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Abstract: Image stitching aims to synthesize a wider and more informative whole image, which has
been widely used in various fields. This study focuses on improving the accuracy of image mosaic
and proposes an image mosaic method based on local edge contour matching constraints. Because
the accuracy and quantity of feature matching have a direct influence on the stitching result, it often
leads to wrong image warpage model estimation when feature points are difficult to detect and
match errors are easy to occur. To address this issue, the geometric invariance is used to expand
the number of feature matching points, thus enriching the matching information. Based on Canny
edge detection, significant local edge contour features are constructed through operations such as
structure separation and edge contour merging to improve the image registration effect. The method
also introduces the spatial variation warping method to ensure the local alignment of the overlapping
area, maintains the line structure in the image without bending by the constraints of short and long
lines, and eliminates the distortion of the non-overlapping area by the global line-guided warping
method. The method proposed in this paper is compared with other research through experimental
comparisons on multiple datasets, and excellent stitching results are obtained.

Keywords: image stitching; local edge contour features; image registration; mesh optimization

1. Introduction

Image stitching is performed to combine images or parts of images with overlapping
areas to create an image with a wider overall field of view, higher resolution and richer
information. The technology is continuously updated and iterated, widely used in fields
such as panoramic photography, autonomous driving, medical imaging, and virtual re-
ality [1–3]. Pictures taken in different scenes and at different times bring large parallax,
which leads to serious artifacts and perspective distortion in the stitching results. Therefore,
improving the level of image processing and obtaining high-quality images has been one
of the focuses of research.

Image registration is a crucial step in the image stitching process. It establishes
a spatial mapping relationship between image pixels to ensure accurate alignment of
different images [4]. The classical feature extraction technique [5–7] in image registration
based on sparse features has been applied so far. Later, the concept of line features was
introduced [8,9]. Many studies [10,11] began to explore the full integration of point and
line features in image registration and transformation to achieve better alignment and more
natural stitching. However, most stitching methods are based on the separate registration
of images using point and line features, which cannot fully consider the overall alignment
of both points and lines, leading to inaccurate matching. Jia et al. proposed a local region
block strategy, which uses feature numbers to enrich matching points to improve alignment
ability [12]. These methods all consider the combination of points and lines to improve
alignment accuracy, but ignore special scenarios where point and line feature extraction

Entropy 2024, 26, 61. https://doi.org/10.3390/e26010061 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26010061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0006-2807-6199
https://orcid.org/0009-0007-9301-6333
https://doi.org/10.3390/e26010061
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26010061?type=check_update&version=1


Entropy 2024, 26, 61 2 of 24

is limited and feature matching accuracy is low. Information entropy can describe the
diversity and information content of features. Higher information entropy indicates that
the image area contains more different features, while lower information entropy may
indicate that a certain area has more consistent features. By analyzing information entropy
distribution, we can determine which areas have rich features, and we can pay more
attention to these areas during splicing.

Traditional image stitching methods [13,14] use global homography stitching tech-
niques and often struggle to handle the alignment of local details effectively. Zaragoza et al.
introduced the APAP algorithm, which applies the moving Direct Linear Transformation
(M-DLT) framework for image stitching [15]. This approach divides the images into a dense
grid and computes local homography transformations separately on each grid. Then, the
image mosaic problem is transformed into a mesh optimization problem, and the image
is aligned and adjusted more accurately by optimizing the network model. Additionally,
in research, there are image stitching methods based on seam lines. Because dislocation
artifacts are difficult to avoid in the overlapping area, in [16–19], methods were proposed to
find the best suture in the overlapping area to deal with parallax and eliminate dislocation
artifacts. However, although these methods can improve the misalignment problem, the
stitched images still retain their respective viewing angles, resulting in a certain degree of
single viewing angle effect in the stitched results.

Grid optimization solves the alignment problem of overlapping area well, but there
are projection distortion and perspective distortion in the multi-view, which is easy to
produce serious distortion in non-overlapping area. Many research efforts often employ
methods that combine improved alignment in overlapping regions with constraints to
minimize distortion in non-overlapping areas to address the distortion issue. The shape-
preserving method introduces shape correction and image scaling to reduce deformation
distortion [20]. Chen introduced global similarity, local similarity, and parallax rotation
constraints to optimize the mesh [21]. Liao et al. proposed a single-view image mosaic
method to prevent the linear structure from being deformed due to warpage in the image.
The linear structure protection item and distortion control item designed in the energy
function achieved a good stitching effect [22]. Jia et al. designed long straight lines to
ensure the stability of the straight structure in the whole image [12].

In order to improve the quality and performance of stitching, many researchers have
introduced the concepts of entropy and information theory into image stitching [23,24].
Among existing research, some methods utilize entropy or information theory to select
appropriate features for matching. These methods usually calculate the information entropy
or cross-entropy of an image to evaluate the complexity and information content of the
image. In image splicing, if the entropy difference between two images is large, the
difficulty of splicing them increases accordingly. Therefore, by calculating the entropy of an
image, one can better understand the difficulty of stitching and the amount of information
required. Information theory helps to evaluate the difference between the stitched result
and the original image, i.e., using cross-entropy to measure the difference between the
stitched result and the original image. The smaller the cross-entropy, the closer the image
information of the splicing result is to the original image, and the better the performance
of the algorithm. By comparing the cross-entropy of different splicing algorithms, their
performance can be evaluated and the optimal algorithm can be selected.

In recent years, image mosaic algorithms have made remarkable progress in dealing
with parallax and distortion, but they are still not comprehensive enough. In fact, there are
many different types of feature structures in the image, but most of the stitching algorithms
usually focus on the point and line structures and ignore the local edge contour, which can
effectively reflect the whole scene structure. In this paper, a mosaic method is designed,
which makes full use of the local edge structure to improve the quality of image mosaic.

Based on the research of common natural image data, this paper focuses on the
image stitching problem caused by single-image warping and proposes an image mosaic
algorithm based on point-line consistency and edge contour feature constraint. The final
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image stitching is achieved through three steps: feature matching correspondence, image
warpage and image fusion. This paper mainly studies the following three aspects:

• Aiming at the problem of insufficient features of low texture region in the overlapping
region, the point-line consistency module is proposed, which uses SIFT with good
stability to extract features, to increase the number of matching point pairs and filter
out erroneous matches.

• Aiming at the problem of many structural features in the image that are not fully
utilized, and the point-line feature being wrong, the method in this paper innovatively
breaks through the traditional understanding of the structural features of the image.
It not only takes into account the limitations of point and line features, but it also
fully exploits the rich structural information of the image. Local edge contour features
are constructed to constrain global image pre-registration, weaken the impact of
mismatching, and thereby improve the accuracy of image alignment.

• Aiming at the problem of alignment and distortion imbalance in single image warpage
stitching, this paper introduces multiple optimization modules to ensure image align-
ment and minimize the distortion of non-overlapping regions.

The remainder of the paper is structured as follows: Section 2 reviews related research
in the field of image stitching, including various registration methods as well as mesh
optimization methods. In Section 3, the image stitching algorithm proposed in this paper
is introduced in detail, and the construction principle of edge contours and the contour
feature matching mechanism are explained in depth. Section 4 describes the dataset and
evaluation metrics used in the experiments, and presents the experimental results in detail.
Finally, Section 5 reviews the entire study, highlights the innovativeness of our proposed
edge contour constraint method, discusses the limitations of the algorithm, and proposes
directions for future research.

2. Related Work

This paper presents an image stitching method based on point-line consistency and
local edge contour feature constraints. Therefore, this section reviews the work related to
feature matching and image warping in the stitching method.

In the early days, when corner detection was limited, Lowe et al. introduced the
Scale-Invariant Feature Transform (SIFT) algorithm, which possesses scale, rotation and
brightness invariance, and is used today [5]. In addition, there is an improved SIFT-based
accelerated robustness feature algorithm (SURF), which has a faster speed and is more
suitable for real-time applications [6]. The ORB algorithm combines the advantages of FAST
and BRIEF to detect denser matching points in the flat texture region [7]. Later, the concept
of line features was introduced, and the line structure in an image is detected and matched
by line detection algorithm LSD [8] and EDLines [9], which can be used as a supplement
of point feature and can enhance the reliability of image registration. Recently, Jia et al.
adopted the block strategy that utilizes geometric invariants for regional matching, leading
to an abundance of matching point pairs [12]. In addition, feature mismatch filtering needs
to be performed to improve matching accuracy. The brute force matching algorithm is
usually used for preliminary matching, but the calculation efficiency is too low and is
applicable to small-scale and simple scenarios. The RANSAC algorithm [25] performs
well in datasets with some noise and outliers, but it has a high computational complexity.
The Multi-GS algorithm [26], combining the RANSAC idea, is suitable for multiple model
fitting interior points, has higher robustness, and is suitable for complex scenarios and
situations where multiple models are required. Currently, most research is based on a
point-line separation approach for image registration, which results in the inability to
simultaneously consider both point and line structures. This leads to the exclusion of many
locally effective matches. By utilizing geometric invariants [27] to establish a relationship
between point features and line features, an increase in the number of matching point pairs
is achieved. This is then combined with the Multi-GS algorithm to enhance the quality of
matches. Compared with the traditional methods, i.e., RANSAC and point-line separation
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registration, the proposed strategy is more robust in the face of limited feature detection
and wrong feature matching.

Traditional image stitching methods use global homography to warp images, but
they are only suitable for ideal scenarios where scene depth remains nearly constant in
the overlapping areas. The Dual Homography Warping (DHW) algorithm [13] divides
the scene into background and foreground planes and aligns them separately using two
homography matrices. The Sliding Variational Affine (SVA) algorithm [14] improves local
transformations and alignment through multiple affine transformations. In recent years,
many studies have used multiple homogeneous spatial variation warping methods to deal
with parallax problems. The APAP algorithm [15] divides the image into unified mesh units
and obtains local homography transformation to guide image stitching, which can better
deal with the parallax problem. The Adaptive As Natural As Possible warping algorithm
(AANAP) [28] combines local homography transformations with global similarity transfor-
mations to effectively reduce distortion in non-overlapping regions. The Shape-Preserving
Half-Projection Warping algorithm (SPHP) [20] employs subregion warping to smooth the
transition between overlapping and non-overlapping regions, reducing distortion. At the
same time, the image stitching method based on seam line solves the parallax problem
by finding the best seam line in the overlapping area. Gao et al. proposed a seam drive
method to deal with parallax and eliminate dislocation artifacts [16]. Parallax-tolerant
image stitching [17,29] improves stitching performance in large parallax scenes using
content preservation warpage and optimization of seam lines. Joint Guided Local Align-
ment (SEAGULL) [18] adds structural protection constraints for bends and straightness.
Perception-based seam tailoring [19] introduces human perception and saliency detection
to obtain the best seams, making the stitching results look more natural.

In image warpage processing, it is important to preserve the original state of the
prominent structures in the image. The Double Feature Warp Algorithm (DFW) [10]
introduces line features and constrains both points and lines to ensure that the integrity
of important structures is maintained after the image is warped. The Global Similarity
Prior Algorithm (GSP) [21] makes full use of line features to restrict the angle of global
similarity, combining local and global constraints to reduce structural distortion. The
Quasi-Homography Warping (QHW) algorithm [30] maintains the properties of quasi-
homography warping by introducing intersecting lines, further enhancing the alignment of
images. The Single Viewpoint Warping (SPW) algorithm [22] introduces multiple protection
terms and uses the least squares method to optimize the objective function, obtaining
the best homography warping transformation and thus reducing distortion. The shape
structure protected stitching method (LCP) [12] introduces the concept of a global line
feature, i.e., short line segments are combined into long line segments to reduce the bending
of the line structure in image stitching, thereby improving the stitching effect. Together,
these methods aim to maintain the integrity and accuracy of image structures in image
warpage processing.

Image stitching methods based on deep learning have also produced extensive re-
search results. The viewless image splicing network [31] proposes a view-free image
splicing network. In order to reduce artifacts as much as possible, a global correlation layer
and a gradual splicing module from structure to content are designed. However, the dataset
it synthesizes and uses does not have parallax. Ref. [32] proposed an unsupervised deep
image stitching network that is adapted to large baseline scenes and eliminates artifacts
caused by pixel levels by reconstructing features. But as the disparity increases, the burden
of reconstructing the network also becomes heavier. PWW [33] proposes an image stitching
network composed of a pixel-by-pixel warping module (PWM) and a stitched image gener-
ation module (SIGMo) to deal with the large parallax problem by estimating the distortion
in the pixel direction. The pixel-by-pixel image stitching network [34] adopts a large-scale
feature extractor and an attention guidance module to achieve high-resolution and accurate
pixel-level offset. A series of constraints are introduced to enhance the consistency of
features. Content and structure between image pairs and stitched images.NIS [35] achieves
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high-frequency details without point-of-view image stitching and blends color mismatches
and misalignments to relax parallax errors.

The learning-based splicing method realizes automatic feature learning, end-to-end
training and global information synthesis through deep learning networks, thereby im-
proving the robustness and generalization ability of image splicing, especially in handling
complex scenes. However, traditional methods still have their advantages in scenarios
with limited resources and high real-time performance requirements. Future research may
explore combining the advantages of both to achieve a more comprehensive and efficient
image stitching technology.

3. Materials and Methods

This chapter designs and introduces the image stitching algorithm based on local edge
contour feature constraints. The algorithm’s stitching process is illustrated in Figure 1.
The algorithm mainly includes the following stages: first, using geometric invariants [27]
(i.e., feature number construction), matching point pairs are added and refined. Next, edge
contours in the stitched images are detected using edge detection methods [36,37], and
subsequently, local edge contour features are extracted and matched from the obtained
detection results. Then, local edge contour features are used to constraint global allocation
and perform grid optimization. Finally, a linear fusion method is used to fuse the image.

Input images

Point-line consistency

Local edge contour constraints

Image pre-alignment

Local point

alignment term

Grid optimization warping

Long line

constraint term

Local line

alignment term

Global

constraint term

Linear weighted fusion

Figure 1. Workflow of the image stitching algorithm introduced in this paper. The stitching pro-
cess is divided into three stages, including image pre-alignment, grid optimization warping and
image fusion.

Figure 2 clearly shows the various steps and the operation sequence of the image
registration and image optimization warping modules, where a is the flow chart of the
feature extraction module and b is the flow chart of the mesh optimization warping module.
At the same time, the following content provides a detailed introduction around these two
main modules.

 Image pre-

alignment

Local point

alignment term

Local line

alignment term

Long line

constraint term

Global

constraint term

Optimize and

solve the

energy

function

Images to be stitched

Filter point features

using Multi-GS

Detecting straight

line features using

LSD

Filter straight line

features

Edge detection

Local edge contour

feature extraction

Divide coplanar

sub-region blocks

Point-line feature

consistency

matching
 Local edge contour

feature matching

 Image pre-

alignment

Detect point features

using SIFT

(a) Image pre-alignment (b) Grid optimization warping

Figure 2. Workflow of the image stitching algorithm introduced in this paper. Flowchart (a) and
flowchart (b) are detailed expansions of the image pre-alignment stage and grid optimization warping
stage respectively.
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3.1. Feature Detection and Point-Line Consistency Matching

The algorithm in this paper adopts the point-line consistency method [12] in the
feature detection stage. In low-texture areas, the point features extracted by traditional
point feature extraction algorithms are very limited, and the feature extraction process is
prone to noise and unstable features. In the straight line detection stage, the LSD straight
line detection algorithm is selected. By setting a threshold, straight lines of insufficient
length are eliminated, and then consistent matching of point and line features is performed.
The obtained feature point pairs are matched by adjacency relationship and then filtered
using the Mutil-GS algorithm for interior points. As shown in the point-line feature
consistency matching results in Figure 3, the number of feature points after point-line
feature consistency expansion increases a lot, thereby better improving the accuracy of
subsequent registration and alignment.

Figure 3. Point-line feature consistency matching results. The red points are feature points extracted
and filtered by the SIFT algorithm, and the blue points are matching feature points that were increased
by point-line consistency.

3.2. Local Edge Contour Feature Extraction

This section proposes a local edge contour feature extraction algorithm to extract
local edge contour features in the image to constrain the global alignment of the image.
The algorithm is mainly divided into three key steps, including edge detection, structure
separation and local edge contour merging. The edge detection in this section uses the
relatively stable canny algorithm [36] to generate edge detection results composed of
multiple continuous local edge objects on the image to be spliced. As shown in Figure 4a,
the next two key steps are performed on the results of canny detection.

Figure 4. (a) Canny-based edge detection results. (b) Filtered significant and continuous local edge
contour results. (c) Closing operation results.

3.2.1. Structure Separation

The main goal of this process is to separate local edge objects that conform to quadratic
curves from edge detection results. The isolated local edge objects conform to straight-line
structures or approximate parabolic curve structures, so that the structure can be further
analyzed and processed.
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First, significant and continuous local edge objects are screened out based on the local
area, pixel intensity distribution and other attribute conditions of the local edge objects,
as shown in Figure 4b. Then, a closed operation is used to process each local edge object,
as shown in Figure 4c. The two basic morphological operations of dilation and erosion
are used to fill holes in edges, connect disconnected edges, and smooth irregular edges.
The closing operation greatly improves the continuity of the edge, reduces noise, makes
the edge more stable, and provides support for the implementation of subsequent contour
tracking methods.

During the edge separation process, the point set and minimum bounding rectangle
of each local edge object need to be recalculated after each operation.

For each local edge object, the “crawler” method is used in contour tracking to perform
separation operations in the X and Y axes. A point storage matrix needs to be created
for the isolated new local edge contour. The starting point is freely selected along the left
boundary of the bounding box and is placed into the point storage matrix for initialization.
For each unit length along the X-axis direction, the Euclidean distance between the y-value
point and the last point in the point storage matrix is calculated to measure its proximity to
the last point in the current point storage matrix. A point distance threshold is established,
and the calculated Euclidean distances are compared with the point distance threshold. If
the distance is less than the threshold, the point is included in the point storage matrix;
otherwise, it continues to move forward to explore the next unit point. If a suitable point
cannot be found for three consecutive times, the point set in the point storage matrix is
considered to be a new local edge object. At the same time, the point set of the separated
local edge object is removed from the point set of the old local edge object. Subsequently,
the minimum bounding rectangle of the newly recalculated local edge objects is determined.
This process is iterated until the point set of the old local edge object is empty. The above is
the operation of separating local edge objects in the X-axis direction, and the principle is
the same in the Y-axis direction. Finally, a collection of local edge objects in the X and Y
directions is obtained. Figure 5 illustrates the process of separating a local edge object (red
box) in the X direction to generate multiple local edge objects.

（a）

（b）

(c)

Figure 5. Results of separation of local edge objects along the X direction. (a) The red box is a
local edge contour. (b) The red local contour shape is enlarged. (c) The result of separation in the
X-axis direction.

The obtained local edge objects undergo direction-specific local peak detection along
the coaxial directions during separation along the X and Y directions. This is because
the outline structure of most local edge objects does not conform to the quadratic curve,
such as the entire curve structure in Figure 6. It is necessary to detect the contour struc-
ture conforming to the quadratic curve from the curved structure and peel it off. Ob-
viously, the more complex curve structure contains more peak points. The method of
local extremum detection is employed to precisely identify peaks within the curve struc-
ture. Figure 6 is the result of peak detection on the curve structure of the largest edge
separated in the X direction in Figure 5c. The curve structure of this maximum edge is
represented as Pe = ((x1, y1), (x2, y2), . . . , (xn, yn)). Then, Pj

e = (y1, y2, . . . , yn) represents
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the y value of the point set in the curve structure, and the peak point is calculated through
the following formula :

Pj−1
e < Pj

e & Pj
e > Pj+1

e ,

Pj−1
e > Pj

e & Pj
e < Pj+1

e .
(1)

In the formula, the qualified data points are local high peak value and local low peak
value, respectively. Finally, the decomposed smaller structures are filtered by setting a
spindle length threshold.

Figure 6. Results of peak detection on the edge contours, with yellow denoting peaks and red
denoting valleys.

After each local edge object is separated, it produces overlapping or similar structures,
as shown in Figure 7a where Edges 1 and 4 overlap with Edge 5. This situation is mainly
caused by two factors. First, the closing operation causes the edges to be filled in and
become more continuous. At the same time, the point data are also more dense, and
repeated structures appear when crawling new local edge objects. Second, the new local
edge objects separated in the X and Y directions have similar structures. In order to deal
with this problem, the similarity or overlap degree of two edges is determined by calculating
the minimum distance between two edges, and a edge similarity threshold is set to deal
with dense or overlapping edge structures. We assume contour A = {(xi, yi)}i=1,2,...,n
and contour B = {(ui, vi)}i=1,2,...,m. For each point (x, y) ∈ A, we calculate its Euclidean
distance from all points (u, v) in B, and the minimum value is the distance from the point
to Edge B. The distance from the point to the edge is given by the following formula:

D(a) = min
{√

(x − u)2 + (y − v)2 f or all (u, v) ∈ B
}

. (2)

Next, the distances from all points a ∈ A to Edge B are calculated, and their mean
value is computed. This mean distance serves as the minimum distance between the two
edges, denoted as D(A, B). The calculation formula is as follows:

D(A, B) =
1
n ∑ D(a) f or all a ∈ A. (3)

When the distance value between two edges is smaller, it indicates that the similarity
or overlap between the two edges is higher, and vice versa. Figure 7b is the result after
removing overlapping or similar structures.

However, for local edge objects with intersection and non-intersection parts, directly
calculating the distance between two edges cannot accurately describe the relationship
between them. Here, the semi-merged separation method is used to make judgments on
the intersection data. First, according to the minimum circumscribed rectangle of the local
edge object, the intersection area data of the two local edge objects are obtained, and the
edge distance of the intersection part is calculated. If the calculation result is less than the
edge similarity threshold, the non-intersection data of the smaller edges are merged into
the larger edge data; otherwise, they are regarded as local edge objects that do not interfere
with each other.
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Figure 7. The process of structure separation and approximate merging for axis-aligned contours
(local) is illustrated, with each edge numbered separately. The edge in the rectangular box represents
a local edge contour feature, and the number is the number of its corresponding feature. (a) Results
of edge structure decomposition. (b) Result after removing overlapping or similar edges. (c) Results
of edge fitting and merging.

3.2.2. Local Edge Contour Merging

Fitting and reassembling are applied to the decomposed local edge objects, aiming to
restore the original and relatively large contours that conform to quadratic curves as much
as possible. The two local edge objects to be fitted are merged, forming an input sample
for data merging. According to the characteristics of the desired contour structure, this
paper selects the quadratic fitting model among the polynomial fitting models. The least
squares method is used to fit the point sets of two local edge objects so that the polynomial
curve best approximates the given data points, and then the minimized residual sum of
squares of the two local edge objects is obtained. A fitting threshold is set, and the two
local edge objects that meet the fitting threshold are merged, obtaining the desired local
edge contour features. As shown in Figure 7c, local edge Object 1 in c is the result of fitting
local edge Objects 1 and 3 in b. If the minimized residual sum of squares is less than the set
fitting threshold, the current two local edge objects are considered to have a better fitting
effect and are merged into a larger contour structure that conforms to the quadratic curve.
Otherwise, the two local edge objects are considered to have no relationship. Finally, the
complete desired local edge contour features are obtained.

3.3. Local Edge Contour Feature Matching

When the image pair involves perspective distortion, relying solely on affine trans-
formations of translation and rotation to achieve local edge contour feature matching of
curve shapes is no longer applicable, because the perspective transformation introduces
more complex deformations. In order to solve this problem, this paper calculates the global
homography matrix through the matching feature point pairs extracted by SIFT and point-
line consistency and performs coarse position matching on the edge contour features of the
image overlapping area. Before calculating the global homography matrix, the more robust
Multi-GS algorithm [32] is used to filter outliers. In images containing multiple coplanar
structures, the Multi-GS algorithm reduces the time complexity of hypothesis model gener-
ation, reduces the risk of mismatching, and better adapts to the complexity of the scene.
We assume I and I′ are the reference image and the target image, respectively. There is a
pair of matching points (xi, yi) ∈ I and

(
x′i, y′i

)
∈ I′. There is a homography transformation

relationship between them, which can be expressed as the following homogeneous linear
relationship: [

xi yi 1 0 0 0 −x′ixi −x′iyi −x′i
0 0 0 xi yi 1 −y′ixi −y′iyi −y′i

]
h = 0. (4)

The global homography transformation matrix h can be calculated based on the feature
matching point pairs and their linear relationships. The reference image and the target
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image are projected into the same coordinate system using the homography transformation
h to achieve a rough alignment of the local edge contour features.

The overlapping area mask can be obtained by performing an AND operation on the
binary images of the target image and the reference image. The overlapping region mask is
employed to extract local edge objects within the overlapping region, facilitating feature
matching and enhancing the efficiency of feature matching. Extraction rules: The minimum
bounding rectangle for each edge is calculated. If the rectangle is entirely located within the
overlapping region, all edge data are retained. In cases where the rectangle intersects with
the overlapping region, only the edge data corresponding to the intersection are preserved;
otherwise, they are disregarded.

During the matching process, edges that are too dense interfere with the matching
results of local edge contour features. By performing close-range filtering on local edge
objects in the overlapping area, local edge objects that are close and easy to interfere with
each other are excluded, while local edge objects with more significant characteristics are
retained. First, we assume that the local edge object set E = {ei}i=1,2...n in the reference
image is sorted according to the length of the main axis, E represents the set of local
edge objects, and ei represents the local edge object extracted from the reference image.
A distance matrix is established, where both rows and columns represent sequentially
arranged local edge objects. The values at corresponding positions indicate the distances
between the two edges. Then, the distance between each local edge object and other local
edge objects is calculated sequentially, as shown in Formula (3), and the distance value is
stored in the distance matrix. A minimum edge distance threshold T is defined to assess
the distance relationship between two local edge objects. If the distance value is greater
than T, it is considered that the two local edge objects do not affect each other, and the
corresponding position of the distance matrix is set to 0. Otherwise, the two local edge
objects are considered to interfere with each other, and the corresponding position of the
distance matrix is set to 1. According to the distance relationship, each ei in the local edge
object set is screened in order to determine whether the object has other local edge objects
that interfere with it. If interfering adjacent objects are found, the local edge objects that
interfere with ei are found through the distance matrix. The discovered local edge objects
are assigned a value of 0 at the corresponding position in the distance matrix with respect to
ei. This implies the elimination of all interference relationships between local edge objects
and ei. Simultaneously, local edge object ei is removed. Upon completing the traversal of the
collection of local edge objects, local edge objects free from any interference relationships
are obtained from the final distance matrix (where the values in the corresponding rows
are all 0). Through the above filtering, a group of local edge objects that maintain a certain
distance and are relatively independent are obtained. Local edge objects in the target image
also need to undergo the same filtering operation mentioned above.

After the images to be spliced are roughly aligned, the positional relationship of their
four vertices is calculated based on the minimum circumscribed rectangle of the local
edge object. After undergoing coarse alignment, the positions of the four vertices of the
minimum bounding rectangle for the local edge objects are calculated. This ensures that
the distances between matched local edge objects remain within the matching error range,
thereby obtaining matched pairs of local edge contour features.

We assume that the minimum circumscribed rectangles of the local edge objects in the
target image and the reference image are Rt arg et = {Recti}i=1,2,...t and Rre f er = {Rectj}j=1,2,...r,
respectively. It is necessary to create relationship matrix Matrixt×(r+1) surrounding the rectan-
gle of the local edge object. The first column of relationship matrix Matrixt×(r+1) stores local
edge object Rectj corresponding to local edge object Recti with the smallest distance. For each
local edge object Recti in the target image and each local edge object Rectj in the reference
image, the distance between the four vertices of their circumscribing rectangles is recorded in
the relationship matrix. Assuming rectangular vertex coordinates vk

i ∈ Recti and vk
j ∈ Rectj,
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the vertex distance of the circumscribing rectangles of two local edge objects is expressed
as follows:

dist
(
Recti, Rectj

)
= ∑

∥∥∥vk
i − vk

j

∥∥∥, k = 1, 2, 3, 4. (5)

In the formula, dist
(
Recti, Rectj

)
represents the sum of the distances of the four vertices

of the two circumscribed rectangles, and vk
i and vk

j are the vertex representations of the two
circumscribed rectangles.

The relationships between local edge contour features are determined through the
relationship matrix. However, due to the uncertain quantity of local edge contour features
in the image, errors in matching, such as one-to-many or many-to-one, may arise when
associating corresponding local edge contour features. To eliminate erroneous matches, the
set of local edge contour features with fewer edges in the image is initially chosen for active
traversal, while the other set of contour features serves as passive traversal. This approach
attributes the aforementioned issue to the potential occurrence of a one-to-many problem.
In the one-to-many situation, the distance sum of circumscribed rectangular vertices of
multiple matching contour feature pairs that match the same local edge contour feature is
calculated and compared, thereby selecting the best matching local edge contour feature. If
the local edge contour feature is not the best match, then the local edge contour feature with
the smallest distance is selected again in the feature set. Iteration continues until matching
local edge contour features are found for all target edge contour features. Finally, the local
edge contour features that are empty in the relationship matrix represent local edge contour
features that have no corresponding matching.

The above method is only suitable for overall matching of local edge contour features.
However, for the matching situation where only intersection data exist for local edge con-
tour features, the method of calculating the vertex distance of the minimum circumscribed
rectangle of the entire edge contour is obviously no longer applicable. Therefore, the inter-
section data of the circumscribed rectangles of local edge contours are used to compare the
relationship between edge contours. First, the intersection data of the local edge contours
to be compared are obtained, and the corresponding minimum circumscribed rectangle is
calculated. If there is an intersection between two edge contours, the distance relationship
between the vertices of the circumscribing rectangle is used to determine the matching edge
contour; otherwise, it is directly considered that there is no relationship between them.

In addition, multiple factors are also taken into account to consider the matching simi-
larity of local edge contour features. First, the consideration involves the shape similarity of
local edge contour features. The method of quadratic fitting is utilized to abstract the shape
of local edge contour features into a mathematical model, aiming to determine whether
they belong to the same structural type. That is to say, if the shapes of the matched local
edge contour features are not all straight lines or curves, the two local edge contour features
are considered to be mismatched. Next is the consideration of the positional relationship of
local edge contour features. The starting and ending points of local edge contour features
are connected to form a straight line, and the similarity between two local edge contour
features is measured by the slope of the line. That is to say, the direction sign of the slope of
the connecting straight line is calculated. If the sign of the straight line slope of the two local
edge contour features is different, the two local edge contour features are considered to be
mismatched. This results in more accurate pairs of matched local edge contour features.

The results obtained through the process of constructing and matching edge contours
on multiple images with overlapping regions are depicted in Figure 8.

3.4. Image Pre-Alignment

Matching point p = {pi}N
i=1 added by point-line consistency [12] and matching

feature point p′ =
{

p′i
}N

i extracted by SIFT are merged into matching point pair data
P = {

(
pi, p′i

)
}N

i , which represents the input N sets of data. Multi-GS [26] is used to
filter interior points, and M fitting model parameter sets {θ1, θ2, . . . , θM} are generated by
random sampling. We assume a local edge contour feature pair

(
ej, e′j

)
, where j represents
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the identifiers for the local edge contour feature pair. For each hypothetical model, first,
we calculate distance D

(
ej, e′j

)
between the two transformed local edge contour feature

pairs, which is obtained by Formula (3). The required edge distance is also the error
value of the local edge contour feature pair under this model. Second, distance error
sum Si = ∑ D

(
ej, e′j

)
of all local edge contour feature pairs is calculated. The distance

error sums of local edge contour feature pairs under all model assumptions are sorted
from small to large to obtain an ordered list Ssorted. Third, mean square error MSEj is
calculated for the sum of error distances for all pairs of local edge contour features in a
single model hypothesis. Next, it is necessary to calculate mean error value uj of all local
edge contour feature pairs, and sort the obtained results from small to large. This is to rule
out hypothetical models in which the overall alignment is affected because a single local
edge contour feature is severely misaligned. The formula is expressed as

MSEi = (1/n)∗∑
(

D
(

ej, e′j
)
− uj

)2
. (6)

Figure 8. The results of local edge contour matching across multiple datasets. The blue and green
boxes are the detected local edge contour features. Each pair of features has the same number.

In the formula, n represents the number of edge contour pairs, and uj represents the
distance variance of all edge matching pairs under the assumption of model θi. Then, the
calculated variance values are sorted to obtain an ordered list, MSEsorted. According to the
two ordered lists, Ssorted and MSEsorted, the hypothesis model ranked highest in both lists
is the best hypothesis model sought.
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3.5. Grid Optimization with Multiple Constraint Terms for Warping

The previously discussed global pre-alignment, which relies on local edge contour
constraints, is mainly used to ensure alignment of the entire image. To meet the demands of
local alignment in perspective-transformed images and to mitigate issues such as artifacts
and distortions, the image is divided into a dense grid, and local pre-warping is applied
within each grid. An energy function is formulated for grid vertices [12], incorporating
a range of prior constraint terms, to guide the deformation of the grid through energy
minimization. This paper defines the grid vertex optimization energy function from the
following four aspects.

(1) Local point alignment constraint term
A feature point alignment term is designed to ensure that the matched feature points

remain aligned during the grid deformation process. For target image I, reference image I′,
and extracted feature points pi ∈ I and p′i ∈ I′, this constraint term is defined as follows:

Ep = ∑N
i=1

∥∥τ( p̂)− p′i
∥∥2

=
∥∥∥WpV̂ − P

∥∥∥2
, (7)

where N represents the quantity of matching points, τ( p̂) denotes the positions of points pi
after transformation, which are interpolated by the grid vertices, and Wp represents the
weight matrix corresponding to point set {pi}i=1,2,...,N .

(2) Local line alignment term
The local line alignment option not only further optimizes the local grid alignment

effect, but also makes the linear alignment effect in overlapping areas more stable. The
alignment of matching straight lines is constrained by the shortest distance between the
end points of the straight line segment on the target image and the matching straight line
in the reference image. According to the matching straight line cut off by different grids,
the short line segment formed intersects with the grid. This paper enhances the constraints
on the alignment of the straight line through the shortest distance from the intersection
point to the matching straight line. For the collection of matching line pairs denoted as{

lj, l′j
}

j=1,2,...,M
, and for their corresponding matches lj ∈ I and l′j ∈ I′, the constraint term

is defined by the following formula:

El = ∑M
j=1

∥∥∥∥∥∥
l
′T
j · τ

(
ps,e

i
)√

a2
i + b2

i

∥∥∥∥∥∥ =
∥∥WlV̂

∥∥. (8)

In the equation, ps,e
i represents the two endpoints of the straight line segment and

the intersection point of the two ends of the truncated short straight line. l
′T
j = (ai, bi, ci)

are coefficient vectors for the linear equations of line segments in the reference image.
Utilizing the correspondence between points and lines, the local line alignment term
involves optimization to determine the minimum distance from the two endpoints to
the line.

(3) Long line constraint term
This constraint is based on the LCP [12], which merges local straight line segments

on the same collinear structure of the image into long straight lines to protect the long
straight line structure in the image from bending. For each long straight-line structure
Lgl = {li}i=1,2,...,s, uniform sampling is conducted along each long line, represented as{

pk
i

}
k=1,2,...,Q

. This constraint term is expressed by the following formula:

Egl =
S

∑
i=1

Q

∑
k=1

∥∥∥∥∥∥
l
′T
i · τ

(
pk

i

)
√

a2
i + b2

i

∥∥∥∥∥∥ =
∥∥∥WglV̂

∥∥∥. (9)
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In the equation, l
′T
i = (ai, bi, ci) represents the coefficient vector of the linear equations

constructed from the two endpoints of long line segments
(
us

i , vs
i
)
. The combination of

local short line and global long line constraint terms ensures that the line structures in the
image maintain better results both locally and overall.

(4) Global constraint term

Sets of horizontal lines, denoted as
{(

lu
i , l

′u
i

)}S

i=1
, and vertical lines, denoted as{(

lv
i , l

′v
i

)}T

j=1
, are generated from the registered image. Uniformly sample points for each

horizontal and vertical line form point sets
{

pu,i
k

}
k=1,2,...,L1

and
{

pv,i
k

}
k=1,2,...,L2

, respectively.

The global image distortion is constrained by the slopes of horizontal and vertical lines, as
expressed in the following formula:

Egs =
S
∑

i=1

L1
∑

k=1

∥∥∥∥∥ l
′T
i ·τ

(
pu,i

k

)
√

a2
i +b2

i

∥∥∥∥∥
+

T
∑

j=1

L2
∑

k=1

∥∥∥∥∥ l
′T
j ·τ

(
pv,i

k

)
√

a2
j +b2

j

∥∥∥∥∥
+

T
∑

j=1

L1−2
∑

k=1

∥∥∥τ
(

pv,j
k

)
+ τ

(
pv,j

k+2

)
− 2τ

(
pv,j

k+1

)∥∥∥.

(10)

Additionally, to constrain deformation in non-overlapping regions, the constraint term
is expressed as follows:

Egd =
S

∑
i=1

⌊
pv,j

k ∈Φ
⌋
−2

∑
k=1

∥∥∥τ
(

pu,i
k

)
+ τ

(
pu,i

k+2

)
− 2τ

(
pu,i

k+1

)∥∥∥2
=

∥∥∥WdV̂
∥∥∥2

. (11)

Therefore, the global constraint term defined in this section is expressed as follows:

Eg = λgsEgs + λgdEgd. (12)

λgs and λgd represent the weights for constraint terms of the line slope and the non-
overlapping region, respectively.

The four constraint terms for the energy function described above can be combined
into a unified energy function optimization problem, as shown below:

E = αEp + βEl + γEgl + Eg. (13)

In the equation, α,β, and γ correspond to the weights of the energy function constraint
terms. Since each term is quadratic, a sparse linear solver is employed to minimize the
energy function and solve the grid optimization problem outlined above.

3.6. Linearly Weighted Image Fusion

Image fusion is the process of reassembling images based on their completed regis-
tration positions and orientations. Exceptional image fusion algorithms can reduce and
in some cases eliminate issues related to brightness, color, and stitching seam discrep-
ancies in overlapping regions, ensuring smoother transitions between overlapping and
non-overlapping areas. In this section, we provide a detailed explanation of the linear
weighted fusion algorithm [38] employed in the paper.

We assume that reference image I1 and target image I2 are linearly weighted fused.
We calculate the weight based on the distance from the overlapping part to the boundary
of the overlapping area, and normalize the weight. We use w1 and w2 to represent the
weight, then w1 + w2 = 1. A linear weighted sum is performed for each position, and the
summation formula is as follows:
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F(x, y) = w1 · I1(x.y) + w2 · I2(x.y). (14)

In the formula, F(x, y) represents the pixel value of the fused image at position (x, y).
In order to ensure that the pixel value of the fused image is within a reasonable range,

normalization processing is performed as shown in the following formula:

F(x, y) =
F(x, y)

w1 + w2
. (15)

In this way, through pixel-by-pixel linear weighted summation, fused image F
is obtained.

4. Experimental Design and Result Analysis
4.1. Experimental Preparation
4.1.1. Experimental Environment and Setup

In order to verify the effectiveness of the proposed image mosaic algorithm based on
point-line consistency and local edge contour constraint, detailed experimental tests and
comparative analysis were carried out in this chapter to evaluate the performance of the
algorithm. Several classical image mosaic algorithms, including SIFT+RANSAC, APAP [15],
AANAP [28], SPW [22], and LCP [12], were selected and compared with representative image
datasets. In the experiments, the input image size was consistently set to 640 × 480 pixels.
During the edge contour extraction, the Canny detection algorithm utilized low and high
thresholds of 0.001 and 0.2, respectively. In addition, the point distance threshold was 3,
the principal axis length threshold was 50, the edge similarity threshold was 15, the fitting
threshold was 4, and the minimum edge distance threshold was 80. In the grid optimization
process, the grid pixel size was set to 40 × 40. Additionally, the weight values for stages α, β,
γ, and λgs, λgd during the energy function optimization were assigned as follows based on
prior literature and practical testing results: 1, 5, 100, 50 and 100. The algorithm was realized
by MATLAB, part of which was programmed by C++. The experimental environment was
configured as Intel(R) Core(TM)i5-6300HQ CPU and 16 GB RAM.

4.1.2. Evaluation Metrics

This section effectively evaluates image stitching from two aspects, visual evaluation
and objective index evaluation. Visual evaluation is mainly based on the subjective feeling
of the human eye and evaluates the stitched image. The following aspects are usually
considered: 1. The overall appearance of the stitched image and whether there are problems
such as deformation, stretching and distortion; 2. Examination of whether the overlapping
area is accurately aligned with pixels to ensure natural transition; 3. Examination of the
integrity of the structural information and whether significant structural information such
as shapes and lines in the original image is damaged. Because of the complex scene of
image stitching design, it is difficult to measure its quality by objective evaluation model
in many cases. Therefore, visual evaluation is still a very important way to evaluate the
quality of image stitching.

Root mean square error (RMSE) and structural similarity index (SSIM) [39] are mainly
used in the common quality evaluation indexes of stitched images. RMSE is used to
measure the difference and transformation degree of data, especially the matching effect
of matching points. It measures the error by comparing the original position of feature
points with the position after splicing. A smaller RMSE indicates a better alignment effect
of feature points. The formula is as follows:

RMSE(t) =

√√√√ 1
N

N

∑
i=1

∥∥τ(pi)− p′i
∥∥2. (16)
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In Equation (16), pi represents the position of feature points in the target image, p′i
represents the position of feature points in the reference image, N stands for the number of
feature point pairs, and t represents the transformation between the stitched images.

SSIM is primarily utilized to assess the similarity of the overlapped regions between
two stitched images in terms of contrast, illumination, and structure. It combines luminance,
contrast, and structure to yield a unified similarity score, which is employed to evaluate the
likeness of the overlapped area. The calculation formula for this parameter is as follows:

SSIM(x, y) =

(
2uxuy + C1

)
+

(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) . (17)

In Equation (17), µx and µy correspond to the mean pixel intensities of the overlapped
regions in the target and reference images, respectively. σx and σy represent the standard
deviations of pixel intensities, σxy stands for covariance, and C1 and C2 are constants
introduced to prevent division by zero. A higher SSIM value indicates a greater similarity
between the overlapped regions of the target and reference images. When the SSIM value
is 1, it signifies that the pixel values of the two images are perfectly identical.

4.2. Experimental Results and Analysis
4.2.1. Experiments on Feature Augmentation Using Point-Line Consistency

The main purpose of this experiment is to verify the effect of point-line consistency
method on increasing the number of feature matching. In the experiment, SIFT descriptors
were chosen for feature extraction and matching on adjacent images. Subsequently, Mutil-
GS algorithm is used to filter out the wrong matching points to obtain effective matching
inner point pairs. At the same time, the block strategy of point-line consistency is adopted
to extract and match the features of the local area of the image in order to obtain more
rich and effective matching features. Table 1 shows the results of feature extraction and
matching between the two feature matching methods on multiple datasets.

Table 1. The comparison results between our method and the SIFT method.

APAP-Conssite DHW-Carpark Office Sportfield1 Laodong Park Rail Station Olympic Building

SIFT+RANSAC 229/390 287/391 89/219 138/217 183/273 330/516 253/380
OUR 814/833 2266/2742 222/271 653/810 444/517 1523/1727 2078/2490

Increase Ratio 255.46% 689.55% 149.44% 373.19% 142.62% 361.52% 721.34%

The data in Table 1 represent the ratio of the number of matching points obtained
by the two different feature extraction methods to the number of interior points filtered
by the Mutil-GS algorithm, as well as the proportion of the method used in this article
to increase the number of interior points compared to the SIFT method. As the number
of corresponding features increases, the information entropy of the image also increases,
containing more details and structural information, making it more accurate and clear. It
can be clearly seen from the data in the above table that the point-line consistency method
used in this article can obtain more rich and effective feature matching points, which helps
to achieve better results in image registration tasks.

4.2.2. Contour Feature Ablation Experiment

In this module, the extracted local edge features are used in the global pre-registration
phase as contour matching pairs to restrict the global better alignment of the image, and
the ablation experiment is carried out. Disruption experiments are conducted to validate
its effectiveness. In this ablation experiment, we focus on comparing two different image
mosaic methods, the image mosaic method using point-line consistent matching pair
for global preregistration, and the image mosaic method based on point-line consistent
matching pair and local edge contour feature constraints.The results of the two sets of
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experiments are compared in detail to see their differences and to verify the effect and
effectiveness of the constraint of local edge contour features in the stitching algorithm.

Figure 9 is the visual comparison of the results of the ablation experiments of the
two contrast experiments. The stitched images are obtained from the classic datasets,
APAP-railtracks and RailStation, respectively. It is found that the stitching method based
on point-line consistency and contour feature constraint can achieve precise registration
and alignment better than the point-line feature matching method based on local block
point-line consistency constraint extraction. In Figure 9a,b, the left figure shows the result of
stitching based on point-line consistency, and the right figure shows the result of stitching
based on point-line consistency and contour feature constraints. In (a), the left figure is not
aligned and artifacts occur, while the right image, constrained by contour features, exhibits
a significantly improved alignment with no artifacts. In (b), the enlargement of the section
within the red box in the left image reveals disruptive noise and artifacts in the stitching
result, whereas the right image, incorporating contour feature constraints proposed in
this paper, demonstrates a notable enhancement in the alignment of line contours when
compared to the left image.

Figure 9. Results of disruption experiments. The rectangular frame in the middle is an enlargement
of the red frame position in the splicing result, and is also the key comparison position in the
splicing result.

For the two pairs of image datasets above, (a) and (b), the edge contour construction
method proposed in this article is used to extract edge contours and perform contour
matching. Then, a fitting operation is performed on the extracted edge contour matching
pairs, and the mean sum of squares of the residuals of each contour matching pair is
calculated. The results are shown in Tables 2 and 3.

Table 2. The sum of squared residuals from profile fitting in dataset (a).

Constraints edge_1 edge_2 edge_3 edge_4 edge_5 edge_6 edge_7 edge_8 edge_9 edge_10 edge_11 edge_12

No 0.9747 0.0988 0.3746 0.2753 7.4168 2.2124 0.2708 4.6931 0.9707 0.1250 4.0343 0.2225
Yes 1.2127 0.0752 0.3148 0.2589 3.3984 2.2122 0.2704 4.4830 1.2702 0.1158 3.3984 0.2283

Table 3. The sum of squared residuals from profile fitting in dataset (b).

Constraints edge_1 edge_2 edge_3 edge_4 edge_5 edge_6 edge_7 edge_8 edge_9 edge_10 edge_11 edge_12

No 0.1201 0.1978 0.1724 0.0747 1.3179 1.1969 0.0949 0.3459 3.8874 1.6272 0.0951 0.1342
Yes 0.0494 0.4955 0.1541 0.0709 1.0664 0.9058 0.0719 0.3448 4.0613 1.3591 0.0910 0.1244
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In order to better compare the differences between the two sets of data, a line diagram
to display the data more significantly indicates the distribution of the scattered value. The
folding line chart is shown in Figure 10. The blue point represents the sum of squared
residuals after fitting the edge contour matching pairs in the image stitching result without
contour constraints. The red points represent the sum of squared residuals after fitting for
edge-contour matching pairs with contour constraints. Observing the data points of the
line chart, it can be clearly seen that the blue point data are generally distributed above the
red data. Under the constraints of edge contour features, the edge contour in the splicing
result has a better fitting effect.

Figure 10. Residual sum of squares calculated for contour matching pairs after warping and fitting.
The X-axis represents the contour matching pairs, and the Y-axis represents the calculated residual
sum of squares. (a) is the fitting result of the local edge contour features detected on dataset a in
Figure 9. (b) is the fitting result of the local edge contour features detected on dataset b in Figure 9.

4.2.3. Algorithm Visual Evaluation

In this experiment, SIFT+RANSAC, APAP, AANAP, SPW, and LCP are selected for
visual evaluation. The dataset grail is used. The following image is the test result of the
preceding algorithms on the dataset.

Figure 11 is the splicing result of the above algorithms on the dataset grail. The
comparison results in Figure 11 highlight the advantages of the splicing method in this
paper. Particularly in the prominent contour regions of the left window and the middle wall,
several algorithms exhibit noticeable disparities. Compared with other splicing results, the
SIFT+RANSAC algorithm has the worst splicing effect, and the artifact problem is very
obvious. The stitching results of the APAP and AANAP algorithms reveal that lines at the
window locations overlap and fail to align correctly, resulting in significant artifacts. In
contrast, the SPW, LCP, and the algorithm proposed in this paper offer notably superior
stitching results at the window locations. This improvement is attributed to the introduction
of local straight-line constraints, which help better confine straight-line features. Moreover,
the LCP algorithm introduces extended straight-line constraints, further reducing the
occurrence of artifacts. Additionally, for the prominent edges on the middle wall, the
stitching results of the SIFT+RANSAC, APAP, AANAP, SPW, and LCP algorithms display
evident misalignment, leading to the presence of artifacts. The stitching algorithm proposed
in this paper excels in terms of alignment, exhibiting minimal artifacts and yielding clearer
and more precise results.

From the effect comparison in Figure 12, it can be observed that the SIFT+RANSAC,
APAP, AANAP, SPW and LCP algorithms maintain the original outline of the building
in the overall visual feel of the panorama, but their performance in local details is not
satisfactory. In particular, there is obvious misalignment and ghosting in the alignment
effect on the glass railings, and a certain degree of distortion at the edges. In comparison,
the algorithm proposed in this article has almost no obvious ghosting phenomenon in
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the splicing results, and the distortion of the railing edges is slighter, making the splicing
results clearer.

4.2.4. Objective Evaluation of Algorithm Performance

In the experiments, RMSE and SSIM of images were computed using different methods
on various datasets. The selected datasets were characterized by easily extractable local
edge contours and a substantial number of edges. Especially the first four datasets featured
prominent curved edge contours. The RMSE values indicate that, compared to other
algorithms, the algorithm proposed in this paper achieves a higher level of alignment for
matched feature points after image fusion. The specific results of the root mean square
error (RMSE) test are shown in Table 4.

Figure 11. The splicing results of each algorithm on the grail dataset. Zoom in on the location of the
window in the red box and the prominent edge of the wall in the blue box.

Furthermore, structural similarity comparison was performed on the stitched images
to assess the consistency of pixels in the overlapping regions between the target image
and the reference image after registration-based deformation. The specific results of the
Structural Similarity Index (SSIM) testing are presented in Table 5.

A higher SSIM value, approaching 1, indicates a greater level of alignment between the
two images in the overlapping regions after the completion of the stitching process. Upon
comparing the SSIM test results, it is evident that, although in the Library and sportfield1
datasets, the data from our algorithm are slightly lower than those of SPW, it is better than
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other algorithms in the overall dataset performance. Therefore, the aforementioned data
demonstrate that our algorithm achieves a higher level of accuracy in feature matching
during the image stitching process on the mentioned datasets.

At the same time, charts are used to intuitively display the distribution of data and
comparison results. Figure 13a shows the RMSE data calculated by the above algorithms.
It can be clearly seen that the data calculated by our method are overall distributed below,
with smaller values. It is shown that the matching feature points in the overlapping areas
in the splicing results of our method have better alignment effects. Figure 13b shows the
SSIM data calculated by the above methods. It is easy to see that the data calculated by our
method are overall distributed above. It is shown that the splicing results of this method
have higher structural similarity in the overlapping areas and better alignment effect.

（b）APAP

（c）AANAP

（d）SPW

（e）LCP

（a）SIFT+RANSAC

（f）Our

Figure 12. The splicing results of each algorithm on the dataset conssite, and the area in the red box
is enlarged.
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Table 4. The RMSE results of each stitching algorithm on the test dataset.

Datasets SIFT + RANSAC APAP AANAP Spw LCP Ours

APAP-railtracks 9.16 5.79 6.38 5.22 4.91 4.40
GES-Building 11.66 5.81 5.18 2.11 2.07 1.66
GES-Garden 8.05 5.63 5.39 3.43 2.90 2.82

Library 7.78 5.47 5.12 3.83 2.66 2.58
DFW-shelf 7.67 5.93 5.62 3.8 3.94 3.73

SPHP-bridge 4.40 3.76 3.71 1.93 2.20 1.88
SPHP-building 6.54 5.55 5.03 3.43 3.13 2.97

sportfield1 7.39 5.97 5.27 4.78 4.34 4.06

Table 5. The SSIM results of each stitching algorithm on the test dataset.

Datasets SIFT + RANSAC APAP AANAP SPW LCP Ours

APAP-railtracks 0.5372 0.5580 0.5487 0.5691 0.5794 0.6059
GES-Building 0.4959 0.5760 0.5262 0.6192 0.6554 0.6735
GES-Garden 0.6671 0.6973 0.7040 0.7065 0.7533 0.7693

Library 0.6346 0.7585 0.7592 0.8646 0.7987 0.8307
DFW-shelf 0.7109 0.8119 0.8033 0.8575 0.8409 0.8448

SPHP-bridge 0.5851 0.5959 0.5649 0.6004 0.5621 0.6139
SPHP-building 0.5671 0.6525 0.6091 0.6442 0.6681 0.6708

sportfield1 0.7204 0.7565 0.7686 0.8056 0.7811 0.7978

Figure 13. (a) RMSE numerical display. (b) SSIM numerical display, where Ours is the result of the
algorithm proposed in this article.

4.2.5. Run Time Analysis

In practical applications, image stitching systems need to have efficient running speed,
especially for real-time or interactive application scenarios. Therefore, the experiments
in this section conduct an in-depth analysis of the running time of the above-mentioned
image stitching algorithms to evaluate their performance in processing complex scenes.
Figure 14 shows a comparison of the running times of the above-mentioned algorithms for
splicing different datasets.

In Figure 14, it can be easily seen that the running time of several algorithms in different
scenarios is very different. The sift+ransac, anap and aanap algorithms are relatively simple,
have short running times, and are suitable for fast splicing in simple scenes. The SPW
algorithm shows a long execution time when running, showing obvious time-consuming
problems. Although the algorithm in this paper has a shorter running time than the SPW
algorithm and is similar to the running time of the LCP algorithm, the method in this paper
is still not ideal in real-time splicing tasks.
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Figure 14. Comparison of the running time of the splicing algorithm. The X-axis represents the
spliced dataset, and the Y-axis represents the running time.

5. Conclusions

This paper introduces a novel image mosaic method which aims to improve the accu-
racy of image mosaic and solve the artifact problem caused by perspective transformation.
Image stitching holds significant relevance in practical applications as it seeks to synthesize
images with a broader field of view and richer information. However, the feature matching
problem usually leads to mis-estimation of thei mage registration model, which degrades
the quality of stitching.

In order to tackle this issue, this paper proposes an image stitching method based on
point-line consistency and local edge contour constraints. First, the method uses geometric
invariance to increase the number of feature matching points to enrich the matching
information. Based on the results of Canny edge detection, significant local edge features
are constructed by means of structure separation and edge contour merging to enhance
the effect of image registration. The similarity of edge-contour pairs is evaluated by
comprehensively considering multiple factors such as shape similarity and edge position
relationship. Simultaneously, this paper introduces a spatial transformation warping
method to ensure local alignment in the overlapping regions. The constraint of short and
long lines is used to maintain the straight line structure in the image to avoid its bending,
and the distortion of the non-overlapping area is eliminated by the global line guided
warpage. Through comparative experiments and result analysis, the method in this article
performs well on multiple datasets and achieves excellent image splicing effects.

However, the experimental results of the running time show that the running time
of the splicing algorithm is significantly affected by the complexity of the scene. When
processing scenes with a large amount of details or textures and large changes, the algorithm
requires more computing time to match feature points or perform splicing operations, thus
affecting real-time performance. At the same time, in splicing scenarios dominated by point
or straight line features, the edge contour constrained registration effect in the algorithm
proposed in this article is slightly inferior to the registration effect of point-line combination.
This is because the distribution and importance of different types of features in the scene
are different, resulting in a certain imbalance in the matching effects of different types of
features. Therefore, future research can be devoted to optimizing the real-time performance
of the splicing algorithm, adjusting feature matching and constraint strategies according to
changes in the scene, better adapting to splicing requirements under different times and
feature distributions, and improving the flexibility of the algorithm.
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