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Abstract: Image fusion is the generation of an informative image that contains complementary
information from the original sensor images, such as texture details and attentional targets. Existing
methods have designed a variety of feature extraction algorithms and fusion strategies to achieve
image fusion. However, these methods ignore the extraction of common features in the original
multi-source images. The point of view proposed in this paper is that image fusion is to retain, as
much as possible, the useful shared features and complementary differential features of the original
multi-source images. Shared and differential learning methods for infrared and visible light image
fusion are proposed. An encoder with shared weights is used to extract shared common features
contained in infrared and visible light images, and the other two encoder blocks are used to extract
differential features of infrared images and visible light images, respectively. Effective learning of
shared and differential features is achieved through weight sharing and loss functions. Then, the
fusion of shared features and differential features is achieved via a weighted fusion strategy based on
an entropy-weighted attention mechanism. The experimental results demonstrate the effectiveness of
the proposed model with its algorithm. Compared with the-state-of-the-art methods, the significant
advantage of the proposed method is that it retains the structural information of the original image
and has better fusion accuracy and visual perception effect.

Keywords: image fusion; shared feature; differential feature; multi-level semantic feature

1. Introduction

In many monitoring fields, it is difficult for a single sensor to capture enough infor-
mation required to meet the monitoring tasks [1]. Sensors in different wavebands (for
example, infrared and visible light) have obvious advantages in monitoring the same scene.
However, on the one hand, multiple sensors bring data storage challenges, and on the other
hand, the image information contained by a single sensor is flawed. Taking infrared and
visible light images as an example, infrared sensors reflect the radiation characteristics of
foreground targets via thermal radiation imaging, but infrared images often lack structural
and texture information. The visible light sensor describes the background details of the
scene via light reflection, but it is greatly affected by changes in lighting and weather condi-
tions [2]. Therefore, image fusion has become a popular research field [3]. Image fusion is
to fuse the input images into one image. At the same time, the fused image contains all the
information of the input images and can even generate more significant information.

According to different application scenarios, image fusion is mainly divided into
multi-focus [4], multi-spectral [5], and medical images [6]. The most studied multi-spectral
image fusion is the fusion of infrared and visible light images, which also includes the
fusion of hyperspectral images in the field of remote sensing. The fused multi-focus image
can clearly image the background and foreground at the same time. The fused image of the
multi-spectral image contains imaging information of multiple spectra. The fused image of
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magnetic resonance imaging (MRI) and computed tomography (CT) can clearly see the soft
tissue and the bones at the same time.

The two core tasks of image fusion are feature extraction and feature fusion strategies.
The original images are transformed into the feature domain, where the fusion rules are
designed for features fusing, and then the fused features are reconstructed back to the
original pixel space to obtain the fused image. For feature extraction tasks, existing pioneer
image fusion works are divided into two major categories: methods of artificially designed
transformations and methods based on feature representation learning. Feature fusion
strategies are also divided into two types: manual design and global optimization learning.

Artificially constructed feature extraction methods and feature fusion rules at all levels
are the most intensively studied areas of image fusion. Since such methods do not require
training and are completely unsupervised methods, they have good versatility. The main
feature transformation methods include discrete wavelet transform (DWT) [7], shearlet
transform [8], nonsubsampled contourlet transform [9], low-rank representation (LRR) [10],
and bilateral filter [11]. The manually designed fusion rules mainly include maximum value,
average value, and nuclear norm. The usual approach is base parts adopt the average fusion
rule, and detail parts adopt the maximum fusion rule [12]. In the representation learning
domain, the typical methods are based on sparse representation (SP) [8,13,14]. SP learns
a single-layer common over-complete dictionary from the input images, then performs
sparse representation of the input images respectively; fuses the sparse coefficients; and
reconstructs the fused image. Deep learning has better representation learning capabilities
than SP, and it has become a popular research point in the field of image fusion [2,4,15–18].
Methods based on deep learning first train a common encoder and decoder using a large
number of images; use the encoder to extract features of the input images respectively; use
a fusion rule to fuse these feature maps; and finally, the decoder is used to reconstruct the
fusion image [15,19].

For the fusion of representation features, manually designed fusion rules lack inter-
pretability. Some research works try to learn fusion rules by defining loss functions. Global
optimization methods such as particle swarm [20], Grasshopper [21], and membrane com-
puting [22] are used for fusion rule learning. Another class of methods learns the fused
decision map via deep learning [23,24].

Therefore, the core of image fusion is to transform the image from the original pixel
space to a feature representation space that is easy to fuse. After fusion is achieved in
the new feature space, the fused image is obtained via inverse transformation. Judging
from the current research trends in academia, it is difficult to develop a new method in the
traditional field of multi-scale transformation, and methods based on deep learning are
the current research hotspots. The current general idea based on deep learning methods is
to implement feature extraction via an encoder. After fusing the features, image fusion is
achieved via a decoder. The core problem of these methods is weak interpretability and lack
of criteria for judging the quality of extracted features. To address this problem, combined
with the goal of merging complementary information in image fusion, we propose a
new image fusion method based on shared and difference learning. The key motivation
is to extract shared common features and differentiated individual features from input
multi-source images. The fusion of complementary information is achieved via maximum
operation. The fused image is then reconstructed via a densely connected encoder.

The major contributions of this paper include the following aspects:

(1) A novel shared and differential feature learning image fusion method is proposed.
In this model, a channel with shared weights realizes the extraction of shared fea-
tures from multi-source images. Separate channels are used to extract personalized
differential features of the input images.

(2) In the fusion stage, a weighted fusion strategy based on an entropy-weighted attention
mechanism is proposed and used to fuse the learned shared and differential features,
which makes the fused image have richer texture information.
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(3) A light enhanced dense module (EDB) is proposed to extract low-level semantic
features, and BiFormer is used to extract high-level semantic features.

(4) Experiments were conducted on three typical datasets. Compared with the state-of-
the-art fusion method, our proposed method has better performance, with obvious
advantages in information fidelity and visual saliency. It shows that our method is
obviously competitive.

2. Related Work

This paper takes infrared and visible light image fusion as an application case, focusing
on complementary feature extraction of input images. At the same time, the motivation of
this paper is to use deep learning to extract interpretable features from input multi-source
images. Therefore, in this section, the research progress of feature extraction methods is
introduced. Some methods are also used for comparative analysis in the experiments.

2.1. Model-Based Feature Extraction Method

Performing pixel-level transformation on the input source images and extracting
multi-scale features of the original images are hot spots in early research. The image
features extracted by such methods have very nice interpretability. They decompose the
input images into low-frequency (base) parts and high-frequency (detail) parts. The high-
frequency part reflects the basic semantic information of the scene, and the high-frequency
part reflects the target information in the background. The nonsubsampled contourlet
transform (NSCT) [9] is a pioneer work that is used for image fusion. To combine the
advantages of multi-scale and deep learning, Wang et al. [25] proposed an image fusion
method based on a convolutional neural network and NSCT. MDLatLRR [26] is a baseline
method in this field, which first performs a multi-level low-rank sparse decomposition
of the input images, and then fuses the base and detail parts separately. Li et al. [27]
performed norm optimization on the fused images of MDLatLRR to obtain more significant
fused images. Gaussian difference is used for image fusion, which is simple, efficient, and
versatile [28].

2.2. Generative-Based Methods

GAN-based methods attempt to use generative neural network models to generate
fused images conditioned on inputting multi-source images [29]. DDcGAN [30] drives the
deep neural network to learn complementary features to reconstruct the fused image based
on a defined loss function. GAN-FM [31] introduces a full-scale skip-connected generator
and Markovian discriminators, and Fusion-UDCGAN [32] adopts a U-Type densely con-
nected generation adversarial network. AT-GAN [33] proposes a generative adversarial
network with intensity attention modules and semantic transition modules. This type of
method can obtain additional image enhancement effects based on the definition of the loss
function.

2.3. Task-Driven Approach

Fusion to improve target segmentation accuracy in low-light environments is one
of the current research hotspots. This type of method hopes that the fused image will
have higher brightness and more prominent target contours. SCFusion [24] achieves target
saliency enhancement via a mask of the target area. SGFusion [34] achieves saliency
guidance in the fusion process through multi-tasking of target segmentation. TIM [35]
proposes a constrained strategy to incorporate information from downstream tasks to
guide the unsupervised learning process of image fusion. SOSMaskFuse [36] also uses a
target segmentation mask to achieve target enhancement. PIAFusion [37] realizes image
fusion under low light conditions. This type of method generally has an enhanced effect
on the original multi-source images, and the fused image has better gradient and visual
saliency. But, the consistency with the original images is poor.
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2.4. Autoencoder-Based Methods

The fusion method based on the autoencoder and decoder believes that neurons have
a stronger amplitude response to salient areas. Fu et al. [38] proposed a dual branch
network encoder to learn richer features. DeepFuse [39] performs feature extraction on
multiple channels and is used for multi-exposure image fusion. DenseFuse [40] introduces
a dense block in the encoder to extract multi-scale features. FusionDN [41] also uses a
densely connected network and defines a multi-task loss function. NestFuse [42] introduces
a nest connection architecture and also introduces a spatial attention mechanism to enhance
the salient features. RFNNest [43] proposes a residual fusion network and can better
retain detailed features. PSFusion [44] presents a practical infrared and visible image
fusion network based on progressive semantic injection and scene fidelity constraints
and the fusion images have good visual appeal. CDDFuse [45] is inspired by multi-scale
decomposition and uses neural networks to decompose images into basic parts and detailed
parts. The fused image is reconstructed after fusing the two parts respectively. This method
requires two stages of training.

3. Proposed Method
3.1. The Neural Network Model

Our proposed shared and differential feature learning image fusion model consists of
encoders, a fusion layer, and decoders, as shown in Figure 1. The encoder part contains
four channels, and the share feature encoders (SHE) share weights and thus have exactly
the same parameters. The other two encoders extract the differential features of infrared and
visible light respectively. In the fusion part, the fusion of shared features and differential
features is achieved, and then the fused image is reconstructed via the fusion encoder.
This is a multi-task architecture that constrains the encoder to extract the correct features
via the reconstruction of the input image. The top branch implements auto-encoding
reconstruction of infrared images, expressed as

∧
IR = IRD[IRDIFE(IR)⊕ SHE(IR)], (1)

where IR represents the reconstructed image, IR represents the input original images,
IRD(·) represents the decoder of the infrared image, IRDIFE(·) represents the difference
feature encoder of the infrared image, SHE(·) is the shared feature encoder, and ⊕ is a point-
wise addition operator, which achieves the fusion of shared features and differential features
of a single modality image. The middle branch generates the fused image, expressed as

FS = FSD{MAX[IRDIFE(IR), VIDIFE(VI)]⊕ MAX[SHE(IR), SHE(VI)]}, (2)

where FS is the final fused image, FSD(·) is the encoder of the fused image, VIDIFFE(·)
is the visible light encoder, and vi represents the input visible light image. MAX(·, ·)
represents point-wise maximum fusion rules, which intuitively reflect the fusion of comple-
mentary characteristics of the input multi-source images. The bottom branch implements
the decomposition and reconstruction task of visible light images, expressed as

∧
VI = VID[VIDIFE(VI)⊕ SHE(VI)], (3)

where VID(·) is the visible light image decoder.
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Figure 1. The overall framework for ShareDif.

3.1.1. Branch Structure

In order to better extract the shared and differential features of multi-source input
images, we carefully designed the autoencoder branch structure based on existing re-
search work, as shown in Figure 2. The encoder part is a multi-scale feature extraction
module containing five layers. The first layer is a 1 ∗ 1 convolutional layer. Next are two
lightweight external attention rest block encoders (TRB-E). The feature map is downsam-
pled by 2× before the second TRB-E. The last two layers consist of two BiFormer [46]
modules. Ordinary convolution is responsible for extracting the low-level features of the
input images, mainly the details and texture information of the image. BiFormer is respon-
sible for extracting high-level semantic features and making up for the lack of convolution’s
ability to extract global features. The decoder consists of multiple TRB-D blocks, skip
links, and a normal convolution. The decoder used can better fuse the low-level detail
information and high-level semantic information of the images. The obtained fused image
is semantically consistent with the input images and has better texture detail information.

Figure 2. The structure of the encoder and decoder branches.

3.1.2. TRB Block

In order to better extract the features contained in the image, we developed the exter-
nal attention rest block (TRB) based on a lightweight resnet block and external attention,
as shown in Figure 3. TRB blocks contain two convolutions (3 ∗ 3) and an external atten-
tion module. Among them, the external attention module is used to enhance the global
information acquisition capability of rest blocks. Given an input feature map F ∈ RN×d, N
is the number of pixels in the image, and d is the feature dimension. Mk and Mv are two
memory units. External attention can be expressed as

A = (α)i,j = Norm(FMT
k ), (4)

Fout = AMv, (5)
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where (α)i,j is the similarity between the i-th element and the j-th row of matrix M, and M
is a learnable parameter independent of the input, which will be used as the memory of the
entire training set. A is the attention map derived from the learned prior knowledge.

Figure 3. The structure of the TRB block.

3.1.3. Biformer Block

The transformer has advantages in capturing long-distance contextual dependencies
and high-level semantic features. Biformer demonstrates competitiveness in a variety of
visual tasks. We introduced a simplified Biformer module in the encoder, as shown in
Figure 4. The input feature maps are first subjected to patch merging (PM), and then the
relative position information is implicitly encoded via a 3 × 3 convolution. Then, layer
normalization (LN), Bi-Level Routing Attention (BiRA), and a Multi-Layer Perceptron
(MLP) are applied in sequence.

Figure 4. The structure of the Biformer block.

BiRA is the core of Biformer. It proposes a novel dynamic sparse attention via bi-level
routing to achieve more flexible computing allocation and content awareness, as shown in
Figure 4. For the input feature map f , the calculation process of BiRA is expressed as [46]

Q = f Wq, (6)

Kg = gather(K, Ir), Vg = gather(V, Ir), (7)

O = Attention(Q, Kg, Vg) + LCE(V), (8)

where Wq is a projection weight for the query, Ir is the routing index matrix, and LCE(·) is
the local context enhancement term [47].

3.2. Fusion Strategy Based on Entropy-Weighted Attention Mechanism

After the complementary features of the source image are extracted by the encoder,
a strategy is needed to fuse these features. We propose a new fusion method, which is
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an improvement of the attention fusion [5], which is called fusion strategy based on an
entropy-weighted attention mechanism, as show in Figure 5. We apply the objective metric
entropy to measure the amount of information in each source feature map on the basis of
information theory [4,41,48]. The entropy of a feature map is defined as

EN(ϕ) = −
L−1

∑
l=1

pl log2 pl , (9)

where L is the number of gray levels, and pl is the probability of the corresponding level. In
the fusion layer, entropy-weighted spatial attention and channel attention mechanisms are
used, and l1-norm and softmax operations are adopted in the spatial attention mechanism.
The entropy-weighted spatial attention mechanism can be expressed as

Φ̂m
f (x, y) =

K

∑
k=1

βm
k (x, y)Φm

k (x, y), (10)

Φ̂m
k (x, y) = βm

k (x, y)Φm
k (x, y), (11)

βm
k (x, y) = λ1 ×

∥Φm
k (x, y)∥1

K
∑

i=1
∥Φm

i (x, y)∥1

+ (1 − λ1)×
EN(Φm

k )
K
∑

i=1
EN(Φm

i )

, (12)

where ∥ · ∥ represents l1−norm; k ∈ {1, ..., K}, K = 2, (x, y) represents the corresponding po-
sition in the multi-scale deep feature and weighted graph, respectively; and Φ̂m

k represents
βm

k -weighted deep features. Global pooling and softmax operations are used in the channel
attention mechanism. Further, three types of global pooling are used: average pooling, max
pooling, and kernel pooling. The entropy-weighted channel attention mechanism can be
expressed as

Φ̃m
f (x, y) =

K

∑
i=1

αm
i (n)Φ

m
i (n), (13)

αm
k (n) = λ1 ×

ᾱm
k (n)

K
∑

i=1
ᾱm

i (n)
+ (1 − λ1)×

EN(Φm
k )

K
∑

i=1
EN(Φm

i )

, (14)

ᾱm
k (n) = P(Φm

k (n)), (15)

where n ∈ {1, 2}, n is the channel number corresponding to the feature Φm
k , and P(·)

represents the pooling operation.

Figure 5. The structure of the fusion block.

3.3. Loss Function

SharDifF is a multi-task network model with a total of three outputs, namely the

reconstructed infrared image
∧

IR, the reconstructed visible light image
∧

VI, and the fused
image FS. The encoder is constrained to extract reliable features via the reconstruction



Entropy 2024, 26, 57 8 of 17

errors of
∧

IR and
∧

VI, and the fused image can retain the structural information of the original
input images via structural similarity. Through the maximum gradient similarity loss, the
fused image can retain the edge texture features of the original images as much as possible.
The loss function of the entire model is expressed as

Ltotal = λ1Lir + λ2Lvi + λ3L f s + λ4Ldi f , (16)

where λ1 − λ4 are the weighting factors to balance the four losses. The four sub losses are
described in detail below.

3.3.1. Fidelity Loss

The purpose of reconstructing the input multi-source images is to ensure that the
extracted features can reflect the essential information of the input images without causing
mode collapse. We call it fidelity loss, which includes Lir and Lvi.

Lir =
1

HW

∥∥∥∥IR −
∧

IR
∥∥∥∥

1
+ α

(
1 − SSIM(IR,

∧
IR)

)
, (17)

Lvi =
1

HW

∥∥∥∥VI −
∧

VI
∥∥∥∥

1
+ α

(
1 − SSIM(VI,

∧
VI)

)
, (18)

where ∥·∥1 is a norm operator, α is a balancing factor, and SSIM(·, ·) is the calculation of
the structural similarity between two images, which is defined as

LSSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

x + C2)
, (19)

where µx and µy are the averages of all pixels in the two source images; σx and σy are the
variances of the pixel values of the two source images; and C1 and C2 are constants to
ensure the stability of the function.

3.3.2. Fusion Loss

The fusion loss L f s is used to obtain high-quality fusion images, which consists of
three parts: content loss, gradient loss, and structure loss.

L f s = Lcon + β1Lgrad + β2

(
1 − SSIM(IR,

∧
IR)

)
, (20)

where β1 and β2 are balance factors, and Lcon represents the content loss of the fused image,
expressed as

Lcon =
1

HW
∥ f s − max(IR, VI)∥1, (21)

where max(·, ·) represents the pixel-wise maximum, and Lgrad represents the gradient loss,
which is expressed as

Lgrad =
1

HW
∥|∇ f s| − max(|∇IR|, |∇VI|)∥1, (22)

where ▽ represents the gradient operator and |·| is the modulo operation. The fused image
is consistent with the maximum gradients of the input multi-source images and has richer
texture information.

4. Experiment and Result
4.1. Dataset

In this paper, three widely used datasets are used for experimental verification. The
first dataset is TNO, whose images come from [49]. TNO contains a total of 41 pairs of
infrared and visible images, of which a sample of these infrared and visible images is
shown in Figure 6. The second dataset used in the paper is M3FD [50], of which this dataset
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contains multiple outdoor scenes, and we randomly selected 43 pairs of images from its test
data for testing, as shown in Figure 7. The third dataset is MSRS [37]. This dataset contains
a total of 1083 training samples. Fifty-two samples are also randomly selected from the test
set to evaluate the algorithm performance, as shown in Figure 8. Since the data scale of
TNO is small, the experimental models that need to be trained are uniformly trained using
the MSRS training set. The trained models were used for testing on M3FD, MSRS, and
TNO, respectively.

Figure 6. Some test samples from TNO. The top row contains infrared images, and the second row
contains visible images.

Figure 7. Some test samples from M3FD. The top row contains infrared images, and the second row
contains visible images.

Figure 8. Some test samples from MSRS . The top row contains infrared images, and the second row
contains visible images.

4.2. Methods for Comparison

In order to verify the effectiveness of the image fusion model SharDif proposed in this
paper, we compare it with eight state-of-the-art image fusion methods. Optimization-based
generation methods include DDcGAN [30]. Methods based on deep neural network feature
representation learning include DenseFuse [40], RFNNest [43], FlFuse [51], PIAFusion [37],
and PSFusion [44]. Model-based methods include GDFusion [28], and DDFM [52]. It
should be noted that (1) All methods participating in the comparison use the weights and
parameters given in the original papers to achieve the fusion of test data. (2) The fusion
rule in denseFuse is “add”, and the fusion rule in RFNNest is “max”.

4.3. Evaluation Index

In order to quantitatively compare the competitiveness of various image fusion meth-
ods, nine metrics are used to compare various methods on the test set. These metrics we
selected include metrics that reflect the visual consistency of images, such as mutual infor-
mation (MI) [53], QAB/F (petrovic metric) [54], QE (piella metric) [55], and feature mutual



Entropy 2024, 26, 57 10 of 17

information (FMI) [56]. Indicators reflecting information fidelity, such as IFC [57], and other
comprehensive indicators, such as structural similarity index measure (SSIM) [58], peak
signal-to-noise ratio (PSNR), Q0 [58], and entropy (EN) [28], are included.

4.4. Ablation Experiment

In this section, we first verify the effectiveness of our proposed ShareDif for image
fusion on the test set MSRS. ShareDif uses a backbone network similar to RFNNest [43],
which is named Model 1. On this basis, we propose the idea of shared and differential
feature learning, which is named Model 2. In the feature extraction stage, we proposed the
EDB module, which was named Model 3. BiFormer was introduced at the high level to
extract high-level semantic features to obtain Model 4. The fusion strategy-based entropy-
weighted attention mechanism is added to Model 4, and finally, the fusion model ShareDif
proposed in this paper was obtained.

The experimental results of these models on MSRS are shown in Table 1. It can be
seen from the results that the shared difference learning method proposed in this paper
has significantly improved the performance of image fusion, especially compared with the
original model, it has been improved in almost all evaluation indicators, especially MI, Qab f ,
PSNR, SSIM, IFC, etc., have greatly been improved. This shows that by learning shared
features and differential features, and then designing an appropriate fusion strategy, it is
beneficial for the fused image to contain complementary features of the input multi-source
images. The EDB module is introduced into the backbone model, especially BiFormer,
which is used to extract advanced semantic features, so that the fused image and the
multi-source input image have better information consistency. Several indicators such
as MI, Qab f , PSNR, and IFC have been significantly improved, indicating that the fusion
image obtained by our method has better information fidelity.

Table 1. Ablation experiment results on MSRS dataset.

Metric EN MI Qab f Q0 Qe PSNR FMI SSIM IFC

Model 1 5.97 2.73 0.294 0.303 0.464 13.75 0.42 0.541 5.94
Model 2 6.35 4.34 0.637 0.461 0.467 19.65 0.461 0.714 8.90
Model 3 6.61 4.55 0.676 0.477 0.472 19.71 0.471 0.722 9.67
Model 4 6.63 4.73 0.681 0.482 0.475 20.50 0.472 0.720 10.12
ShareDif 6.65 4.71 0.683 0.491 0.482 20.57 0.475 0.721 10.17

4.5. Comparative Analysis of Experimental Results
4.5.1. Visual Quantitative Comparison

TNO is a widely used dataset, its images contain many scenes, and the image resolu-
tions also varies greatly. This dataset is small in size and has no training samples, which
can reflect the generalization ability and universality of the algorithms. Six pairs of test
samples were arbitrarily selected for subjective evaluation of visual effects. The fusion
results of all methods are shown in Figure 9. It can be seen from the figure that the fusion
results of the three methods, DenseFuse, RFN-Nest, and FIFuse are similar, and all have
the disadvantages of weak image contrast and overall poor image quality. These three
methods all use the COCO dataset to train the network model. They do not consider the
differences in extraction features of different modal images. The advantage is that they do
not require infrared and visible light image pairs for training. The disadvantage is that the
fusion effect is not good. The generation-based method DDcGan can highlight the target,
but the image is obviously distorted and the fused image is blurry and loses a lot of details.
Both PIAFusion and PSFusion methods enhance the input multi-source images, which can
improve the fusion effect under low illumination conditions. However, the fusion results
of these two methods are less consistent with the source images. The advantage of the
traditional method GDFusion is that it does not require training. From the fusion effect, the
image consistency is poor and the target is not prominent. The target contrast of the fused
image obtained using the DDFM method is low, and the overall visual saliency of the image
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is poor. Our method is trained on MSRS and the model can be well transferred to TNO
data, indicating that ShareDif can extract the essential features of input multi-source images
and complete the fusion. From the fusion effect point of view, the fusion result of ShareDif
has a more obvious target. The overall image looks natural and has good consistency with
the input original images.

Figure 9. Qualitative comparison of all methods on six typical image pairs from TNO. From top to
bottom: fusion results of DenseFuse [40], RFNNest [43], DDcGan [30], FLFuse [51], PIAFusion [37],
PSFusion [44], GDFusion [28], DDFM [52], and our ShareDif.
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The MSRS dataset is large in scale and is mainly taken in dark environments, which is
more in line with the practical application scenarios of infrared and visible light fusion. It
is also a widely used dataset in recent years. Six pairs of test samples were also selected
for experiments, and the fusion results of all methods are shown in Figure 10. Through
observation, the targets in the fused image of FLFuse are dim and the clarity of fused images
is the worst. DDcGan has a significant enhancement effect on the image, and the overall
brightness is very high, but the image is also seriously distorted. The results of DenseFuse,
RFN-Nest, and DDFM are relatively similar, and the brightness of cars and pedestrians in
the fused image is poor. Due to edge enhancement, GDFusion’s fused image has serious
noise. The fusion results of PIAFusion and PSFusion are relatively close, and some areas
in the fused image have brightness oversaturation. ShareDif’s fused image has moderate
brightness, and the image quality is in line with human visual imaging characteristics.

Figure 10. Qualitative comparison of all methods on six typical image pairs from MSRS. From top to
bottom: fusion results of DenseFuse [40], RFNNest [43], DDcGan [30], FLFuse [51], PIAFusion [37],
PSFusion [44], GDFusion [28], DDFM [52], and our ShareDif.

M3FD has a larger number of images and contains a wider variety of scenes. Its
visible light image has high brightness and serious noise. The test results of six samples
are shown in Figure 11. Consistent with the previous conclusion, the image contrast and
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clarity of the fusion results of DenseFuse, RFN-Nest, FLFuse, and DDFM are insufficient.
DDcGan, PIAFusion, and PSFusion significantly enhance images, and some areas are
severely oversaturated, which affects the visual effects of the images. The results of ShareDif
have the best visual effect and the target is more prominent, especially the last column of
images. The fused images conform to human visual habits.

Figure 11. Qualitative comparison of all methods on six typical image pairs from M3FD. From top to
bottom: fusion results of DenseFuse [40], RFNNest [43], DDcGan [30], FLFuse [51], PIAFusion [37],
PSFusion [44], GDFusion [28], DDFM [52], and our ShareDif.

4.5.2. Quantitative Comparisons

Fusion image quality evaluation is still a problem worthy of study [18,36], and different
measurement indicators reflect different characteristics of fusion images. For example,
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Mutual information (MI) indicates how many features are preserved in fused images. Qab f

reflects the quality of visual information obtained from the fusion of the input images. SSIM
is a widely used metric which models the loss and distortion between two images according
to their similarities in light, contrast, and structure information. The larger value of EN
means that there is more information contained. On the other hand, EN can be affected
by noise easily. The reason why multiple different metrics are needed to quantitatively
compare the fusion results is that these metrics will not give consistent results. Therefore,
in this paper, we selected nine indicators to compare the algorithms. In Tables 2–4, each
specific metric is the average of all images in the test set.

Table 2. Quantitative Comparisons of all methods on TNO (The bold is best).

Metric EN MI Qab f Q0 Qe PSNR FMI SSIM IFC

DenseFuse (2018) 6.35 2.21 0.36 0.47 0.28 16.00 0.43 0.74 5.09
RFNNest (2021) 6.42 2.67 0.32 0.29 0.29 13.14 0.44 0.58 4.29
DDcGan (2020) 7.37 1.84 0.36 0.36 0.16 13.04 0.41 0.59 4.42
FLFuse (2022) 6.36 2.17 0.41 0.49 0.28 16.27 0.42 0.74 5.60

PIAFusion (2022) 6.90 3.16 0.53 0.49 0.35 14.60 0.44 0.69 7.70
PSFusion (2023) 7.26 2.29 0.53 0.44 0.32 14.26 0.42 0.64 5.76
GDFusion (2023) 6.61 2.06 0.50 0.45 0.25 15.73 0.43 0.72 5.28

DDFM (2023) 6.84 1.74 0.26 0.23 0.10 14.40 0.25 0.56 2.06
ShareDif 7.08 3.65 0.54 0.48 0.36 14.61 0.44 0.70 8.42

Table 3. Quantitative Comparisons of all methods on MSRS (The bold is best).

Metric EN MI Qab f Q0 Qe PSNR FMI SSIM IFC

DenseFuse (2018) 5.96 2.67 0.37 0.45 0.38 18.91 0.43 0.74 5.28
RFNNest (2021) 5.97 2.73 0.29 0.30 0.47 13.76 0.43 0.54 5.94
DDcGan (2020) 7.24 1.88 0.38 0.24 0.20 9.77 0.37 0.39 3.57
FLFuse (2022) 5.78 2.14 0.29 0.42 0.31 19.25 0.43 0.72 5.08

PIAFusion (2022) 6.64 3.99 0.67 0.48 0.45 20.42 0.46 0.71 8.31
PSFusion (2023) 6.87 2.92 0.68 0.46 0.47 18.14 0.46 0.68 7.14
GDFusion (2023) 6.36 2.31 0.62 0.44 0.38 18.35 0.43 0.71 5.70

DDFM (2023) 6.14 2.35 0.42 0.39 0.32 18.77 0.32 0.69 4.09
ShareDif 6.65 4.71 0.69 0.49 0.48 20.57 0.48 0.72 10.17

Table 4. Quantitative Comparisons of all methods on M3FD (The bold is best).

Metric EN MI Qab f Q0 Qe PSNR FMI SSIM IFC

DenseFuse (2018) 6.43 2.89 0.38 0.48 0.43 16.27 0.43 0.76 6.13
RFNNest (2021) 6.44 2.45 0.40 0.46 0.35 16.76 0.38 0.78 5.38
DDcGan (2020) 7.41 2.54 0.49 0.37 0.34 13.65 0.42 0.64 5.32
FLFuse (2022) 6.51 3.20 0.27 0.46 0.33 16.59 0.41 0.75 5.50

PIAFusion (2022) 6.83 4.19 0.64 0.49 0.51 16.41 0.46 0.71 9.60
PSFusion (2023) 7.39 2.74 0.58 0.42 0.46 13.39 0.42 0.65 6.51
GDFusion (2023) 6.79 2.09 0.61 0.37 0.42 15.91 0.39 0.70 5.93

DDFM (2023) 6.68 2.77 0.44 0.42 0.40 16.01 0.35 0.72 5.07
ShareDif 6.76 4.56 0.64 0.49 0.52 17.18 0.47 0.73 10.21

The objective evaluation results of TNO are shown in Table 2. The fusion results of
the convolutional neural network model DenseFuse and FLFuse trained using the COCO
dataset have the best PSNR and SSIM. The results of DDcGan and DDFM reflect their
weak information fidelity capabilities, and the fused image is greatly different from the
multi-source input image. The indicators of PSFusion, GDFusion, FLFuse, and RFN-Nest
are relatively close. PIA has good reviews and ranks second. For MI and IFC, our method
ShareDif has very obvious advantages, indicating that the fused image of our method can
greatly maintain the original information of multi-source input images.
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Table 3 shows the test results of MSRS. As can be seen from the table, the SSIM indica-
tors of DenseFuse, FLFuse, PIAFusion, and GDFusion are relatively close, indicating that
they all pay more attention to the fusion of image texture edges. The fidelity capabilities
of DDcGan and DDFM are still the worst. The results of PIAFusion and PSFusion are
relatively close and have better Qab f . ShareDif has a leading position in multiple indica-
tors, especially MI and IFC, which is much higher than the second-ranked one, and its
advantages are obvious.

The evaluation results of M3FD are shown in Table 4. Three methods, including
DenseFuse, RFN-Nest, and FLFuse, have the best SSIM. PIAFusion and ShareDif have clear
leading advantages. ShareDif significantly outperforms the remaining methods for PSNR.
The results on three different datasets can reflect the generalization performance of the
algorithm. Our method ShareDif has the strongest information fidelity and has obvious
advantages on all three datasets.

5. Conclusions

In this paper, an intuitively motivated image fusion method is proposed. Since different
multi-source images contain complementary information, the goal of image fusion is to
retain the complementary information of the multi-source input images in the resulting
image as much as possible. We propose an image fusion model of shared and differential
learning, which can achieve information extraction from multi-source input images. The
shared weight branch is used to extract common information from the input images, and
the other channels are used to learn the differentiated features of the input images. Based
on the semantic decomposition of the input images, the complementary information of the
original images is fused. Our fusion model only requires one training session to optimize
the model. Extensive experiments have been performed to demonstrate the proposed
method’s superiority, including texture and edge preservation, illumination adaptation,
and comprehensive performance in visual effects and metrics. In the future, similar ideas
can be considered for multi-focus and medical image fusion, as well as primary image
processing such as denoising and super resolution.
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