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Abstract: We discuss the derivation of the electrodynamics of superconductors coupled to the
electromagnetic field from a Lorentz-invariant bosonic model of Cooper pairs. Our results are
obtained at zero temperature where, according to the third law of thermodynamics, the entropy of
the system is zero. In the nonrelativistic limit, we obtain a Galilei-invariant superconducting system,
which differs with respect to the familiar Schrödinger-like one. From this point of view, there are
similarities with the Pauli equation of fermions, which is derived from the Dirac equation in the
nonrelativistic limit and has a spin-magnetic field term in contrast with the Schrödinger equation.
One of the peculiar effects of our model is the decay of a static electric field inside a superconductor
exactly with the London penetration length. In addition, our theory predicts a modified D’Alembert
equation for the massive electromagnetic field also in the case of nonrelativistic superconducting
matter. We emphasize the role of the Nambu–Goldstone phase field, which is crucial to obtain the
collective modes of the superconducting matter field. In the special case of a nonrelativistic neutral
superfluid, we find a gapless Bogoliubov-like spectrum, while for the charged superfluid we obtain a
dispersion relation that is gapped by the plasma frequency.

Keywords: superconductors; electrodynamics; zero temperature; zero entropy; nonrelativistic limit;
penetration length; Bogoliubov spectrum; plasma frequency

1. Introduction

There is a renewed interest in the phenomenological description of the superconduc-
tive electrodynamics taking explicitly into account relativistic effects [1–5] or the crucial
role of the Nambu–Goldstone phase field [6,7] writing low-frequency and long-wavelength
Lagrangians for neutral and charged fermionic superfluids [8–19]. Quite surprisingly, in
the relativistic models of Refs. [1–5], the nonrelativistic limit of the relativistic matter field
was not considered, somehow forgetting that the electrons, and the Cooper pairs, move
at nonrelativistic velocities in the experimentally measured superconducting materials on
earth [20–23].

In this paper, we fill this gap by investigating the nonrelativistic limit of a relativis-
tic phenomenological model of bosonic Cooper pairs minimally coupled to the electro-
magnetic field. Quite remarkably, from the initial Lorentz-invariant setting, we obtain
a Galilei-invariant theory for the superconducting matter field, which contains a crucial
electromagnetic coupling term that is absent in the standard minimally coupled nonrel-
ativistic Schrödinger field. This is exactly the analog of the coupling between the spin
and the magnetic field one finds in the Pauli equation, which can be derived from the
Dirac equation in the nonrelativistic limit [24]. By using our improved nonrelativistic
formulation of the charged matter field, and explicitly taking into account the role of the
Nambu–Goldstone phase field, working at zero temperature, where the entropy of the
system is also zero, we predict effects that should be measurable at very low temperatures
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close to the absolute zero. Some of them have been previously suggested [1–5] but only
assuming a quite unphysical relativistic matter field inside the superconductor. In partic-
ular, we suggest the decay of a static electric field inside a superconductor exactly with
the London penetration depth. In addition, we obtain a modified D’Alembert equation
for the massive electromagnetic waves inside the nonrelativistic superconducting matter.
We finally derive a gapped spectrum for the density oscillations of the charged superfluid
made of Cooper pairs. It is important to stress that many classical well-known experimental
and theoretical results of superconductivity [20–23], such as the spontaneous symmetry
breaking of gauge invariance, the London penetration depth of the magnetic field, and the
collective modes of neutral superfluids, are fully recovered by our formalism.

2. Relativistic Cooper Pairs and Minimal Coupling

We assume that, at zero temperature, the Cooper pairs in a superconductor are described
by a relativistic Klein–Gordon [25,26] complex scalar field φ(r, t) with Lagrangian density

L0 =
h̄2

2mc2 |∂t φ|2 − mc2

2
|ϕ|2 − h̄2

2m
|∇φ|2 − E(|φ|2) , (1)

where m = 2me is the mass of a Cooper pair with me the electron mass, h̄ is the reduced
Planck constant, and c is the speed of light in vacuum. Here, E(|φ|2) is the bulk internal
energy of the system. The Lagrangian (1) is invariant with respect to Lorentz transfor-
mations. A similar model was developed by Govaerts, Bertrand, and Stenuit [1] and by
Grigorishin [5]. However, in Refs. [1,5], the system is supposed to be close to the critical
temperature Tc, with the temperature-dependent internal energy E(|φ|2) given by the fa-
miliar quadratic–quartic Mexican hat potential. Here, instead, we work at zero temperature
and, contrary to the previous papers, we want to emphasize the emerging properties in
the nonrelativistic limit, where we obtain Maxwell–Proca equations [1,3,5] for the electro-
magnetic field coupled to the nonrelativistic superconducting matter. Quite remarkably,
we find that the coupling between the electromagnetic field and the nonrelativistic matter
contains a term that is absent by applying the minimal coupling to the electromagnetic
field directly into a Schrödinger Lagrangian density. Recall that in the nonrelativistic limit
from the Dirac equation of fermions, one obtains the Pauli equation (which has the spin)
and not the Schrödinger equation (which does not have the spin) [24]. What is found here
is the bosonic analog of that phenomenon.

The Cooper pair has the electric charge q = −2e with e > 0 the modulus of the electron
charge. The coupling with the electromagnetic field is obtained with the minimal substitution

∂t → ∂t + i
q
h̄

Φ (2)

∇ → ∇− i
q
h̄

A (3)

where Φ(r, t) is the electromagnetic scalar potential and A(r, t) is the electromagnetic vector
potential, such that

E = −∇Φ − ∂tA (4)

B = ∇ ∧ A (5)

with E(r, t) the electric field and B(r, t) the magnetic field.
In this way, the total Lagrangian density Ltot of the system is given by using

Ltot = Lshift +Lem , (6)

where
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Lshift =
h̄2

2mc2 |(∂t + i
q
h̄

Φ)φ|2 − h̄2

2m
|(∇− i

q
h̄

A)φ|2

−E(|φ|2)− mc2

2
|ϕ|2

= L0 −
mc2

2
|ϕ|2 + q2

2mc2 |φ|
2Φ2 − iqh̄

2mc2 (φ∗∂t φ − φ∂t φ∗)Φ

− q2

2m
|φ|2A2 +

iqh̄
2m

(φ∗∇φ − φ∇φ∗) · A (7)

is the shifted Lagrangian density of relativistic Cooper pairs and

Lem =
ϵ0

2
E2 − 1

2µ0
B2 (8)

is the Lagrangian density of the free electromagnetic field, with ϵ0 the dielectric con-
stant in the vacuum and µ0 the paramagnetic constant in the vacuum. Remember that
c = 1/

√
ϵ0µ0. The Lagrangian (6) is invariant with respect to the local U(1) gauge transfor-

mation φ(r, t) → φ(r, t) eiα(r,t).
As is well known, the total Lagrangian density (6) can be used to develop a zero-

temperature quantum field theory by introducing the real-time partition function

Z =
∫

D[φ, Φ, A] e
i
h̄
∫

dt d3r Ltot (9)

of the system, within a functional integral formalism [9,15]. The theory can also be extended
at finite temperature by performing a Wick rotation from real to imaginary time. However,
in this paper, we do not consider the finite-temperature effects of the entropy-dependent
normal component of the charged superfluid. The quantum expectation value of the scalar
field φ(r, t) is defined as

⟨φ⟩ = 1
Z

∫
D[φ, Φ, A] φ e

i
h̄
∫

dt d3r Ltot . (10)

The transition to the superconducting state is the breaking of the U(1) local gauge in-
variance, namely, ⟨φ(r, t)⟩ ̸= 0 [9,15]. In this paper, we work within the saddle-point
approximation, where

Z ≃ e
i
h̄
∫

dt d3r Ltot (11)

and the fields are the ones that extremize the action functional

Stot =
∫

dt d3r Ltot . (12)

In this mean-field framework, ⟨φ(r, t)⟩ = φ(r, t) and quantum fluctuations are not taken
into account.

3. From Lorentz to Galilei

The standard way to obtain a Galilei-invariant Schrödinger matter field ψ(r, t) from
the Lorentz-invariant Klein–Gordon field φ(r, t) is to set

φ(r, t) = ψ(r, t) e−imc2t/h̄ . (13)

Inserting this ansatz into (1) and (7), we find
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L0 =
h̄2

2mc2 |∂tψ|2 +
ih̄
2
(ψ∗∂tψ − ψ∂tψ

∗)

− h̄2

2m
|∇ψ|2 − E(|ψ|2) (14)

and

Lshift = L0 +
q2

2mc2 |ψ|
2Φ2 − q|ψ|2Φ

− iqh̄
2mc2 (ψ

∗∂tψ − ψ∂tψ
∗)Φ − q2

2m
|ψ|2A2

+
iqh̄
2m

(ψ∗∇ψ − ψ∇ψ∗) · A (15)

At this point, the matter Lagrangian density is still Lorentz-invariant. However, under
the assumption

h̄2

2mc2 |∂tψ|2 ≪ ih̄
2
(ψ∗∂tψ − ψ∂tψ

∗) (16)

we obtain the approximated nonrelativistic Galilei-invariant Lagrangians

L̃0 =
ih̄
2
(ψ∗∂tψ − ψ∂tψ

∗)− h̄2

2m
|∇ψ|2 − E(|ψ|2) (17)

and

L̃shift = L̃0 +
q2

2mc2 |ψ|
2Φ2 − q|ψ|2Φ − q2

2m
|ψ|2A2

+
iqh̄
2m

(ψ∗∇ψ − ψ∇ψ∗) · A . (18)

As expected, (17) is the Lagrangian density of a complex Schrödinger field ψ(r, t). In-
stead, quite remarkably, Equation (18) contains the crucial term q2Φ2|ψ|2/(2mc2) =
ϵ0µ0q2Φ2|ψ|2/(2m). This term is absent by applying the minimal coupling to the elec-
tromagnetic field directly into a Schrödinger Lagrangian density. To better emphasize this
relevant result, let us write the Euler–Lagrange equation of (18) with respect to ψ∗(r, t),
which is given by the following nonlinear Schrödinger equation

ih̄(∂t + i
q
h̄

Φ)ψ =

[
− h̄2

2m
(∇− i

q
h̄

A)2 + µ(|ψ2|)
]

ψ

− q2

mc2 Φ2 ψ , (19)

where
µ(|ψ|2) = ∂E

∂|ψ|2 (|ψ|
2) (20)

is the chemical potential of the bulk system as a function of the local number density |ψ|2. In
Equation (19), it is the last term, which makes the nonrelativistic limit of the Klein–Gordon
equation coupled to the electromagnetic field not equivalent to the fully nonrelativistic
Schrödinger equation coupled to the electromagnetic field. This phenomenon is the analog
of the Dirac equation coupled to the electromagnetic field: in the nonrelativistic limit
from the Dirac equation, one obtains the Pauli equation (which has the spin) and not the
Schrödinger equation (which does not have the spin) [24]. Note that the term q2Φ2/(mc2) =
ϵ0µ0Φ2/m can be discarded only if |qΦ| ≪ mc2, but in nonrelativistic superconductors,
this is not the case.
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4. Density-Phase Lagrangian

The Schrödinger field ψ(r, t) of Equations (17) and (18) is the order parameter of
nonrelativistic Cooper pairs. We now set

ψ =
√

ns eiθ , (21)

where ns(r, t) is the number density of Cooper pairs of mass m and electric charge q, while
θ(r, t) is the Nambu–Goldstone phase field [6,7].

Several authors [8–15,19] adopted the idea of writing a low-frequency and long-
wavelength Lagrangian density L of a nonrelativistic superfluid in terms of θ(r, t). In
all these approaches, the local superfluid velocity field vs(r, t) is related to θ(r, t) via the
fundamental relationship

vs =
h̄
m
∇θ . (22)

This equation ensures that the fluid is irrotational, i.e., ∇ ∧ vs = 0, apart from a set of
zero-measure quantized vortices. Indeed, in the presence of a quantized vortex with integer
quantum number κ, around it the circulation of the superfluid velocity is such that [27,28]∮

vs · dr =
h̄
m

∮
∇θ · dr =

h̄
m

∫ 2πκ

0
dθ =

2πh̄
m

κ . (23)

Inserting Equation (21) into Equations (17) and (18), we obtain the following total
Lagrangian density

Ltot = L̃0 +Lem + L̃I , (24)

where

L̃0 = −ns h̄∂tθ − ns
h̄2

2m
(∇θ)2 − h̄2

8m
(∇ns)2

ns
− E(ns) (25)

is our nonrelativistic density-phase Lagrangian, Lem is the Lagrangian of the free electro-
magnetic field, given by Equation (8), and

L̃I = ns ϵ0µ0
q2Φ2

2m
− ns qΦ − ns

q2A2

2m
+ ns q

h̄
m
∇θ · A (26)

is the Lagrangian of the interaction between the Cooper pairs and the electromagnetic field.
We observe that in Equation (25), the von Weizsäcker-like term [29] appears

L̃0,W = − h̄2

8m
(∇ns)2

ns
(27)

which takes into account the energy cost due to variations in the superfluid density. As we
will see, this term modifies the dispersion relation of the collective modes of both neutral
and charged superfluids. In a very recent paper [19], it has been suggested that Equation (27)
is crucial to obtain a negative electrohydrostatic pressure between superconducting bodies
at zero temperature.

4.1. Including the Ion Background

In the ground state of a superconductor, there is a compensation between the negative
electric charge density ρs = qns = −2ens of the Cooper pairs and the positive electric
charge density ρbg = −qn̄bg = 2en̄bg of the background of ions with an average number
density n̄ions. Taking into account this fact, similarly to the Jellium model of a metallic
conductor [20], the full Lagrangian of our model is given by

Lfull = Ltot +Lbg , (28)
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where
Lbg = n̄bg qΦ . (29)

Notice that we are assuming that the number density n̄bg of the ion background is space-
time-independent.

For the sake of clarity, we stress that in this nonrelativistic framework, it is the La-
grangian density (28) that must be used to obtain the path-integral partition function

Zfull =
∫

D[ns, θ, Φ, A] e
i
h̄
∫

dt d3r Lfull , (30)

where the functional integration is performed with respect to the local number density
ns(r, t) of the Cooper pairs, the Nambu–Goldstone field θ(r, t), and the electromagnetic
potentials Φ(r, t) and A(r, t).

4.2. Charge Density and Current Density

It is impossible to calculate analytically Equation (30). However, the saddle-point
(mean-field) solution is the set of Euler–Lagrange equations that are obtained by extremiz-
ing the action functional

Sfull =
∫

dt d3r Lfull . (31)

The Euler–Lagrange equations of the full Lagrangian (28) with respect to the scalar potential
Φ(r, t) and the vector potential A(r, t) are nothing else than the Maxwell equations

∇ · E =
ρ

ϵ0
(32)

∇ · B = 0 (33)

∇ ∧ E = −∂tB (34)

∇ ∧ B = µ0 j + ϵ0µ0 ∂tE (35)

where the expressions of the local charge density ρ(r, t) and the local current density j(r, t)
are given by

ρ = −
∂
(
L̃I+Lbg

)
∂Φ

(36)

j =
∂L̃I

∂A
(37)

Thus, one obtains

ρ = q ns−q n̄bg − ϵ0
q2nsµ0

m
Φ (38)

j = q nsvs −
1

µ0

q2nsµ0

m
A , (39)

where the first term
ρs = q ns (40)

in Equation (38) is the electric charge density of the Cooper pairs, the second term is the
electric charge density of the ion background, and the third term

ρI = − ϵ0µ0q2ns

m
Φ (41)

in Equation (38) is the interaction charge density due to the coupling between the Cooper
pairs and the electromagnetic scalar potential Φ. Instead, the first term

js = q nsvs (42)
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in Equation (39) is the electric current density of Cooper pairs, which contains the superfluid
velocity vs defined in Equation (22). The second term

jI = − q2ns

m
A (43)

in Equation (39) is nothing else than the London current [30] due to the interaction between
the Cooper pairs and the electromagnetic vector potential A. In 1935, Fritz and Heinz
London [30] introduced a nonrelativistic model where the interaction density ρI was
included in the total electric charge density ρ. However, due to the lack of experimental
evidence [31], subsequently Fritz London discarded this term in his book [32]. In recent
years, it has been suggested by Hirsch within an alternative model [2,4] that, at very low
temperatures, the interaction density ρI could be effective and measurable.

We underline that, as is well known, manipulating Equations (32) and (35) one finds
the continuity equation for the electric charge density ρ and the electric current density j,
namely [33],

∂tρ +∇ · j = 0 . (44)

This result will be used later in combination with a similar, but not equal, continuity
equation for the superconductive charge density ρs of Cooper pairs and the electric current
density j.

Equations (32) and (33) equipped with Equations (38) and (39) are nothing else than
the Maxwell–Proca equations for the electrodynamics of the superconductors previously
discussed in Refs. [1,3]. However, in Ref. [1], the Maxwell–Proca equations are obtained
from a finite-temperature relativistic model, while in Ref. [3] these equations are heuris-
tically introduced without a derivation. Here, we will analyze the consequences of the
Maxwell–Proca equations for superconductors at zero temperature, where the normal
density is absent. Moreover, we will investigate the collective modes of charged superfluid.

Deep inside a superconductor, both the magnetic field B and electric field E are zero [21].
As a consequence, from our Equations (32) and (38), it follows that for the ground state,
characterized by a uniform and constant number density n̄s of Cooper pairs and a vanishing
electromagnetic potential Φ = 0, the total electric charge density ρ is zero, namely,

0 = q
(

n̄s − n̄bg

)
, (45)

and consequently n̄s = n̄bg. As previously discussed, the ion background neutralizes
the system.

4.3. London Penetration Depth for the Static Magnetic Field

As discussed above, Equation (39) was obtained for the first time by the London
brothers [30] and it gives rise to the expulsion of a magnetic field from a superconductor
(Meissner–Ochsenfeld effect) [34].

In a static configuration with a zero superfluid velocity vs and in the absence of the
electric field, i.e., E = 0, the curl of Equation (35) gives

−∇2B = µ0 ∇ ∧
(
− q2ns

m
A
)

, (46)

taking into account that

∇ ∧ (∇ ∧ B) = −∇2B +∇(∇ · B) = −∇2B (47)

due to the Gauss law, Equation (33). Assuming that the local density ns(r) is uniform,
i.e., ns(r) = n̄s, by using Equation (5), we obtain

∇2B =
q2n̄sµ0

m
B . (48)
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Choosing the magnetic field as B = B(x) u, with u a unit vector, the previous equation can
be written as

∂2

∂x2 B =
q2n̄sµ0

m
B (49)

which has the following physically relevant solution for a superconducting slab defined in
the region x ≥ 0:

B(x) = B(0) e−x/λL , (50)

where

λL =

√
m

q2n̄sµ0
(51)

is the so-called London penetration depth, which is typically around 100 nm [21]. The
meaning of Equation (50) is that inside a superconductor, the static magnetic field decays
exponentially. This is the Meissner–Ochsenfeld effect: the expulsion of a magnetic field
from a superconductor, experimentally observed for the first time in 1933 [34].

4.4. London Penetration Depth for the Static Electric Field

It is well know that normal metals screen an external electric field E, which can pene-
trate at most a few angströms (Thomas–Fermi screening length) [20]. For superconducting
materials, our Equations (32), (33), (38), and (39) suggest that the electric field E exponentially
decays inside a zero-temperature superconductor with the much larger London penetration
depth λL. Let us show how to derive this relevant result within our theoretical framework.

In a static configuration, in the absence of the magnetic field, i.e., B = 0, and assuming
a uniform number density, the gradient of Equation (32), with Equations (38) and (51), gives

∇2E = − 1
λ2

L
∇Φ , (52)

taking into account that

∇(∇ · E) = ∇2E −∇ ∧ (∇ ∧ E) = ∇2E . (53)

Notice that to obtain Equation (52), it is crucial to assume a uniform background nbg. In
addition, due to Equation (4), we find

∇2E =
1

λ2
L

E . (54)

Choosing E = E(x) u, with u a unit vector, the previous equation can be written as

∂2

∂x2 E =
1

λ2
L

E (55)

which has the following physically relevant solution for a superconducting slab defined in
the region x ≥ 0:

E(x) = E(0) e−x/λL . (56)

The meaning of Equation (56) is that inside a zero-temperature superconductor, the static
electric field decays exponentially with a characteristic decay length that is exactly the
London penetration depth λL.
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4.5. Modified D’Alembert Equation for Electromagnetic Waves

We investigate what happens to an electromagnetic wave when it is suddenly applied to
a superconductor in its ground state. In full generality, from the Maxwell Equations (32)–(35),
one obtains the inhomogeneous wave equations [33](

1
c2

∂2

∂t2 −∇2
)

E = − 1
ϵ0
∇ρ − µ0∂tj (57)

(
1
c2

∂2

∂t2 −∇2
)

B = µ0∇ ∧ j . (58)

Under the assumption that the local number density of Cooper pairs remains approximately
constant and uniform, i.e., ns(r, t) ≃ n̄s, and with a zero superfluid velocity, i.e., vs(r, t) ≃ 0,
after remembering Equations (4), (5), (36), and (37), from Equations (57) and (58), we obtain(

1
c2

∂2

∂t2 −∇2 +
1

λ2
L

)
E = 0 (59)

(
1
c2

∂2

∂t2 −∇2 +
1

λ2
L

)
B = 0 (60)

that are the modified D’Alembert equation for the electromagnetic waves inside the super-
conductor with λL being the London penetration depth of Equation (51).

The Fourier transform of Equations (59) and (60) in the frequency–wavevector domain
(ω, k) gives the dispersion relation

ω =
√

ω2
p + c2k2 , (61)

where

ωp =
c

λL
=

√
q2n̄s

mϵ0
(62)

is the plasma frequency [20]. Thus, the photon spectrum becomes gapped or, in other words,
the photon acquires a mass. This is nothing else than the Anderson–Higgs mechanism [35–37],
which survives in our model also in the context of nonrelativistic superconducting matter.
Notice that Equation (61) appears also in Refs. [2,5]. As discussed in Ref. [5], the dispersion
relation (61) can be also written as

k =
1
c

√
ω2 − ω2

p =

√
ω2

c2 − 1
λ2

L
. (63)

Consequently, the electromagnetic plane wave that is proportional to ei(k·r−ωt) propagates
without dissipation inside the superconductor for ω > ωp. Instead, for ω < ωp, the
electromagnetic wave is damped as e−u·r/λω e−iωt in the interior of the superconductor,
where k = iu/λω with u a unit vector and

λω =
λL√

1 −
(

ω
ωp

)2
(64)

is the frequency-dependent penetration depth. Clearly, λω → λL as ω → 0. More-
over, indicating with ∆(0) the energy gap of the Cooper pairs at zero temperature, for
ω > 2∆(0)/h̄, the charged superfluid becomes a normal charged fluid due to the breaking
of the Cooper pairs.
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5. Euler–Lagrange Equations of Superconductors

The Euler–Lagrange equation of the full Lagrangian (28) with respect to the Nambu–
Goldstone field θ(r, t) reads as

∂tns +∇ ·
(

nsvs −
qns

m
A
)
= 0 . (65)

This is nothing else than the continuity equation

∂tρs +∇ · j = 0 , (66)

where the local superconducting charged density ρs(r, t) is given by Equation (40) and the
local charged current density j(r, t) is given by Equation (39). Comparing Equation (66)
with Equation (44), it follows that

∂t(ρ − ρs) = 0 , (67)

i.e., the interaction charge density ρI = ρ − ρs given by Equation (41) must be time-
independent or, equivalently,

Φ ∂tns = −ns ∂tΦ . (68)

Instead, the Euler–Lagrange equation for the local number density ns(r, t) leads to

h̄ ∂tθ + qΦ − ϵ0µ0q2

2m
Φ2 − q

m
∇θ · A +

q2A2

2m
+

h̄2

2m
(∇θ)2

+
∂E
∂ns

− h̄2

2m
√

ns
∇2√ns = 0 . (69)

By applying the gradient operator ∇ to Equation (69), one finds

m∂tvs +∇
[1

2
mv2

s + µ(ns)−
h̄2

2m
√

ns
∇2√ns + qΦ

− ϵ0µ0q2

2m
Φ2 − q

h̄
vs · A +

q2A2

2m
]
= 0 , (70)

where µ(ns), given by Equation (20), is the chemical potential of the bulk system as a
function of the local number density ns(r, t).

5.1. Gapless Collective Modes of Neutral Superfluids

In the very special case of a neutral superfluid, i.e., if q = 0, the previous equations
become much simpler and it is quite easy to determine the collective modes of the zero-
temperature neutral superfluid. We set

ns(r, t) = n̄s + δns(r, t) (71)

vs(r, t) = 0 + δvs(r, t) (72)

assuming that δns(r, t) and δvs(r, t) are small perturbations with respect to the ground-state
configuration with a uniform number density n̄s and zero superfluid velocity.

Under the condition q = 0, the linearized version of Equations (65) and (70) are then
given by

∂tδns + n̄s∇ · δvs = 0 , (73)

n̄s∂tδvs + c2
s∇δns −

h̄2

4m2 ∇(∇2δns) = 0 , (74)
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where

cs =

√
n̄s

m
∂µ

∂n
(n̄s) (75)

is the speed of sound. By applying the time derivative ∂t to Equation (73) and the divergence
∇· to Equation (74) and subtracting the two resulting equations, we find(

∂2
t − c2

s∇2 +
h̄2

4m2 ∇
4

)
δns = 0 , (76)

The Fourier transform of Equation (76) in the frequency–wavevector domain (ω, k) gives
the dispersion relation

ω =

√
c2

s k2 +
h̄2k4

4m2 . (77)

This dispersion relation is a gapless Bogoliubov-like spectrum [38], which reduces to the
phonon spectrum

ω = csk (78)

at very low wavenumbers, while for large wavenumbers one finds

ω =
h̄k2

2m
(79)

that is the single-particle spectrum of free massive particles. For the sake of completeness,
we underline that Equation (77) is fully consistent with our previous results [16–18] for the
collective modes of nonrelativistic neutral fermionic superfluids with the inclusion of the
von Weizsäcker-like term, Equation (27).

5.2. Gapped Collective Modes of Charged Superfluids

We now analyze the collective modes of a zero-temperature superconductor. In this
case q ̸= 0 and, in addition to Equations (71) and (72), we must set

Φ(r, t) = 0 + δΦ(r, t) (80)

A(r, t) = 0 + δA(r, t) (81)

assuming that δΦ(r, t) and δA(r, t) are small perturbations with respect to the ground-state
electromagnetic configuration of the zero scalar potential and zero vector potential.

Under the condition q ̸= 0, the linearized versions of Equations (65) and (70) are then
given by

∂t(δns) + n̄s∇ · δvs −
qn̄s

m
∇ · δA = 0 , (82)

n̄s∂t(δvs) + c2
s∇(δns)−

h̄2

4m2 ∇(∇2δns)

+
qn̄s

m
∇(δΦ) = 0 . (83)

Similarly, the linearized version of the Maxwell Equations (32)–(35) reads

∇ · δE =
δρ

ϵ0
(84)

∇ · δB = 0 (85)

∇ ∧ δE = ∂t(δB) (86)

∇ ∧ δB = µ0 δj + ϵ0µ0 ∂t(δE) (87)
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where
δE = −∇(δΦ)− ∂t(δA) (88)

δB = ∇ ∧ δA (89)

and

δρ = q δns − ϵ0
q2n̄sµ0

m
δΦ (90)

δj = q n̄sδvs −
1

µ0

q2µ0

m
A δns −

1
µ0

q2n̄sµ0

m
δA. (91)

Needless to say, finding analytical solutions for the coupled equations from (82) to (91)
seems not easy. However, we are able to obtain some interesting results. By applying the
time derivative ∂t to Equation (82) and the divergence ∇· to Equation (83) and subtracting
the two resulting equations, we find(

∂2
t − c2

s∇2 +
h̄2

4m2 ∇
4

)
δns +

qn̄s

m
∇ · δE = 0 , (92)

taking into account Equation (88). Then, from the first Maxwell Equation (84) and Equation (90),
we obtain

∇ · δE =
δρ

ϵ0
=

q
ϵ0

δns +
δρI
ϵ0

. (93)

Remembering that ρI = ρ − ρs is constant in time, as shown by Equation (67), by applying
the operator ∂t to Equation (92), we obtain(

∂3
t − c2

s ∂t∇2 +
h̄2

4m2 ∂t∇4 + ω2
p∂t

)
δns = 0 , (94)

which gives the dispersion relation ω = 0 but also

ω =

√
ω2

p + c2
s k2 +

h̄2k4

4m2 (95)

that is a gapped generalization of Equation (77). As expected, the gap is exactly due to the
plasma frequency ωp of Equation (62).

6. Conclusions

We have analyzed several consequences of a time-dependent relativistic model of
bosonic-charged Cooper pairs minimally coupled to the electromagnetic field. While our
model shares similarities with other relativistic treatments of superconductivity [1–5], it
differs in at least three important ways. First, our results have been obtained at zero
temperature where, at least for clean superconductors, the normal component of the su-
perconducting electrons is zero and a real-time description of the superconductive bosonic
field is fully justified [39]. Second, we have explicitly discussed the derivation of the non-
relativistic model for the matter field from the relativistic one, emphasizing the crucial
role of a term that couples the density of Cooper pairs with the electromagnetic scalar
potential. This term can be also obtained [40] from the nonrelativistic low-frequency and
long-wavelength Popov’s action [8,9] of a charged superfluid but only when performing
a quantum-mechanical–functional integration with respect to the density field within the
saddle-point approximation. Third, we have obtained the full set of equations for nonrela-
tivistic charged superfluids coupled to the (relativistic) electromagnetic field in terms of the
superfluid density and the superfluid velocity, which is directly related to the gradient of the
Nambu–Goldstone phase field. In these equations, in addition to the previously discussed
coupling term, there is a von Weizsäcker-like term [29], which takes into account the energy
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cost due to variations in the superfluid density and modifies the dispersion relation of the
superfluid collective modes.

Our model supports the claim [2,4,5] that, very close to zero temperature, it should
be possible to experimentally measure the decay of a static electric field inside a super-
conductor with a characteristic length that is the London penetration depth instead of the
Thomas–Fermi screening length. A recent experimental attempt to measure this effect by
using atomic force microscopy on a niobium sample was inconclusive due to limited accu-
racy [41]. We expect that near-future experiments could test also other zero-temperature
predictions discussed in this paper: a gapped spectrum of the electromagnetic waves inside
the superconductor and the gapped spectrum of the superconducting density oscillations.
To achieve these goals, it is necessary to work at extremely low temperatures, where the
normal component, containing the entropy and the viscosity of the system, is negligible.
This is the main experimental problem that needs to be overcome.
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