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Abstract: Visual scanning is achieved via head motion and gaze movement for visual information
acquisition and cognitive processing, which plays a critical role in undertaking common sensorimotor
tasks such as driving. The coordination of the head and eyes is an important human behavior to
make a key contribution to goal-directed visual scanning and sensorimotor driving. In this paper, we
basically investigate the two most common patterns in eye–head coordination: “head motion earlier
than eye movement” and “eye movement earlier than head motion”. We utilize bidirectional transfer
entropies between head motion and eye movements to determine the existence of these two eye–head
coordination patterns. Furthermore, we propose a unidirectional information difference to assess
which pattern predominates in head–eye coordination. Additionally, we have discovered a significant
correlation between the normalized unidirectional information difference and driving performance.
This result not only indicates the influence of eye–head coordination on driving behavior from a
computational perspective but also validates the practical significance of our approach utilizing
transfer entropy for quantifying eye–head coordination.

Keywords: head–eye coordination; unidirectional information difference; transfer entropy;
behaviometrics

1. Introduction

Visual scanning performed under the effort of eye, head and torso is important for gen-
eral human environment interactions [1,2]. The investigation of visual scanning provides a
fundamental window into the nature of visual-cognitive processing while performing natu-
ralistic sensorimotor tasks such as walking and driving [3,4]. The underpinning mechanism
of visual scanning and visual-cognitive processing essentially includes the coordination
of head and eyes in the procedure of performing sensorimotor tasks [5–9]. Therefore,
head–eye coordination can be used as a valid means to study the internal mechanisms of
visual scanning and visual cognitive processes.

Head–eye coordination primarily exhibits two patterns: “head motion earlier than
the eye movement” and “eye movement earlier than the head motion” [7]. The “head
motion earlier than the eye movement” is frequently observed in goal-directed, top-down
and prepared tasks [5]. Conversely, the “eye movement earlier than the head motion”
often occurs in stimulus-driven, bottom-up and spontaneous tasks [10]. Thus, when head
and eye movements occur concurrently, the pattern of head–eye coordination reflects the
level of preparedness for the gaze shift, which subsequently affects the performance of
sensorimotor tasks. Therefore, this paper quantitatively measures the state of head–eye
coordination from the perspective of its patterns, aiming to explore the relationship between
head–eye coordination and driving performance.
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We design a virtual reality driving task to obtain the head motion and eye movement
data that we need to investigate. Firstly, driving is one of the most common sensorimotor
tasks and a popular topic, and head–eye coordination is abundantly present in driving. Sec-
ondly, the driving task, as a whole, is executed as a “top-down” goal-directed activity [1,2].
During driving, “head motion earlier than eye movement” should dominate, which aids in
achieving more significant results.

Eye movement and head motion data are observed as time series of eye rotation ⟨Xt⟩
and of head rotation ⟨Yt⟩, respectively, labeled with a sequential time index t = · · · , 1, 2, · · · .
In this paper, stochastic processes, usually used as natural representations for complex and
real-world data [11], are introduced to model the time series data of eye movement and
head motion, denoted by variables X and Y, respectively.

Therefore, the behavior of head–eye coordination is reflected in the inter-relationship
between X and Y [12]. For example, if the coordination of “head motion earlier than eye
movement” exists, the past of head motion Yt−1 helps predict the current observation
of eye movement Xt. That is to say, the probabilistic predictivity of Xt is added to Yt−1.
The transfer entropy from head motion to eye movement (TEY→X) precisely measures
this contribution [13], the same as transfer entropy from eye movement to head motion
(TEX→Y).

Based on this, we use the transfer entropy between head movement and eye movement
to measure head–eye coordination during driving [13]. Firstly, significant TEY→X can pro-
vide evidence for the presence of “head motion earlier than eye movement” coordination,
while significant TEX→Y can demonstrate the existence of “eye movement earlier than head
motion” coordination. Secondly, according to the Wiener and Granger causality [14], the
unidirectional information difference (UID) between TEY→X and TEX→Y can determine
whether the coordination between the head and eyes occurs from the head to the eyes or
from the eyes to the head.

Notice that, although the research on the dynamics of the coordination of head and eyes
in visual scanning attracted a lot of studies recently [5–7,9], there is no quantitative measure
on this coordination. The tight connection between the information flow between head
motion and eye movement and head–eye coordination leads us to believe that quantifying
head–eye coordination based on transfer entropy is feasible. In this paper, we introduce the
normalized unidirectional information difference (NUID), which preserves the relationship
between unidirectional information difference and head–eye coordination, makes TEY→X
and TEY→X into the same scale and improves the unidirectional information difference.
We have found a significant correlation between driving performance and the normalized
unidirectional information difference from head motion to eye movement. Our finding
indicates that head–eye coordination during driving, with a quantification based on transfer
entropy, is related to driving performance.

This paper is organized as follows. Firstly, related works are presented in Section 2.
We then describe the proposed methodology for the new measures in Section 3. The
experiment conducted is detailed in Section 4, followed by the results and discussion in
Section 5. Finally, we present the conclusion and future works in Section 6.

2. Related Works
2.1. Transfer Entropy

Transfer entropy, basically as a measure of complexity, is a well-known way for quan-
tifying the directional information flow between time series [13]. Transfer entropy is
considered as a non-parametric and model-free version of the Wiener and Granger causal-
ity [14], being capable of handling complex and non-linear time series [11]. Given random
variables P and Q, transfer entropy from source Q to target P is defined as follows [11]:

TE(l,k)
Q→P = I(Pt : Q(l)

t−1|P
(k)
t−1)

=H(Pt|P(k)
t−1)− H(Pt|P(k)

t−1, Q(l)
t−1),

(1)
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where Pt and Qt are the observations of variables P and Q at time t, respectively,
P(k)

t−1 = (Pt−k, · · · , Pt−1) and Q(l)
t−1 = (Qt−l , · · · , Qt−1) are the temporally ordered histories

of target and source variables, respectively, and H(·|·) and I(· : ·) represent, respectively,
conditional entropy and mutual information. Here, l and k are the so-called history lengths
of Q(l)

t−1 and of P(k)
t−1, respectively. Notice that the information flow from Q to P obtained

via TE(l,k)
Q→P tries to take out the influences of the past of P.

Transfer entropy is asymmetric. Because H(Pt|P(k)
t−1) is no smaller than H(Pt|P(k)

t−1, Q(l)
t−1),

transfer entropy is non-negative. Considering that H(Pt|P(k)
t−1, Q(l)

t−1) and H(Pt|P(k)
t−1) are

non-negative, TE(l,k)
Q→P takes H(Pt|P(k)

t−1) as the maximum.

2.2. Coordination of Head and Eyes

Recently, many research studies have suggested the large popularity of the coordination
of head and eyes in human activities [8,9,15,16], for example, in motor control [8,9,15,16].

The coordination of head and eyes always exists in our behavioral activities, partic-
ularly when a relatively large attentional shift is about to occur [1,2,17–19]; as a matter
of fact, this coordination emerges as long as the eye movement is bigger than 15◦ [9,17].
Specifically, the coordination of head and eyes is necessary because eye movements could
selectively allocate the available attentional resources to task relevant information and head
motions could accommodate the limited field of view of the eyes [18,19]. That is, head
motions and eye movements are synergistic, especially temporally, for visual scanning and
visual-cognitive processing [6]. Basically, head motions are followed by eye movements
(namely, the preparatory head motion earlier than the eye movement) during sensorimo-
tor tasks, because the observer usually has prior and “top-down” knowledge, attaining
attentional shift for goal-directed modulation [6–9,20].

Note that head–eye coordination involving head motions temporally preceding eye
movements (rather than coordination with eye movements temporally preceding head
motions) has been definitively accepted as the main coordination of head and eyes in goal-
directed human activities [6–9] and principally contributes to goal-directed modulation
during sensorimotor tasks [1,2,17–19]. In addition, the point here is that the directional coor-
dination of head and eye movements itself does possess information about the performer’s
attentional and cognitive state, affecting task performance [7–9,21,22].

2.3. Complexity Measures for Visual Scanning

In this paper, the complexity measures based on information entropy, which have
been used for the assessment of visual scanning efficiency, are introduced.

The entropy rate can be identified by multiplying the summation of inverse transition
durations and the normalized entropy of fixation sequence together [23]. The entropy of
fixation sequence (EoFS) is the Shannon entropy of the probability distribution of fixation
sequences [24]. Gaze transition entropy (GTE) [25] is defined as a conditional entropy based
on the probability transition between Markov states (namely, the areas of interest (AOIs)).
Stationary gaze entropy (SGE) [25] gives the Shannon entropy based on an equilibrium
distribution of Markov states. The latest technique called time-based gaze transition entropy
(TGTE) [9], which uses time bins to realize the idea of GTE, is proposed for handling visual
stimuli with dynamic changes.

3. The Proposed Methodology for New Measures
3.1. A Unidirectional Information Difference (UID)

As discussed in Section 1, head–eye coordination can be exploited as a measure of the
unidirectional information difference. Following (1), transfer entropy from head motion Y
to eye movement X, TEY→X , is defined as:
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TEY→X = H
(

Xt

∣∣∣Xt−1

)
− H

(
Xt

∣∣∣Xt−1, Yt−1

)
= ∑

xt ,
xt−1,yt−1

p
(

xt, xt−1, yt−1

)
log2

p(xt|xt−1, yt−1)

p(xt|xt−1)
,

(2)

Note that in this paper, the history lengths of X and Y are both taken as 1, as usually
performed in the literature [11]. Other possible options of the history length are outside of
this paper’s scope but will be considered in the near future. Here, p(·) and p(·|·) denote
the (conditional) probability distributions of gaze (xt) and head (yt) data. And similarly,
TEX→Y, transfer entropy from eye movement to head motion, is given as follows:

TEX→Y =H
(

Yt

∣∣∣Yt−1

)
− H

(
Yt

∣∣∣Yt−1, Xt−1

)
= ∑

yt ,
yt−1,xt−1

p
(

yt, yt−1, xt−1

)
log2

p(yt|yt−1, xt−1)

p(yt|yt−1)
.

(3)

Notice that the more predictivity of current eyes (X) is added to the past of head (Y),
the larger TEY→X is. Analogously, the more predictivity of the current head (Y) is added
to the past of eyes (X), the larger TEX→Y is. In this case, the unidirectional information
difference from head motion Y to eye movement X can be defined as TEY→X minus TEX→Y:

UIDY→X = TEY→X − TEX→Y. (4)

It is easy to see that UIDY→X is a methodology for identifying the Wiener and Granger
causality [14]. When UIDY→X > 0, the causal relationship is from the head to the eyes,
and the head–eye coordination presents as “head motion earlier than eye movement”.
When UIDY→X < 0, the causal relationship is from the eyes to the head, and the head–
eye coordination represents “eye movement earlier than head motion”. UIDY→X = 0
(practically UIDY→X approaches zero) means that causality between the eyes and the head
is not clear and that the head–eye coordination behaves ambiguously. In addition, the
reason for using TEY→X minus TEX→Y instead of TEX→Y minus TEY→X is that we found
TEY→X is statistically significant but TEX→Y is not and the value of TEY→X is larger than
TEX→Y (see details in Section 5.2).

3.1.1. Significance Test

Measurement variance and estimation bias usually occur when obtaining transfer
entropy, which is a common consideration [11]. Here, we take a hypothesis testing
approach [26] to combat this problem.

The standard statistical technique of hypothesis testing [11,26,27], due to its popular
use in handling time series data, is performed for determining whether there exists a valid
UIDY→X with a high confidence level. To accomplish this, the null hypothesis H0 taken
is that UIDY→X is small enough, that is, it means that X and Y do not influence each
other. And H1 supports a causal-effect relationship between X and Y, unidirectionally. To
verify or reject H0, surrogate time series XS

i and YS
i (i = 1, · · · , NS) of the original X and

Y, respectively, are used. For surrogate generation, random shuffle, which is simple yet
effective, is utilized, because in this paper, the history lengths of X and Y are both taken as
1, as usually used for the practical definition and computation of transfer entropy [11]. The
unidirectional information difference from YS

i to XS
i , following (4), is obtained as follows:

UIDYS
i →XS

i
= TEYS

i →XS
i
− TEXS

i →YS
i

. (5)

The significance level of UIDY→X is defined as:

λY→X =
UIDY→X − µYS

i →XS
i

σYS
i →XS

i

, (6)
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where µYS
i →XS

i
and σYS

i →XS
i

are the mean and standard deviation of UIDYS
i →XS

i
values, re-

spectively. The probability of rejecting H0 can be obtained based on Chebyshev’s inequality,
calculated as follows:

P(|UIDY→X − µYS
i →XS

i
| ≥ kσYS

i →XS
i
) ≤ 1

k2 = α, (7)

where 1 − α is the confidence level of rejecting H0 (and of accepting H1) and parameter k
is any positive real number. The number of surrogates, which is related to the confidence
level, is obtained as:

NS =
2
α
− 1 (8)

for a two-sided test.
In this paper, the parameter k used in (7) is taken as 6, resulting in a confidence level

of 97.3%, and this is a high requirement satisfied in practice [27]. That is, if the significance
level is bigger than 6 (λY→X > 6), then, equivalently, with a confidence level of more than
97.3%, there exists a unidirectional head–eye information flow from head motion to eye
movement (note this technique is called 6 − Sigma [26]; some other techniques based on a
p − value approach to statistical significance testing [28] could be attempted in the future).
In fact, according to statistical test theory [27], it is important to know that a minimum
confidence level, acceptable in practice, is 95.0% (here, the corresponding significance level
is 4.47). Notice that the significance and confidence levels play the same role in hypothesis
testing.

The UIDY→X and UIDYS
i →XS

i
computations, highlighted in red and blue boxes, re-

spectively, are illustrated in Figure 1. The example values of UIDY→X and UIDYS
i →XS

i
based on the gaze and head data of participant 5 in Trial 3 in our psychophysical studies
are also presented (here, UID⋆

Y→X and λ⋆
Y→X are especially used for emphasis; see all the

results relevant to the unidirectional information difference in Section 5.3). Clearly, a big
difference between UID⋆

Y→X = 0.068 (with a very high confidence level of 99.3% and a
very large significance level λ⋆ of 12.53) and UIDYS

i →XS
i

(µYS
i →XS

i
= 0.001, σYS

i →XS
i
= 0.005,

i = 1, · · · , NS) exists. For the driving activity of participant 5 in Trial 3, there appears a sig-
nificant unidirectional head–eye information difference from head motion to eye movement
in goal-directed sensorimotor tasks.

Figure 1. An illustration scheme for the computation of unidirectional information difference
UIDY→X .
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It is noticed that the significance test for the computation of the unidirectional infor-
mation difference described here is standard and general enough to be employed as well
for checking the statistical significance of the transfer entropy, as shown in Section 5.2.

3.2. A Normalized Unidirectional Information Difference (NUID)

In a goal-directed driving scenario, head–eye coordination corresponds to the state
of visual scanning and visual-cognitive processing (correspondingly, the attentional states
of drivers) [6–9], and meanwhile, this state signifies the performance of sensorimotor
tasks [21,22]. As discussed in Section 3.1, the unidirectional information difference from
head motion to eye movement in effect gives a quantitative estimation of the head–eye
coordination. Therefore, we hypothesize that the unidirectional information difference
should work well as a proxy of the driving performance. This hypothesis will be verified by
using the correlation analysis technique, which is a classic and popular tool for investigating
the relationship between variables [29].

Because a proxy indicator of driving performance actually contributes to an objective
and quantitative score, for the sake of comparing performances, we propose a normalized
unidirectional information difference from head motion to eye movement, NUIDY→X , for
being quantitatively compatible with driving performance, as follows:

NUIDY→X = NTEY→X − NTEX→Y, (9)

where

NTEY→X =
TEY→X − µYS→X

H
(
Xt

∣∣Xt−1
) (10)

is a kind of normalized transfer entropy, whose definition is effective and popularly
used [11]. Here, µYS→X is the mean of the transfer entropies TEYS

i →Xi
(i = 1, · · · , NS) from

surrogate head motion to original eye movement, and the conditional entropy H(Xt|Xt−1)
denotes the maximum of TEY→X . NTEX→Y can be obtained similarly:

NTEX→Y =
TEX→Y − µXS→Y

H
(
Yt
∣∣Yt−1

) . (11)

Note other normalization methods for transfer entropy and for the unidirectional
information difference could be performed in future work [30,31].

By normalization, both NTEY→X and NTEX→Y are constrained to the range between
−0.5 and 0.5. Consequently, the range of NUIDY→X is from −1 to 1. NUIDY→X differs
from UIDY→X when they take the zero value. For NUIDY→X, the zero value no longer
signifies the primary direction for assessing causality or specific types of head–eye coor-
dination. In the meantime, NUIDY→X retains an important property. That is, the larger
NUIDY→X is, the more it indicates a tendency toward “head motion earlier than eye move-
ment”, while a smaller NUIDY→X suggests a tendency toward “eye movement earlier
than head motion”. It is this property that leads us to choose NUIDY→X to calculate the
correlation with driving performance.

4. Experiment
4.1. Virtual Reality Environment and Task

Driving, which is commonly considered as a goal-directed activity [17,18], is taken as
the sensorimotor task in our psychophysical experiments. Due to its repeatable usability,
high safety and good performance, the (head-worn) virtual reality technique has become
a popular paradigm to study gaze shifts in sensorimotor tasks [19,32–34]. Therefore, our
study is performed based on head-worn virtual reality.

In this paper, the virtual environment for the psychophysical studies utilizes a four-
lane, two-way, suburban road consisting of straight sections, curves (4 left bends and 4 right
bends with mean radii of curvature of 30 m) and 4 intersections, with common trees and
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buildings. In order to focus on the study of goal-directed activity in sensorimotor driving
and on quantitatively investigating the specific head–eye coordination (with head motions
temporally preceding eye movements), irrelevant visual distractors such as the sudden
appearance of a running animal, which have been considered as ignored in the performing
of goal-directed tasks [35] (and also this topic relevant to irrelevant visual distractors has
been understood well in the research area [36]), are not included.

In our study, a single driving task, which is to smoothly maintain the driving speed at
40 km/h, is used. The inverse of the average acceleration during driving is taken as the
indicator of driving performance, as popularly performed in the literature [37]. That is,
the larger the average acceleration is, the worse the driving performance becomes, and
vice versa.

Example illustrations of the virtual environment and of performing a driving task are
presented in Figure 2.

Figure 2. In the virtual environment (bottom), with an HTC Vive headset and a 7INVENSUN
Instrument aGlass DKII eye tracker (top left), a participant is performing the driving task (top right).

4.2. Apparatus

The psychophysical experiments in this paper are conducted in a virtual reality envi-
ronment through the display via an HTC Vive headset [38]. And there is a 7INVENSUN
Instrument aGlass DKII eye-tracking piece of equipment [39] embedded in the headset. An
illustration of the headset with the embedded eye tracker is given in Figure 2. Eye rotation
and head motion (head rotation) data are recorded at a frequency of 90 Hz via the eye-
tracking equipment (gaze position’s accuracy is 0.5◦) and via the headset, respectively, both
being captured as pitch and yaw (as usually conducted in the relevant field [7]). Virtual
driving is performed based on a Logitech G29 steering wheel [40]. A desktop monitor is
utilized to display the captured data and driving activities of participants in the procedure
of the experiment.

4.3. Participants

Twelve people participated in the psychophysical study. Each participant took part
in four independent test sessions to have a large enough sample size for our study (see
details in Section 4.4). These participants, with normal color vision and normal/corrected-
to-normal visual acuity, were recruited from students at one of the authors’ universities
(7 male, 5 female; ages 22.9 ± 1.95). All of the participants held their driver licenses for no
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less than one and a half years. None of the participants had any adverse reactions to the
virtual environment utilized in this study. All participants provided written consent and
were compensated with payment. This study was approved by the Ethics Committee of
one of the authors’ universities under the title “Eye tracking based Quantitative Behavior
Analysis in Virtual Driving”.

4.4. Procedure

Each participant finished four test sessions, with an interval of one week between
every two consecutive tests, based on the same task requirements and driving routes. In
this study, a test session is represented as a trial. In total, there were 12 ∗ 4 = 48 valid trials
accomplished in the psychophysical experiments. Although this number of trials satisfies
the large-sample condition in classical statistics [41], in the near future, a larger sample size
could be utilized for making our proposed measures have more possible contributions to
practical behaviometrics applications.

Before each test, the purpose and procedure of psychological studies were introduced
to the participants. For the sake of high-quality data recordings, (a) all participants com-
pleted a 9-point calibration procedure prior to the experiments; (b) the headset was adjusted
and fastened to participants’ heads; (c) sight and eye cameras were adjusted to prevent hair
and eyelashes from obscuring and (d) the seat was adjusted to a comfortable position in
front of the steering wheel.

For each test session, first of all, conducting a 3-min period of familiarization was
introduced. Then, for a 3-min driving session, participants were instructed to comply with
driving rules: driving smoothly at a speed of 40 km/h and following the formulated routes
(trying to stay close to the center line).

5. Results and Discussion
5.1. Temporal Sequences of Head Motion and Eye Movement Data

Example data for head motion and eye movement are plotted as a function of time,
shown in Figure 3. As usually performed in the study of the coordination of head motion
and eye movement [7,9], the data of eye and head rotations in yaw are utilized in this paper.
It is obvious that head motion and eye movement always exist during driving. Furthermore,
the synchronized registration of the local extreme values of head motion and eye movement
data indicates, to a certain extent, an overall correspondence between two kinds of data,
clearly showing that the coordination of head and eyes does exist. We introduce an
evaluation measure for the amount of coordination of head and eyes (CoordAmount),
inspired by the widely used measure PSNR in the field of signal processing [42], as follows:

CoordAmount = 10 × log10

(
ScaleFactor2

Di f f

)
, (12)

where

Di f f =
1

num

num

∑
t=1

(yt − xt)
2 (13)

is the mean square difference (Euclidean distance) between gaze and head rotation data
(num is the number of time units (t) considered). ScaleFactor = 360 is the maximal absolute
difference between any two gaze and head data pair. CoordAmount quantifies the quality
of matching two kinds of rotation data streams according to data values and shows the
synergy of both rotation streams, providing a normalized measurement of the amount
of synergistic coordination of head and eyes. The greater amount of coordination exists,
the higher the CoordAmount becomes, and vice versa. The CoordAmount values, which are
31.45 dB and 33.09 dB for participants 1 (fourth trial) and 5 (third trial), respectively (in
Figure 3), are relatively high, and this verifies the existence of the coordination of head and
eyes. Note these two amounts of coordination for the two trials are close.

However, in fact, due to the lack of time sequence in its definition, CoordAmount can
only be used to determine the presence of head–eye coordination but cannot ascertain
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whether the coordination occurs with head motion preceding eye movement or vice versa.
For example, the results from CoordAmount indicate that participants 1 (fourth trial) and
5 (third trial) exhibited coordination between head and eye movements during the driving
process. However, it is only through a detailed analysis that we can determine whether
the head moves first or the eyes move first. In Figure 3, we have highlighted two specific
instances of head motion earlier than eye movement behaviors using boxes. In the box of
the upper row, the head yaw starts to consistently increase from its local minimum earlier
than the eye yaw, and in the box of the lower row, the head yaw starts to consistently
decrease from its local maximum earlier than the eye yaw. In addition, the corresponding
performance values are relatively diverse, 0.34 and 0.42 for the two participants, respectively.
The latter is 1.24 times as large as the former. Therefore, relying solely on CoordAmount
to determine the presence of head–eye coordination is insufficient. We need to ascertain
whether the head moves before the eyes or vice versa, which one dominates the entire
driving process and what their relationship is to driving performance. These are all
questions worthy of our attention.
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Figure 3. Examples of head and eye rotation data from the fourth and third trials of two participants,
1 and 5, upper and lower rows, respectively.

5.2. Transfer Entropies between Head Motion and Eye Movement

We first determine whether “head motion earlier than eye movement” and “eye
movement earlier than head motion” exist. Both “head motion earlier than eye movement”
and “eye movement earlier than head motion” have a significant impact on analyzing
whether the previous moment’s head motion (eye movement) has a notable influence on the
current moment’s eye movement (head motion). Therefore, we opt to use transfer entropy
to characterize this process, as discussed in Section 3.1. The larger TEY→X is, the more
predictivity of current X adds to the past of Y. Therefore, if TEY→X is statistically significant,
it indicates that during the driving process, head motion has conveyed a substantial amount
of information to eye movements, providing evidence for the existence of the head–eye
coordination “head motion earlier than eye movement”. The same applies to TEX→Y.

All the values of transfer entropies are listed in Table 1. A significant difference
between two transfer entropies TEY→X and TEX→Y is revealed via one-way analysis of
variance (ANOVA) (F(1, 94) = 80.25, p < 0.05), as illustrated in Figure 4. The transfer
entropy in the direction from head motion to eye movement, TEY→X, is much bigger
than that in the reverse direction, TEX→Y, with the averages of the former and latter
3.8 × 10−2 and 1.9 × 10−2, respectively. That is, TEY→X is twice as big as TEX→Y for
the experimentation data in this paper. Further, statistical significance testing, which
is completely similar to what has been described in Section 3.1.1, is used for checking
the statistical confidence levels of TEY→X and TEX→Y, entirely separately. It is observed
that the significance and confidence levels for TEY→X are 4.49 and 95.0%, respectively.
In contrast, the two corresponding values for TEX→Y are 1.46 and 53.4%, respectively.
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This means that TEY→X and TEX→Y are statistically acceptable and unacceptable at 5%
significance level, respectively. As previously mentioned, in goal-directed tasks, “head
motion earlier than eye movement” is the primary pattern of head–eye coordination [5].
The result, where TEY→X is significant and TEX→Y is not, validates our idea of using
transfer entropy to measure the existence of head–eye coordination patterns.

Figure 4. Transfer entropies between head motion and eye movement.

Table 1. Values of transfer entropies TEX→Y and TEY→X (×10−2).

Participant
Trial 1 Trial 2 Trial 3 Trial 4

X → Y Y → X X → Y Y → X X → Y Y → X X → Y Y → X

1 2.19 2.98 1.99 2.77 1.68 1.85 1.75 2.99
2 1.82 3.03 2.60 6.93 1.64 3.52 2.00 4.76
3 2.25 3.68 1.97 2.58 2.42 2.72 2.66 4.48
4 0.79 1.97 1.25 2.23 1.31 3.16 1.17 3.86
5 1.82 4.96 1.13 5.87 0.86 7.66 1.59 3.84
6 1.83 5.38 4.28 8.71 2.06 5.09 1.99 3.96
7 1.45 4.36 2.99 6.41 2.26 6.60 1.09 4.74
8 1.39 2.31 1.49 3.51 3.00 6.86 2.31 3.88
9 1.76 5.09 2.17 6.50 1.85 5.60 2.16 3.79
10 1.12 1.80 1.23 4.30 1.08 2.99 1.86 4.95
11 2.27 5.02 1.22 2.43 2.09 3.98 1.10 2.80
12 1.32 3.58 2.34 7.87 2.81 8.99 2.36 9.37

Furthermore, the lack of statistical significance in TEX→Y does not necessarily imply
the absence of eye movement followed by head motion throughout the entire driving
process. Rather, it signifies that the influence of head movements on eye movements
during driving is minimal. In such cases, we conclude that there is no significant head–eye
coordination with “eye movement earlier than head motion” during the driving process.

5.3. The Unidirectional Information Difference between Head Motion and Eye Movement

This section primarily investigates the primary pattern of head–eye coordination
during the driving process, whether it is “head motion earlier than eye movement” or
“eye movement earlier than head motion”. We employ a commonly used approach in
Wiener and Granger causality analysis, which involves calculating the difference in infor-
mation transfer between the two directions. We observe that TEY→X is greater than TEX→Y
and statistically significant at a 5% significance level, whereas TEX→Y is not statistically
significant. Therefore, we conclude that “head motion earlier than eye movement” pre-
dominates during the driving process, while “eye movement earlier than head motion” is
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attributed to data variability. Therefore, we opt for TEY→X as the minuend and TEX→Y as
the subtrahend when calculating the information difference. This choice ensures a positive
information difference and enhances the interpretability of its underlying meaning.

The unidirectional head–eye information difference UIDY→X results (as provided in
Table 2) are obtained with high significance levels (λY→X), which are presented in Table 3.
Almost all the λY→X values are larger than 6, that is, the corresponding confidence levels
are more than 97.3%. There are only two exceptional evaluations of λY→X, 5.7 and 5.5,
marked with boxes (Table 3), that are slightly lower than 6. Even here, the corresponding
confidence levels are 96.9% and 96.7%, respectively, and this is acceptable in statistics for
practical use [43]. The strict positive UIDY→X (Table 2) reveals that there indeed exists
a unidirectional information difference from head motion to eye movement (with high
confidence), in the procedure of performing goal-directed sensorimotor tasks.

Table 2. Values of unidirectional information difference UIDY→X (×10−2).

Participant Trial 1 Trial 2 Trial 3 Trial 4

1 0.79 0.78 0.17 1.24
2 1.21 4.33 1.88 2.76
3 1.43 0.61 0.30 1.82
4 1.18 0.98 1.85 2.70
5 3.14 4.73 6.80 2.25
6 3.55 4.43 3.02 1.97
7 2.91 3.42 4.33 3.65
8 0.91 2.02 3.86 1.57
9 3.33 4.33 3.75 1.62
10 0.68 3.06 1.91 3.09
11 2.76 1.21 1.89 1.70
12 2.26 5.53 6.18 7.01

Table 3. Significance levels λY→X for UIDY→X .

Participant Trial 1 Trial 2 Trial 3 Trial 4

1 8.89 9.18 15.25 10.23
2 17.33 18.08 7.83 5.68
3 17.01 5.48 11.20 11.64
4 11.94 15.03 12.25 16.67
5 16.02 12.18 12.53 8.02
6 15.86 20.18 21.13 17.15
7 17.28 19.36 26.34 22.89
8 7.86 13.92 13.58 10.74
9 16.40 17.84 17.37 13.94
10 14.32 16.86 13.14 14.47
11 19.35 12.71 18.87 19.43
12 14.67 12.52 16.69 15.06

5.4. The Normalized Unidirectional Information Difference between Head Motion and Eye Movement

Now, we aim to quantitatively characterize the relationship between head–eye co-
ordination and driving performance. We utilize the inverse of the average acceleration
(denoted by 1/AvgAcc) as a measure of driving performance. However, the correlation
between UIDY→X and driving performance was not statistically significant. Therefore, we
improved UIDY→X by adopting the normalization to obtain the normalized unidirectional
information difference (NUIDY→X). Although NUIDY→X alters the value range and the
meaning of its zero value, it still indicates an important property for practice. That is, a
higher NUIDY→X points out a stronger tendency toward “head motion earlier than eye
movements” and vice versa.

The results of the normalized head–eye unidirectional information difference
(NUIDY→X) and the corresponding driving performance (the inverse of the average ac-
celeration, denoted by 1/AvgAcc) are listed in Table 4. As a concrete instance, depicted in



Entropy 2024, 26, 3 12 of 15

Figure 3 together with the corresponding descriptions in Section 5.1, the two very different
NUIDY→X values obtained by participants 1 and 5 (in the fourth and third trials) are
−0.18 × 10−2 and 8.07 × 10−2, respectively. The large difference between these two val-
ues of NUIDY→X corresponds closely to the big difference between the two coordination
patterns of head and eyes of these two participants and, meanwhile, contrasts sharply
with the closeness of the two corresponding CoordAmount values. Importantly, this clearly
reveals that the proposed NUIDY→X, which represents the degree of head–eye coordi-
nation pattern, is largely related to driving activity and performance. More importantly,
NUIDY→X even enhances discriminating to differentiate the distinct driving activities
of the two participants under consideration (correspondingly, the two relatively diverse
values of driving performances are 0.34 and 0.42, respectively, with the latter 1.24 times as
big as the former). In fact, a significant correlation (p < 0.05) between the new normalized
information difference and driving performance, based on all the head and gaze data in
48 trials, is obtained via three correlation analyses [29], with a Pearson linear correlation
coefficient (PLCC), Kendall rank order correlation coefficient (KROCC) and Spearman rank
order correlation coefficient (SROCC) of 0.32, 0.27 and 0.41, respectively (Table 5). These
correlation coefficient values definitely indicate a statistically significant relationship be-
tween our proposal of normalized information difference and driving performance, as
popularly recognized in the literature [44]. By contrast, the measurements using the com-
pared techniques (Table 5) cannot show an acceptable association with the performance of
virtual driving (p > 0.05).

Table 4. Values of normalized unidirectional information difference NUIDY→X (×10−2) and driving
performance (1/AvgAcc).

Participant

Trial 1 Trial 2 Trial 3 Trial 4

NU IDY→X
(×10−2)

1/AvgAcc
(s2/m)

NU IDY→X
(×10−2)

1/AvgAcc
(s2/m)

NU IDY→X
(×10−2)

1/AvgAcc
(s2/m)

NU IDY→X
(×10−2)

1/AvgAcc
(s2/m)

1 −1.75 0.37 −1.13 0.43 −0.35 0.42 −0.18 0.34
2 1.23 0.71 2.77 0.64 3.11 0.69 5.05 0.89
3 1.66 0.45 1.65 0.41 −0.80 0.42 −0.28 0.40
4 4.85 0.72 1.50 0.56 4.45 0.56 4.84 0.52
5 5.95 0.44 6.02 0.48 8.07 0.42 4.47 0.55
6 4.18 0.25 −1.42 0.29 3.00 0.30 0.88 0.30
7 6.28 0.56 0.60 0.52 5.17 0.64 8.20 0.57
8 −2.54 0.35 2.15 0.46 2.58 0.40 0.91 0.40
9 3.40 0.62 1.25 0.44 −0.99 0.40 −1.04 0.47

10 3.21 0.44 7.97 0.51 8.45 0.36 5.93 0.50
11 4.76 0.45 2.41 0.42 4.12 0.44 3.15 0.38
12 2.39 0.64 2.69 0.59 4.35 0.55 2.93 0.71

The statistically significant positive correlation between NUIDY→X and driving per-
formance may be due to the fact that, as the degree of the “head motion earlier than eye
movement” increases, the driver’s preparation for the gaze shift becomes more adequate,
thus leading to better driving performance. This indicates that our experimental design
is effective. NUIDY→X, by measuring the patterns of head–eye coordination, has estab-
lished a correlation with driving performance. The mathematical essence of all the transfer
entropy-relevant formulas in this paper is well suited for assessing and quantifying head–
eye coordination. Prior to our research, no work had been able to demonstrate a significant
correlation between driving performance and the transfer entropy-based measure of head–
eye coordination. As a comparison, we also calculated other eye movement indicators
mentioned in Section 2.3 and methods commonly used in signal processing to analyze
the similarity between two signals, PSNR and SSIM [45]. We analyzed their relationship
with driving performance, as shown in Table 5. Among all methods, only NUIDY→X
showed a significant effect on driving performance. Our studies have effectively translated
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the abstract concept of head–eye coordination into an objective quantity and provided
meaningful insight into its influence on driving. Furthermore, we believe our methodology
offers a new perspective for digitizing similar abstract concepts.

Table 5. Correlation analysis between measures and driving performance.

Methods PLCC, p-Value KROCC, p-Value SROCC, p-Value

NU IDY→X 0.32, p < 0.05 0.27, p < 0.05 0.41, p < 0.05
TGTE 0.19, p > 0.05 0.19, p > 0.05 0.26, p > 0.05
GTE 0.07, p > 0.05 0, p > 0.05 −0.01, p > 0.05
SGE −0.07 p > 0.05 −0.09, p > 0.05 −0.15, p > 0.05
EoFS 0.01, p > 0.05 0, p > 0.05 −0.03, p > 0.05

Entropy rate −0.06, p > 0.05 −0.01, p > 0.05 −0.02, p > 0.05
Fixation rate −0.24, p > 0.05 −0.17, p > 0.05 −0.24, p > 0.05

Saccade amplitude 0.25, p > 0.05 0.11, p > 0.05 0.09, p > 0.05
PSNR 0.08, p > 0.05 0.11, p > 0.05 0.14, p > 0.05
SSIM −0.17, p > 0.05 −0.13, p > 0.05 −0.21, p > 0.05

Bold indicates the indicators proposed in this paper.

6. Conclusions and Future Works

In this paper, we designed a “top-down” goal-directed driving experiment based on
virtual reality to collect head and eye movement data from drivers. We treated head motion
data and eye movement data as two stochastic processes and calculated transfer entropy
from head to eye and from eye to head to determine the presence of head–eye coordination
in terms of “head motion earlier than eye movement” and “eye movement earlier than
head motion” . We discovered a significant existence of the head–eye coordination “head
motion earlier than eye movement” among drivers during driving, while there was no clear
evidence of “eye movement earlier than head motion” coordination. By calculating unidi-
rectional information differences, we established that head–eye coordination predominates
during driving. Without compromising the ability of NUIDY→X to measure head–eye
coordination patterns, we optimized unidirectional information differences, yielding nor-
malized unidirectional information differences. Notably, we found a significant correlation
between normalized unidirectional information differences and driving performance. This
discovery validates two key points: firstly, head–eye coordination during the driving
process does impact a driver’s performance, and secondly, our approach of quantifying
this abstract concept of head–eye coordination using transfer entropy is both feasible and
meaningful in practice.

In the future, transfer entropy, unidirectional information differences and its nor-
malized version can be applied to a broader range of abstract concepts, quantifying and
validating their practical significance. During the resampling process, particularly in the
resampling of multivariate time series, maintaining the auto-correlation of the time series
could be utilized to analyze the correlation between head–eye coordination [46] and also
to measure head–eye coordination. Furthermore, as mentioned in our paper, head–eye
coordination is not the sole factor influencing driving performance. Beyond head–eye
coordination, it is essential to identify additional elements that impact driving, allowing
for a more precise modeling of driver behavior.
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