem for partial continuous-time systems with uncertainties and
constraints [23] by transforming the robust control problem into an optimal regulation of
nominal systems.

However, the existing results on H∞ optimal control designs have two main character-
istics: (1) their controller designs are based on the assumption that the complete or partial
knowledge of the system dynamics are known in advance; however, (2) to address this
issue, some system identification methods have been proposed, such as the identifier–critic-
or identifier–actor–critic-based designs of H∞ optimal control. However, it is generally
required that the persistence of excitation (PE) condition must be satisfied to ensure the
learning performance of the weight updating of neural networks, which is difficult to check
online in practice [18,19,23]. Therefore, how to weaken the PE condition is also the research
motivation of this paper.

From the abovementioned observations and considerations, in this paper, we propose
a novel online parameter estimation method based on an identifier–critic learning control
framework for the H∞ optimal control of nonlinear systems that have unknown dynamics
with relaxed PE conditions. The contributions of our work can be summarized as follows:

• A new online identifier–critic learning control framework with a relaxed PE condition
is proposed to address robust control for unknown continuous-time systems subject to
unknown disturbances. To reconstruct the information of the system dynamics, neural
networks combined with the linear regressor method are established to approximate
the unknown system dynamics and disturbances.

• The approach in this paper is different from the existing weight adaption laws [18,19,23],
where the PE condition is needed to ensure the learning performance of the NN’s
weight parameters. However, such a condition is difficult to check online, and a
general way through which to satisfy this condition is to add external noise to the
controller, which may lead to the instability of the system. To overcome this issue, a
Kreisselmeier regressor extension and mixing (KREM)-based weight adaption law is
designed for identifier–critic NNs with new convergence conditions.

• Weak PE properties of new convergence conditions are analyzed rigorously compared
to traditional PE conditions. Moreover, the theoretical results indicate that the closed-
loop system’s stability and the convergence of identifier–critic learning are guaranteed.

The remainder of this article is organized as follows. In Section 2, some preliminaries
are introduced and the optimal robust control problem of nonlinear continuous-time sys-
tems is given. Then, a system identifier design with a relaxed PE condition is constructed
in Section 3. Section 4 gives the critic NN design for robust control under a relaxed PE con-
dition. Theoretical analyses of the weak PE properties under new convergence conditions
and the stability of the closed-loop systems are given in Section 5. The simulation results
are provided in Section 6. Some conclusions are summarized in Section 7.
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2. Preliminaries and Problem Formulation

In this section, some notation and definitions are first introduced. Then, the optimal
robust control problem of the nonlinear continuous-time systems is described.

2.1. Preliminaries

To facilitate readability, some notations are listed.

λ(·) Eigenvalue of a matrix
{·}∗ Adjoint matrix
In Identity matrix
tr(·) Trace of a matrix
λM(·) Maximum eigenvalues
λm(·) Minimum eigenvalues

The following definitions will be used in the sequel.

Definition 1 (Persistence o f Excitation [24]). A bounded signal ψ(t) is said to be PE, if there
exist positive constants T and δ1 such that∫ t+T

t
ψ(r)ψT(r)dr ≥ δ1 I.

For clarity, we indicate that ψ(t) satisfies the PE condition using the notation ψ(t) ∈ PE; otherwise,
ψ(t) /∈ PE.

Definition 2 (Uni f ormly Ultimately Bounded [24]). The time function x(t) is said to be uni-
formly ultimately bounded (UUB) on a compact set Ωx, if, for all x(t0) = x0 ∈ Ωx, there exists a
δ2 > 0 and a number T(δ2, x0) such that ∥x(t)∥ < δ2 for all t ≥ t0 + T.

2.2. Problem Formulation

Consider the nonlinear continuous-time (NCT) systems with disturbances described
by the following dynamics:

ẋ(t) = f (x) + g(x)u(t) + G(x)d(t), (1)

where x(t) ∈ Rn and u(t) ∈ Rm denote the system state and control input, respectively.
d(t) ∈ Rq represents the external disturbance. The terms f (x) ∈ Rn, g(x) ∈ Rn×m, and
G(x) ∈ Rn×q are the drift dynamics, input dynamics, and disturbance injection dynamics,
respectively. In this study, f (x), g(x), and G(x) are assumed to be unknown. Furthermore,
it is assumed that f (x), g(x), and G(x) are Lipschitz continuous with f (0) = 0, and that
the system (1) is stabilizing and controllable.

The goal of this study is to solve an H∞ control problem for the system (1). This
problem can be equivalently transformed into a two-player zero-sum game, where the
control input u(t) acts as the minimizing player and the disturbance d(t) acts as the
maximizing player. The solution to the H∞ control problem corresponds to a saddle point
in the game, which stabilizes the equilibrium of the two-player zero-sum game.

Define the infinite-horizon performance index function as

V(x, u, d) =
∫ ∞

t

(
xTQx + uT Ru − κ2dTd

)
dτ, (2)

where κ > 0, V(0) = 0, and Q and R are symmetric positive-definite matrices with
appropriate dimensions. Let u⋆ be the optimal control input and d⋆ be the worst disturbance.
Our objective is to find the saddle point (u⋆, d⋆) that optimizes the performance index (2),
which can be more precisely clarified by the following inequality:

V(u⋆, d) ≤ V(u⋆, d⋆) ≤ V(u, d⋆). (3)
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We then define the optimal performance index function V⋆ as follows:

V⋆(x, u, d)=min
u

max
d

∫ ∞

t

(
xTQx + uT Ru − κ2dTd

)
dτ. (4)

The Hamiltonian of system (1) can be written as

H(Vx, x, u, d) =VT
x [ f (x) + g(x)u + G(x)d] + xTQx + uT Ru − κ2dTd, (5)

where Vx = ∂V/∂x ∈ Rn. The Hamilton–Jacobi–Isaacs (HJI) equation related to this game
has the form

min
u

max
d

H(V⋆
x , x, u, d) = 0, (6)

where V⋆
x = ∂V⋆/∂x ∈ Rn. Based on the stationarity condition, the H∞ control pair (u⋆, d⋆)

for (1) has the following form:

u⋆ = −1
2

R−1gT(x)V⋆
x (x), (7)

d⋆ =
1

2κ2 GT(x)V⋆
x (x). (8)

Thus, according to (7) and (8), the HJI Equation (6) can be rewritten as

xTQx + V⋆T
x f (x)− 1

4
V⋆T

x g(x)R−1gT(x)V⋆
x +

1
4κ2 V⋆T

x G(x)GT(x)V⋆
x = 0. (9)

Indeed, the HJI Equation (9) represents a highly nonlinear partial differential equation
(PDE) and requires complete system information for its resolution. To address these
challenges, a new IC framework with relaxed PE conditions will be proposed in the
following sections. Furthermore, new adaptive update laws for the identifier and critic
NNs are provided with the help of the KREM technique. The block diagram of the proposed
control system is shown in Figure 1, and detailed theoretical analysis will be presented in
subsequent sections.

Figure 1. Schematic of the proposed control system.

3. System Identifier Design with Relaxed PE Condition

In this section, an NN-based identifier is utilized to reconstruct the unknown system
dynamics in (1). The KREM technique is introduced to adjust the identifier weights under
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relaxed PE conditions. We assume that the unknown system dynamics f (x), g(x), and
G(x) in (1) are continuous functions defined on compact sets. The NN-based identifier is
designed as follows:

f (x) = W f θ f (x) + ϵ f , (10)

g(x) = Wgθg(x) + ϵg, (11)

G(x) = WGθG(x) + ϵG, (12)

where W f ∈ Rn×d f , Wg ∈ Rn×dg and WG ∈ Rn×dG are the ideal NN weights; θ f (x) ∈ Rd f ,
θg(x) ∈ Rdg×m and θG(x) ∈ RdG×q are the basis functions; and ϵ f ∈ Rn, ϵg ∈ Rn×m and
ϵG ∈ Rn×q are the reconstruction errors. Then, according to the Weierstrass theorem and
the statements in [10], the approximation errors ϵ f , ϵg, and ϵG can be shown to approach
zero as the number of NN neurons d f , dg, and dG increases to infinity.

Before proceeding, it is essential to establish the following underlying assumption.

Assumption 1.

(1) The basis functions θ f (x), θg(x) and θG(x) are bounded, that is,
∥∥∥θ f (x)

∥∥∥ ≤ bθ f ,
∥∥θg(x)

∥∥ ≤
bθg , ∥θG(x)∥ ≤ bθG , respectively.

(2) The reconstruction errors ε f , εg and εG are bounded, that is,
∥∥∥ε f

∥∥∥ ≤ bε f ,
∥∥εg

∥∥ ≤ bεg ,
∥εG∥ ≤ bεG , respectively.

Using (10)–(12), the system (1) can be rewritten as

ẋ = WT
I θI(x, u) + ϵT , (13)

where WI = [W f , Wg, WG]
T ∈ Rd×n is the augmented weight matrix with d = d f + dg +

dG, and θI(x, u) = [θT
f (x), uTθT

g (x), dTθT
G(x)]T ∈ Rd is the augmented regressor vector.

ϵT = ϵ f + ϵgu + ϵGd ∈ Rn is the model approximation error.
Note that ẋ and WI are unknown. Therefore, we define the filtered variables x f and

θI f as {
ρẋ f + x f = x, x f (0) = 0
ρθ̇I f + θI f = θI , θI f (0) = 0

(14)

where ρ ∈ R > 0 is the filter coefficient. From Equations (13) and (14), we can deduce that

ẋ f =
x − x f

ρ
= WT

I θI f + ϵT f , (15)

where ϵT f denotes the filtered version of ϵT as ρϵ̇T f + ϵT f = ϵT . Clearly, (15) is a linear
regression equation (LRE), where ẋ f and θI f can be calculated from (14). In the following,
we describe how the KREM technique is applied to estimate WI by using the measured
information ẋ f and θI f .

To approximate the unknown weights WI in (15) such that the estimated weights ŴI
converge to their true values under a relaxed PE condition, we aim to construct an extended
LRE (E-LRE) based on (15). We define the matrices PI ∈ Rd×d and QI ∈ Rd×n as follows:{

PI = HI [θI f θT
I f ], PI(0) = 0

QI = HI [θI f (
x−x f

ρ )T ], QI(0) = 0
(16)

where
HI =

1
p + lI

[s](t)
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with p = d/dt, lI > 0 is a forgetting factor. From (16), we can derive its solution as{
PI =

∫ t
0 e−lI(t−τ)θI f (τ)θ

T
I f (τ)d(τ),

QI =
∫ t

0 e−lI(t−τ)θI f (τ)(
x(τ)−x f (τ)

ρ )
T

d(τ) .
(17)

Note that it can be verified that PI and QI are bounded for any given bounded θI and x
due to the appropriate choice of lI . Thus, an E-LRE is obtained

QI(t) = PI(t)WI + vI , (18)

where vI =
∫ t

0 e−lI(t−τ)θI f (τ)ϵ
T
T f (τ)d(τ).

To construct an identifier weight error dynamics that achieves better convergence
properties, we define the variables QI(t) ∈ Rd×n, PI ∈ Rd×d, and VI ∈ Rd×n as follows:{ QI = P∗

I QI ,
PI = P∗

I PI ,
VI = P∗

I vI .
(19)

Then Equation (18) becomes
QI(t) = PI(t)WI + VI . (20)

Note that for any square matrix M ∈ Rq×q, we have M∗M = |M|Iq, even if M is not full
rank. Thus, PI = |PI |Id ∈ Rd×d. Moreover, PI is a scalar diagonal matrix, where (20) can
be decoupled into a series of scalar LREs:

QI (i,j)(t) = |PI |(t)WI (i,j) + VI(i,j), i = 1, . . . , d, j = 1, . . . , n, (21)

where QI (i,j) and WI (i,j) indicate the ith row and jth column of QI and WI , respectively.
Then, the estimation algorithm for the unknown identifier NN weights can be designed

based on (21) as follows:

˙̂W I(i,j) = −γ1|PI |[|PI |ŴI(i,j) −QI(i,j)], (22)

where γ1 ∈ R > 0 presents the adaptive learning gain.
The convergence of identifier (22) can be given as follows.

Theorem 1. Consider the system (13) with the online update law (22); if |PI | ∈ PE, then

(i) for ϵT = 0, the estimator error W̃I(i,j) converges to zero exponentially;
(ii) for ϵT ̸= 0, the estimator error W̃I(i,j) converges to a compact set around zero.

Proof. If |PI | ∈ PE, according to Definition 1 we have
∫ t+T

t |PI |2dr ≥ δI > 0. Defining the
estimation error W̃I(i,j) = ŴI(i,j) − WI(i,j), i = 1, . . . , d, j = 1, . . . , n. Due to (21) and (22), the
identifier weight error dynamics can be obtained

˙̃W I(i,j) = −γ1|PI |2W̃I(i,j) + γ1|PI |VI(i,j). (23)

Considering the Lyapunov function VI = 0.5γ−1
1 W̃2

I(i,j), the derivation of VI can be calcu-
lated as

V̇I =
1

γ1
W̃I(i,j)

˙̃WI(i,j)

= −|PI |2W̃2
I(i,j) + |PI |W̃I(i,j)VI(i,j).

(24)

In fact, when ϵT = 0, (24) can be rewritten as

V̇I = −|PI |2W̃2
I(i,j) < −µIVI , (25)
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where µI = 2γ1δI > 0. According to the Lyapunov theorem, the weight estimation error
W̃I(i,j) exponentially converges to zero.

When ϵT ̸= 0, (24) can be further presented as

V̇I = −|PI |2W̃2
I(i,j) + |PI |W̃I(i,j)VI(i,j)

= −[|PI |2W̃I(i,j) − |PI |VI(i,j)]W̃I(i,j).
(26)

According to Assumption 1, |PI |VI(i,j) is bounded, denoted as ∥|PI |VI(i,j)∥ < bPIVI . Then,

V̇I ≤ −[|PI |2||W̃I(i,j)|| − bPIVI ]||W̃I(i,j)||. (27)

According to the extended Lyapunov theorem, the estimation error W̃I(i,j) uniformly ulti-
mately converges to a compact set {W̃I(i,j)|||W̃I(i,j)|| ≤ bPIVI /p2

I}.

Remark 1. In [12], the update law for the unknown weight WI was designed based on (18), while
the PE condition (i.e., θI ∈ PE) was required to ensure convergence. However, satisfying the
PE condition is generally challenging. In Theorem 1, we provide a new convergence condition
|PI | ∈ PE. Notably, this new condition is significantly superior to the conventional PE condition
for two reasons. (1) We theoretically prove that |PI | ∈ PE is much weaker than θI ∈ PE, as detailed
in Section 5. (2) |PI | is directly related to the determinant of the matrix PI(t). Therefore, checking
|PI | ∈ PE online becomes feasible by calculating the determinant of PI(t). In contrast, assessing
the standard PE condition directly online is not possible [18,19,23].

Based on the above analysis, the unknown information f (x), g(x), and G(x) can be
estimated using (13) and (22). This allows for the reconstruction of the completely unknown
system dynamics. In order to obtain the optimal H∞ control pair, the critic NN will be
introduced to learn the solution of the HJB equation in the subsequent section.

4. Critic NN Design for H∞ Control under Relaxed PE Condition

In this section, the performance index will be approximated via a critic NN to obtain
the optimal H∞ control pair. The KREM algorithm will be continually utilized to design
the update law of critic NN under the relaxed PE condition. Firstly, based on the above
identifier, the system (1) can be represented as

ẋ = Ŵ f θ f (x) + Ŵgθg(x)u + ŴGθG(x)d(t) + ϵI + ϵT , (28)

where Ŵ f , Ŵg and ŴG are the estimated values of W f , Wg and WG, respectively. ϵI = W̃IθI
denotes the identifier error. And, the Hamiltonian (5) can be further written as

H =VT
x [Ŵ f θ f (x) + Ŵgθg(x)u + ŴGθG(x)d(t) + ϵI + ϵT ] + xTQx + uT Ru − κ2dTd. (29)

Then, the HJI Equation (6) becomes

0 = min
u

max
d

[H(V⋆
x , x, u⋆, d⋆)]

= V⋆T
x [Ŵ f θ f (x) + Ŵgθg(x)u⋆ + ŴGθG(x)d⋆(t) + ϵI + ϵT ] + xTQx + u⋆T Ru⋆ − κ2d⋆Td⋆.

(30)

Therefore, based on (30), the H∞ control pair (u⋆, d⋆) for the estimated system (28) can be
expressed as follows:

u⋆ = −1
2

R−1[Ŵgθg]
TV⋆

x , (31)

d⋆ =
1

2κ2 [ŴGθG]
TV⋆

x (x). (32)
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Since the HJI Equation (30) is a nonlinear PDE, similar to (6), we utilize a critic NN to
estimate V⋆(x) and its gradient V⋆

x (x) as follows:

V⋆(x) = WT
c θc(x) + ϵv, (33)

V⋆
x (x) = ∇θT

c (x)Wc +∇ϵv, (34)

where Wc ∈ Rl is the unknown constant weight. θc(x) ∈ Rl represents the independent
basis function with ∇θc(x) = ∂θc/∂x. l is the number of neurons. The approximation
error is presented as ϵv with ∇ϵv = ∂ϵv/∂x. Note that as the number of independent basis
functions increases, both the approximation errors and their gradients can approach zero.

Before proceeding, the following assumption is needed.

Assumption 2.

(1) The ideal critic NN’s weight Wc is bounded, that is, ∥Wc∥ < bWc .
(2) The basis functions θc(x) and its gradients ∇θc(x) are bounded, that is, ∥θc∥ ≤ bθc , ∥∇θc∥ ≤

b∇θc .
(3) The approximator reconstruction error ϵv and its gradients ∇ϵv are bounded, that is, ∥ϵv∥ ≤

bϵv , ∥∇ϵv∥ ≤ b∇ϵv .

Since the ideal critic NN weights Wc are unknown, take Ŵc as the estimated value of
Wc and V̂ as the estimated value of V, where the practical critic NN is given by

V̂(x) = ŴT
c θc(x),

V̂x(x) = ∇θT
c (x)Ŵc.

(35)

The estimated H∞ control pair û and d̂ can be obtained as

û = −1
2

R−1[Ŵgθg]
TV̂x = −1

2
R−1[Ŵgθg]

T∇θT
c Ŵc, (36)

d̂ =
1

2κ2 [ŴGθG]
TV̂x =

1
2κ2 [ŴGθG]

T∇θT
c Ŵc. (37)

To online estimate the unknown weights of the critic NN using KREM technology, we
aim to construct a linear equation according to (30) and (34) as

ϵHJI + xTQx + ûT Rû − κ2d̂T d̂ + WT
c ∇θcŴ f θ f (x)

+ WT
c ∇θcŴgθg(x)û + WT

c ∇θcŴGθG(x)d̂ = 0,
(38)

where ϵHJI = WT
c ∇θc(ϵI + ϵT) +∇ϵT

v (Ŵ f θ f + Ŵgθgû + ŴGθG d̂ + ϵI + ϵT) is a bounded
residual HJI equation error. Let Θ = ∇θc[Ŵ f θ f + Ŵgθgû + ŴGθG d̂] and Σ = xTQx +

ûT Rû − κ2d̂T d̂, where a linear equation is obtained as follows:

Σ = −WT
c Θ − ϵHJI . (39)

Similar to the previous section, we define the filtered regressor matrix Pc ∈ Rl×l and
the vector Qc ∈ Rl as follows:{

Pc = Hc[ΘΘT ], Pc(0) = 0
Qc = Hc[ΘΣ], Qc(0) = 0

(40)

where
Hc =

1
p + lc

[s](t),
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and lc > 0 is the forgetting factor. Then, the solution of (40) can be deduced as{
Pc =

∫ t
0 e−lc(t−τ)ΘΘTdτ,

Qc =
∫ t

0 e−lc(t−τ)ΘΣdτ.
(41)

From (39) and (41), an E-LRE related to Pc and Qc is obtained

Qc(t) = −Pc(t)Wc − vc, (42)

where vc =
∫ t

0 e−lc(t−τ)Θ(τ)ϵT
HJI(τ)dτ is bounded. To estimate the unknown parameter

Wc in (42) under a relaxed PE condition, define the variables Qc(t) ∈ Rl , Pc ∈ Rl×l , and
Vc ∈ Rl as 

Qc = P∗
c Qc,

Pc = P∗
c Pc,

Vc = P∗
c vc.

(43)

Then Equation (42) becomes

Qc(t) = −Pc(t)Wc − Vc. (44)

Note that Pc = |Pc|Il . Since Pc is a scalar matrix, a series of scalar LREs is obtained as

Qc(i)(t) = −|Pc|(t)Wc(i) − Vc(i), i = 1, . . . , l, (45)

where Qc(i), Wc(i) and Vc(i) indicate the ith rows of Qc, Wc, and Vc, respectively.
Driven by the parameter error based on (45), the critic unknown weight Wc(i) is

designed as
˙̂Wc(i) = −γ2|Pc|[|Pc|Ŵc(i) +Qc(i)], (46)

where γ2 ∈ R > 0 presents the adaptive learning gain.
The convergence condition for the proposed critic NN adaptive law is provided in

Theorem 2.

Theorem 2. For adaptive law (46) of critic NN with the regressor matrix Pc in (44); if |Pc| ∈ PE,
then

(i) for ϵHJI = 0, the estimator error W̃c(i) converges to zero exponentially;
(ii) for ϵHJI ̸= 0, the estimator error W̃c(i) converges to a compact set around zero;

Proof. Defining the estimation error W̃c(i) = Ŵc(i) − Wc(i), i = 1, . . . , l. The proofs pre-
sented in Theorem 1 can be extended to establish similar results in the current context.
Note that the Lyapunov function Vc here is chosen as 0.5γ−1

2 W̃2
c(i).

Remark 2. According to Theorem 2, a new convergence condition for the estimation error of the
critic neural network weights, denoted as W̃c, is provided. This condition does not rely on the
conventional parameter estimation (PE) condition, i.e., Θ ∈ PE. In this paper, the additional
exploration signal is not required to guarantee Θ ∈ PE. Instead, the satisfaction of |Pc| ∈ PE can be
achieved by adjusting the forgetting factor lc. It is worth noting that the new convergence condition
is associated with the matrix Pc, and it can be verified online by calculating the determinant of
Pc. The proof of the weak PE property for the new convergence condition will be presented in the
following section.

Remark 3. The convergence analysis of W̃I(i,j) and W̃c(i) are provided in Theorem 1 and Theorem 2,
respectively. In fact, we can derive the convergence of W̃I and W̃c using simple matrix operations,
which will be omitted in this paper.
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Till now, the identifier–critic learning-based framework for H∞ optimal control under
the relaxed PE condition is given. For clarity, the design details of the proposed method are
shown in Algorithm 1, which can be considered the pseudocode for the simulation part.

Algorithm 1 Identifier–critic learning-based H∞ optimal control algorithm

1: Initialization
2: Initialize system parameters: x(0), Q, R and running time T;
3: Set the identifier and critic filter operators: HI and Hc;
4: Set the basis functions of identifier and critic NNs: θI(x, u) and θc(x);
5: Initialize and set the filter operator parameters: ρ, lI , lc, x f (0) = 0, θI f (0) = 0 and

ϵI f (0) = 0;
6: Initialize identifier NNs parameters: γ1 > 0, Ŵinitial

I ∈ (0, 1];
7: Initialize critic NNs parameters: γ2 > 0, Ŵinitial

c ∈ (0, 1];
8: Initialize the control pair by (36) and (37);
9: while t ≤ T do

10: Calculate the filter processing of the identifier NNs by (14);
11: Calculate the dynamic regressor extension (DRE) of the identifier NNs by (15);
12: Calculate the regressor “mixing” of the identifier NNs by (18);
13: Update the weight parameters of the identifier NNs ŴI(i,j) by (20);

˙̂W I(i,j) = −γ1|PI |[|PI |ŴI(i,j) −QI(i,j)];

14: Compute the approximated HJB equation by (39);
15: Calculate the dynamic regressor extension (DRE) of the critic NNs by (40);
16: Calculate the regressor “mixing” of the critic NNs by (42);
17: Update the weight parameters of the critic NNs Ŵc(i) by (46);

˙̂Wc(i) = −γ2|Pc|[|Pc|Ŵc(i) +Qc(i)];

18: Update the control pair by (36) and (37);
19: Update the system states x by (28);
20: end while

5. Stability and Convergence Analysis

In this section, we present the main results, which include the theoretical analysis of
weak PE properties under new convergence conditions proposed in Theorems 1 and 2.
Furthermore, we provide a stability result for the closed-loop system under the proposed
online learning optimal control method.

To facilitate the analysis, the following assumption is made.

Assumption 3. The system dynamics in (1) satisfy ∥ f (x)∥ ≤ b f ∥x∥, ∥g(x)∥ ≤ bg and
∥G(x)∥ ≤ bG, where b f > 0, bg > 0 and bG > 0.

5.1. Weak PE Properties of New Convergence Conditions

As shown in Theorem 1, Theorem 2 and Remark 3, the convergence of W̃I and W̃c
is established without the restrictive PE condition, i.e., θI ∈ PE and Θ ∈ PE. These new
convergence conditions can be easily checked online, as mentioned in Remarks 1 and 2.
Furthermore, we will analyze the superiority of the new convergence conditions compared
to the conventional PE condition from a theoretical standpoint.

Theorem 3. Consider the system (13) with the online identifier NN adaptive law (22) and critic
NN adaptive law (46),
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(i) The convergence condition of estimation error W̃I in Theorem 1, that is, |Pc| ∈ PE, is weaker
than θI ∈ PE in the following precise sense

θI(t) ∈ PE ⇒ |Pc| ∈ PE, (47)

|Pc| ∈ PE ⇏ θI(t) ∈ PE; (48)

(ii) The convergence condition of estimation error W̃c in Theorem 2, that is, |Pc| ∈ PE, is weaker
than Θ ∈ PE in the following precise sense

Θ ∈ PE ⇒ |Pc| ∈ PE, (49)

|Pc| ∈ PE ⇏ Θ ∈ PE. (50)

Proof. For (i), suppose that θI(t) in (13) is PE, indicating that θI f (t) ∈ PE [25]. From
Definition 1, we have∫ t+τ

t
θI f (r)θT

I f (r)dr ≥ δI ⇔
∫ t

t−τ
θI f (r)θT

I f (r)dr ≥ δI for t > τ > 0. (51)

Moreover, since e−β I(t−r) ≥ e−β I τ > 0 with r ∈ [t − τ, t], the following inequality holds∫ t

t−τ
e−β I(t−r)θT

I f (r)θI f (r)dr ≥
∫ t

t−τ
e−β I τθT

I f (r)θI f (r)dr ≥ e−β I τδI. (52)

Furthermore, for t > τ > 0, we also have∫ t

0
e−β I(t−r)θT

I f (r)θI f (r)dr >
∫ t

t−τ
e−β I(t−r)θT

I f (r)θI f (r)dr. (53)

From (17), (52) and (53), we conclude that

PI =
∫ t

0
e−β I(t−r)θT

I f (r)θI f (r)dr > e−β I τ
∫ t

t−τ
θT

I f (r)θI f (r)dr ≥ e−β I τδI. (54)

Hence, the matrix PI in (16) is positive definite, that is, λi(PI) > 0, i = 1, . . . , d.
Considering that the determinant of a matrix is equal to the product of all its eigenvalues,

that is, |PI | = λ1(PI)λ2(PI) . . . λd(PI), we obtain λi(PI) > 0 ⇒
d

∏
i=1

λi(PI) > 0 ⇒ |PI | > 0.

Thus, (47) is true.
The proof of (48) is established by the following:

|PI | ∈ PE ⇔
∫ t

0
|PI |2(τ)dτ > 0

⇔
∫ t

0

d

∏
i=1

λ2
i (PI) > 0

⇏ λi(PI) > 0, i = 1, . . . , d

⇔ PI > 0

⇔ PI ∈ PE.

(55)

For (ii), the proof process can be referred to in (i). This finishes the proof.

5.2. Stability and Convergence Analysis

The stability result for the closed-loop system under the proposed online learning
optimal control method will be presented in the following theorem.
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Theorem 4. Let Assumptions 1 and 2 hold. Considering system (1) with the identifier weight
tuning law given by (22), the H∞ control pair are computed by (36) and (37), respectively. The
critic NN weight tuning laws are updated by (46). If |PI | ∈ PE and |Pc| ∈ PE, then the closed-
loop system, system identifier estimation error W̃I , and critic estimation error W̃c are uniformly
ultimately bounded (UUB). Moreover, the approximated H∞ control pair given by (36) and (37) are
close to the optimal control pair u⋆ and d⋆ within a small region bu and bd, that is, ∥û − u⋆∥ ≤ bu
and ∥d̂ − d⋆∥ ≤ bd, where bu and bd are positive constants.

Proof. We consider the Lyapunov function as follows:

J (t) =
1
2

tr{W̃T
I (t)γ

−1
1 W̃I(t)}+

1
2

W̃T
c (t)γ

−1
2 W̃c(t) + γ3xTx + γ4V⋆(x)

+ γ5tr{VT
I VI}+ γ6VT

c Vc

= J1 + J2 + J3 + J4 + J5 + J6,

(56)

where γ3, γ4, γ5 and γ6 are positive constants.
By applying matrix operations, we can obtain the following:

˙̃W I = −γ1|PI |[|PI |W̃I − VI ],
˙̃Wc = −γ2|Pc|[|Pc|W̃c − Vc].

(57)

According to Definition 1, |PI | ∈ PE and |Pc| ∈ PE imply that
∫ t+T

t |PI |2dr ≥ δI > 0

and
∫ t+T

t |Pc|2dr ≥ δc > 0. Substituting (19), (43), and using Young’s inequality ab ≤
a2η/2 + b2/2η with η > 0, we have

J̇1 = tr
{
−W̃T

I |PI |2W̃I + |PI |W̃T
I VI

}
≤ −

(
δI −

1
2η

)∥∥W̃I
∥∥2

+
η

2
b2

P∗
I
∥|PI |vI∥2, (58)

J̇2 = −W̃T
c |Pc|2W̃c + |Pc|W̃T

c Vc ≤ −
(

δc −
1

2η

)∥∥W̃c
∥∥2

+
η

2
b2

P∗
c
∥|Pc|vc∥2. (59)

where ∥P∗
I ∥ ≤ bP∗

I
, ∥P∗

c ∥ ≤ bP∗
c .

For J3 and J4,

J̇3 + J̇4 = 2γ3xT ẋ + γ4V̇⋆(x)

= 2γ3xT
[

f (x) + g(x)û + G(x)d̂ − g(x)u⋆ + g(x)u⋆ − G(x)d⋆ + G(x)d⋆
]

+ γ4(−xTQx − u⋆T Ru⋆ + κ2d⋆Td⋆)

= 2γ3xT
[

f (x) + g(x)
(
− 1

2
R−1 ĝT(x)∇θT

c (x)Ŵc +
1
2

R−1gT(x)(∇θT
c (x)Wc

+∇ϵv)
)
+ g(x)u⋆ + G(x)

( 1
2κ2 ĜT(x)∇θT

c (x)Ŵc −
1

2κ2 GT(x)(∇θT
c (x)Wc

+∇ϵv)
)
+ G(x)d⋆

]
+ γ4(−xTQx − u⋆T Ru⋆ + κ2d⋆Td⋆).

(60)

Since gT∇θT
c Wc − ĝT∇θT

c Ŵc = gT∇θT
c W̃c + g̃T∇θT

c Ŵc, and −GT∇θT
c Wc + ĜT∇θT

c Ŵc =
−GT∇θT

c W̃c − G̃T∇θT
c Ŵc, (60) can be rewritten as



Entropy 2024, 26, 72 13 of 19

J̇3 + J̇4 =2γ3xT
[

f (x) + g(x)
(1

2
R−1gT(x)∇θT

c (x)W̃c +
1
2

R−1 g̃T(x)∇θT
c (x)Ŵc

+
1
2

R−1gT(x)∇εv

)
+ g(x)u⋆ + G(x)

(
− 1

2κ2 GT(x)∇θT
c (x)W̃c

− 1
2κ2 G̃T(x)∇θT

c (x)Ŵc −
1

2κ2 GT(x)∇ϵv

)
+ G(x)d⋆

]
+ γ4(−xTQx − u⋆T Ru⋆ + κ2d⋆Td⋆)

≤−
[
γ4λm(Q)− 2γ3b f − 4η

]
∥x∥2 +

[ 1
2η

γ2
3b2

gb2
ωb2

∇θc
λ2

M(R−1)

+
1

2ηκ4 γ2
3b2

Gb2
ωb2

∇θc

]∥∥W̃I
∥∥2

+
[ 1

2η
γ2

3b4
gb2

∇θc
λ2

M(R−1) +
1

2ηκ4 γ2
3b4

Gb2
∇θc

]∥∥W̃c
∥∥2

−
[
γ4λm(R)− 2γ2

3b2
g/η

]
∥u⋆∥2 +

[ 1
2η

γ2
3b4

gλ2
M(R−1) +

γ2
3

κ4 b4
G

]
∥∇ϵv∥2

+
[
γ4κ2 + 2γ2

3b2
G/η

]
∥d⋆∥2,

(61)

where bω =
∥∥Ŵc

∥∥ is a bounded variable.
Recall that VI = P∗

I vI and v̇I = −lIvI + θI f ϵT
T f , thus

J̇5 ≤2γ5b2
P∗

I

∥∥∥vT
I v̇I

∥∥∥ = 2γ5b2
P∗

I

∥∥∥vT
I [−lIvI + θI f ϵT

T f ]
∥∥∥

≤−
(

2γ5b2
P∗

I
lI − b2

P∗
I
η
)
∥vI∥2 +

1
η

γ2
5b2

P∗
I

∥∥∥θI f ϵT
T f

∥∥∥2
.

(62)

Since v̇c = −lcvc + ΘϵT
HJI . Hence, the last term of (56) can be given as

J̇6 ≤2γ6b2
P∗

c

∥∥∥vT
c v̇c

∥∥∥
=2γ6b2

P∗
c

∥∥∥vT
c

[
−lcvc + ΘϵT

HJI

]∥∥∥
≤−

(
2γ6lcb2

P∗
c
− 5b2

P∗
c

η
)
∥vc∥2 +

1
η

γ2
6b2

P∗
c

b2
Wc

b2
∇θc

∥Θ∥2∥ϵT∥2

+
1
η

γ2
6b2

P∗
c

b2
∇θc

b2
Wc

∥θI∥2∥Θ∥2∥∥W̃I
∥∥2

+
1
η

γ2
6b2

P∗
c

b2
f b2

∇ϵv
∥Θ∥2∥x∥2

+
1

4η
γ2

6b2
P∗

c
b2

gb2
ϖ1b2

∇θc
b2

ωλ2
M(R−1)∥Θ∥2∥∇ϵv∥2

+
1

4ηκ4 γ2
6b2

P∗
c

b2
Gb2

ϖ2b2
∇θc

b2
ω∥Θ∥2∥∇ϵv∥2.

(63)

where bϖ1 =
∥∥Ŵgθg

∥∥ and bϖ2 =
∥∥ŴGθG

∥∥ are bounded variables. Consequently, we
substitute (58), (59), and (61)–(63) into (56); thus, we have
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J̇ (t) = J̇1 + J̇2 + J̇3 + J̇4 + J̇5 + J̇6

≤ −
(

δI −
1

2η
− 1

2η
γ2

3b2
gb2

ωb2
∇θc

λ2
M(R−1)− 1

2ηκ4 γ2
3b2

Gb2
ωb2

∇θc

− 1
η

γ2
6b2

P∗
c

b2
∇θc

b2
Wc

∥θI∥2∥Θ∥2
)∥∥W̃I

∥∥2 −
(

γ4λm(R)− 2
η

γ2
3b2

g

)
∥u⋆∥2

−
(

δc −
1

2η
− 1

2η
γ2

3b4
gb2

∇θc
λ2

M(R−1)− 1
2ηκ4 γ2

3b4
Gb2

∇θc

)∥∥W̃c
∥∥2

−
(

γ4λm(Q)− 2γ3b f − 4η − 1
η

γ2
6b2

P∗
c

b2
f b2

∇ϵv
∥Θ∥2

)
∥x∥2 +

1
η

γ2
5b2

P∗
I

∥∥∥ϕI f ϵT
T f

∥∥∥2

−
(

2γ5b2
P∗

I
lI − b2

P∗
I
η − η

2
b2

P∗
I
|PI |2

)
∥vI∥2 −

(
2γ6lcb2

P∗
c
− 5b2

P∗
c

η − η

2
b2

P∗
I
|PI |2

)
∥vc∥2

+
( 1

2η
γ2

3b4
gλ2

M(R−1) +
γ2

3
κ4 b4

G +
1

4η
γ2

6b2
P∗

c
b2

gb2
ϖ1b2

∇θc
b2

ωλ2
M(R−1)∥Θ∥2

+
1

4ηκ4 γ2
6b2

P∗
c

b2
Gb2

ϖ2b2
∇θc

b2
ω∥Θ∥2

)
∥∇ϵv∥2 +

1
η

γ2
6b2

P∗
c

b2
Wc

b2
∇θc

∥Θ∥2∥ϵT∥2.

(64)

We choose the parameters γ3, γ4, γ5, γ6 and η, fulfilling the following conditions

η > max

{(
κ4 + κ4γ2

3b2
gb2

ωb2
∇θc

λ2
M(R−1) + γ2

3b2
Gb2

ωb2
∇θc

+ 2κ4γ2
6b2

P∗
c

b2
∇θc

b2
Wc

∥θI∥2∥Θ∥2
)

/2κ4δI ,
(

κ4 + κ4γ2
3b4

gb2
∇θc

λ2
M(R−1) + κ4γ2

3b4
Gb2

∇θc

)
/2κ4δc

}
,

γ3 <
√

γ4ηλm(R)/2b2
g,

γ4 >
{

2γ3b f − 4η − 1
η

γ2
6b2

P∗
c

b2
f b2

∇ϵv
∥Θ∥2

}
/λm(Q),

γ5 > (η +
η

2
|PI |2)/2lI ,

γ6 > (5η − η

2
|Pc|2)/2lc.

Then, (64) can be further presented as

J̇ (t) ≤ −k1
∥∥W̃I

∥∥2 − k2
∥∥W̃c

∥∥2 − k3∥x∥2 − k4∥vI∥2 − k5∥vc∥2 + bγ, (65)

where k1, k2, k3, k4, k5 and bγ are positive constants

k1 =δI −
1

2η
− 1

2η
γ2

3b2
gb2

ωb2
∇θc

λ2
M(R−1)− 1

2ηκ4 γ2
3b2

Gb2
ωb2

∇θc
− 1

η
γ2

6b2
P∗

c
b2
∇θc

b2
Wc

∥θI∥2∥Θ∥2,

k2 =δc −
1

2η
− 1

2η
γ2

3b4
gb2

∇θc
λ2

M(R−1)− 1
2ηκ4 γ2

3b4
Gb2

∇θc
,

k3 =γ4λm(Q)− 2γ3b f − 4η − 1
η

γ2
6b2

P∗
c

b2
f b2

∇ϵv
∥Θ∥2,

k4 =2γ5b2
P∗

I
lI − b2

P∗
I
η − η

2
b2

P∗
I
|PI |2, k5 = 2γ6lcb2

P∗
c
− 5b2

P∗
c

η − η

2
b2

P∗
c
|Pc|2,

bγ =
( 1

2η
γ2

3b4
gλ2

M(R−1) +
γ2

3
κ4 b4

G +
1

4η
γ2

6b2
P∗

c
b2

gb2
ϖ1b2

∇θc
b2

ωλ2
M(R−1)∥Θ∥2 +

1
η

γ2
5b2

P∗
I

∥∥∥ϕI f ϵT
T f

∥∥∥2

+
1

4ηκ4 γ2
6b2

P∗
c

b2
Gb2

ϖ2b2
∇θc

b2
ω∥Θ∥2

)
∥∇ϵv∥2 +

1
η

γ2
6b2

P∗
c

b2
Wc

b2
∇θc

∥Θ∥2∥ϵT∥2.
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Thus, J̇ (t) is negative if∥∥W̃I
∥∥ >

√
bγ/k1,

∥∥W̃c
∥∥ >

√
bγ/k2, ∥x∥ >

√
bγ/k3, ∥ΞI∥ >

√
bγ/k4, ∥Ξc∥ >

√
bγ/k5,

which implies that the NN weight estimation errors W̃I , W̃c and the system state x are all
UUB.

Lastly, the error between the proposed H∞ control pair and the ideal one are written as

û − u⋆ =− 1
2

R−1[Ŵgθg(x)
]T∇θT

c (x)Ŵc +
1
2

R−1gT
(
∇θT

c (x)Wc +∇ϵv

)
=

1
2

R−1gT∇θT
c (x)W̃c +

1
2

R−1[g − Ŵgθg(x)
]T∇θT

c (x)Wc

− 1
2

R−1[g − Ŵgθg(x)
]T∇θT

c (x)W̃c +
1
2

R−1gT∇ϵv,

d̂ − d⋆ =
1

2κ2

[
ŴGθG(x)

]T∇θT
c (x)Ŵc −

1
2κ2 GT

(
∇θT

c (x)Wc +∇ϵv

)
=− 1

2κ2 GT∇θT
c (x)W̃c +

1
2κ2

[
G − ŴGθG(x)

]T∇θT
c (x)Wc

+
1

2κ2

[
G − ŴGθG(x)

]T∇θT
c (x)W̃c −

1
2κ2 [ŴGθG(x)]T∇ϵv,

which further implies the following fact

lim
t→+∞

∥û−u⋆∥ ≤1
2

λM(R−1)

{
bg
(
b∇θc

∥∥W̃c
∥∥+b∇ϵv

)
+ b∇θc bWc

(∥∥W̃I
∥∥+ ∥∥bg

∥∥)
+ b∇θc

∥∥W̃c
∥∥(∥∥W̃I

∥∥+ ∥∥bg
∥∥)} ≤ bu,

lim
t→+∞

∥∥∥d̂−d⋆
∥∥∥ ≤ 1

2κ2

{
bG

(
b∇θc

∥∥W̃c
∥∥+b∇ϵv

)
+ b∇θc bWc

(∥∥W̃I
∥∥+ ∥bG∥

)
+ b∇θc

∥∥W̃c
∥∥(∥∥W̃I

∥∥+ ∥bG∥
)}

≤ bd,

where bu > 0 and bd > 0 are constants determined by the identifier NN estimation error
W̃I and the critic NN estimation error W̃c. It proves that the approximate H∞ control pair
can converge to a set around the optimal solution.

This completes the proof.

6. Numerical Simulation

This section aims to verify the effectiveness of the proposed KREM-based IC learning
approach for optimal robust control. We consider the following NCT system [12]

ẋ = f (x) + g(x)u + G(x)d, (66)

where f (x) =
[

−x1 + x2
−0.5x1 − 0.5x2(1 − (cos(2x1) + 2)2)

]
, g(x) =

[
0

cos(2x1) + 2

]
, G(x) =[

0
sin(4x1) + 2

]
.

We choose the regressor of identifier NN as

θI(x, u) = [x1, x2, x2(1 − (cos(2x1) + 2)2), u cos(2x1), u, d sin(4x1), d]T ,

with the unknown identifier weight matrix given by

WI =

[
−1 1 0 0 0 0 0
−0.5 0 − 0.5 1 2 1 2

]
.
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The activation function in (33) for the critic NN is selected as

θc(x, u) = [x2
1, x1x2, x2

2]
T .

The ideal critic NN weights were Wc = [0.5, 0, 1]T .
In this numerical example, several other parameters are set as follows: the initial

values of the system states are x1(0) = 3 and x2(0) = −1. Q = I2 and R = 1. The filter
coefficients are ρ = 0.001, lI = 0.1, lc = 20, γ1 = 800, γ2 = 200diag{0.3, 1, 1}. It is important
to note that in this simulation, there is no need to add noise to the control input u(t) to
ensure the PE condition. This condition is often necessary for many existing ADP-based
control methods to ensure that θI(t) ∈ PE and Θ(t) ∈ PE.

For comparison, we consider the Kreisselmeier’s Regressor Extension (KRE) based
identifier-critic network framework [12] for the system (66). Figures 2 and 3 display the
convergence of the identifier NN weights and the critic NN weights, respectively, under
our KREM-based optimal robust control method and the KRE-based control method [12].
As illustrated in Figure 2, the KREM-based ADP method proposed in this paper exhibits
faster convergence compared to the KRE-based ADP method. Furthermore, it demonstrates
element-wise monotonicity, thus preventing oscillations and peaking in the learning curve.
The trajectories of the approximate control input û and the estimated disturbance d̂ are
presented in Figures 4 and 5, respectively. By applying the optimal H∞ control pair, the
system states are stabilized, as depicted in Figure 6.
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Figure 2. Comparison of the convergence of identifier NN’s weights ŴI : (a) KREM-based method;
(b) KRE-based method in [12].
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Figure 3. Comparison of the convergence of critic NN’s weights Ŵc: (a) KREM-based method;
(b) KRE-based method in [12].
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Figure 4. Evolution of the approximate control input û.
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Figure 5. Disturbance action d.
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Figure 6. Trajectories of the system states x = [x1, x2]
T .



Entropy 2024, 26, 72 18 of 19

7. Conclusions

This paper presents a novel adaptive learning approach using neural networks (NNs)
to address the problem of optimal robust control for nonlinear continuous-time systems
with unknown dynamics. The approach involves employing a system identifier that
utilizes NNs and parameter estimation techniques to approximate the unknown system
matrices and disturbances. Additionally, a critic NNs learning structure is introduced to
obtain an approximate controller that corresponds to the optimal control problem. Unlike
existing identifier-critic NNs learning control methods, this approach incorporates adaptive
tuning laws based on a regressor extension and mixing technique. These laws facilitate the
learning of unknown parameters in the two NNs under relaxed persistence of excitation
conditions. The convergence conditions of the proposed approach have been theoretically
demonstrated. Finally, the effectiveness of the proposed learning control approach is
validated via a simulation study.
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