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Abstract: This study presents a novel approach to predicting price fluctuations for U.S. sector index
ETFs. By leveraging information-theoretic measures like mutual information and transfer entropy, we
constructed threshold networks highlighting nonlinear dependencies between log returns and trading
volume rate changes. We derived centrality measures and node embeddings from these networks,
offering unique insights into the ETFs’ dynamics. By integrating these features into gradient-boosting
algorithm-based models, we significantly enhanced the predictive accuracy. Our approach offers
improved forecast performance for U.S. sector index futures and adds a layer of explainability to the
existing literature.
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1. Introduction

Classifying listed companies into sectors offers a comprehensive perspective that is
pivotal for constructing financial portfolios. The significance of the sector index as a primary
boundary in classification systems, encompassing industry groups and sub-industries, is
well established in the literature. This sectorial approach grants investors unique advan-
tages, allowing them to harness specific sector opportunities, balance underrepresented
sectors, and adopt active investment strategies while considering macroeconomic shifts,
momentum, and other crucial factors [1].

However, while many studies have delved into sector indices and ETFs, Leung and
Zhao (2021) rightly observed a research gap: there is a limited exploration of the price
dynamics comparison between sector indices and ETFs. Research examining the nonlinear
dependencies and causalities within sector indices, especially from an information-theoretic
viewpoint, remains sparse [2].

Our contribution thus stands at the intersection of these identified gaps. The novelty
in our approach lies in two key aspects:

We provide a fresh perspective by delving into the nonlinear network topologies of
sector indices in the U.S. market, a dominant global player. This exploration unravels intri-
cate nonlinear information exchanges and flows, showcasing a departure from traditional
linearity-based studies.

Also, our study harnesses the potential of these insights to craft predictive models.
We tap into their unique predictive power by utilizing a range from short-term (20-day
window) to long-term (240-day window) nonlinear dependency and causal networks,
incorporating centrality-based measures and novel node embedding techniques.

The manuscript is methodically structured, offering readers a clear progression through
our research. Section 2 begins by setting our study within the context of the existing lit-
erature and also presenting our dataset. Section 3 offers a thorough explanation of our
research methodology, which is intricately linked to the statistical properties of our data.
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In Section 4, we embark on the construction and analysis of networks, focusing on U.S.
sector indices’ returns across varied time frames, while diving deeply into the inherent
nonlinear dependencies and causalities. Section 5 serves as a reflective space, discussing the
real-world implications of our findings, especially in terms of node-level network measures,
the innovative use of node embeddings, and the demonstrable success of our predictive
models. Finally, Section 6 wraps up our discourse, providing concluding thoughts on our
contributions and hinting at promising avenues for future research.

2. Data and Methodology
2.1. Prior Research

In finance, sector and industry research incorporates varied macroeconomic views.
Krause and Tse (2013) identified a consistent pattern of price discovery moving from the U.S.
to Canada in securities, with bidirectional volatility spillovers [3]. Hernandez et al. (2015)
pointed out a one-way time lag relationship between the IT-computer and medicine-
biotechnology sectors, with the former influencing the latter’s price and return values [4].
Dutta (2018) revealed a persistent correlation between oil and stock market volatility
indices [5]. Shahzad et al. (2018) used the Q-Q method to demonstrate an asymmetric
negative relationship between credit and markets across industries, dependent on the
nature and extent of stock market shocks [6]. Khan et al. (2020) confirmed short- and
medium-term causality between the Financial and Economic Attitudes Revealed by Search
(FEARS) and stock returns, with a stronger correlation in specific sectors [7]. Matos et al.
(2021) discovered that early pandemic death cycles in Italy, followed by similar patterns
globally, were indicators of disruptions in the U.S. stock market, with the energy sector
reacting first to the pandemic [8]. Wan et al. (2021) suggested that solid media sentiment
towards a particular company in an industry could lead to a significant shift in media
sentiment towards related companies [9]. Shahzad et al. (2021) found that network struc-
tures and spillovers greatly vary with market conditions [10]. Choi and Kim conducted an
empirical analysis on politically-themed stocks in South Korea, creating networks based
on these stocks influenced by political figures [11]. Jin and Guo (2021) showed that since
2013, specific sector indices like consumption, industry, and real estate have been leading
corresponding macroeconomic variables in the U.S. stock market [12]. Finally, Mensi (2022)
found that sectors like oil, gold, financials, utilities, communication services, consumer sta-
ples, and healthcare are net recipients of spillovers, while other sectors are net contributors,
determined through methods like the time-frequency spillover method, wavelet method,
and the DCC-GARCH model [13].

In financial product price and return prediction, Beer et al. (2020) delved into the
innovative territory of deep quantum neural networks for financial forecasting [14]. Chen,
Zhang, and Lou (2020) developed a sophisticated model for stock price prediction using
a hybrid deep learning approach, combining an attention mechanism with a multilayer
perceptron and a bidirectional long short-term memory neural network [15]. Chen and
Zhou (2020) introduced a stock prediction model that synergizes genetic algorithm feature
selection with a long short-term memory neural network [16]. Althelaya, Mohammed,
and El-Alfy (2021) enhanced stock market forecasting by integrating deep learning with
a multiresolution analysis, demonstrating the efficacy of combining varied analytical
methods [17]. Aldhyani and Alzahrani (2022) crafted a novel framework using deep
learning techniques, marking a significant stride in computational finance [18].

Building upon the foundation established by the research, our study carves out a
distinctive niche in sector- and industry-based research. While previous studies have
predominantly operated within a linear paradigm, our work diverges by incorporating a
nonlinear perspective. We not only challenge the prevalent focus on linear correlations or
causalities between sectors and industries, but also enrich the discourse by introducing
and utilizing the network theory. By adopting this approach, we delve deeper into the
intricate nonlinear connections and dependencies within and between sectors. Further-
more, our integration of the network theory offers a fresh lens through which we can
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decode the complex interplay and dynamics of these sectors. Thus, our research expands
the analytical boundaries of sector-based financial research and provides a novel toolkit
to better understand and predict sector behaviors and interactions in today’s intricate
financial landscape.

2.2. Data

We used Standard and Poors’ U.S. sector index ETFs’ price and trading volume data
as the experimental data. There are eleven sectors in the sector Standard and Poor’s
Depository Receipt (SPDR) ETFs: Materials (XLB), Communications Services (XLC), Energy
(XLE), Financials (XLF), Industrials (XLI), Technology (XLK), Consumer Staples (XLP), Real
Estate (XLRE), Utilities (XLU), Health Care (XLV), and Consumer Discretionary (XLY). In
this paper, we only used the data from nine sector indices (XLB, XLE, XLF, XLI, XLK, XLP,
XLU, XLV, and XLY), because those nine sector indices, from the beginning, were listed
on the New York Stock Exchange (NYSE) Arca Exchange on 16 December 1998, but the
other two were not. XLRE was listed on 8 October 2015 at NYSE Arca Exchange, and XLC
was listed on 19 June 2018 at NYSE Arca Exchange. Those two indices have relatively
fewer data; thus, we cannot conduct a network analysis and predict their fluctuation at the
same condition. The experimental period is from January 2010 to September 2022. This
experimental period is twelve years and nine months long, including a total of 51 quarters
and 153 months. In the case of the predictive experiment, we designated the period from
January 2010 to December 2018 (about 70% of the whole dataset) as the training and
validation set and designated the period from January 2019 to September 2022 (about 30%
of the whole dataset) as the testing set. The target data are only the return data of the nine
U.S. sector index ETFs. Table 1 provides an overview of the datasets employed throughout
our research.

Table 1. Sector ETFs and their descriptions.

Full Name Abbreviation Tracking Index Specialized Description

Materials XLB S&P Materials Index Tracks companies in the materials sector,
including chemicals, mining, and forestry.

Energy XLE S&P Energy Index Comprises companies in the energy sector,
including oil, gas, and renewable energy.

Financials XLF S&P Financials Index
Represents companies in the financial
sector, including banks, insurance, and real
estate services.

Industrials XLI S&P Industrials Index Covers companies in the industrial sector,
such as machinery, aerospace, and defense.

Technology XLK S&P Technology Index Represents the technology sector, including
software, hardware, and electronics.

Consumer Staples XLP S&P Consumer Staples Index
Consists of companies in the consumer
staples sector, like food, beverages, and
household goods.

Utilities XLU S&P Utilities Index Represents utilities sector companies,
including electric, gas, and water utilities.

Health Care XLV S&P Health Care Index
Covers companies in the health care sector,
including pharmaceuticals, biotech, and
health care services.

Consumer Discretionary XLY S&P Consumer
Discretionary Index

Represents companies in the consumer
discretionary sector, like entertainment,
retail, and autos.
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3. Methodology

Based on Shannon’s entropy [19] concept, mutual information and transfer entropy
serves as a nonparametric methodology to verify information exchange between pairs
of variables.

Data assumptions such as normality, stationarity, and linearity should be preceded by
general dependencies and causal relationships represented like Granger causality [20,21].
However, it is known that the nature of stock return-based data usually only satisfies
some of these properties. Therefore, we used theories of econopyhsics and information
theories that can be used without the above assumptions. To use these theories, we can
consider nonlinear relationships between objectives to measure dependencies and causal
relationships. Accordingly, we used the concept of mutual information (MI), first proposed
by Shannon, and transfer entropy (TE), proposed by Schreiber (2000) [22]. These are entropy-
based measures. Specifically, in this study, we used normalized mutual information (NMI)
and transfer entropy (TE) based on Shannon entropy with a permutation test for threshold
network construction (Boba et al., 2015) [23].

3.1. Mutual Information
3.1.1. Mutual Information

Mutual Information (MI) is a measure that captures the shared information between
two variables, indicating their statistical interdependence. In the field of information theory,
the behavior of a system, say System X, is understood through its probability distribution
p(x) and logarithm value of p(x). Based on this idea, the Shannon entropy is as follows:

H(X) = −∑
x∈X

p(x)log2p(x). (1)

Shannon entropy quantifies the information required to identify random values from
a discrete distribution. When two subsystems, X and Y, are present in a state of the system,
their combined probability distribution is represented by a joint probability.

H(X, Y) = − ∑
x∈X,y∈Y

p(x, y)log2p(x, y). (2)

Finally, we can define MI as the quantity of identifying the interaction between subsystems.

I(X, Y) = H(X) + H(Y)− H(X, Y) (3)

Mutual Information (MI) has been widely utilized in finance for network analysis
across various stock exchanges. It’s been instrumental in developing networks and selecting
portfolios, mainly using short-term data in different markets, and examining market
behaviors during significant changes or events. This approach provides insights into
market dynamics and investor sentiments in diverse economic contexts [24–30].

3.1.2. Normalized Mutual Information (NMI)

One of MI’s disadvantages is that it is hard to compare results from the MI derived
from different data. Because the domain of MI is always finite for the discrete random
variables, the maximum value of the MI is not constant. In other words, this means that it
is hard to compare the statistical dependence derived from different datasets. Therefore,
we used NMI to compare politically themed stock networks within the same range [0, 1].
Since there are several normalized variants of NMI, their properties are slightly different.
In this study, we used NMI with a minimum of two entropies, as shown in (4), because
the normalization version of mutual information measures should be based on the least
upper bound, min(H(X), H(Y)). Using NMI with a minimum of two entropies ensures
that the maximum attainable value of NMI is one. This version of NMI is irrespective of
the dimensions of two discrete variables and the marginal probabilities [31–35] (Kvålseth,
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1987; Banerjee et al., 2005; Kraskov et al., 2005; Vinh et al., 2010; Sarhrouni et al., 2012;
Kvålseth, 2017).

NMI(X, Y) =
I(X, Y)

min(H(X), H(Y))
(4)

3.2. Transfer Entropy (TE)

Transfer Entropy (TE), based on Shannon entropy and mutual information concepts,
is a non-parametric metric for quantifying information transfer between two variables.
Unlike Granger causality, which is prediction-oriented, TE focuses on reducing uncertainty,
measuring how one variable clarifies the future of another beyond its own past contri-
butions. TE stands out as a model-free approach for identifying causal links in dynamic
systems, particularly useful in finance for analyzing connections between various financial
entities and market dynamics. This method is renowned for its ability to efficiently pinpoint
sources and targets in causal relationships [36].

Transfer Entropy has been a key tool in financial research to explore causal relation-
ships. Studies have examined the connections between credit default swap and bond
markets, the causal links among international financial firms, the interplay between ex-
change rates and stock prices in emerging economies, and the information flow in U.S.
equity and commodity markets. This method has proven effective in understanding both
internal and cross-market dynamics, demonstrating its versatility in different financial
contexts [37–40].

Based on the concepts mentioned earlier related to entropy, conditional entropy quan-
tifies the amount of information needed to describe the outcome of a random variable, X,
given that the value of another random variable, Y, is known. Here, the conditional entropy
of X given Y can be expressed as

H(X|Y) = − ∑
x∈X,y∈Y

p(x, y)log2
p(x, y)
p(y)

. (5)

It can be interpreted as the uncertainty about Y when X is known, or as the expected
number of bits needed to describe X when Y is known to both the encoder and the decoder.
Based on the above definition, we can define the general form of (k, l)-history TE between
two time series, Xt and Yt, for x(k)t = (xt, . . . , xt−k+1) and y(l)

t = (yt, . . . , yt−l+1). The
general (k, l)-history transfer entropy can be expressed as follows (Bossomaier et al., 2016):

TE(k,l)
Y→X(t) = H(Xt+1|Xt, . . . , Xt−k+1)− H(Xt+1|Xt, . . . , Xt−k+1, Yt, . . . , Yt−l+1)

= ∑
i

p
(

xt+1, x(k)t , y(l)
t

)
log2p(xt+1|x

(k)
t , y(l)

t )− ∑
i

p
(

xt+1, x(k)t , y(l)
t

)
log2p(xt+1|x

(k)
t )

= ∑
i

p(xt+1, x(k)t , y(l)
t )log2

p(xt+1

∣∣∣x(k)t ,y(l)t )

p(xt+1

∣∣∣x(k)t )
,

(6)

where i =
{

xt+1, x(k)t , y(l)
t

}
. TE(k,l)

Y→X(t) is non-negative, and we can drop the time depen-

dency argument, t, for stationary processes. TE(k,l)
Y→X(t) represents the information about the

future state of XI, which can be obtained by subtracting information retrieved from only
X(k)

t from the information gathered from both X(k)
t and Y(l)

t . The schematic representation
of transfer entropy is shown in Figure 1.



Entropy 2024, 26, 70 6 of 26Entropy 2024, 25, x FOR PEER REVIEW 6 of 25 
 

 

 
Figure 1. Schematic representation of transfer entropy (I. Choi. 2021). 

In this study, we focused on the TE under the following conditions of two lags, k =l = 1. These settings for lags are typically chosen as they align with the principles of the 
weak form of the Efficient Market Hypothesis (EMH) and the notion that stock prices 
follow a random walk pattern. [39,40]. Then, we can express the equation of (1,1)-history 
TE as follows: TE →( , )(t) = p(x , x , y )log p(x |x , y )p(x |x )  = p(x , x , y )log p(x , x , y )p(x )p(x , x )p(x , y ) , (7)

where i = {x , x , y }. 

3.3. Test for Obtaining p-Values of MI and TE 
In recent research, transfer entropy has often been explored without considering the 

finite-size effects arising from sample variations. In this study, we adopt a nuanced 
approach by integrating the permutation test alongside transfer entropy to effectively 
mitigate these finite-size effects [23,36]. The strength of permutation tests lies in their non-
parametric nature, necessitating minimal assumptions and making them particularly 
adept at discerning statistical significance, especially when the data-generating 
mechanism remains elusive. To ensure robustness, we introduced a shuffling mechanism 
for each element in the time series, deriving mutual information and transfer entropy 
complemented by p-values. Our methodological choice of conducting 1000 shuffles (M = 
1000) to compute ETE values underscores our commitment to precision. This novel 
integration, encapsulating both permutation tests and transfer entropy, is our distinct 
contribution to the literature, offering insights with heightened accuracy. 

3.4. Network Analysis 
Network analysis offers a unique lens through which we can gain insights into 

complex social phenomena by representing them as interconnected systems. This 
approach not only simplifies the depiction of interactions but also provides a structured 
framework for understanding the intricate dynamics between different entities. In the 
context of our research, we view the entropy-based causal relationships among exchange 
rates as a web of interactions between sector ETFs. By doing so, we unlock the potential 
to visualize and delve deeper into the intricate ties binding these sector ETFs. 

For our study, we leveraged various network topology metrics, transforming them 
into features for our predictive models. These metrics serve as crucial indicators, helping 
us navigate the vast network landscape and understand our dataset’s underlying patterns. 

3.4.1. Network Theory 
Nodes and links are the fundamental components of network theory. As a subject 

component of a network, a node functions as an interactive agent. A link or connection 
between two subjects is also an interaction between them. The network type can be 
classified according to the connection’s characteristics. Networks can be classified as 

Figure 1. Schematic representation of transfer entropy (I. Choi. 2021).

In this study, we focused on the TE under the following conditions of two lags,
k = l = 1. These settings for lags are typically chosen as they align with the principles of
the weak form of the Efficient Market Hypothesis (EMH) and the notion that stock prices
follow a random walk pattern. [39,40]. Then, we can express the equation of (1,1)-history
TE as follows:

TE(1,1)
Y→X(t) = ∑

i
p(xt+1, xt, yt)log2

p(xt+1|xt, yt)

p(xt+1|xt)
= ∑

i
p(xt+1, xt, yt)log2

p(xt+1, xt, yt)p(xt)

p(xt+1, xt)p(xt, yt)
, (7)

where i = {xt+1, xt, yt}.

3.3. Test for Obtaining p-Values of MI and TE

In recent research, transfer entropy has often been explored without considering
the finite-size effects arising from sample variations. In this study, we adopt a nuanced
approach by integrating the permutation test alongside transfer entropy to effectively
mitigate these finite-size effects [23,36]. The strength of permutation tests lies in their
non-parametric nature, necessitating minimal assumptions and making them particularly
adept at discerning statistical significance, especially when the data-generating mechanism
remains elusive. To ensure robustness, we introduced a shuffling mechanism for each
element in the time series, deriving mutual information and transfer entropy complemented
by p-values. Our methodological choice of conducting 1000 shuffles (M = 1000) to compute
ETE values underscores our commitment to precision. This novel integration, encapsulating
both permutation tests and transfer entropy, is our distinct contribution to the literature,
offering insights with heightened accuracy.

3.4. Network Analysis

Network analysis offers a unique lens through which we can gain insights into complex
social phenomena by representing them as interconnected systems. This approach not
only simplifies the depiction of interactions but also provides a structured framework
for understanding the intricate dynamics between different entities. In the context of our
research, we view the entropy-based causal relationships among exchange rates as a web
of interactions between sector ETFs. By doing so, we unlock the potential to visualize and
delve deeper into the intricate ties binding these sector ETFs.

For our study, we leveraged various network topology metrics, transforming them
into features for our predictive models. These metrics serve as crucial indicators, helping
us navigate the vast network landscape and understand our dataset’s underlying patterns.

3.4.1. Network Theory

Nodes and links are the fundamental components of network theory. As a subject
component of a network, a node functions as an interactive agent. A link or connection
between two subjects is also an interaction between them. The network type can be
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classified according to the connection’s characteristics. Networks can be classified as
directional or non-directional depending on whether they have a direction. Moreover, if
the network is weighted, it is known as a weighted network; otherwise, it is known as a
binary network.

Graphs and matrices are used to represent networks. Both systems have advantages
in terms of mathematical processing and visual explanation. Using a graph format is a
means to depict a network and intuitively show its shape by giving nodes and links shapes,
colors, sizes, labels, and arrows. A matrix format describes network attributes as a matrix,
often called adjacency matrix.

We used the weighted-undirected graph for MI and the directed-weighted graph
for TE. Then, we used the p-value from the permutation tests as a threshold for deciding
connections between two U.S. sector index ETFs’ log-returns and trading volumes’ rates
of changes. In other words, the p-values of MI and TE determine the linkages in the
created directed weighted network. Our p-value-based threshold value was 0.1, one of the
conventional statistics values.

In detail, each edge (u, v) ∈ E was attributed a w(u, v) calculated from one of our
statistical dependency measures and an associated p-value, p(u, v).

To construct a p-value Threshold Tree, we define a p-value criterion under which
an edge is considered statistically significant. For a commonly used significance level of
α = 0.05, our construction rule might be articulated as

Eα = {(u, v) ∈ E | p(u, v) < α} (8)

3.4.2. Centrality Measures

Our data were collected from observations within the same system over time. We
analyzed topological measures of an evolving network at regular time intervals, yielding
time-ordered sequences of topological observations. Our focus was primarily on centrality
measures, which are quantified by applying a real-valued function to the vertices of a
graph, aiming to rank nodes based on their significance.

The concept of “importance” in a network can be interpreted in various ways, leading
to different centrality definitions. One approach conceptualizes importance in terms of
network flow or transfer, categorizing centralities based on the type of flow they emphasize.
Alternatively, importance can be seen as a node’s contribution to network cohesion, leading
to centralities that assess cohesiveness.

Different centrality measures consider the number of paths passing through a node,
varying in their definition and counting of relevant paths. This approach allows for a
classification spectrum ranging from centralities concerned with short paths (like degree
centrality) to those involving longer or infinite paths (such as eigenvector centrality). Other
measures, like betweenness centrality, focus on a node’s role in overall network connectivity.
The centrality measures used in our study are detailed in Table 2, with their respective
citations ranging from [41–68].

Table 2. Centrality measures and their definitions.

Centrality Measures Citation

Average Neighbor Degree [50,60]
Degree Centrality [60]

Eigenvector Centrality [44,60,68]
Closeness Centrality [43,46,60]

Information Centrality [45,60,65]
Betweenness Centrality [42,49,57,58,60]

Current Flow Betweenness Centrality [53,55,60]
Communicability Betweenness Centrality [60,61]

Harmonic Centrality [60,64]
Second-Order Centrality [60,62]
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Table 2. Cont.

Centrality Measures Citation

Voterank Importance [60,66]
Number of Maximal Cliques [41,51,59]

PageRank [48,60]
HITS [47,54,60]

3.4.3. Node Embedding Algorithm and Dimensionality Reduction

Understanding the intricate relationships between financial assets is of paramount
importance. Traditional approaches, however, often miss the nuanced, nonlinear connec-
tions inherent within networks of assets, such as U.S. sector index ETFs. This is where
node embeddings come to the fore, offering a fresh perspective that traditional methods
may overlook.

Node embeddings convert the intricate attributes and relationships of nodes within a
network into representative vectors. These vectors encapsulate essential structural details
and node-specific features, furnishing us with enhanced capabilities for analysis and
prediction. In our research, we leaned into these advantages, focusing specifically on
understanding how features derived from node structures within our constructed network
could aid in predicting the movement of nine U.S. sector index ETFs.

We harnessed the power of two notable node embedding techniques: Role2vec [69]
and FEATHER [70]. While both techniques excel at capturing essential node information,
they differ subtly in their focuses. Role2vec zeroes in on the structural characteristics of
nodes, and FEATHER brings to light the attributes specific to each node. By employing
both, we ensured a comprehensive grasp of the diverse facets of the network, from its
broader architecture to the individual attributes of its constituents.

To refine our approach, we adopted 1024-dimensional embeddings and distilled
them into more manageable 32-dimensional vectors. This refinement was achieved using
UMAP [61], a technique renowned for preserving global structural information while
having its roots firmly planted in Riemannian manifold and topological data analysis.

After deriving the node embeddings in our study, we further integrated them into
our prediction framework. Specifically, we based our predictions on networks influenced
by both mutual information and transfer entropy. This deliberate integration into the
prediction problem enabled us to tap into the information-theoretic network structures.

Role2vec [69]

Ahmed et al. (2018) presented the Role2Vec framework, which employs the flexible
concept of attributed random walks and serves as the foundation for leveraging random
walks. Their proposed framework expands the applicability of these methods to trans-
ductive and inductive learning, as well as graphs with attributes (if available). This is
accomplished by acquiring functions that are applicable to new nodes and graphs [69].

Role2vec focuses on learning role-based graph embeddings. The core idea is to learn a
mapping of nodes to roles in the graph, and then learn embeddings for these roles.

FEATHER [70]

FEATHER, introduced by Rozemberczki and Sarkar (2020), is a flexible concept of
characteristic functions defined on graph vertices to characterize the distribution of vertex
features at multiple scales. FEATHER is a computationally efficient algorithm for calculat-
ing a particular variant of these characteristic functions in which the probability weights
are defined as the transition probabilities of random walks [70].

Rozemberczki and Sarkar (2020) argued that the extracted features are useful for
machine learning tasks at the node level. The pooling of these node representations yields
compact graph descriptors that can serve as features for graph classification algorithms.
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They also demonstrated that FEATHER describes isomorphic graphs using the same
representation and is resistant to data corruption analytically [70].

UMAP [71]

UMAP is a dimensionality reduction technique that is well suited for visualizing
high-dimensional datasets. Developed by McInnes, Healy, and Melville in 2018, UMAP
operates based on Riemannian geometry and algebraic topology principles [71].

At its core, UMAP constructs a high-dimensional graph representation of the data and
subsequently optimizes a low-dimensional version of this graph to produce a dimension-
reduced representation. The method starts by approximating the data’s manifold by using
a fuzzy simplicial set. The next step involves finding a low-dimensional representation of
this set.

UMAP’s foundational mathematics relies on three main aspects:

1. Topological Data Analysis: Used to understand the high-dimensional structure of
the data.

2. Fuzzy Simplicial Sets: Used to approximate the manifold the data resides on, provid-
ing both local and global preservation.

3. Riemannian Geometry: Used to accurately measure distances and maintain data
relationships.

Our research employed UMAP to condense the 1024-dimensional vectors obtained
from our node embeddings down to a more manageable 32-dimensional space. This
reduction was imperative not only for visualization but also for enhancing computational
efficiency without significantly compromising the structural integrity of our dataset. The
robust foundation of UMAP in topological data analysis ensured that the global structure
of our data was retained, making the resulting low-dimensional embeddings particularly
insightful for subsequent analyses.

Integrating node embeddings is not just a technical addition, but a revolutionary
step in bridging the identified research gaps. As our abstract suggests, we aim to bring
a layer of explainability that is absent in the existing literature. Node embeddings, es-
pecially using Role2vec and FEATHER, allow us to achieve this. We transform abstract
financial relationships into tangible, quantifiable data points by converting nodes and their
intricate relationships into vectors. This paves the way for integrating these insights into
predictive models that forecast with higher accuracy and provide deeper insights into the
underlying dynamics.

While many studies have delved into sector indices and ETFs, our adoption of node
embeddings elevates our research by emphasizing prediction and understanding. The
resulting models are not black boxes, but interpretable tools that shed light on the intricate
web of relationships within the U.S. sector index ETFs, marking a significant advancement
in financial network analysis.

3.5. Machine Learning Algorithms and xAI (eXplainable Artificial Intelligence) Techniques

We mainly used the most frequently used basic machine learning models to predict
index sector ETFs’ returns despite there being many state-of-the-art models with good
performance. For example, although many studies have shown that recurrent neural
networks and gradient-boosting algorithms based on them perform very well in various
areas, this study aims to extract features that can be used in all machine learning models
through a nonlinear measure-based network analysis to see their effects. Accordingly, we
tried to confirm the performance of well-known machine learning techniques. We used
three tree-based machine learning algorithms: XGBoost, LightGBM, and CatBoost [72–74].
We used those three prominent models for the following reasons:

1. Interpretability: Tree-based models, at their core, make decisions based on certain
conditions, making them more interpretable than many deep learning models. This
interpretability is vital in financial sectors, where understanding the reasons behind
predictions can be as critical as the predictions themselves.
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2. Handling of Mixed Data Types: Financial datasets often consist of numerical and
categorical data. Tree-based models like CatBoost are particularly effective at handling
categorical variables without extensive preprocessing.

3. Automatic Feature Selection: These models inherently perform feature selection. As a
result, they can identify and prioritize the most essential features, which is particularly
useful in financial datasets with potentially redundant or less impactful variables.

4. Resistance to Overfitting: With techniques such as gradient boosting and regular-
ization in models like XGBoost and LightGBM, tree models exhibit resistance to
overfitting, especially when appropriately tuned.

5. Flexibility: These models can easily capture nonlinear relationships in the data, which
is common in financial time series data. Traditional linear models might not capture
this nonlinearity as quickly.

6. Efficiency and Scalability: Models like LightGBM and CatBoost have been designed
with efficiency in mind. They can handle large datasets, making them suitable for
comprehensive financial data.

7. Consistency in Results: While deep learning models like RNNs can be potent, they
require more meticulous fine-tuning and can sometimes produce inconsistent results
due to their complex architectures. In contrast, tree models, once well-tuned, can
provide more consistent predictions.

8. End-to-End Modeling: These models do not necessarily require extensive data pre-
processing or normalization, making the modeling process more straightforward and
sometimes more accurate since no information is lost in preprocessing.

3.5.1. XGBoost

XGBoost (Chen and Guestrin, 2016) [72] is an algorithm that uses the boosting gra-
dient technique proposed by Friedman (2001) [75]. XGBoost is an ensemble algorithm
utilizing gradient tree boosting to enhance classifiers in a sequential manner. Its primary
benefit lies in scalability across various situations, making it a highly popular choice for
regression tasks.

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (9)

Z = ∑
i

l(ŷi, yi) + ∑
k

Ω(fk) = ∑
i

l(ŷi, yi) + ∑
k
(γT +

1
2
λ ∥ w ∥2) (10)

Equation (9) is an expression representing the ensemble model of the tree, F is the
collective space of all possible classification and regression trees (CART). At this time, the
final prediction is made by summing and comparing the scores of each leaf. Equation (10)
is a normalized objective function of the XGBoost model. l(ŷi, yi) is a differentiable convex
loss function that measures the difference between the predicted and target values, and
it is also a normalization term, and Ω(fk) is a CART function that prevents overfitting
problems by smoothing the final learned weights by adjusting the complexity of the model.
γT represents the number of leaves in CART, and 1

2λ ∥ w ∥2 represents the score assigned
to the leaves in CART.

3.5.2. Light Gradient Boosting Machine (LightGBM)

LightGBM, developed by Ke et al. in 2017 [73], is a gradient-boosting machine learning
model that incorporates gradient-based one-side sampling (GOSS) and exclusive feature
bundling (EFB) to handle variables efficiently. Its unique vertical growth structure makes it
more accurate and efficient than other machine learning approaches.

Yt =
T

∑
t=1

ft(x) (11)
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In Equation (11), ft(x) is a tree, and its objective function is estimated using Newton’s
method.

3.5.3. CatBoost

CatBoost, introduced by Prokhorenkova et al. in 2018, is a gradient boosting algo-
rithm focused on categorizing data. It stands out in handling categorical features through
sequential boosting and decision tree-based techniques. The trees in CatBoost are created
by grouping similar instances within the learning dataset, contributing to its superior
performance compared to other gradient boosting methods.

3.5.4. SHAP (Shapley Additive Explanation)

Machine learning shows promise in time series prediction but often lacks explana-
tory power. Addressing this, Lundberg and Lee (2017) introduced the SHAP method,
enhancing interpretability across various machine learning models [76]. SHAP, based on
the Shapley value from game theory [77], is a key approach in explainable AI (xAI), eluci-
dating predictions by assessing the impact of individual features. This method calculates
average Shapley values using game theory principles, clarifying predictions through the
contribution of each data feature.

ϕi = ∑
S⊆N∖{i}

|S|!(M − |S| − 1)!
M!

[fx(S ∪ {i})− fx(S)] (12)

ϕi is the Shapley value for the data, and N is the set of total input variables. S is
the set of variables except for the i-th variable in the total input variable, and v(S) is the
contribution that the remaining subset, except the i-th data, contributed to the result, and
fx(S ∪ {i}) is the total contribution including the i-th data.

In this study, we also generated equally weighted soft-voting regressors to check the
average overall performance and analyzed their mean absolute SHAP values.

Ij =
1
N

N

∑
i=1

∣∣∣ϕ(i)
j

∣∣∣ (13)

3.5.5. Performance Metrics of Classification Problem

In addition, we calculated the relationship between the prediction values and real
values (fluctuation) using the confusion matrix derived from the classification results. The
confusion matrix is typically used to ascertain whether the predicted value was derived
appropriately compared with the actual value. In this experiment, the confusion matrix
was used to determine the extent to which up or down predictions fall into the fluctuations
of U.S. sector index ETFs’ prices.

Figure 2 shows a confusion matrix, and Table 3 further presents the evaluation metric
used for the confusion matrix.
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Table 3. Performance metrics of classification problems.

Metric Definition

Accuracy TP + TN
P + N

Balanced Accuracy TP/P + TN/N
2

Cohen’s Kappa Coefficient 2 × (TP × TN−FN × FP)
(TP + FP) × (FP + TN) + (TP + FN) × (FN+TN)

Precision TP
TP + FP

Recall TP
TP+FN

F1 Score 2TP
2TP + FP + FN

F-Beta Score (1 + β2) × Precision × Recall
β2 × Precision+Recall

Hamming Loss

1
nsamples×nlabels

nsamples−1
∑

i=0

nlabels−1
∑

j=0
1
(

ŷi,j ̸= yi,j

)
where ŷi,j is the predicted value for the j-th label of a
given sample i, yi,j is the corresponding true value,

nsamples is the number of samples, nlabels is the
number of labels (in this study, nlabels = 2), and 1(x)

is the indicator function.

4. Results
4.1. Exploratory Data Analysis (EDA)

Tables 4 and 5 present the descriptive statistics for our two datasets, focusing on log
return and the rate of change in trading volume for various securities like XLB, XLE, XLF,
and others. For the price data in Table 4, the mean values indicate the average return of
each security over the studied timeframe. Most returns are proximate to zero, but XLK and
XLY stand out with the highest mean returns of 0.0006. The standard deviation showcases
the inherent volatility or risk, with XLE being the most volatile, having a standard deviation
of 0.0183, and XLP being the least volatile at 0.0090. The minimum and maximum values
capture the extreme returns; XLE saw the largest negative return at −0.2249, while XLF
recorded the highest positive return at 0.1524. Quartiles, particularly the medians, often
reveal positive returns aligned with the mean values. The skewness of most securities is
negative, suggesting that the left tail, or the negative returns, extends more than the right.
The kurtosis, which is consistently greater than 3 for all securities, points to a distribution
with heavier tails than a normal distribution, implying a higher likelihood of extreme
values or outliers.

In Table 5, which covers trading volume data, we observe that XLF, intriguingly, has a
negative mean, hinting at a general decreasing trend in its trading volume. On the volatility
front, XLP leads with the most volatile trading volume. The skewness values for volume
differ across securities, suggesting varied asymmetry in their volume distributions, and the
kurtosis indicates that spikes or dramatic drops in trading volumes can occasionally occur.

Several statistical tests were performed, such as the Shapiro–Wilk test, Kolmogorov–
Smirnov test, and Jarque–Bera test for normality. The Ljung–Box test was employed
to scrutinize the autocorrelation at different orders, and the Augmented Dickey–Fuller
(ADF) test was used to check for stationarity. The symbols *, **, and *** denote statistical
significance at the 0.1, 0.05, and 0.01 levels. The outcome of this rigorous testing reveals
that none of the data columns adhere to normality across both sets of descriptive statistics.
This non-compliance with normality furnishes a quantitative foundation for leveraging
nonparametric methodologies that do not rest on assumptions like normality.
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Table 4. Descriptive statistics (price).

Statistics XLB XLE XLF XLI XLK XLP XLU XLV XLY

Mean 0.0004 0.0002 0.0004 0.0004 0.0006 0.0004 0.0004 0.0005 0.0006

Standard
Deviation 0.0143 0.0183 0.0177 0.0134 0.0135 0.0090 0.0112 0.0107 0.0132

Min. −0.1166 −0.2249 −0.1807 −0.1204 −0.1487 −0.0987 −0.1206 −0.1038 −0.1355

Max. 0.1112 0.1487 0.1524 0.1191 0.1109 0.0817 0.1204 0.0742 0.0897

Q1 −0.0063 −0.0078 −0.0065 −0.0054 −0.0049 −0.0036 −0.0051 −0.0044 −0.0050

Median 0.0009 0.0004 0.0007 0.0009 0.0011 0.0007 0.0009 0.0009 0.0013

Q3 0.0080 0.0090 0.0079 0.0069 0.0072 0.0051 0.0062 0.0062 0.0072

Skewness −0.4846 −0.7722 −0.0455 −0.4728 −0.5109 −0.5013 −0.3185 −0.4312 −0.6604

Kurtosis 6.0502 13.9521 16.4934 8.9646 9.7817 13.0281 16.1477 7.4502 7.9877

Shapiro–Wilk
Test (W) 0.9421 *** 0.9073 *** 0.837 *** 0.9144 *** 0.9175 *** 0.9033 *** 0.8903 *** 0.9321 *** 0.9227 ***

Jarque–Bera Test
(JB) 5395.7801 *** 28,327.5218 *** 39,109.1785 *** 11,680.1006 *** 13,903.6934 *** 24,544.2796 *** 37,543.7296 *** 8084.7764 *** 9421.6981 ***

Augmented
Dickey–Fuller

(DFτ)
−14.9626 *** −11.5752 *** −10.9766 *** −11.6973 *** −12.9465 *** −18.7009 *** −14.6622 *** −16.2154 *** −11.9238 ***

Ljung–Box Test
(Q(5)) 27.8087 *** 21.2132 *** 100.1074 *** 22.9614 *** 70.5875 *** 59.3114 *** 61.5096 *** 42.4347 *** 23.582 ***

Ljung–Box Test
(Q(10)) 65.3377 *** 60.4795 *** 164.8877 *** 83.7618 *** 190.4879 *** 142.5232 *** 154.016 *** 121.0344 *** 78.3964 ***

Ljung–Box Test
(Q(20)) 87.2127 *** 86.7658 *** 207.5788 *** 107.8259 *** 237.6269 *** 162.8771 *** 209.2207 *** 161.026 *** 100.1244 ***
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Table 5. Descriptive statistics (volume).

Statistics
Data

XLB XLE XLF XLI XLK XLP XLU XLV XLY

Mean 0.0002 0.0000 −0.0003 0.0001 0.0002 0.0005 0.0005 0.0005 0.0001

Standard Deviation 0.3912 0.3271 0.3676 0.3730 0.4187 0.4396 0.3918 0.3958 0.4108

Min. −1.5326 −1.5394 −1.3862 −1.8871 −1.8236 −1.7922 −1.5858 −2.1560 −1.6051

Max. 1.7235 1.3046 1.5283 1.5598 1.9678 2.4972 1.6630 1.9397 2.1229

Q1 −0.2523 −0.2091 −0.2497 −0.2495 −0.2570 −0.2753 −0.2428 −0.2586 −0.2596

Median −0.0080 −0.0093 −0.0059 0.0026 −0.0064 −0.0130 −0.0112 −0.0114 −0.0068

Q3 0.2471 0.2055 0.2293 0.2357 0.2504 0.2534 0.2452 0.2376 0.2450

Skewness 0.1301 0.0791 0.1892 0.0980 0.0656 0.2973 0.1710 0.0994 0.1642

Kurtosis 0.7003 0.6145 0.4871 0.7279 1.2428 1.6248 0.8267 0.9842 1.1379

Shapiro–Wilk Test (W) 0.9956 *** 0.996 *** 0.9963 *** 0.9956 *** 0.9906 *** 0.9857 *** 0.9935 *** 0.9935 *** 0.9918 ***

Jarque–Bera Test (JB) 79.9351 *** 57.6037 *** 54.5113 *** 81.3655 *** 223.9659 *** 429.7603 *** 114.7139 *** 144.4836 *** 201.1662 ***

Augmented Dickey–Fuller
(DFτ) −20.5462 *** −15.9105 *** −15.1273 *** −15.3356 *** −16.3168 *** −16.3461 *** −16.415 *** −19.7349 *** −20.9397 ***

Ljung–Box Test (Q(5)) 439.3993 *** 438.0747 *** 427.4039 *** 442.3769 *** 545.3189 *** 598.9662 *** 632.7569 *** 483.8212 *** 594.0558 ***

Ljung–Box Test (Q(10)) 442.1597 *** 456.3206 *** 431.9172 *** 445.1095 *** 547.6234 *** 618.9684 *** 639.1071 *** 489.3571 *** 599.5767 ***

Ljung–Box Test (Q(20)) 473.9014 *** 482.8198 *** 458.9153 *** 464.1181 *** 558.6023 *** 647.9025 *** 654.0895 *** 494.3574 *** 610.6616 ***
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For the more detailed analysis of non-normality in Tables 4 and 5, Tables 6 and 7
delineate the ratios at which the null hypothesis was rejected during normality testing
for all generated datasets. Seven normality tests were conducted, including the Shapiro–
Wilk test, D’Agostino K-squared test, and others. A striking revelation from these tests
is that more than 80% of the dataset used for calculations failed to meet the criteria for
normality. This discovery underpins our methodology decision to employ nonlinear
nonparametric measures like mutual information and transfer entropy, which remains
unfazed by normality prerequisites. The central limit theorem (CLT) theoretically suggests
that as the sample size swells, the distribution of sample means should approximate a
Gaussian distribution. However, our empirical findings, through exploratory data analysis
(EDA), demonstrate a significant trend: as the window length elongates, the null hypothesis
becomes rejected more frequently across all normality tests.

Table 6. Rejected ratios of all generated datasets derived from the normality test results (price).

(Unit: %) Shapiro–Wilk
Test (W)

D’Agostino
K-Squared Test

(K-Squared)

Lilliefors Test
(T)

Jarque–Bera Test
(JB)

Kolmogorov–
Smirnov Test

(KS)

Anderson–
Darling Test
(A-Squared)

Cramér–von
Mises Test (U)

XLB

α = 0.1 91.69 91.54 89.33 91.54 100.00 92.39 100.00

α = 0.05 90.28 90.05 87.01 90.53 100.00 90.60 100.00

α = 0.01 87.30 87.23 82.46 88.43 100.00 87.32 100.00

XLE

α = 0.1 93.41 92.72 89.89 92.81 100.00 92.98 100.00

α = 0.05 92.27 91.64 87.66 92.10 100.00 91.22 100.00

α = 0.01 90.46 89.92 83.74 90.94 100.00 87.88 100.00

XLF

α = 0.1 94.11 93.99 91.96 93.99 100.00 93.94 100.00

α = 0.05 93.04 92.75 90.33 93.16 100.00 92.37 100.00

α = 0.01 90.49 89.69 87.36 91.39 100.00 89.93 100.00

XLI

α = 0.1 93.34 93.30 92.48 93.43 100.00 94.14 100.00

α = 0.05 92.01 91.97 90.58 92.58 100.00 92.86 100.00

α = 0.01 89.69 89.56 86.69 90.93 100.00 89.91 100.00

XLK

α = 0.1 95.88 95.65 93.83 95.51 100.00 95.94 100.00

α = 0.05 94.89 94.69 91.89 94.83 100.00 94.80 100.00

α = 0.01 92.62 92.44 88.36 93.51 100.00 92.41 100.00

XLP

α = 0.1 94.47 94.86 91.74 94.80 100.00 94.47 100.00

α = 0.05 93.13 93.81 89.40 94.15 100.00 92.89 100.00

α = 0.01 90.86 91.86 84.82 92.85 100.00 89.68 100.00

XLU

α = 0.1 90.83 91.65 88.12 91.65 100.00 89.81 100.00

α = 0.05 89.13 89.98 85.62 90.46 100.00 88.06 100.00

α = 0.01 86.40 87.49 81.01 88.65 100.00 84.48 100.00

XLV

α = 0.1 93.61 93.91 90.51 93.85 100.00 93.76 100.00

α = 0.05 92.55 93.06 87.93 93.3 100.00 92.30 100.00

α = 0.01 89.75 90.59 83.98 91.91 100.00 88.77 100.00

XLY

α = 0.1 95.22 95.48 92.54 95.19 100.00 94.53 100.00

α = 0.05 94.00 94.37 90.48 94.39 100.00 93.41 100.00

α = 0.01 91.83 91.83 86.04 92.69 100.00 91.05 100.00
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Table 7. Rejected ratios of all generated datasets derived from the normality test results (volume).

(Unit: %) Shapiro–Wilk
Test (W)

D’Agostino
K-Squared

Test
(K-Squared)

Lilliefors Test
(T)

Jarque–Bera
Test (JB)

Kolmogorov–
Smirnov Test

(KS)

Anderson–
Darling Test
(A-Squared)

Cramér–von
Mises Test (U)

XLB

α = 0.1 75.04 77.25 40.81 77.12 99.78 68.89 99.90

α = 0.05 70.16 73.57 25.55 74.01 99.54 61.10 99.75

α = 0.01 60.57 65.45 1.87 68.97 98.74 46.41 99.12

XLE

α = 0.1 76.65 79.49 37.70 79.47 99.95 64.88 99.99

α = 0.05 69.92 73.76 27.75 75.62 99.84 54.95 99.94

α = 0.01 50.64 50.83 11.27 62.36 99.34 35.56 99.56

XLF

α = 0.1 78.19 79.61 51.59 80.01 99.89 70.32 99.96

α = 0.05 73.37 74.10 42.80 75.08 99.71 63.23 99.86

α = 0.01 61.00 63.86 25.21 66.37 99.06 50.93 99.31

XLI

α = 0.1 73.71 76.71 28.21 77.52 99.88 49.85 99.95

α = 0.05 70.07 73.61 16.67 75.21 99.66 38.19 99.84

α = 0.01 56.83 67.41 2.09 71.26 99.00 15.81 99.28

XLK

α = 0.1 85.99 86.03 77.41 86.33 99.73 85.93 99.87

α = 0.05 83.65 83.98 69.76 85.21 99.46 81.83 99.68

α = 0.01 78.64 80.26 54.79 82.91 98.62 74.94 99.00

XLP

α = 0.1 87.34 89.86 79.01 89.63 99.57 85.64 99.75

α = 0.05 84.44 86.88 74.78 87.34 99.24 82.04 99.52

α = 0.01 78.91 80.89 66.92 82.93 98.25 73.63 98.74

XLU

α = 0.1 79.74 83.58 68.10 84.63 99.78 77.19 99.89

α = 0.05 74.97 78.16 62.55 80.92 99.56 72.42 99.74

α = 0.01 64.45 64.73 47.43 71.40 98.80 62.06 99.15

XLV

α = 0.1 83.72 85.21 64.76 85.86 99.80 82.53 99.91

α = 0.05 79.20 80.76 55.61 82.49 99.58 77.04 99.75

α = 0.01 68.36 69.73 43.06 75.57 98.84 62.80 99.13

XLY

α = 0.1 73.54 77.90 57.74 78.33 99.74 70.27 99.86

α = 0.05 68.80 73.29 50.16 74.77 99.48 63.39 99.67

α = 0.01 62.41 66.20 31.03 69.55 98.64 53.53 98.98

4.2. Prediction Results
4.2.1. Prediction Performance

We conducted 100 iterations, changing their seeds to consider the robustness of our
experiments. Table 8 shows the average values of our predictions’ performance metrics.
The original dataset includes U.S. sector index ETFs’ price-related data.
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In our comprehensive analysis, meticulous care was taken to ensure the robustness of our
experimental results. To this end, a series of 100 iterations were conducted, each employing a
distinct seed, thereby enhancing the reliability and generalizability of our findings.

Table 8. Prediction results.

Model Original Dataset
Dataset with Proposed Features

(MI and TE-Based
Network-Driven Features)

Independent t-Test Statistic

XGBoost LightGBM CatBoost XGBoost LightGBM CatBoost XGBoost LightGBM CatBoost

XLB (Materials)

Accuracy 0.5376 0.5418 0.5312 0.5460 0.5460 0.5619 14.17 *** 7.03 *** 63.38 ***

Balanced
Accuracy 0.5389 0.5431 0.5324 0.5454 0.5426 0.5594 15.41 *** −2.11 64.49 ***

Cohen’s Kappa
Coefficient 0.0773 0.0857 0.0644 0.0906 0.0855 0.1190 297.86 *** −2.31 711.19 ***

Precision 0.5408 0.5451 0.5343 0.5471 0.5446 0.5612 11.61 *** −1.03 109.54 ***

Recall 0.5376 0.5418 0.5312 0.5460 0.5460 0.5619 14.49 *** 6.35 *** 59.31 ***

F1 Score 0.5379 0.5421 0.5315 0.5464 0.5450 0.5615 18.34 *** 8.83 *** 67.71 ***

F-Beta Score
(0.5) 0.5393 0.5435 0.5329 0.5468 0.5447 0.5613 14.90 *** 1.78 ** 80.04 ***

F-Beta Score
(2) 0.5374 0.5416 0.5311 0.5464 0.5450 0.5615 22.20 *** 6.79 *** 65.44 ***

Hamming Loss 0.4624 0.4582 0.4688 0.4540 0.4540 0.4381 19.40 *** 8.59 *** 72.07 ***

XLE (Energy)

Accuracy 0.5238 0.5270 0.5439 0.5651 0.5503 0.5365 103.61 *** 38.95 *** −14.99

Balanced
Accuracy 0.5263 0.5307 0.5485 0.5578 0.5422 0.5286 52.75 *** 36.89 *** −34.53

Cohen’s Kappa
Coefficient 0.0523 0.0609 0.0960 0.1173 0.0857 0.0580 1282.24 *** 389.73 *** −717.6

Precision 0.5275 0.5328 0.5527 0.5681 0.5520 0.5352 67.81 *** 41.47 *** −52.66

Recall 0.5238 0.5270 0.5439 0.5651 0.5503 0.5365 88.46 *** 38.01 *** −9.78

F1 Score 0.5219 0.5225 0.5372 0.5475 0.5277 0.5139 57.68 *** 10.00 *** −70.39

F-Beta Score
(0.5) 0.5243 0.5268 0.5436 0.5545 0.5354 0.5203 161.22 *** 11.99 *** −38.32

F-Beta Score
(2) 0.5221 0.5235 0.5387 0.5539 0.5363 0.5228 66.91 *** 20.64 *** −37.53

Hamming Loss 0.4762 0.4730 0.4561 0.4349 0.4497 0.4635 120.90 *** 42.91 *** −19.04

XLF (Financials)

Accuracy 0.5259 0.5238 0.5407 0.5407 0.5249 0.5503 43.08 *** −0.42 14.55 ***

Balanced
Accuracy 0.5279 0.5246 0.5413 0.5362 0.5263 0.5477 18.78 *** 5.92 *** 9.85 ***

Cohen’s Kappa
Coefficient 0.0555 0.0491 0.0823 0.0729 0.0523 0.0957 232.33 *** 62.69 *** 124.04 ***

Precision 0.5294 0.5259 0.5425 0.5383 0.5276 0.5491 18.96 *** 0.89 13.99 ***

Recall 0.5259 0.5238 0.5407 0.5407 0.5249 0.5503 32.48 *** 0.86 57.54 ***

F1 Score 0.5255 0.5240 0.5410 0.5370 0.5248 0.5493 18.74 *** 3.61 *** 17.84 ***

F-Beta Score
(0.5) 0.5273 0.5249 0.5417 0.5372 0.5261 0.5491 16.38 *** 10.47 *** 6.55 ***

F-Beta Score
(2) 0.5253 0.5237 0.5407 0.5387 0.5245 0.5498 26.20 *** 2.29 ** 24.94 ***

Hamming Loss 0.4741 0.4762 0.4593 0.4593 0.4751 0.4497 36.54 *** 4.50 *** 34.39 ***
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Table 8. Cont.

Model Original Dataset
Dataset with Proposed Features

(MI and TE-Based
Network-Driven Features)

Independent t-Test Statistic

XGBoost LightGBM CatBoost XGBoost LightGBM CatBoost XGBoost LightGBM CatBoost

XLI (Industrials)

Accuracy 0.5354 0.5164 0.5376 0.5302 0.4910 0.5450 −13.62 −90.49 33.05 ***

Balanced
Accuracy 0.5345 0.5131 0.5334 0.5328 0.4995 0.5480 −4.78 −76.45 38.29 ***

Cohen’s Kappa
Coefficient 0.0688 0.0262 0.0670 0.0649 −0.0009 0.0949 −83.71 −2684.93 296.78 ***

Precision 0.5371 0.5159 0.5362 0.5357 0.5023 0.5511 −4.06 −30.59 35.38 ***

Recall 0.5354 0.5164 0.5376 0.5302 0.4910 0.5450 −10.48 −109.98 14.31 ***

F1 Score 0.5360 0.5161 0.5367 0.5303 0.4851 0.5450 −11.23 −81.94 27.85 ***

F-Beta Score
(0.5) 0.5366 0.5160 0.5363 0.5329 0.4924 0.5479 −7.1 −106.52 28.69 ***

F-Beta Score
(2) 0.5356 0.5163 0.5372 0.5296 0.4860 0.5443 −8.79 −50.11 25.06 ***

Hamming Loss 0.4646 0.4836 0.4624 0.4698 0.5090 0.4550 −14.29 −176.44 18.14 ***

XLK (Technology)

Accuracy 0.4899 0.5365 0.5090 0.5513 0.5333 0.5397 164.25 *** −3.89 158.33 ***

Balanced
Accuracy 0.4866 0.5304 0.5017 0.5342 0.5267 0.5211 112.09 *** −5.91 36.56 ***

Cohen’s Kappa
Coefficient −0.0268 0.0611 0.0035 0.0703 0.0538 0.0434 1838.24 *** −136.5 926.00 ***

Precision 0.4907 0.5344 0.5058 0.5426 0.5308 0.5284 179.15 *** −15.42 78.61 ***

Recall 0.4899 0.5365 0.5090 0.5513 0.5333 0.5397 162.94 *** −9.32 69.18 ***

F1 Score 0.4903 0.5351 0.5067 0.5345 0.5316 0.5192 97.61 *** −5.93 40.65 ***

F-Beta Score
(0.5) 0.4905 0.5346 0.5060 0.5360 0.5310 0.5206 108.76 *** −6.11 22.56 ***

F-Beta Score
(2) 0.4901 0.5359 0.5079 0.5419 0.5325 0.5283 414.04 *** −9.23 45.26 ***

Hamming Loss 0.5101 0.4635 0.4910 0.4487 0.4667 0.4603 171.61 *** −9.13 79.72 ***

XLP (Consumer Staples)

Accuracy 0.4984 0.5185 0.5196 0.5354 0.5185 0.5429 179.05 *** −0.8 41.66 ***

Balanced
Accuracy 0.4941 0.5124 0.5117 0.5336 0.5130 0.5307 178.37 *** 2.05 ** 41.78 ***

Cohen’s Kappa
Coefficient −0.0117 0.0250 0.0236 0.0670 0.0261 0.0624 5736.80 *** 105.42 *** 1548.05 ***

Precision 0.4980 0.5163 0.5157 0.5372 0.5168 0.5361 219.84 *** 0.41 39.55 ***

Recall 0.4984 0.5185 0.5196 0.5354 0.5185 0.5429 67.65 *** −1.18 58.84 ***

F1 Score 0.4982 0.5170 0.5165 0.5361 0.5175 0.5343 83.44 *** 3.18 *** 40.08 ***

F-Beta Score
(0.5) 0.4981 0.5165 0.5157 0.5367 0.5170 0.5341 88.12 *** 4.62 *** 51.29 ***

F-Beta Score
(2) 0.4983 0.5178 0.5181 0.5357 0.5180 0.5383 138.82 *** 1.80 ** 36.87 ***

Hamming Loss 0.5016 0.4815 0.4804 0.4646 0.4815 0.4571 129.93 *** 1.04 94.83 ***
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Table 8. Cont.

Model Original Dataset
Dataset with Proposed Features

(MI and TE-Based
Network-Driven Features)

Independent t-Test Statistic

XGBoost LightGBM CatBoost XGBoost LightGBM CatBoost XGBoost LightGBM CatBoost

XLU (Utilities)

Accuracy 0.5090 0.5090 0.5164 0.5291 0.5429 0.5386 44.90 *** 85.79 *** 52.85 ***

Balanced
Accuracy 0.5075 0.5060 0.5101 0.5240 0.5254 0.5141 33.85 *** 37.36 *** 7.19 ***

Cohen’s Kappa
Coefficient 0.0149 0.0120 0.0203 0.0480 0.0522 0.0295 683.80 *** 1142.35 *** 985.14 ***

Precision 0.5120 0.5106 0.5147 0.5284 0.5327 0.5227 25.40 *** 47.61 *** 16.81 ***

Recall 0.5090 0.5090 0.5164 0.5291 0.5429 0.5386 51.71 *** 52.67 *** 68.31 ***

F1 Score 0.5100 0.5097 0.5154 0.5287 0.5277 0.5066 39.26 *** 40.01 *** −41.61

F-Beta Score
(0.5) 0.5111 0.5102 0.5149 0.5285 0.5280 0.5089 46.33 *** 34.48 *** −11.1

F-Beta Score
(2) 0.5093 0.5092 0.5160 0.5289 0.5345 0.5209 87.16 *** 69.83 *** 13.87 ***

Hamming Loss 0.4910 0.4910 0.4836 0.4709 0.4571 0.4614 89.99 *** 94.39 *** 41.61 ***

XLV (Health Care)

Accuracy 0.4899 0.5037 0.5069 0.5259 0.5259 0.5450 127.26 *** 34.39 *** 106.88 ***

Balanced
Accuracy 0.4889 0.4990 0.5044 0.5192 0.5211 0.5347 87.79 *** 50.89 *** 68.11 ***

Cohen’s Kappa
Coefficient −0.0222 −0.0020 0.0088 0.0387 0.0424 0.0705 2969.95 *** 1817.86 *** 6413.97 ***

Precision 0.4915 0.5015 0.5069 0.5220 0.5237 0.5395 71.63 *** 37.44 *** 116.81 ***

Recall 0.4899 0.5037 0.5069 0.5259 0.5259 0.5450 88.41 *** 170.69 *** 62.38 ***

F1 Score 0.4905 0.5021 0.5069 0.5220 0.5242 0.5353 92.07 *** 133.52 *** 82.12 ***

F-Beta Score
(0.5) 0.4910 0.5017 0.5069 0.5215 0.5238 0.5360 75.33 *** 119.90 *** 56.07 ***

F-Beta Score
(2) 0.4901 0.5030 0.5069 0.5220 0.5242 0.5353 54.62 *** 107.51 *** 53.91 ***

Hamming Loss 0.5101 0.4963 0.4931 0.4741 0.4741 0.4550 83.94 *** 39.56 *** 162.06 ***

XLY (Consumer Discretionary)

Accuracy 0.5185 0.5376 0.5323 0.5365 0.5524 0.5545 44.96 *** 45.45 *** 108.49 ***

Balanced
Accuracy 0.5141 0.5319 0.5272 0.5421 0.5534 0.5546 50.47 *** 27.77 *** 55.50 ***

Cohen’s Kappa
Coefficient 0.0281 0.0638 0.0543 0.0823 0.1053 0.1078 786.75 *** 462.79 *** 1066.78 ***

Precision 0.5206 0.5381 0.5334 0.5490 0.5594 0.5604 123.30 *** 36.93 *** 60.39 ***

Recall 0.5185 0.5376 0.5323 0.5365 0.5524 0.5545 43.30 *** 44.46 *** 65.24 ***

F1 Score 0.5194 0.5378 0.5328 0.5372 0.5539 0.5560 79.35 *** 34.30 *** 63.25 ***

F-Beta Score
(0.5) 0.5200 0.5380 0.5332 0.5429 0.5567 0.5583 45.20 *** 112.82 *** 53.28 ***

F-Beta Score
(2) 0.5188 0.5377 0.5325 0.5372 0.5539 0.5560 51.08 *** 46.74 *** 51.19 ***

Hamming Loss 0.4815 0.4624 0.4677 0.4635 0.4476 0.4455 57.21 *** 45.01 *** 50.27 ***

Presented in Table 8 are the aggregate values derived from our prediction’s perfor-
mance metrics. This table facilitates a nuanced comparative examination between the
performance outcomes obtained from the original dataset, predominantly price-related
data from U.S. sector index ETFs, and the outcomes following the integration of advanced
features. Specifically, these newly incorporated features are grounded in mutual infor-
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mation (MI) and transfer entropy (TE)-based network embeddings coupled with intricate
network topology measures.

The last three columns of Table 8 are dedicated to the Paired T-test results. In evaluating
our models, we employed a paired t-test to statistically validate the observed differences
between the mean values obtained using different methods. The paired t-test was executed
on three machine learning techniques’ results. Depending on the specific category under
consideration, we adjusted our hypothesis. For most categories, our alternative hypothesis
posited that the mean values in columns like the performance metrics, after including
MI and TE network-based columns (network embeddings and network measures), were
greater than their corresponding values in the original datasets, respectively. However,
for the “Hamming Loss” category, we reversed this hypothesis, testing if the mean values
in the original datasets’ performance metrics were greater than those in the performance
metrics after including MI and TE network-based columns.

Our results, formatted with significance levels, clearly indicated the differences be-
tween the paired columns. Significance levels were denoted with asterisks, where ‘***‘
indicates a 0.01 level significance, ‘**‘ indicates a 0.05 level, and ‘*‘ indicates a 0.1 level. The
values with a p-value greater than 0.1 are presented without any asterisks.

In Table 8, a comprehensive evaluation of three machine learning models—XGBoost,
LightGBM, and CatBoost—is presented across various metrics and datasets. The datasets
under consideration include the original dataset and a refined dataset enriched with
Proposed features, specifically the MI and TE-based network-driven features. The table
also highlights the results of the paired t-test statistic, which provides insight into the
statistical significance of the performance differences observed between the two datasets.

For each sector, such as XLB (Materials) and XLE (Energy), we observed the perfor-
mance of the three models on both datasets. At a glance, it is evident that the dataset with
proposed features often achieves better or comparable results than the original dataset
across most sectors and metrics. This indicates that the added features provide valuable
information that enhances the model’s performance.

The XGBoost model consistently demonstrates improved performance on the dataset
with the proposed features across nearly all sectors. The improvements are especially
noticeable in sectors like XLE (Energy) and XLK (Technology), with the significance of this
observed improvement reinforced by the paired t-test statistic.

LightGBM, on the other hand, while benefiting from the proposed features in sectors
like XLB (Materials) and XLV (Health Care), shows diminished performance in others, such
as the XLI (Industrials) sector. This suggests that while the proposed features enhance
model robustness, they might introduce noise or redundancy for specific models or sectors.

CatBoost’s performance, compared to the other two models, is generally superior on
the proposed dataset, especially in sectors like XLB (Materials) and XLK (Technology). The
t-test values further validate the significance of these observations.

Diving deeper into the metrics, accuracy, which provides a general sense of model
performance, often shows noticeable improvement when models are trained on the dataset
with proposed features. Similarly, balanced accuracy, which provides a more nuanced view,
especially in imbalanced datasets, mirrors the trends of regular accuracy. Cohen’s Kappa
Coefficient, which assesses the agreement between predicted and actual classifications,
significantly improves models like XGBoost in sectors such as XLE (Energy).

Other metrics, such as precision, recall, F1, and F-Beta scores, provide a detailed view
of model performance by considering false positives and false negatives. Across most
sectors, the dataset with proposed features tends to enhance these metrics for all three
models, especially for XGBoost and CatBoost. The Hamming Loss metric, which evaluates
the fraction of incorrectly predicted labels, also indicates fewer incorrect predictions for
many sectors when using the proposed features.

In conclusion, Table 8 underscores the potential of the proposed MI and TE-based
network-driven features in enhancing machine learning model performance across various
sectors. While all three models benefit from these features, XGBoost and CatBoost often
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show the most pronounced improvements. The paired t-test statistics emphasize the value
and reliability of incorporating the proposed features into the dataset.

4.2.2. Feature Importance of Causal Network-Related Features

We used the mean absolute SHAP values from the prediction results to elucidate the
impact of our causal network-derived measures. Tables 9–14 detail the top 20 features deter-
mined by the mean absolute SHAP values from the prediction results. The decision to use
the top 20 features was guided by an elbow method, revealing a notable difference around
the twentieth feature. Therefore, for our nine target ETFs across three gradient boosting
algorithms (XGBoost, LightGBM, and CatBoost), a total of 540 features are presented. In
detail, 20 (top 20 important features derived from mean absolute SHAP values) × 3 (the
number of gradient boosting algorithms) × 9 (the number of target ETFs) features were
used for the post-xAI analysis. We conducted a comprehensive analysis of the 540 features
in our dataset. These features were systematically categorized to understand their char-
acteristics and relationships better. By grouping them, we could identify patterns, trends,
and anomalies more clearly, ensuring a streamlined and efficient data assessment.

Table 9. Comparison of the number of original features and proposed features.

Category
Number of Features

Price Volume

Original Features 168 (31.11%) 89 (16.48%)

Proposed Features 131 (24.26%) 152 (28.15%)

Table 10. Comparison of the number of MI-based features and TE-based features.

Category Number of Features

Mutual Information 198 (69.96%)

Transfer Entropy 85 (30.04%)

Table 11. Comparison of the number of features based on window length.

Category
Number of Features

Price Volume

20-day window 42 (14.84%) 52 (18.37%)

60-day window 33 (11.66%) 62 (21.91%)

120-day window 21 (7.42%) 33 (11.66%)

240-day window 35 (12.37%) 5 (1.77%)

Table 12. Comparison of the number of centrality measures and node embeddings.

Category Number of Features

Centrality Measures 153 (54.06%)

Node embeddings 130 (45.94%)
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Table 13. Comparison of the number of features based on centrality measures.

Feature Number of Features

Average Neighbor Degree 9 (5.88%)

Degree Centrality
1 (0.65%)

• Out-Degree—1 (0.65%)

Eigenvector Centrality 13 (8.50%)

Closeness Centrality 0 (0.00%)

Information Centrality 2 (1.31%)

Betweenness Centrality 9 (5.88%)

Current Flow Betweenness Centrality 7 (4.58%)

Communicability Betweenness Centrality 5 (3.27%)

Harmonic Centrality 3 (1.96%)

Second-Order Centrality 34 (22.22%)

Voterank Importance 0 (0.00%)

Number of Maximal Cliques 5 (3.27%)

PageRank 26 (16.99%)

HITS

39 (25.49%)

• Hub—25 (16.34%)
• Authority—14 (9.15%)

Table 14. Comparison of the number of Role2Vec vectors and FEATHER vectors.

Category Number of Features

Role2Vec 74 (56.92%)

FEATHER 56 (43.08%)

In Table 9, of the 540 features, our proposed features constitute 283 (52.41%), while the
original features account for 257 (47.59%). Given that the 18 original features are composed
of nine log-return columns and nine columns depicting the rate of change in the trading
volume, it implies that one feature, on average, appears approximately 14.3 times across
the 27 models. Notably, the trading volume contributes nearly as much as price, solidifying
its relevance in our study.

Table 10 underscores that roughly 70% of node-derived features stem from the MI net-
work, encapsulating over a third (36.67%) of the 540 features. This suggests the importance
of nonlinear mutual dependencies in analyzing the U.S. sector index. Notably, though
nonlinear causal relationships are not ubiquitous, they hold significance when they emerge,
especially for fluctuation prediction.

Observations from Table 11 demonstrate that features derived from 20-day, 60-day,
120-day, and 240-day windows span short-term to long-term influences on the U.S. sector
index ETFs’ fluctuations. Short-term (20-day) features particularly exert substantial influ-
ence, more so with trading volume data than price-based log-return data. This indicates
that nonlinear dependencies and causality hold consistent importance in gradient-boosting
algorithm-based predictions.

Our findings, as detailed in Table 12, indicate that centrality measures and node em-
beddings both play pivotal roles in predicting U.S. sector index ETFs. Most notably, of the
32 node embedding-based features, 130 make the top 20 based on the mean absolute SHAP
values, implying that node embeddings are instrumental in enhancing prediction accuracy.

Table 13 highlights that nearly all centrality measures are among the top 20 in predict-
ing fluctuations in U.S. sector index ETFs. Specifically, second-order centrality, PageRank,
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and HITS—which all consider relative connections as opposed to direct ones—are predom-
inant. This supports our approach of emphasizing interconnectivity and causality through
network analysis.

Conclusively, in Table 14, while Role2vec (a structural node embedding algorithm)
represents 56.92% of node embeddings, FEATHER (an attributed node embedding algo-
rithm) is also notable at 43.08%. This paves the way for exploring a broader range of
node embeddings in subsequent studies. Additionally, refining the embedding vector
dimensions merits further investigation, given its variability based on objectives.

5. Discussion

To understand the intricacies of U.S. sector index ETFs’ price fluctuations, this study
embarked on a mission to validate the existence and implications of nonlinear dependencies
and causal relationships emanating from log returns and the rate of changes in trading
volumes. By incorporating sophisticated techniques such as mutual information, transfer
entropy with permutation tests, and threshold networks, we sought insights from the intri-
cate web of relationships that govern ETFs’ price dynamics. Our methodological approach
led to the construction of undirected and directed weighted networks, illuminating the
nonlinear dependencies and causal dynamics between the U.S. sector index ETFs.

A significant revelation of our research was the potential to enhance the predictive
prowess of machine learning models using centrality measures and node embeddings
derived from the topology of these constructed networks. By integrating these measures
into our prediction models, not only did we achieve superior forecasting accuracy, but
we also heightened the explanatory capabilities of our models. The visual representation
of information-theoretic dependency and information transfer through the networks fur-
ther underscored the relationships and dependencies between the ETFs, offering a richer
understanding of their interconnected dynamics.

A cornerstone of our analysis was using SHAP, rooted in Shapley values, to quantify
the effectiveness of our centrality measures and node embeddings in forecasting the returns
of U.S. sector index ETFs. The insights gleaned from analyzing the mean of absolute SHAP
values were revelatory. They affirmed that features derived from our information-theoretic
networks, especially those grounded in various temporal windows ranging from short-term
(20-day) to long-term (240-day) windows, were pivotal in forecasting the fluctuations of
U.S. sector index futures. This not only bolstered the case for employing log returns and
trading volumes’ rates of changes as reliable measures for capturing mutual information
and transferring entropy across diverse temporal windows, but also solidified their utility
in crafting a plethora of networks and subsequently harnessing their node-level properties.

Our study illuminated the path forward in forecasting U.S. sector index futures.
By harnessing the power of nonlinear measure-based networks and their node-derived
features, we not only refined the predictive accuracy of our models but also enriched their
explainability. This study’s revelations underscore these techniques’ promises and set the
stage for future explorations in this domain.

6. Conclusions

In our quest to understand and predict the dynamics of U.S. stock market sector
indices, our study introduced a unique perspective by employing a nonlinear, nonpara-
metric measure-based complex network approach. Harnessing the nuanced insights from
information entropy-based measures, we shed light on the intricate information-theoretic
relationships embedded within U.S. stock market sector indices’ price and trading volume
data. By delving into these nonlinear dependencies and causal relationships, we ventured
into an under-explored domain and offered a fresh lens for forecasting U.S. sector index
ETF prices.

Some of the distinct contributions of our study include the following:

• The utilization of information entropy-based measures to discern and showcase the
underlying relationships in U.S. stock market sector indices.
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• The illustration of nonlinear dependencies and causal relationships in the U.S. market
sector index networks, which is an area that has yet to be deeply probed.

• The revelation that nonlinear dependencies and causal relationships can significantly
contribute to predictive models, shedding light on new avenues in market forecasting.

• Empirical evidence supports using return-based data to bolster prediction results by
probing into the intricate webs formed by return and trading volume networks. This
offers a promising direction in enhancing data efficiency by leveraging inter-sectoral
relationships without additional external features.

Despite our contribution, we recognize that there is always room for growth and
improvement. For starters, diving deeper into the vast world of machine learning and
graph embedding techniques could sharpen our analysis. These advanced tools might
offer a more transparent lens to view our predictions. We also acknowledge that perfecting
our models and tweaking their internal settings or “hyperparameters” could potentially
enhance the accuracy of our sector forecasts. Moreover, while our focus has been specific,
bringing in data like macroeconomic variables could offer a fuller picture and add depth to
our findings.

While our research has added value to the financial sector’s understanding, it is just
one step in a longer journey. We are excited about future studies and the potential to delve
even deeper into the intricacies of financial forecasting.
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