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Abstract: As energy conversion systems continue to grow in complexity, pneumatic control valves
may exhibit unexpected anomalies or trigger system shutdowns, leading to a decrease in system
reliability. Consequently, the analysis of time-domain signals and the utilization of artificial in-
telligence, including deep learning methods, have emerged as pivotal approaches for addressing
these challenges. Although deep learning is widely used for pneumatic valve fault diagnosis, the
success of most deep learning methods depends on a large amount of labeled training data, which
is often difficult to obtain. To address this problem, a novel fault diagnosis method based on the
attention-weighted relation network (AWRN) is proposed to achieve fault detection and classification
with small sample data. In the proposed method, fault diagnosis is performed through the relation
network in few-shot learning, and in order to enhance the representativeness of feature extraction, the
attention-weighted mechanism is introduced into the relation network. Finally, in order to verify the
effectiveness of the method, a DA valve fault dataset is constructed, and experimental validation is
performed on this dataset and another benchmark PU rolling bearing fault dataset. The results show
that the accuracy of the network on DA is 99.15%, and the average accuracy on PU is 98.37%. Com-
pared with the state-of-the-art diagnosis methods, the proposed method achieves higher accuracy
while significantly reducing the amount of training data.

Keywords: fault diagnosis; energy conversion systems; relation network; attention mechanism;
pneumatic control valve

1. Introduction

In the control of production processes, pneumatic control valves serve as energy con-
version devices for regulating various process parameters such as medium flow, pressure,
temperature, and liquid level. As an energy conversion device, a pneumatic control valve
may experience unpredictable operational abnormalities potentially diminishing the sys-
tem’s reliability. Accurately and promptly identifying malfunctions in pneumatic valves
during operation is crucial for ensuring their safe operation, avoiding economic losses, and
preventing catastrophic accidents. As such, fault diagnosis of pneumatic valve equipment
is an essential component of intelligent manufacturing. It helps to maintain the safety and
health of mechanical equipment throughout its service life [1].

In recent years, deep learning-based fault diagnosis has made significant progress
due to the rapid development of deep learning. Unlike traditional methods that rely on
expert experience and manual feature extraction operations, which can be time-consuming,
error-prone, and inaccurate, deep learning-based methods enable accurate and efficient
fault diagnosis in an end-to-end manner [2]. In 2006, Bartys et al. [3] proposed the DAMAT-
ICS valve fault diagnosis model, which benchmarked a total of 19 fault tests present in
four main functional blocks, providing a benchmark for subsequent valve fault diagnosis
studies. In the same year, Witczak et al. [4] first proposed the use of neural networks to
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diagnose valve faults and applied the DAMATICS model to generate fault data to complete
classification and detection. In 2016, Cabeza et al. [5] proposed the use of Hopfield neural
networks to solve data loss and information scarcity problems in data acquisition systems.
In 2017, Oliveira et al. [6] applied weightless neural networks for the detection and di-
agnosis of dynamic systems, which use neurons based on RAM devices and can adjust
parameters more easily and quickly. In the same year, José et al. [7] used artificial neural
networks as a complement to conventional detectors through parameter identification,
correcting errors in the thresholds, and allowing the detectors to demonstrate better fault
detection performance. In 2021, Andrade et al. [8] proposed the use of a non-linear autore-
gressive neural network model with exogenous inputs to generate residuals and applied
isolation and decision tree methods to diagnose pneumatic regulating valve faults through
residuals. In 2022, Garg et al. [9] proposed the use of unsupervised and semi-supervised
deep learning methods for anomaly detection and judgment of valve data. Overall, these
studies demonstrate the significant potential of deep learning-based methods for improv-
ing the accuracy and efficiency of fault diagnosis in pneumatic control valves. They have
contributed to the development of new and innovative fault diagnosis approaches, and are
expected to have a profound impact on the field of intelligent manufacturing.

However, these methods require large amounts of labeled training data and expensive
computational resources, limiting their potential for practical application [10]. In addition,
collecting sufficient labeled fault data in special environments and fault states is challenging
and labor-intensive, making it difficult to obtain the necessary data for effective fault diag-
nosis. To the best of our knowledge, there is no previous research on accurately diagnosing
pneumatic valve faults with limited sample data. To address this issue, this paper proposes
a few-shot valve fault detection method based on AWRN. The proposed method uses an
embedding layer to extract sample information and trains a metric convolution network to
map similar samples closer together in space and dissimilar samples farther apart, thereby
achieving more accurate classification. Furthermore, an attention mechanism is introduced
in a weighted manner after the embedding layer to improve the feature extraction ability
and classification accuracy with small samples. This approach is a promising solution to the
problem of accurate fault diagnosis with limited sample data. Overall, this paper provides
valuable insights into the development of few-shot learning methods for pneumatic valve
fault diagnosis, which has been an underexplored area in the field. By addressing the
limitations of current methods and proposing a novel approach, this study contributes to
the advancement of intelligent manufacturing and the maintenance of safe and healthy
mechanical equipment.

The main contributions of this paper can be summarized as follows:

1. To address the problem of accurately diagnosing pneumatic valve faults with limited
sample data and to enhance the representative capability of feature extraction, this
paper proposes a weighted attention relation network (AWRN) that introduces the
attention mechanism to the relation network in a weighted manner. The applicability
of this method extends beyond pneumatic valve failures and can be extrapolated to
other industrial systems.

2. To alleviate the lack of a publicly available valve fault dataset, we constructed a
benchmark valve fault dataset based on the DAMATICS model, and make it pub-
licly available at https://github.com/Levin727/DA$_$database.git (accessed on
1 November 2023).

3. To increase the reliability of the system, we meticulously scrutinize and draw a de-
tailed comparison between two distinct attention-weighted methods. Additionally,
we rigorously derive the hyperparameters that are relevant to the network model.
The experimental results demonstrate that the proposed network achieves high ac-
curacy even with significantly reduced amounts of training data, and has a strong
generalization capability to different tasks.

The rest of the paper is organized as follows: Section 2 reviews the related work.
Section 3 describes the classification method and fault diagnosis process of the proposed

https://github.com/Levin727/DA$_$database.git


Entropy 2024, 26, 22 3 of 23

model. Section 4 constructs the DA dataset and presents the PU public dataset. Section 5
shows the experimental results. Section 6 summarizes the full paper.

2. Related Work

When faced with limited labeled samples, a popular approach for intelligent mechani-
cal fault diagnosis is the few-shot learning method. Zhang et al. [11] were the first to use
this approach in fault diagnosis in 2019, and since then, many studies have used few-shot
learning methods [12–15] to extract input signal features. Few-shot learning involves
training a model with only a small amount of sample data, and the model must learn
general patterns or features from these limited samples to handle a wider range of data [16].
Few-shot learning methods can be categorized into two main types: transfer-based learning
methods and meta-learning-based methods. Transfer-based learning methods transfer
existing knowledge to a new task, typically by using existing models to initialize new
models, which speeds up training and improves model performance. Representative
algorithms include MAML [17]. Meta-learning-based methods involve training with a
large number of similar tasks, allowing the model to adapt more quickly to a new task.
Chen et al. [18] provide a valuable overview of the development of deep transfer learning-
based bearing fault diagnosis since 2016, offering valuable guidance and important insights
for the current study. Few-shot learning methods based on meta-learning fall into four main
categories: metric-based methods, model-based methods, optimization-based methods,
and data augmentation-based methods. This paper focuses on metric-based methods for
few-shot learning. The operational symbols are shown in Table 1.

Table 1. Basic operation symbols in few-shot learning.

Notation Meaning

xS
i Input support set

xQ
j Input query set

i Each of these categories, ranging from 1 to k.

j The number of simultaneous branches per
iteration

k The number of categories
a ∈ Rk×H×W Vector

f S Support set feature
f Q Query set feature
f S′ New support set feature
f Q′ New query set feature
⊗ Kronecker product

LMSE Mean squared error
ri,j Similarity score
D Concatenation of feature maps at depth

AWRN Attention-weighted relation network

Few-shot learning based on metric methods aims to classify samples by measuring
their similarity. To achieve this, metric networks first extract sample information using
an embedding layer and train a metric function that maps similar samples to a closer
space and dissimilar samples to a more distant space. Siamese networks [19], prototypical
networks [20], and relation networks [21] are some of the classical methods used for this
purpose. Siamese networks rely on feature vectors obtained from neural networks and
use Euclidean distances to calculate similarity. Recently, many scholars [22–24] have also
proposed new models based on Siamese networks for fault diagnosis applications. Proto-
typical networks create a prototype representation for each classification based on a limited
number of labeled samples, and the distance between the prototype vector and the query
point of the classification is used to determine classification. Many recent studies [25–27]
have used Prototypical networks to learn feature mappings for fault diagnosis with limited
samples. For example, Chen et al. [28] proposed MoProNet for addressing cross-domain



Entropy 2024, 26, 22 4 of 23

few-shot rotating machinery fault diagnosis. MoProNet employs a progressive update
strategy for the support encoder to resolve prototype oscillation issues, thereby enhancing
network performance. Relation networks (RNs) obtain feature vectors through multiple
convolution layers and analyze the degree of matching by building a neural network to
calculate the distance between two samples.

As illustrated in Figure 1, compared to Siamese networks and prototypical networks,
relation networks can provide a non-linear classifier M(φ) that can learn relationships more
accurately. Dynamic evaluation functions are better than static evaluation functions in time
series anomaly detection, and a non-linear representation can evaluate relationships more
accurately, making relation networks more effective for fault signal analysis [9]. Therefore,
in this study, relation networks were selected for classifying and analyzing the fault dataset.
The proposed attention-weighted relation network in this paper builds upon the foundation
of the relation networks. Through the incorporation of an attention-weighted method, the
overall system performance is enhanced, leading to improved classification effectiveness.
The common definitions in relation networks are shown in Table 2.

Figure 1. Metric-based few-shot learning network.

Table 2. Some definitions in relation networks.

Description

Support set The support set is made up of a small number of data sets, acting as a reference
for the query set

Query set
The query set is made up of a small number of data sets to train the network

parameters by the degree of matching between the query set and the
support set

Source domain

The source domain is a dataset that has been acquired prior to the learning task
and used for training and modeling. Source domain data are typically collected

from one or multiple related domains and often come with labels or
manual annotations

Target domain The target domain can be newly collected data outside of the source domain or
a subset of samples within the source domain that have not been seen before

Training set A collection of data from the source domain to train a few-shot learning model,
usually consisting of a support set and a query set

Testing set Data from target domain sets for evaluating the performance of few-shot
learning models

shot Number of samples per category used to train the model
ways Number of categories in a few-shot learning task

The core concept of relation networks is to use the relationship between the support
set and the query set for classification in few-shot learning tasks. This process consists
of two stages: first, the embedding module extracts signal features from the support and
query sets respectively. Then, a similarity measure network is constructed to classify the
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signal features by comparing the similarity between the support and query set features.
The optimization formula is represented by the following Equation [21]:

θ∗F, θ∗M ← argmin
θF ,θM

LMSE(θF, θM) (1)

Here, θF and θM are the weights of the embedding layer and the similarity measure network,
respectively. The embedding layers of the support and query sets share the same weights.
The optimal parameters are obtained through iterative optimization.

In 2020, Chang et al. [29] introduced relation networks to fault diagnosis by proposing
a few-shot relation network with 2D data processed by STFT as input and using an attention
mechanism to enhance feature extraction. Wu et al. [30] compared meta-learning relation
networks (MRNs) with other common transfer methods to evaluate the performance of
metric-based networks in meta-learning transfer methods. However, few-shot learning in
fault diagnosis is still a relatively unexplored area, and relation networks may misclassify
relatively similar signals due to insufficient feature extraction and poor feature representa-
tion. Additionally, the network may focus solely on feature extraction without exploiting
the contrast between the support and query set features, which is a critical feature of
metric-based networks such as relation networks.

To address the issue of insufficient feature extraction capability, several studies have
combined transfer learning with the relation network [31–33]. This approach involves
training a good feature extractor using a large amount of data and then transferring it
to the target domain for feature extraction. Additionally, attention mechanisms have
been introduced to enhance the representativeness of the constructed model and improve
subsequent non-linear classification and classification accuracy. For instance, Yu et al. [34]
incorporated an attention mechanism in the feature extraction module to increase the weight
of important parts. Chen et al. [35] introduced a spatial attention mechanism to improve
the representativeness of the relation network. Zhang et al. [15] proposed the use of self-
attention mechanisms in relation networks for few-shot learning to model cross-regional
features. Furthermore, Gkanatsios et al. [36] proposed multi-headed attention mechanism
relation networks to capture the properties of datasets of different sizes while addressing
the problem of background category bias in multitasking. Attentional mechanisms mimic
human perceptual systems by selectively focusing on salient parts and recording those
features, which enhances the accuracy and generalizability of the network.

There are two primary approaches to utilizing attentional networks in the aforemen-
tioned studies: one is to incorporate an attentional mechanism in the feature extraction
module, and the other is to introduce an attentional mechanism after the feature module.
While both approaches enable the network to obtain better features and improve their
representativeness, they do not enhance the feature comparison between the support set
and the query set, which is required in metric networks. Therefore, in this paper, a special
attention-weighted structure is utilized to improve the contrast between the support set
and the query set by using the attention mechanism as weights and weighting it onto the
support set and the query set, respectively, to obtain better classification results.

3. The Proposed AWRN Fault Diagnosis Approach

As an energy conversion device, the control mode of a pneumatic control valve in-
volves the transmission of a 4–20 mA analog signal through the control system. This electric
signal is subsequently transformed into a pneumatic signal by the electrical conversion
unit within the valve positioner. The pneumatic signal then enters the pneumatic thin-film
actuator, where it is converted into kinetic energy, ultimately facilitating the movement of
the valve lever.

To address the challenge of high-accuracy diagnosis for pneumatic valve faults with
small sample data and to enhance the representative capability of feature extraction, we pro-
pose a weighted relation network incorporating an attention strategy, named the attention-
weighted relation network (AWRN). The AWRN approach includes a feature extraction
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module, a parallel attention-weighted module, and a similarity contrast module. Given the
support set samples xS

i and query set samples xQ
j as input, the feature extraction module

extracts the support features and query features, which are then combined as f S and f Q and
used as input to the parallel attention-weighted module. The parallel attention-weighted
module uses a parallel attention mechanism to extract salient features from the faulty data,
which are then weighted onto both the support set and the query set features to obtain
new support set features f S′ and new query set features f Q′ . Finally, the similarity contrast
module evaluates the features and outputs the evaluation score.

The benefits of our approach are twofold: First, the parallel attention mechanism
enables the extraction of salient features from the sample data that can be better used for
classification. Second, the weighting operation on both sets simultaneously can enhance
the contrast between the support and query sets, making features of the same class more
similar and features of different classes more dissimilar, thus improving the accuracy of
the network.

3.1. The Proposed AWRN Network

As illustrated in Figure 2, AWRN consists of three modules, a feature extraction
module, a parallel attention-weighted module, and a similarity comparison module.

Figure 2. Network architecture of AWRN. For ease of illustration, a four-way and one-shot classifica-
tion task was chosen for this figure. AWRN consists of three modules, a feature extraction module,
a parallel attention-weighted module, and a similarity contrast module. The leftmost rectangle
(support/query set) is the scalar and the square represents the 3D tensor. The white boxes indicate
the modules and denote the features generated by the support set and query set after the feature ex-
traction module, respectively; they represent the new features obtained after the attention-weighted
module. M( f S) denotes the attention weight parameter. The output score represents the score
obtained after the similarity contrast network, where a value closer to 1 indicates a darker color.

3.1.1. Feature Extraction Module

The feature extraction module is composed of four convolution blocks, each containing
64 channels, and a 3 × 3 convolution kernel. The first two blocks have a 2 × 2 maximum
pooling operation and are followed by batch normalization and the ReLU activation
function. The convolution block operation can be expressed as follows:

C3×3(xn) = f (wnxn + bn) (2)
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Here, C3×3 represents a 3× 3 convolution operation, xn is the input, and wn and bn are
the weight and bias of the nth layer of the convolution block, respectively. The maximum
pooling layer operation can be expressed as follows:

Pn(xn) = Max2×2(xn) (3)

Here, Max2×2 represents the maximum pooling operation, and 2 × 2 is the size of
the pooling window. The feature extraction module takes support samples xS

i and query
samples xQ

j as inputs and outputs the corresponding features, F
(
xS

i
)
∈ R1×H×W and

F
(

xQ
j

)
∈ R1×H×W . For multiple mappings, the support features F

(
xS

i
)

are separately

processed to form the combined feature f s ∈ Rk×H×W and the formula is as follows:

f s = D
(

Fθ

(
xS

i

))
, i = 1, 2, . . . , k (4)

Here,D represents the concatenation of feature maps at depth, k represents the number
of categories, and i represents each of these categories. The query feature size is Rj1HW ,
where j denotes the number of simultaneous branches per iteration. Here, we consider the
case where j = 1 for convenience. Then, the query feature at this point is f Q ∈ R1×H×W ,
which is then fed into the attention-weighted module along with the feature map f S

i and
f Q
j , respectively.

When using relation networks for few-shot fault diagnosis, the feature extraction capa-
bility may be limited, resulting in less representative features. This can lead to misjudgment
when dealing with relatively similar feature vectors. To address this issue, it is necessary to
sharpen the subtle differences in the feature vectors and utilize the attention mechanism to
enhance the comparison. Then, if an instance is in the same category as the query set, the
features will become more similar after attention weighting, while if the instance is not in
the same category, the features will generally appear more different, which helps reveal the
category distribution more accurately.

3.1.2. Parallel Attention-Weighted Module

To improve the accuracy of the network, we propose adding a parallel attention-
weighted network behind the feature network. The utilization of the parallel attention
mechanism proves effective in strategically emphasizing dynamic trends within time
series data, facilitating the identification of anomalies and mutations. Concurrently, this
mechanism enables the model to concentrate on distinct portions of the data across various
scales. Specifically, for a given support feature f s ∈ Rk×H×W , we use the attention module
M( f s) ∈ Rk×H×W to infer a three-dimensional weight vector that is then applied to both
the support features f s and the query feature f Q ∈ R1×H×W . Here, we demonstrated that
the attention-weighted method, when using the support feature, outperforms the method
that relies on the query feature, as evidenced by subsequent experiments. This process
results in a special weighting architecture with new weighted support features f S′ and
query features f Q′ , which are calculated as follows [37]:

f S′ = Aθ

(
f S
)
= f S + f S ⊗M

(
f S
)

(5)

f Q′ = Aθ

(
f Qk)

= f Qk
+ f Qk ⊗M

(
f S
i

)
(6)

Here, ⊗ denotes element-level multiplication, and f Qk denotes dimension raising. To
implement the parallel attention mechanism, both channel attention and spatial attention
can be used. Channel attention emphasizes attention to channel features in a given input,
while spatial attention branches emphasize features at different locations. The attention
mechanism is then fused into (5) and (6), and rewritten as follows:
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f S′ = f S ∗
(

1 + σ
(

BN
(

MLP
(

Avg
(

f S
i

)))
+ BN

(
C1×1

(
C3×3

(
C3×3

(
C1×1

(
f S
i

)))))))
(7)

f Q′ = f Qk ∗
(

1 + σ
(

BN
(

MLP
(

Avg
(

f S
i

)))
+ BN

(
C1×1

(
C3×3

(
C3×3

(
C1×1

(
f S
i

)))))))
(8)

Here, BN denotes batch normalization, MLP denotes multi-layer perceptron operation,
and Avg denotes average pooling operation. The new support features and query features
obtained through (7) and (8) are then inputted to the similarity contrast module.

3.1.3. Similarity Contrast Module

The similarity contrast module comprises two convolution layers, each with 64 chan-
nels and a kernel size of 3 × 3. After each convolution layer, batch normalization, ReLU
activation, and 2 × 2 max pooling are applied, followed by two fully connected layers. The
similarity scores are computed using the ReLU activation function and sigmoid function
normalization, and the fully connected operation is defined as follows:

FC(xn) = g(αnxn + βn) (9)

Here, FC represents the fully concatenated operation, xn denotes the input, and αn

and βn denote the weight and bias of the nth layer of the fully connected layer, respectively.
The similarity contrast module Sθ is capable of computing the relationship score between
the adjusted support feature f S′ and query feature f Q′ . Specifically, the output of Sθ is
represented as follows:

ri,j = Sθ

(
f S′ , f Q′

)
(10)

Here, ri,j is the score obtained after a similarity contrast network, which reflects the
similarity between the support set and the query set. A higher relationship score implies
that the support and query sets belong to the same category, while a lower relationship
score indicates that they belong to different categories.

To facilitate comprehension, Figure 3 provides a detailed illustration of the feature
extraction module, the parallel attention-weighted module, and the similarity contrast
module. The channel size (C) is fixed at 64, and the number of channels of all gray
convolution blocks is also set to C. The attenuation ratio (r) is used to increase the coding
implication and reduce the computational effort. The term “attention weighted” refers to
the process of applying attention weights to the target, as shown in (7) and (8).

Figure 3. Details of the structure in the AWRN network. (a) Feature extraction module; (b) parallel
attention-weighted module; (c) similarity contrast module.
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3.2. The Training Algorithm of AWRN

To explain the overall optimization objective, we can rewrite (10) as follows:

ri,j = Sθ

(
Aθ

(
D
(

Fθ

(
xS

i

)))
, Aθ

(
Fθ

(
xQ

j

)))
i = 1, 2, . . . , k (11)

For training the optimal model, we used the mean square error (MSE) to calculate the
loss function of the AWRN:

LMSE =
N

∑
i=1

K

∑
j=1

(
ri,j − 1 ·

(
yi == yj

))2 (12)

Here, 1 indicates that yi is the same as and belongs to the same class. The pseudo-code
for the AWRN training algorithm process is shown in Algorithm 1.

Algorithm 1: Training algorithm for the AWRN (n-ways, Ns-shots). N is the number of examples in the training set, K is
the number of classes in the training set. n is the number of classes in every episode. RAND(S,N) represents the set of N
classes randomly selected from the set S without substitution. Ns is the number of support samples per class. Ns is
the number of query samples per class. Episodes denote the number of iterations.

Input: Training set D = ( xi ,yi ) , where i = 1,2. . . , N, each yi ∈ [1, K]. Dk is the subset of D, containing all elements that satisfy yi = k.
Output: The optimal model Fθ , Aθ , Sθ for the classification of test datasets.
1. Model initialization: Feature extraction module Fθ , parallel attention-weighted module Aθ , similarity contrast module Sθ

2. for i = 1 to episodes do
3. V ← Rand{(1, 2, . . . , K), n}▽ Select class indices for episodes
4. for k in {1 . . . n} do
Sk ← Rand{Dvk , Ns}▽ Select support samples
Qk ← Rand

{
Dvk \ Sk, Nq

}
▽ Select query samples

5. Forward update LMSE
(
θFθ

, θAθ
, θSθ

)
▽ update loss

6. Backward update Fθ , Aθ , and Sθ ▽ update model
7. end for
8. end for

The parameters of the model, assuming θFθ
, θAθ

and θSθ
parameters of the feature

extractor module Fθ , the attention-weighted module Aθ , and the similarity contrast module
Sθ , respectively, are updated according to the results of the loss function. The objective
formula for parameter training is as follows:

θ∗Fθ
, θ∗Aθ

, θ∗Sθ
← argmin

θFθ
,θAθ

,θSθ

LMSE(θFθ
, θAθ

, θSθ
) (13)

The optimal parameters θ∗Fθ
,θ∗Aθ

and θ∗Sθ
can be obtained by solving the objective

function shown in (13).

3.3. AWRN-Based Valve Fault Diagnosis Method

Information theory plays a crucial role in troubleshooting valve energy conversion
systems. The analysis of displacements and gas chamber pressures within valve energy
conversion systems is employed to identify and pinpoint faults.

The process of the AWRN-based valve fault diagnosis method is presented in Figure 4.
Firstly, data are collected from the sensors set up for the target valve and processed by
segmentation. Secondly, the processed data are fed into the AWRN network for training,
resulting in a final trained AWRN network. Thirdly, the network performance is tested
through test tasks and field application tasks. Finally, the network performance is evaluated
by comprehensively analyzing the results obtained from testing and field diagnosis. The
specific program for each step is as follows:

(a) Data acquisition: The target is selected, and a program is developed for configuring
sensors to the target valve. The acquisition device records the sensor data, segmented
according to 1600 sampling points to generate the original data set.
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(b) Training task: To begin, the training set is selected for the model training task. Next,
the training set is divided into support sets and query sets. The support and query sets
are then trained in the AWRN network. The training process consists of three steps:

1. The feature extraction module generates 3D features (category–channel–sample).
2. The parallel attention-weighted module is used to obtain new weighted features.
3. The similarity contrast module is used to calculate similarity scores, resulting in

a well-trained AWRN network.

(c) Test task/field application task: The test task and field application task are similar,
except that only the test task has a query set label. The sample data in the process
switches between test data and field data as the task changes. Firstly, the testing set
as well as the field data set is selected for the model test task or the field application
task. Secondly, the test task divides the testing set into a support set and a query set,
while the field application task divides the field data set into a support set with labels
and a query set without labels. Thirdly, the test task/field application task feeds the
support and query sets into the AWRN network for testing.

(d) Performance evaluation: The test task compares the results obtained from the test with
the label results and outputs the test results and accuracy for performance evaluation
based on classification performance. The field application task outputs test results
directly for performance evaluation.

Figure 4. Flow chart of the AWRN-based valve fault diagnosis method.

4. Dataset and Experimental Setup

The primary objective of fault diagnosis methodology is to examine the system, using
either frequency or time-domain analysis, to pinpoint the root cause of a fault when
it occurs. Initially, we analyze the time-domain signals generated by the DAMATICS
model to simulate and create a typical fault dataset within a valve energy conversion
system. Additionally, we provide the PU dataset containing frequency signals to assess the
network’s reliability.

4.1. The Construction of DA Valve Dataset
4.1.1. Basic Introduction and Model Building

DAMATICS [3] is a troubleshooting benchmark that consists of a process simulator and
real data from electro-pneumatic actuators used in a Polish sugar plant. The benchmark
includes a total of 19 fault tests in the four main functional blocks, such as positioner
faults, servo motor faults, controller faults, and general/external faults. However, the
small volume of real data, containing only four general/external faults, is not suitable for
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network training [38]. Therefore, we utilized the DAMATICS process simulator to generate
the fault data. Based on this model, we have improved the way the data are acquired, and
the structure of the model is shown in Figure 5.

Figure 5. Data generation model.

The benchmark data generator generates timing signals, which are then processed and
stored in a mat file. To ensure the comprehensiveness and technical nature of the experi-
ment, we specifically selected six faults that are more typical and difficult to distinguish, as
well as one health state for analysis. The selected faults are listed in Table 3.

Table 3. Typical Valve Failures.

Serial Number Fault Description Fault Category

F7 Media evaporation or critical flow Control valve failure
F10 Diaphragm perforation for servo motors Pneumatic servo motor failure
F12 Electrical converter failure Positioner failure
F15 Faulty positioner feedback Positioner failure
F16 Positioner supply pressure drop General faults/external faults
F17 Sudden changes in pressure outside the valve General faults/external faults

No-Fault No-Fault No-Fault

The faults selected for analysis include control valve faults, pneumatic servo motor
faults, positioner faults, and general external faults. The model parameters are determined
based on the type of fault, and the error data are generated using a data generation model.
The datasets are acquired through multiple acquisition points in succession, and the time-
domain signals for these health and faults are illustrated in Figures 6–12.

Figure 6. No faults with 5000 samples and 500 samples.
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Figure 7. The error of F7 with 5000 samples and 500 samples.

Figure 8. The error of F10 with 5000 samples and 500 samples.

Figure 9. The error of F12 with 5000 samples and 500 samples.

Figure 10. The error of F15 with 5000 samples and 500 samples.
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Figure 11. The error of F16 with 5000 samples and 500 samples.

Figure 12. The error of F17 with 5000 samples and 500 samples.

4.1.2. The Dataset Construction Steps

(a) Model initialization: First, calculate the relative error value by subtracting the displace-
ment output value from the given signal value. This relative error value represents
the variation in displacement signals across different cases. Save this value to a mat
file. Additionally, set the basic parameters, such as the simulation time (256,000), fault
start time (0), and end time (inf).

(b) Data acquisition: Obtain simulation data under different conditions by varying the
fault type, fault degree, and adding noise options. Specifically, we generate simulation
data for seven different conditions, including both noisy and noise-free cases, with a
large fault degree.

(c) Data processing: Remove the first 200 data points from the simulation data to obtain
stable fault conditions. The simulation data are represented as a two-dimensional ma-
trix, where the first row represents the sampling points and the second row represents
the displacement error values.

4.2. The Introduction of PU Dataset

The aim of using the PU dataset [39] in our study is to assess the efficacy of the
network introduced in this paper. Demonstrating its validation on a publicly accessible
dataset serves as a robust means to establish the network’s reliability. Experiments use
the PU dataset conducted by Paderborn University. This dataset consists of three types
of faults affecting gears: outer ring faults, inner ring faults, and inner and outer ring
faults. Different operating conditions in the dataset produce vibration signals with unique
characteristics that are used to indicate the health of the gears. The dataset includes both
artificially induced and naturally occurring damage, with piezoelectric accelerometers
used to collect vibration signals from bearing housings, sampled at 64 kHz. The dataset
comprises vibration signals generated by gears under various operating conditions, with
300 samples for each state, and each sample is a time series of length 1024. The dataset also
includes labels for each sample indicating its operating state.
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To assess the generalization and reliability of the selected network, this paper selected
14 representative categories from the PU dataset, including 1 healthy bearing, 4 naturally
faulty bearings, and 8 artificially damaged bearings, for the classification task under
operating conditions N09_M07_F10. The working conditions are shown in Table 4.

Table 4. Health and damage categories at N09_M07_F10 Working Conditions.

Name Reasons Location Features

KA01 Electric discharge machining Outer Ring Artificial damage
KA03 Electric discharge machining Outer Ring Artificial damage
KA05 Electric discharge machining Outer Ring Artificial damage
KA07 Borehole Outer Ring Artificial damage
KA08 Borehole Outer Ring Artificial damage
KI01 Electric discharge machining Inner Ring Artificial damage
KI03 Manual electric engraving Inner Ring Artificial damage
KI05 Manual electric engraving Inner Ring Artificial damage
K001 Health Health
KA04 Fatigue, electrical erosion Outer Ring Natural damage
KB23 Fatigue, electrical erosion Inner and outer rings Natural damage
KB27 Plastic deformation, fracture, and cracking Inner and outer rings Natural damage
KI04 Fatigue, electrical erosion Inner Ring Natural damage

4.3. Experimental Setup

To ensure a fair comparison, we replicated a portion of the network using the PyTorch
framework and compared our results with those reported in typical published papers. Our
experiments were conducted on a computer with an 11th Gen Intel(R) Core (TM) i7-1165G7
processor @ 2.80 GHz, 16 GB RAM (Intel, Santa Clara, CA, USA), and 64-bit Windows 11 OS.

Initially, we adjusted the hyperparameters of both networks and found that a reduction
ratio of 8 and a convolution kernel size of 3 × 3 produced better results after several
experiments. Table 5 shows the setting of the model hyperparameters, including the
number of channels, reduction ratio, number of categories in the sample, the number
of support samples per category, batch size, and number of iterations. We trained the
model using the Adam optimizer with a learning rate of 0.001 and reduced the learning
rate to half for every 1000 epochs trained. Cross-validation was used to evaluate the
classification properties.

Table 5. Setting of model hyperparameters.

Parameters Size Description

C 64 Number of channels used to describe the dimensionality of the feature
r 8 Reduction ratio

class 3, 5 Number of categories in the sample
shot 1–10 Number of support samples per category

batch
size 10 Number of simultaneous branches per iteration

Episode 100 Number of complete tasks of the agent interacting with the environment

5. Experimental Results

We evaluated the performance of the AWRN on two datasets: the DA valve failure
dataset and the PU gear failure dataset. We compared the AWRN network with several
typical networks and found that it significantly improved the expression of the network,
demonstrating its effectiveness. In addition, we conducted attention comparison and
ablation experiments to determine the optimal parameters for the attention models. Our
experimental results validate the broad applicability of this architecture to different at-
tention models and tasks. Finally, we discussed the effects of reduction ratio, expanded
convolution kernel size, and sample size on model accuracy. It has been observed that the
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selection of an appropriate attention framework along with specific hyperparameters can
significantly enhance modeling outcomes, thereby improving the classification accuracy of
the model.

5.1. Comparative Experiments Using Different Models

Due to the limited size of the public DA dataset, which only contains four types of
faults, it is difficult for the fault data to satisfy both the training and testing requirements
of the network. Therefore, many current papers use its process simulator to generate
the fault data [40–43]. However, the selection of fault samples and different sampling
methods may lead to unfairness. To compare the proposed method with commonly used
methods for valve fault diagnosis, this paper uses the three-way and six-shot approach as
an experimental comparator. Specifically, the following methods are compared:

(1) UAE, an unsupervised deep neural network that reconstructs the input through
a compressed latent representation using encoders and decoders, with a separate
encoder and decoder for each channel.

(2) TCN, a time convolution network that stacks TCN residual blocks for the encoder and
replaces the convolution in the TCN residual blocks with transposed convolution for
the decoder.

(3) LSTM, a long short-term memory recurrent neural network that models the process
of data generation from potential space to observation space and is trained using
variational techniques.

The model comprising PCA, UAE, LSTM, and TCN comes from Reference [9]. As
shown in Table 6, the AWRN network was compared with PCA, UAE, LSTM, and TCN
networks on DA after extracting fault features and obtaining classification results through
experiments. The proposed AWRN network achieves the highest classification accuracy
among the above algorithms. Compared with the best-performing UAE, the AWRN
network achieved 2.68% higher classification accuracy on DA. The comparison results
validate the effectiveness of the AWRN network and show that the AWRN network can
effectively solve the problem of the problem of accurately diagnosing pneumatic valve
faults with limited sample data.

Table 6. Accuracy comparison of DA dataset (%).

Model DA

PCA 82.45
UAE 96.47

LSTM 81.17
TCN 91.77

AWRN 99.15

Using the five-way approach as an experimental comparator in the PU public dataset,
the proposed method is compared with the commonly used fault classification methods in
few-shot learning to comprehensively evaluate the network performance.

(1) RRN: Strengthening the relation network, replacing the feature extractor in RN with a
transfer learning model, and using sticky note smoothing and the Adm optimizer to
improve the classification accuracy.

(2) MAML: Using several different tasks to train the model, and using the training data
from these tasks to the inner and outer loop of the initial parameters so that it can
quickly adapt to new tasks.

As shown in Table 7, after extracting the fault features and obtaining the classification
results experimentally, the AWRN network was compared with CNN, RRN, Siamese Net,
MAML, and Prototypical Networks on DA. The AWRN network achieved the highest
classification accuracy among these algorithms. On PU, the AWRN network achieved an
average classification accuracy of 1.09% higher than RRN. Moreover, with different sample
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sizes, the AWRN network outperformed the other algorithms, achieving a maximum
classification accuracy of 98.75% in five-shot.

Table 7. Accuracy comparison of the PU dataset (%).

Model PU

One-Shot Five-Shot Five-Shot Ten-Shot Overall

CNN 89.31 95.37 96.66 97.64 94.75
RRN [31] 96.0 96.9 97.7 98.5 97.28

Siamese Net [44] 88.75 92.34 94.21 95.37 92.67
MAML [44] 90.78 94.61 96.32 97.17 94.72

Prototypical Net [44] 89.17 93.14 95.57 96.39 93.57
AWRN 97.49 98.66 98.75 98.56 98.37

As shown in Figure 13, the accuracy of conventional methods rises with the continuous
increase in the number of data samples. In contrast, AWRN is specifically suited for
scenarios with fewer samples, exhibiting overfitting in cases with an excess of samples,
thereby diminishing accuracy. Overcoming this challenge constitutes a primary concern
for AWRN. Nevertheless, in the context of this study, AWRN’s accuracy surpasses that
of other networks by a significant margin. These results demonstrate the effectiveness
and generalization ability of the AWRN network, with superior classification accuracy for
various fault diagnosis tasks.

1shot 3shot 5shot 10shot
88

90

92

94

96

98

C
h
a
n
g
e
 
i
n
 
A
c
c
u
r
a
c
y
(
%
)

shot

 CNN
 RNN
 Siamese Net
 MAML
 Prototypical Net
 AWRN

Figure 13. Comparison of trends in different approaches.

5.2. Comparison of Attention-Weighted Methods

In the attention-weighted method, two approaches are employed for weight gen-
eration. The first method generates weight vectors from the support set features to be
applied to both support set and query set features. The second method generates weight
vectors exclusively from the query set features. A visual representation of these two distinct
attentional weighting methods is provided in Figure 14.
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Figure 14. Comparison of two attention-weighted methods.

The average accuracy for both the DA dataset and the PU dataset is computed through
validation on both datasets, and the results are presented in Tables 8 and 9.

Table 8. Attention ablation experiment for the DA dataset.

Model DA

one-shot five-shot
AWRN + Query feature 60.85 (±6.74) 61.08 (±16.06)

AWRN + Support feature 97.44 (±0.37) 98.85 (±0.36)

Table 9. Attention ablation experiment for PU the dataset.

Model PU

one-shot five-shot
AWRN + Query feature 39.11 (±4.36) 42.71 (±3.10)

AWRN + Support feature 97.49 (±0.40) 98.75 (±0.28)

Based on our findings, we can draw the conclusion that the accuracy results achieved
through attention weighting using support set features significantly outperform those
obtained when employing attention-weighted with query set features. The figure also
illustrates the rationale behind this observation. When using query set features for attention
weighting, although it enhances the similarity among similar features, it simultaneously
introduces ambiguous features among dissimilar features. It is this ambiguous feature
that leads to a substantial decline in overall classification performance and can even result
in network instability. In conclusion, under typical circumstances, attention mechanisms
prove advantageous in enhancing the performance of fault classification, but this is not a
universal certainty. The introduction of attention mechanisms should be carefully selected
based on the characteristics of the methodology.

5.3. Attention Ablation Experiments

To evaluate the generalization of the proposed architecture, we conducted experiments
by fusing different attention networks such as channel attention (SE), BAM, and CBAM,
while making some improvements to these networks. In these experiments, we set the
reduction ratio, r, to 8 and the convolution kernel size to 3 × 3, and measured the accuracy
of the DA dataset. The results are presented in Tables 10 and 11.

This ablation experiment involved removing the attention-weighted module to obtain
experimental results for the individual relation networks.



Entropy 2024, 26, 22 18 of 23

Table 10. Attention ablation experiment for the DA dataset.

Model DA

one-shot five-shot
RN 96.84 (±0.24) 98.72 (±0.13)

AWRN + Channel attention 96.98 (±0.55) 98.77 (±0.24)
AWRN + Serial attention 97.34 (±0.32) 98.84 (±0.44)

AWRN + Parallel attention 97.44 (±0.37) 98.85 (±0.36)

Table 11. Attention ablation experiment for the PU dataset.

Model PU

one-shot five-shot
RN 97.08 (±0.33) 98.23 (±0.25)

AWRN + Channel attention 97.45 (±0.51) 98.59 (±0.29)
AWRN + Serial attention 97.21 (±0.65) 98.61 (±0.16)

AWRN + Parallel attention 97.49 (±0.40) 98.75 (±0.28)

The proposed AWRN, using a parallel attention-weighted module, achieved the high-
est classification accuracy for both one-shot and five-shot in the aforementioned algorithm.
Analysis of the experimental results led to the following conclusions:

1. Fusing various attention mechanisms such as channel attention, serial attention,
and parallel attention on the AWRN network resulted in higher accuracy than the
traditional relation network. The weighted structure of AWRN can be fused with
multiple attention networks, making it highly applicable to different attention models.

2. Networks that incorporate both channel attention and spatial attention mechanisms
have higher average accuracy than those that use only the channel attention mecha-
nism. This is because the fault data, after passing through the feature network, become
three-dimensional vectors with spatial correlations. Thus, incorporating both types of
attention mechanisms increases the reliability of the weight vector.

3. The AWRN network with a parallel attention-weighted structure achieved the highest
classification accuracy. This is because the parallel structure of attention is more adapt-
able to the network structure of AWRN, resulting in more representative weighting
parameters compared to the serial structure.

When evaluating a model, an essential factor to consider is its ability to adapt quickly
to the task. Fast adaptation allows for a reduction in the number of required training
sessions and computation for the model. It has been observed that as the number of
episodes increases, the accuracy rate gradually stabilizes at a fixed value between 20 to
30 episodes. Therefore, to assess the model’s fast adaptation, we compare the accuracy rate
during the episodes. Figures 15 and 16 demonstrate how the accuracy changes for the four
models with increasing episodes.

Figure 15. The accuracies of different tasks and sample sizes: one-shot and five-shot of DA.
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Figure 16. The accuracies of different tasks and sample sizes: one-shot and five-shot of PU.

The results indicate that the AWRN incorporating the parallel attention mechanism
achieves the highest accuracy in both one-shot and five-shot conditions for both datasets.
This suggests that the network can quickly adapt to different tasks and sample sizes,
resulting in improved classification accuracy.

5.4. Experiments on the Selection of Reduction Ratio Parameters

The results demonstrate that the reduction ratio is directly related to the number of
channels in the channel attention and spatial attention branches. When applying AWRN
to extract weight vectors, a key point is the choice of the reduction ratio r in the model.
choosing a certain decay rate can better control the capacity and overhead of the module
and affect the ability of the model to extract weight vectors. the value of r is taken as 4, 8,
16, 32, and the average accuracy of the DA dataset and PU dataset is calculated and the
results are shown in Figures 17 and 18.

Figure 17. Relationship between reduction ratio and accuracy: one-shot and five-shot of DA.

Figure 18. Relationship between reduction ratio and accuracy: one-shot and five-shot of PU.

It can be seen that as the reduction ratio, r, increases, the accuracy rises and then
falls, reaching a maximum when r is 8. This indicates that as the reduction ratio increases
from 4 to 8, the accuracy increases, although the capacity decreases. As r continues to
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increase, the accuracy decreases slightly. This may be because the capacity is too small,
causing the network to ignore some weighting features during the reduction process, which
leads to a decrease in accuracy.

5.5. Experiments on Dilated Convolution Kernel Size Selection

The use of a certain dilated convolution kernel in spatial attention increases the
perceptual field size, which is important for aggregating contextual information in spatial
branches. When applying AWRN to a classification task, the selection of the size of
the dilated convolution kernel directly affects the representativeness of the new features.
The selection of a certain dilated convolution kernel affects the quality of the weighting
parameters and allows for a more reasonable distribution of the weighting parameters.
The convolution kernels were taken as 3 × 3, 5 × 5, and 7 × 7, respectively, and the
average accuracy of the DA dataset and PU dataset was calculated, and the results are
shown in Figure 19.

As can be seen from the figure, the classification accuracy is slightly higher when
choosing a smaller 3× 3 convolution kernel. When targeting simple 1D signals like the time
domain, choosing too large a perceptual field can result in a lot of spurious features, which
occurs for both one-shot and five-shot. Therefore, this situation is improved when a smaller
dilated convolution kernel is chosen, and the overall classification accuracy is improved.

Figure 19. Relationship between convolution kernel size and accuracy.

5.6. Relationship between Sample Size and Precision

A large body of literature demonstrates that as the sample size increases, a few-shot
network can learn more features, and that the number of samples determines the network’s
thickness. When applying AWRN to a classification task, the selection of sample size is
crucial, and selecting a certain sample size will increase the thickness of the network and
affect the quality of the weight parameters in the model. The value of ‘shot’ is varied from
1 to 10, where the step size is set to 1, and the average accuracy of both the DA and PU
datasets is calculated, and the results are shown in Figure 20.

It can be seen that as the number of shots increases, the accuracy rises and then falls,
and reaches a maximum when the shot is six. Meanwhile, in the process of rising, the
accuracy rises faster from one-shot to three-shot, while three-shot to six-shot rises slower.
After the six-shot, the accuracy falls in the opposite way. This suggests that as the number
of shots increases from one-shot to six-shot, the accuracy of the model plummets as the
network learns more features at first, and then becomes able to capture fewer new features,
making the accuracy rise slower, but the overall accuracy continues to improve. As the
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number of shots continues to increase, the accuracy drops slightly, probably due to the
model parameters being over-tuned and many spurious features being learned into the
network, resulting in a drop in accuracy. If given a higher number of shots, it would cause
the accuracy of the model to plummet, or even cause the model training to crash.

Figure 20. Relationship between the sample size and precision.

6. Results

As an energy conversion device, a pneumatic control valve may experience unpre-
dictable operational abnormalities potentially diminishing the system’s reliability. Gen-
erally deep learning requires many samples, but faults such as pneumatic valves often
exist where it is difficult to obtain a large number of samples to support high-performance
fault diagnosis. For the problem of accurately diagnosing pneumatic valve faults with
limited sample data, this paper proposes a few-shot valve fault detection method based on
a weighted attention relationship network (AWRN) to improve feature extraction capability
and network classification accuracy for efficient detection of valve faults. In order to verify
the effectiveness of the method, a DA valve fault dataset is constructed, and experimental
validation is performed on this dataset and another benchmark PU gear fault dataset. The
experimental results show that the proposed AWRN network, with an accuracy of 99.15%
on DA and an average accuracy of 98.37% on PU, compared with typical fault diagnosis
methods, the performance of the proposed method is superior, and the method can still
guarantee a high accuracy rate with a significantly lower amount of data for training. More
importantly, the AWRN network proposed in this paper has strong generalization capabil-
ity and wide applicability to different attention models and different tasks. The work in
this paper provides a new approach to achieve valve fault detection and classification with
small sample data. In our future work, the proposed method will be applied to various
energy conversion systems, encompassing components such as gears and control valves, to
facilitate offline diagnostics and analyze failures. Simultaneously, we plan to optimize the
network structure to enhance its resilience against overfitting.
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