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Abstract: Causal inference aims to faithfully depict the causal relationships between given variables.
However, in many practical systems, variables are often partially observed, and some unobserved
variables could carry significant information and induce causal effects on a target. Identifying these
unobserved causes remains a challenge, and existing works have not considered extracting the
unobserved causes while retaining the causes that have already been observed and included. In this
work, we aim to construct the implicit variables with a generator–discriminator framework named the
Neural Causal Information Extractor (NCIE), which can complement the information of unobserved
causes and thus provide a complete set of causes with both observed causes and the representations
of unobserved causes. By maximizing the mutual information between the targets and the union
of observed causes and implicit variables, the implicit variables we generate could complement the
information that the unobserved causes should have provided. The synthetic experiments show that
the implicit variables preserve the information and dynamics of the unobserved causes. In addition,
extensive real-world time series prediction tasks show improved precision after introducing implicit
variables, thus indicating their causality to the targets.

Keywords: causal inference; maximizing mutual information; unobserved causes; complex system

1. Introduction

Identifying the complete and valid causes of a variable has been a significant pursuit in
causal inference toward complex systems. A causal inference approach is called “causally
faithful” [1] when it reveals the causal relationships shown in the observed variables, and it
is “causally sufficient” [2] if it does not omit any of the hidden confounder or unobserved
variables that should be included. To hold causal sufficiency when deriving faithful causal
relationships, traditional causality inference methods [1–6] often assume the complete
observability of the system, i.e., all of the variables and information within the system are
collected and observed. In the perspective of [7,8], the information within the system flows
from the causes to the targets; thus, the complete causes can provide most of the target’s
information and can describe it (except the noise terms) in detail, as shown in Figure 1a.

However, in practical scenarios, complex systems are often partially observable since
only a subset of variables can be directly measured. For instance, in financial markets,
the influence of media [9] and company-specific factors [10], which are hardly measurable,
drive important causal effects in local tradings [9] and price reversals [10]. Another example
can be shown in ecosystems, in which the dynamics are described by species populations,
habitat quality, and threats; however, one can rarely acquire a perfect knowledge of the
system states [11,12] to perform adequate management actions. The partial observability
also induces analyzing challenges in domains such as monitoring biophysical objects [13],
weather and climate forecasting [14], and industrial management [15]. While part of the
causes are unobserved, the target’s information that should be provided is unknown,
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as shown in Figure 1b. To describe the causal structures in such incomplete systems, causal
sufficiency in traditional works is no longer guaranteed, and their results do not necessarily
identify the real causes even when they are causally faithful [1,16].
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Figure 1. Illustration of the information in a Venn diagram, as well as the causal relationships of the
(a) ground truth; (b) partially observable scenario in reality; and (c) an alternative representation of
causal relationships with the implicit variables Z, which is generated by NCIE, where Y, X, and W
denote the target, observed causes, and unobserved causes, respectively.

Therefore, to avoid identifying spurious causes, the common idea shared by most
practices [17–28] is to introduce implicit variables that compensate for the missing causes.
Most of them have applied neural networks as a powerful tool for generating variables,
which could be categorized into two streams: either (i) employing neural networks with
latent layers to uncover the significant features in observed variables that better formulate
the targets, or (ii) utilizing the ability to preserve information in representation learning to
extract unobserved or latent causes that provide significant information of the targets.

The works from the first approach adopt observed causes as the inputs to train a neural
network that minimizes the fitting loss between the output and the target. The intermediate
layers in the neural networks help to better fit the target in supervised learning [17], for ex-
ample, by capturing the hidden long-/short-term dependencies in the dynamics [18,19].
Granger [29] suggested that we could consider these hidden variables as causes, since
including them could perform a better regression of the targets. However, such methods
are, in actuality, just recombining the neurons from the input to extract advanced features,
and they cannot provide information beyond the input [30]. Therefore, they do not neces-
sarily provide unobserved information; thus, we can hardly identify these hidden variables
as those that are unobserved in the system.

The second stream aims to generate implicit variables that provide more information
to the targets. This echoes another definition of causality [3,31], in which a cause should
conditionally correlate with the target given any of the sets of other variables, or it could
provide information that all the other variables could not provide to the target [32]. These
methods [20–28] adopt the idea of representation learning, which inputs the target (and
all the observed variables) into neural networks to project an embedding. This preserves
the information while describing the prominent dynamics of the original data. Since these
latent variables generate a cover of most of the targets’ information, they could be referred
to as the causes that drive the system. However, in general, the observed and unobserved
causes are entangled and inseparable in the causal structure. While refs. [20–28] excluded
all of the observed causes and only considered the generated latent variables as the targets’
causes, their depiction does not necessarily reveal the real causal relationships.

Motivated by the aforementioned issues of either missing the unobserved information
or giving up on the observed causes, this paper proposes a framework to complete the
causal structure by extracting the unobserved variables while retaining the observed causes.
We assume the existence of unobserved causes to the target variables; hence, the targets’
information should be provided by both the observed and unobserved causes. Given the
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part of the information from the observed causes, our objective is to generate implicit
variables from the observed variables that provide as much information to the target as
possible, thus covering the information that should have been provided by the unobserved
causes. As shown in Figure 1c, the implicit variables Z would cover the information of the
target Y that should have been provided by the unobserved causes W, and hence it could
provide an alternative representation ({X, Z} → Y) of the information flow in the causal
relationships {X, W} → Y.

In detail, we employ a generator–discriminator architecture named the Neural Causal
Information Extractor (NCIE) that extracts and embeds the targets’ information into the
implicit variables. The generator obtains implicit variables fromthe time series inputs,
and the discriminator maximizes the mutual information between the targets and the
union of explicit and implicit causes by constraining implicit variables to have diverse
marginal and joint distributions. This results in a holistic causal structure that encompasses
both observed and unobserved factors to the target. To highlight the ability of NCIE to
complement unobserved information and recover unobserved dynamics, we generate
implicit variables for three synthetic cases. To further demonstrate the efficacy of the
generated implicit causes in improving time series predictions and to verify their causality,
we perform extensive experiments on real-world time series data.

The contribution of our work can be highlighted as follows:

1. We propose a generator–discriminator architecture that generates implicit variables
to complement the unobserved causes in the causal structures while retaining the
observed causes.

2. The implicit variables we generate could carry information from the unobserved
variables and reveal their dynamics.

3. Time series prediction tasks show that the combination of observed and implicit vari-
ables helps improve the prediction of targets, verifying that they are better candidates
for causal inference.

This paper is organized as follows. Section 2 provides a comprehensive review of
related works. Section 3 presents the basic theories in information theory and causal
inference and states the objective of this work. Section 4 introduces the methodology of
the proposed approach. Section 5 details the experimental setup and dataset descriptions,
and then presents the results and discussion of our experiments. Finally, in Section 6,
we provide a discussion on the implications of our work and present future possible
advanced works.

2. Literature Review

In the scope of our work, we categorize the related works on causal inference into two
parts, which cover the methods with and without considering unobserved variables.

2.1. Causal Inference without Considering Unobserved Variables

Assuming that the given observations are complete and thus sufficient, the objectives
of traditional works often include drawing causal faithful graphs, in which nodes represent
the variables of interest and edges indicate the existence of causal relationships between
variables. The constrained-based methods, including the Peter–Clark (PC) algorithm [2]
and its improvements [2,3,33], are graph algorithms that start with a fully connected
graph and iteratively delete the edges between two variables if they are conditionally
independent or d-separated [2]. They provide causal faithful graphs that satisfy the causal
Markov condition [31], i.e., a variable is conditionally independent to all variables except
its effects given its causes. On the other hand, score-based approaches present the causal
structure with the Bayesian network with the highest score, measured by the Bayesian
Dirichlet equivalent (BDe) score [4] and the K2 score [5]. Though the latter methods do not
ensure faithfulness, they pursue a representation that shows the causal structure and, at the
same time, the strength of cause-to-effect dependencies. Other approaches include those
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based on Granger causality [6], which also aim to identify the existence and magnitudes of
the causal edges among variables.

2.2. Causal Inference Considering Unobserved Variables

There are plenty of works on causal inference that are aware of the existence of un-
observed variables, and for clarity, we attempt to classify them into three groups. The
first group refers to those that detect the existence of hidden confounders without know-
ing the effects, including Fast Casual Inference (FCI) [2] and Latent PCMCI (LPCMCI,
where PCMCI [3] is a PC-based condition selection with the Momentary Conditional In-
dependence (MCI) test) [34]. They are the modified versions of the PC algorithm [2] and
PCMCI [3], respectively, which follow similar procedures but identify an extra kind of edge
(relationship) between variables: bidirectional arrows. This indicates the conditional corre-
lational relationship between two variables that could not be explained by any directional
causal path from one to another, thus identifying the existence of a hidden confounder
driving the two variables.

The second group attempts to explain the causal effects originating from unobserved
variables toward the target variable. Assuming linear, additive, and first-order Markovian
causal effects, ref. [16] constructs a linear regression model that describes the observed
variables by past observed variables, unobserved causes, and noises. Based on this model,
the effects of the unobserved causes, which refer to their coefficients, could be obtained by
variational expectation maximization or by solving the autocovariance.

The third group [20–28] aims to identify the unobserved causes via latent representa-
tions. They assume that the observed signals are driven or caused by a set of unobserved
latent signals, and there exists a latent dynamic that drives the latent variables from past
to future. Therefore, given the observed dynamics, their objectives are to identify the
posterior distributions of future latent signals given past latent signals, the posterior distri-
butions of observed signals given the contemporaneous latent signals, and the latent signals
themselves. They identify latent signals via different approaches, including Variational
Autoencoder (VAE) [20,21,35,36], Dynamical Component Analysis [25–27], and maximizing
the (conditional) mutual information [22,28].

While refs. [20–28] ensure the identifiability of implicit variables, their structures do
not include the causes that are already observed, which might also be involved in the
causal process. In our work, we express the causal structures containing both observed and
implicit causes. Moreover, while refs. [20–28] could precisely identify the implicit variables,
many of their generators, such as VAE [20,21,35,36], hold specific assumptions about the
implicit variables. With a simple generator that holds comparably few assumptions about
the distribution, our architecture can be applied to more general cases.

2.3. Mutual Information Estimator

H(Y) = − ∑
y∈Y

p(y)log(p(y)),

H(Y) = −
∫

Y
p(y)log(p(y))dy.

(1)

In Equation (1), Shannon provided an information theory-based definition for the
entropy of random variables with known distributions. However, the distribution of
variables in real-world time series remains unknown in many scenarios. To sample the
unknown distributions, one of the fundamental methods is binning [37,38]. By partitioning
the continuous variables into discrete bins and counting the sampled distributions, one can
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apply Equation (1) to estimate entropy. Provided the entropy of variables, one can calculate
the mutual information between two variables, X and Y, with

I(X; Y) = ∑
x∈X

∑
y∈Y

pXY(x, y) log
(

pXY(x, y)
pX(x)pY(y)

)
= H(X) + H(Y)− H(X, Y).

(2)

The Mutual Information Neural Estimator (MINE) [39] is another popular method that
uses a neural network to estimate the KL Divergence of two random variables, which could
then provide a tight lower bound for their mutual information. Deep InfoMax [22] provides
a similar approach by estimating Jensen–Shannon (JS) Divergence. Under the Gaussian
assumption, Refs. [25,26] measure entropy by H(Z) = r1

2 ln(2πe)dT |ΣT(Z)|, and prove that
the estimation is still tight if the assumption is violated. Refs. [40–42] provide other effective
estimators for information based on classifiers and k-nearest neighbor (kNN).

3. Problem Statement

Suppose we have target variable Yt at time t. First, we consider the case where
Yt is auto-correlated, and all the causes of Yt are known, denoted by {Xt, Y<t}, where
Xt = {X1, X2, ... , Xn}t and Y<t = {Y1, ... , Yt−1}. In this work, we assume a k-order
Markovian property on auto-correlated causality, i.e., Y<t = {Yt−k, ... , Yt−1}.

For simplicity, we abbreviate Yt as Y. While all the causes {X, Y<t} are known, we
assume

H(Y) = I(Y; X, Y<t), (3)

where H(Y) is the entropy of Y, a measure of uncertainty, and I(Y; X, Y<t) is the mutual
information (MI) between Y and {X, Y<t}. MI is a measure of “information” or “reduction
of entropy” that the two variables provide to each other. In Equation (3), the entropy
reduction that X and Y<t provide to Y equals the entropy of Y. Hence, the causes of Y
could eliminate all the uncertainty of Y, in other words, provide all the information of Y.

Now, we consider another case in which, besides some observed causes X = {X1, X2,
... , Xn}, there are other unobserved causes W. Therefore, we assume

H(Y) = I(Y; X, Y<t, W). (4)

The absence of information about W induces

H(Y) > I(Y; X, Y<t). (5)

As shown in Figure 2, X and Y<t could only provide a part (the red part) of the
information to Y. Therefore, our objective is to generate some implicit variables Z =
{Z1, Z2, ... , Zm} to maximize I(Y; X, Y<t, Z) (the yellow part), which attempts to
approach its upper bound H(Y) (the large black box).

𝑰(𝒀; 𝑿, 𝒁) 

𝑯(𝒀) 

𝑰(𝒀; 𝑿) 𝑰(𝒀; 𝒁) 

Figure 2. The Venn Diagram illustration of the information provided to Y by X (red), Z (blue),
and {X, Z} (yellow).
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Hence, if we could search for a Z that could perfectly provide this information, we
could say that Z somehow represents the unobserved causes W. More specifically, Z traces
the information for Y from W.

While the upper bound of the MI equals the entropy of Y, i.e.,

sup
Z

I(Y; X, Y<t, Z) = H(Y), (6)

the objective of our work is to generate Z which maximizes the MI and makes it approach
H(Y):

max
Z

I(Y; X, Y<t, Z), (7)

which is equivalent to maximizing the conditional mutual information of Z and Y given X
and Y<t:

I(Y; Z|X, Y<t) = I(Y; X, Y<t, Z)− I(Y; X, Y<t). (8)

Since the term without Z could be considered constant here,

max
Z

I(Y; X, Y<t, Z) = max
Z

I(Y; Z|X, Y<t). (9)

Objective (7) is maximized if Z covers all the conditional mutual information from W,

sup
Z

I(Y; Z| X, Y<t) = I(Y; W| X, Y<t) = H(Y|X), (10)

and meanwhile X, Y<t, Z together cover all the entropy (Equation (6)) and provide all the
information of Y.

There are some assumptions made on Z:

1. We focus on the unobserved variables that provide information to Y. Those without
information of Y do not affect the distributions of Y.

2. In the case of time series, we denote X<t, Z<t as the explicit and implicit causes of Yt
to uphold the assumption of temporal priority [1], i.e., causal relationships only move
from past variables to future variables in time series. For simplicity, we denote X<t
and Z<t as X and Z, and Yt as Y.

3. We assume Xt, Yt, and Zt are in a closed system and there is a causal loop among
them, i.e., X<t and Z<t may induce Yt, and X<t and Y<t may induce Zt.

4. While we are generating Z<t, we do not necessarily obey temporal priority [1], which
is a common practice in refs. [20–28,30]. Therefore, we employ X<t and Yt to generate
Z<t. We note that we do not focus on finding the exact causes of Z here. Instead of
finding causes of Z by applying the whole structures we use on Y, we just use a basic
RNN to present Z from the explicit causes.

To better illustrate our problem and objective, we provide a simple numerical example
as follows:

Example 1. We consider a temporal Boolean network with three Boolean variables: Yt, Xt, and Wt,
where Yt at time t is determined by

Yt = Xt−1 AND Wt−1. (11)

At every time step t, Xt and Wt are sampled from a uniform binomial distribution, i.e., P(Xt =
0) = P(Xt = 1) = P(Wt = 0) = P(Wt = 1) = 0.5.
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In this context, the time-varying variables Yt, Xt−1, and Wt−1 at a particular time t are
considered as the static random variables generated by the random process [1–3,22,24,28]. We list
all the possible circumstances of the truth table of these three variables.

P(Xt−1 = 0, Wt−1 = 0, Yt = 0) = 1/4;

P(Xt−1 = 0, Wt−1 = 1, Yt = 0) = 1/4;

P(Xt−1 = 1, Wt−1 = 0, Yt = 0) = 1/4;

P(Xt−1 = 1, Wt−1 = 1, Yt = 1) = 1/4.

(12)

Then, we calculate H(Yt), I(Yt; Xt−1), and I(Yt; Xt−1, Wt−1) respectively:

H(Yt) = − ∑
y∈Yt

p(y) log(p(y)) = 2 − 3
4

log3,

I(Yt; Xt−1) = ∑
y∈Yt

∑
x∈Xt−1

p(x, y) log
(

p(x, y)
p(x)p(y)

)
=

3
2
− 3

4
log 3,

I(Yt; Xt−1, Wt−1) = ∑
y∈Yt

∑
x∈Xt−1

∑
w∈Wt−1

p(w, x, y) log
(

p(w, x, y)
p(w, x)p(y)

)
= 2 − 3

4
log 3.

(13)

We notice that H(Yt) = I(Yt; Xt−1, Wt−1) > I(Yt; Xt−1), which means that the information
of Yt could be completely covered when Xt−1, Wt−1 are known. When Wt−1 is unobserved, the ob-
served Xt−1 can only provide part of the information of Yt. This gap of information is described by
the conditional mutual information, I(Yt; Wt−1|Xt−1), where

I(Yt; Wt−1|Xt−1) = I(Yt; Xt−1, Wt−1) − I(Yt; Xt−1) =
1
2

, (14)

which quantifies the information that Wt−1 provides to Yt that Xt−1 cannot provide.

Example 2. Now, we consider the scenario in which we do not know Yt is generated by Equation
(11) or the distribution of Wt−1, but we are provided with Xt−1 and Yt, and we wish to generate
Zt−1 to complement I(Wt−1; Yt|Xt−1) and maximize the objective in Equation (7). The ideal
case is to reverse the Markov chain (Wt−1, Xt−1 → Yt) to (Xt−1, Yt → Wt−1) and make the
posterior distribution p(Zt−1|Xt−1, Yt) equal to p(Wt−1|Xt−1, Yt), where the joint and posterior
distributions are

P(Xt−1 = 0, Yt = 0, Zt−1 = 0) = 1/4,

P(Xt−1 = 0, Yt = 0, Zt−1 = 1) = 1/4,

P(Xt−1 = 1, Yt = 0, Zt−1 = 1) = 1/4,

P(Xt−1 = 1, Yt = 1, Zt−1 = 0) = 1/4,

(15)

p(Zt−1 = 1|Xt−1, Yt) = p(Wt−1 = 1|Xt−1, Yt) =


1, Xt−1 = 1, Yt = 1
0, Xt−1 = 1, Yt = 0
1
2 , Xt−1 = 0

. (16)

In such a case, we calculate that

I(Yt; Xt−1, Zt−1) = I(Yt; Xt−1, Wt−1) = 2 − 3
4

log3,

I(Yt; Zt−1|Xt−1) = I(Yt; Wt−1|Xt−1) =
1
2

.
(17)

Example 3. However, there actually exist more than one p(Zt−1|Xt−1, Yt) that can maximize
I(Yt; Zt−1|Xt−1). For example, we let

Zt−1 = Xt−1 XOR Yt, (18)
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and we can again list all the possible circumstances of the truth table of these three variables.

P(Xt−1 = 0, Yt = 0, Zt−1 = 0) = 1/2,

P(Xt−1 = 1, Yt = 0, Zt−1 = 1) = 1/4,

P(Xt−1 = 1, Yt = 1, Zt−1 = 0) = 1/4.

(19)

In such a case, we can obtain the same result as that in Equation (17), which means a different
Z from Equations (16) and (18) can achieve the optimal objective in (7). This indicates that they are
providing the same conditional information that W provides to Y. The value of Yt is known when
Xt−1 = 0, but is uncertain when Xt−1 = 1. W provides the conditional information by helping to
eliminate this uncertainty (or conditional entropy H(Y|X)), which can also be eliminated by not
including W but including Z from Equation (16) or (18). Therefore, Z can express conditional
information I(W; Y|X).

4. Methods
4.1. Neural Causal Information Extractor

We name our architecture the Neural Causal Information Extractor (NCIE), which is
composed of a generator and a discriminator. The architecture is shown in Figure 3.

𝒀𝒕 
Discriminator 

(MINE) 
 

Z 

𝑿<𝒕, 𝒀<𝒕 , 𝒀𝒕 

Back propagate 
to update 
generator 

𝐋𝐨𝐬𝐬 = 𝐌𝐈(𝒀𝒕; 𝒀<𝒕, 𝑿𝒕, 𝒁)  

Generator 
(RNN) 

𝑿<𝒕, 𝒀<𝒕 

Figure 3. The architecture of the Neural Causal Information Extractor.

4.1.1. Generator

Although Z is not explicitly collected and observed from the system, we consider part
of it to be involved in the system, specifically the part that provides information to Y. While
we suppose that Y is generated by {X, Y<t, Z}, reversely, the information of Z that we are
interested in should be covered by (a part of) Y. Therefore, Z could be represented as a
function of X, Y<t, and Y. Other variables V besides {X, Y<t, Y} in the raw data should not
be included to generate Z in case they have not provided information via path V → Z → Y
(or V should be detected as an observed direct cause before Z is included).

While finding the causes of Z is not the focus of this work (we only focus on finding
the explicit and implicit causes of Yt), we apply a basic RNN [18] to capture the lagged
dependencies from X and Y to generate Z. The RNN consists of two neural networks to
manipulate and propagate its hidden states. The first neural network, f1, generates Ht from
X<t, Y<t, Yt, and Ht−1 (Equation (20)), where Ht denotes the hidden states at time t. Then,
the second neural network, f2, reads Ht and generates the output Z (Equation (21)), while
Ht is propagated to the next episode.

Ht = f1(Xt−1, Yt−1, Ht−1), (20)

Zt = f2(Ht). (21)

With the propagation of Ht, the memory of X and Y in previous episodes is also
propagated. Furthermore, since Z is generated directly from H, the propagation of H
also passes the memory and information of Z. It is worth noting here that Z is jointly
generated by the explicit {X, Y} and the implicit variables Z<t. Suppose we employ
another architecture that generates Z solely by explicit variables {X, Y} (and without Z<t);
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Z then acts as an intermediate hidden layer in our architecture, which is equivalent to
directly depicting Y by a neural network structure with {X, Y} and without Z. In other
words, Y would then be solely caused by explicit variables. This is why we apply RNN
to generate Z jointly by implicits and explicits, which matches our assumption that Y is
causally related to implicits and explicits.

4.1.2. Discriminator

The discriminator provides a measurement of I(Y; X, Y<t, Z), where Z is the output
of the generator. Here, we consider Y and {X, Y<t, Z} as two sets of random variables,
and their mutual information is equivalent to Kullback–Leibler (KL) divergence between
their marginal and joint distributions,

I(Y; X, Y<t, Z) = DKL(PYXY<t Z || PY
⊗

PXY<t Z)

= sup
T:Y×X×Y<t×Z→R

EPYXY<t Z [T]− log(EPY
⊗

PXY<t Z [e
T ]), (22)

where DKL denotes the KL divergence of two distributions and PY denotes the distribu-
tion of Y. The lower bound of KL divergence can be provided by Donsker–Varadhan
representation (Equation (22)), where T(Y, X, Y<t, Z) is any class of function.

We follow MINE [39] to implement function T by a neural network with parameters
Θ and maximize the lower bound of mutual information IΘ by searching for optimized
function Tθ :

I(Y; X, Y<t, Z) ≥ IΘ(Y; X, Y<t, Z), (23)

Iθ(Y; X, Y<t, Z) = max
θ∈Θ

EPYXY<t Z [Tθ ]− log(EPY
⊗

PXY<t Z [e
Tθ ]). (24)

Optimization is performed using stochastic gradient descent (SGD). However, a naive
derivation of Equation (24) leads to biased gradient estimation. MINE [39] proposed
addressing this bias by reformulating the loss function. For batch sample B, the gradient is

ĜB = EB[∇θTθ ]−
EB[∇θTθeTθ ]

EB[eTθ ]
. (25)

MINE suggests estimating the denominator of the second term using the moving
average from previous epochs, while the other parts are the averaged gradient from the
network parameters.

Among all (conditional) mutual information estimators, MINE estimates MI by stochas-
tic gradient descent (some do not provide MI, and some are not trained by gradient descent).
The available gradient is essential in our architecture because one of the inputs of MINE, Z,
is exactly the output of the generator. Hence, the generator and discriminator are fused to-
gether by Z, which acts as the bridge to back-propagate the gradient from the discriminator
to the generator and thus update the parameters in both neural networks.

4.1.3. NCIE: Maximizing Mutual Information

In Section 3, we claim that the objective of our architecture is to find implicit variables
Z such that I(Y; X, Y<t, Z) is maximized. In this case, Z could represent the information
provided by unobserved variables.

Since the generator and discriminator are fused together, they could be jointly con-
sidered as a whole neural network that trains both components simultaneously, where Z
could be viewed as a layer in between that we are interested in. While training together
by gradient descent, the generator is trained to provide better Z to push up Iθ , and the
discriminator is trained to provide a better (higher) estimation of Iθ given the Z from the
generator. Therefore, NCIE pursues objective

max
Z, θ ∈ Θ

Iθ(Y; X, Y<t, Z). (26)
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In an alternative view, the whole NCIE structure could be interpreted as a variant of an
RNN that pursues to provide a maximized value of the Donsker–Varadhan representation
given the batched inputs of X, Y<t, and Y.

4.2. Verifying Causality from Z to Y by Time Series Prediction
4.2.1. Motivation and Architecture

To verify the capability of extracting effective implicit causes, we modify the NCIE in
Section 4.1 and apply the architecture to perform multi-variate time series prediction in
Section 5.2.2. To predict Yt, we cannot use Yt itself or any variables at time t or after t as the
input; therefore, we have to find an alternative for the input of the generator. Here, we use
a simple RNN to pre-train a Ŷt that tries to estimate Yt given all the explicit causes {X, Y<t}
of Yt. After the pre-training stage, Ŷt is plugged into the input of the generator in the NCIE
and replaces Yt, to avoid the information leakage in the original architecture in Section 4.1.

The overall procedure is shown in Figure 4, which is summarized as follows:

1. We select the explicit causes X from the raw time series with a maximum lag of k using
PCMCI [3], which is a framework that identifies the time-lagged causal relationship
given the assumption of the completeness of the given data (no unobserved data).
With its high precision, we assume the resulting X is the set of all the real causes of Y.
Furthermore, we select the lagged Y<t from t − k to t − 1 as the autoregressive terms,
together with X to be the set of observed causes;

2. We train the pre-training module and generate Ŷt to estimate Yt;
3. After finishing training the previous module, we use output Ŷt as the input of this mod-

ified NCIE module and train the generator and discriminator (Section 4.1) together to
generate Z;

4. We train neural network f3 (Equation (27)) to generate Ŷt
′, which is applied to examine

the improvement of the prediction effect on Y given by Z.

Pre-trainer 
(RNN) 

𝑿𝒕 𝑿<𝒕 

𝒀<𝒕 𝒀𝒕 

𝑿<𝒕, 𝒀<𝒕 𝒀𝒕  Raw 
Data PCMCI 

Predictor 
 (NN/RNN/LSTM ) 

4. Prediction Test 

𝑿<𝒕, 𝒀<𝒕 𝒀𝒕 ′ 

3. Generate Z 

1. Feature Selection  2. Pre-train 𝒀𝒕  

𝒀𝒕  
Discriminator 

(MINE) 
 

Z 

𝑿<𝒕, 𝒀<𝒕 , 𝒀𝒕 

Back propagate 
to update 
generator 

𝐋𝐨𝐬𝐬 = 𝐌𝐈(𝒀𝒕; 𝒀<𝒕 , 𝑿𝒕, 𝒁)  

Generator 
(RNN) 

𝑿<𝒕, 𝒀<𝒕 

𝒀<𝒕 

𝒀𝒕 

𝑿<𝒕 

Selected Features 

Target 

Figure 4. The architecture of Neural Causal Information Extractor to perform time series prediction.
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We note that although there are four neural network architectures in Figure 4 and
some of their inputs and outputs are connected, only the two networks in the third module
train and update their parameters simultaneously. The framework in Figure 4 proceeds
module by module, and the next one starts after the previous one finishes.

4.2.2. Prediction

We test whether the generated Z can help to improve the prediction of Y by comparing
Ŷt and Ŷt

′. In Section 5.2.2, we employ different neural networks to implement f3, which
performs the prediction of Y by minimizing the mean squared error (MSE):

Ŷt
′
= f3(Xt, Yt−1, Zt). (27)

5. Experiments
5.1. Synthetic Data Experiments: Dynamics of Z

In the following experiments on synthetic data, we demonstrate that the proposed
NCIE framework can accurately extract the unobserved causal variables. We consider three
synthetic systems (Figure 5) to compare the generated Z with the unobserved cause W
that Z mimics. Targets Y in the synthetic systems are constructed with causes exhibiting
long-term and short-term dynamics. We investigate the ability of NCIE in Section 4.1 to
extract causes W from target Y when Y and the other causes X are given.

5.1.1. Case 1: A Linear System

We suppose the time-varying X and Y are observable while W is unobserved:

Y(t) = X(t) + W(t),

X(t) = sin
t

10
,

W(t) = sin 10t.

(28)

5.1.2. Case 2: A Non-Linear System

We suppose the time-varying X and Y are observable while W is unobserved:

Y(t) = X(t) + W(t)(0.2 + X(t)),

X(t) = 0.05t3 − 15t2 − 80t + 2,

W(t) = sin 10t.

(29)

5.1.3. Case 3: A Non-Linear System

We suppose the time-varying X and Y are observable while W is unobserved:

Y(t) = X(t) + 0.2W(t)(0.2 + X(t)),

X(t) = 0.05t3 − 15t2 − 80t + 2,

W(t) = sin 10t.

(30)
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Figure 5. Dynamics of the normalized Y, X, W, and Z for Synthetic Case 1 (Left), Case 2 (Middle),
Case 3 (Right).

5.1.4. Case 4: 1—Predator 2—Prey Model Where Prey Share the Same Food

We investigate our approach with the predator–prey model, which is a classical
problem in ecology [43,44]. Specifically, we choose the model with 1 predator species,
wolves, and 2 prey species, sheep and rabbits. The prey species share the same food source:
grass. In total, there are four species in the ecosystem, and their populations grow according
to the Lotka–Volterra model [45,46]:

dW(t)
dt

= W(t)(−a0 + a1S(t) + a2R(t)),

dS(t)
dt

= S(t)(b0 − b1W(t) + b2G(t)),

dR(t)
dt

= R(t)(c0 − c1W(t) + c2G(t)),

dG(t)
dt

= G(t)(d0 − d1S(t)− d2R(t)),

(31)

where W(t), S(t), R(t), and G(t) represent the population of wolves, sheep, rabbits,
and grass at time t, respectively. Because this dynamic system can lead to negative popula-
tions and we want to prevent extinction from halting our simulation, we add a modification
that sets any population to 1 if it drops below 1.

We consider the scenario in which some intermediate species in the biological chain
are unknown or unobserved. Therefore, we assume that S(t) and R(t) are unobserved. We
set W(t) as the target variable and G(t − 1) as the observed cause, and attempt to recover
the information provided by the unobserved causes S(t) and R(t). It is worth noting that
G(t − 1) is not a direct cause of W(t) in this case. The absence of S(t − 1) and R(t − 1)
makes G(t − 1) and W(t) conditionally dependent, thus creating a spurious causal link.
Since it is not the focus of our work, we do not discuss how to eliminate spurious links
after recovering unobserved causes in this study.

The dynamics of the population of the four species and Z are shown in Figure 6. From
this, we can observe that Z provides information about the unobserved variables S(t) and
R(t).
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Figure 6. Dynamics of Z and the population of four species for Synthetic Case 4.

5.1.5. The Interpretation of Z

Our target is to generate Z that carries the unique information that unobserved causes
provide to Y. However, in the three synthetic examples, instead of revealing the dynamic
of W, Z exhibits a variable that tries to introduce Y while eliminating the information of X.

We try to explain the result using partial information decomposition theory [47], which
suggests that we could decompose the Venn Diagram (Figure 2) of mutual information into
the following parts shown in Figure 7:

H(Y) = I(Y; X, Y<t, W)

= Iuni(Y; X, Y<t) + Iuni(Y; W)

+ Ired(Y; X, Y<t, W) + Isyn(Y; X, Y<t, W).

(32)

𝑰𝒖𝒏𝒊(𝒀; 𝑿) 𝑰𝒓𝒆𝒅(𝒀; 𝑿, 𝒁) 𝑰𝒖𝒏𝒊(𝒀; 𝒁) 

𝑰𝒔𝒚𝒏(𝒀; 𝑿, 𝒁) 

𝑯(𝒀) 

Figure 7. The Venn Diagram illustrates the partial information decomposition of Y into four discrete
parts: the unique information from X (red), the unique information from Z (blue), the redundant
information from X and Z (purple), and the synergistic information from X and Z (yellow).

The information to Y from all of its causes consists of four parts:

• Iuni(Y; W), the unique information that could only be provided by W;
• Iuni(Y; X, Y<t), the unique information that could only be provided by {X, Y<t};
• Isyn(Y; X, Y<t, W), the synergistic information provided only when both {X, Y<t} and

W are present;
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• Ired(Y; X, Y<t, W), the redundant information that could be provided by either {X, Y<t}
or W.

If our objective is to recover W, Z should only contain the unique information
Iuni(Y; W) and the synergistic information Isyn(Y; X, Y<t, W), while the unique information
Iuni(Y; X, Y<t) and the redundant information Ired(Y; X, Y<t, W) are not present in this case.
However, our objective in generating Z is not to exactly mimic W, but to maximize the
information that the observed and unobserved causes provide to Y, so that we can acquire
a better causal representation for Y.

Moreover, it is difficult to integrate different methods; therefore, our architecture does
not measure the four components [48–50] separately but rather measures and maximizes
the entire I(Y; X, Y<t, Z) at once. Thus, Iuni(Y; Z), Isyn(Y; X, Y<t, Z), and Ired(Y; X, Y<t, Z)
in Equation (32) are maximized. As a result, the implicit causes Z may contain all four com-
ponents, which is the information from both the observed {X, Y<t} and the unobserved W.

Therefore, in the synthetic cases, we still observe the trend information from X that is
not fully eliminated in Z. Still, in this case, we argue that Z carries significant information
and reveals evident dynamics of W. As shown in Table 1, the observed causes X only
provide very little information to the target Y in simple synthetic cases, where the mutual
information of target Y provided by itself, I(Y; Y), is equivalent to the entropy of Y, H(Y),
provided that we consider Y as a random variable. In contrast, after we add the implicit
causes Z, all the causes together provide most of the information of target Y and thus
complete the causal structure of Y.

Table 1. Mutual information provided to Y from different sets of variables.

Case Explicit X Explicit X + Implicit Z Target Y

1 0.646 5.46 5.52
2 0.679 4.11 5.35
3 1.44 3.47 5.29
4 2.84 3.48 5.36

5.2. Preformance Evaluation by Real-World Data Experiments
5.2.1. Information Recovery

We first examine the ability of NCIE (Section 4.1) to extract implicit causes that recover
unobserved information of the targets in several real-world datasets, including

• The Electricity Transformer (Oil) Temperature (ETT) [17], which includes four datasets
sampled at different time intervals (1 min, 2 min, 1 h, and 2 h). The observed causes
include useful and useless loads in different levels;

• The daily exchange rates [51] of eight countries, with one of them set as the target and
the other seven as the observed causes for predicting the target;

• Minneapolis–St Paul interstate metro traffic volume [52], in which observed causes
include temperature, weather, and holidays;

• The PM2.5 quantity in Beijing (https://www.kaggle.com/datasets/rupakroy/lstm-
datasets-multivariate-univariate) (accessed on 6 November 2023), in which observed
causes include dew, temperature, atmospheric pressure, weather, as well as wind
direction and speed (all the codes and data are available at https://github.com/jh-
liang/NeuralCausalInfoExtractor) (accessed on 6 November 2023).

These data provide partial observations of complete systems in industrial monitoring,
financial markets, and urban operations. In the provided datasets, it is obvious that
some causes, W, are unobserved. For example, exchange rates are influenced not only
by foreign exchange rates but also by the domestic economy and complex international
trade. Similarly, the PM2.5 datasets do not involve urban human activities and pollution
emissions from power plants. We aim to recover conditional information I(W; Y|X) using
Z, which advances the precision of time series forecasting.

https://www.kaggle.com/datasets/rupakroy/lstm-datasets-multivariate-univariate
https://www.kaggle.com/datasets/rupakroy/lstm-datasets-multivariate-univariate
https://github.com/jh-liang/NeuralCausalInfoExtractor
https://github.com/jh-liang/NeuralCausalInfoExtractor
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Table 2 shows the information provided by only observed causes and by the com-
bination of observed and implicit causes. It illustrates that the generated Z can provide
significant extra information besides the observed causes X in real-world scenarios. The
Z in this table is generated by NCIE (Section 4.1). We do not discuss the dimensionality
of Z in this paper. While the higher dimensionality of Z provides the wider information
channel, we simply set the dimension of Z to be the dimension of {X, Y<t}.

Table 2. Mutual information provided to Y from different sets of variables. The Z in this table is
generated by the original NCIE (Section 4.1).

Datasets Explicit Explicit + Implicit Z Target Y

ETTh1 2.78 5.54 6.75
ETTh2 3.55 5.55 6.66
ETTm1 3.12 5.46 6.33
ETTm2 4.278 5.36 6.27
ExcRat 3.63 6.24 7.31
Metro 2.66 5.68 7.37
PM2.5 1.80 4.59 5.52

5.2.2. Single-Step Time Series Forecasting

While we claim that our architecture helps to identify unobserved causes of the target
variables, it holds massive potential for extracting useful information from the available
features and for conducting time series forecasting. We evaluate our architecture by
performing time series forecasting on the real-time series datasets and comparing our
results with the baselines [18,19] listed in Table 3. To prevent future information leakage
in time series prediction, we employ the modified NCIE architecture in Section 4.2 to
generate Z.

In this work, we are considering one-dimensional targets Y with multiple features
that are candidates for observed causes chosen by PCMCI. Additionally, our architecture
focuses on single-step time series forecasting because our goal is to find the direct causes for
Y, which could be Xt−k and Zt−k with a small lag k. The results are shown in Table 3. For
the three chosen time series analyzing tools, we compare the prediction results with and
without Z. It is illustrated that including Z in most cases does outperform those predictions
without implicit variables Z.

Table 3. Single-step time series forecasting with and without Z in three different architectures, where
’NN’ denotes the result from a simple NN with input including only observed causes, and ’I-NN’
denotes the result with input including both observed causes and implicit variables Z generated by
modified NCIE. The better result in the comparison is underlined.

Datasets NN I-NN RNN I-RNN LSTM I-LSTM

ETTh1 1.97 × 10−4 1.89 × 10−4 1.65 × 10−4 1.77 × 10−4 2.05 × 10−4 2.01 × 10−4

ETTh2 1.81 × 10−4 1.45 × 10−4 2.05 × 10−4 1.28 × 10−4 2.62 × 10−4 1.64 × 10−4

ETTm1 4.19 × 10−5 4.16 × 10−5 4.35 × 10−5 4.24 × 10−5 7.57 × 10−5 5.12 × 10−5

ETTm2 2.22 × 10−5 1.68 × 10−5 4.59 × 10−5 3.37 × 10−5 1.45 × 10−4 8.17 × 10−5

ExcRat 9.90 × 10−5 9.84 × 10−5 2.01 × 10−4 1.99 × 10−4 4.25 × 10−4 3.57 × 10−4

Metro 3.33 × 10−3 2.91 × 10−3 4.09 × 10−3 4.03 × 10−3 4.36 × 10−3 3.94 × 10−3

PM2.5 5.50 × 10−4 5.46 × 10−4 5.87 × 10−4 5.78 × 10−4 5.87 × 10−4 5.70 × 10−4

Our problem could be considered a feature selection task. The Z we generate could
be considered as a feature that helps to describe Y. We see that in a few cases, Z does
not necessarily improve the prediction of Y. This could be due to two reasons. First,
although we know there is a gap between the entropy of Y and the information that X and
Y<t bring to Y, this gap might be too narrow for NCIE to generate a Z that brings sufficient
information from it. Second, when the system is time-varying, the underlying causality
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structure of the system could also vary with time. Z that acts as a significant cause in (part
of) the training dataset may become a redundant variable that perturbs the prediction.

It is worth mentioning that RNN and LSTM do not outperform simple neural networks
(NN) in all cases. Our explanation is that the features X that PCMCI chooses cover most of
the (observed) direct causes of Y, and we also choose autoregressive features Y<t from t − k
to t − 1 that already cover short- and long-term memories of Y. Therefore, the memories
that RNN and LSTM extract could not significantly help the prediction, but, in contrast,
overfit Y.

Table 4 shows the mutual information between different sets of variables and Y. For
real data, the Z that NCIE generates can provide extra information to Y. It demonstrates
NCIE’s ability to extract part of the implicit causes in the system, although we find a
gap between I(Y; X, Y<t, Z) and I(Y; Y). It is unavoidable in cases in which the systems
are open or noisy because external noises are not driven by variables within the system.
Furthermore, for a large system with too many causes, some causes may carry very little
unique information to the target, and it is difficult to express them with limited Z.

Table 4. Mutual information provided to Y from different sets of variables. The Z in this table is
generated by the modified NCIE (Section 4.2).

Datasets Pre-Trained Ŷ Explicit Explicit + Z Y

ETTh1 1.46 3.59 3.60 6.31
ETTh2 2.56 3.65 3.90 6.69
ETTm1 2.51 3.05 2.94 5.58
ETTm2 3.39 4.36 4.37 6.23
ExcRat 2.87 2.98 4.14 6.88
Metro 1.06 3.42 3.45 7.60
PM2.5 0.96 2.32 2.34 6.53

The first column of Table 4 shows the mutual information between the pre-trained
Ŷ and the actual Y. We recall that the pre-trained Ŷ is generated by an RNN architecture
that minimizes the mean square error (MSE), given the explicit causes X and Y<t. The gap
from the first column to the others shows that RNN and other recurrent structures do not
necessarily provide a regression result with sufficient information to the target. While it is
not a key point to argue the effectiveness of different objectives in this work, it reminds us
that NCIE provides more information than general neural architectures.

6. Conclusions

In this work, we propose NCIE to generate implicit variables that complement the
unobserved information of the target not provided by the observed variables. We can
complete the causal structure of the target with the implicit variables while retaining the
observed causes, as they together provide most of the target’s information. Furthermore,
the generated implicit variables have similar dynamics to the unobserved causes in the
synthetic experiments and help to predict the target in the real-world time series. These
results provide sufficient evidence that the implicit variables can be an effective candidate
to substitute the unobserved causes and complete the causal structure.

While this work only focuses on discovering unobserved causes for single targets,
future attempts could be made to apply similar methods to construct a complete graph for
multiple targets, in which all the causes provide complete information for all the targets.
With such methods, we are able to depict the evolution of systems by the information
flow among variables, which could contribute to the research of emergence in real-world
complex systems.
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