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Abstract: A formulation of density functional theory (DFT) is constructed as an application of the
method of maximum entropy for an inhomogeneous fluid in thermal equilibrium. The use of entropy
as a systematic method to generate optimal approximations is extended from the classical to the
quantum domain. This process introduces a family of trial density operators that are parameterized
by the particle density. The optimal density operator is that which maximizes the quantum entropy
relative to the exact canonical density operator. This approach reproduces the variational principle of
DFT and allows a simple proof of the Hohenberg–Kohn theorem at finite temperature. Finally, as an
illustration, we discuss the Kohn–Sham approximation scheme at finite temperature.
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1. Introduction

Density functional theory (DFT) is one of the most widely used methods for calcula-
tions of the structure of inhomogeneous many-body systems including atoms, molecules,
liquids, solids, and surfaces [1,2] (for a pedagogic introduction, see [3]). The theory, which
finds its earliest roots in the Thomas–Fermi–Dirac model, was first introduced in its modern
form by Hohenberg and Kohn, who showed that the ground state of an electron gas in an
external potential can be uniquely characterized by the electron density [4], and by Kohn
and Sham, who showed how to include the effects of exchange and correlations [5]. The im-
plications of these ideas were soon extended to finite temperatures in the context of the
grand canonical framework [6] (see also [7–9] and references therein) and to the statistical
mechanics of non-uniform classical fluids, such as the liquid–vapor interface [10–13] (see
also [14] for more references).

In previous work, we derived the classical DFT as an application of the method of
maximum entropy [15]. A central concept is the use of entropy itself as a tool to generate
optimal approximations to probability distributions [16] in terms of those variables that
capture the relevant physical information, namely the particle density n(x). We showed
that the entropic DFT (eDFT) approach directly leads to Evans’ variational principle of the
classical DFT [11].

In this paper, we are concerned with the very foundations of the DFT framework and
our main goal is to extend the entropic DFT (eDFT) formalism to the quantum domain. We
emphasize that our goal is neither to derive an alternative to DFT nor to develop improve-
ments to the approximations that are inevitably necessary to the successful implementation
of DFT in practical applications. Although information theory has been used to quantify
chemical concepts [17,18], alternative information-theoretic interpretations of DFT have
been suggested [19,20], mostly based on the principle of minimum Fisher information [21].
Our reformulation stands out from three different aspects: First, the maximum entropy
foundation on which our formulation is constructed is a completely general method of
inference about quantum systems with incomplete information, regardless of the source of
the information. In this interpretation of the maximum entropy, information is neither a
physical quantity stored in the system, nor is an amount of uncertainty in the probability
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distribution or the density matrix; it is rather a constraint under which one is to update
their degree of rational belief. This is important, especially in the case of DFT. The con-
straint on the density function arises from a computational assumption that the particle
density function of the system is known. However, this information is neither gathered by
measurements nor directly obtained from the equilibrium density matrix. Second, we work
in the canonical ensemble with a fixed number of particles. This liberates the foundation of
DFT from the second quantization. Third and finally, our reformulation is carried out for
the more general DFT at finite temperature, which, to our knowledge, had not been tackled
by information-theoretic approaches prior to this work.

In Section 2, we review the use of relative entropy as a tool to update density operators
in response to new information and we extend the use of entropy as a tool to derive optimal
approximations from the classical context [16] to the quantum domain. In Section 3, we
construct the entropic DFT formalism and prove a form of the Hohenberg–Kohn theorem at
finite temperature within the canonical (fixed number of particles) framework. In Section 4,
as an illustration of the eDFT formalism, we discuss the Kohn–Sham model in the local
density approximation. Finally, in Section 5, we summarize our conclusions.

2. Preliminaries

The realization that a fundamental theory such as thermodynamics should be inter-
preted as an application of a general scheme for inference on the basis of information codi-
fied into constraints can be traced to Brillouin and Jaynes [22–26]. According to Jaynes—as
motivated by Shannon’s axioms [27]—entropy is interpreted as the amount of information
that is missing in a probability distribution. The preferred probability distribution is that
which agrees with what we know—the information codified into the constraints—but is
maximally ignorant about everything else. Thus, one is led to maximize the entropy subject
to constraints, a procedure dubbed the MaxEnt method.

A drawback of this approach is that the interpretation of entropy as an amount of
missing information is not completely satisfactory. To address this problem, Shore and
Johnson [28] proposed that one could avoid invoking questionable measures of information
by directly axiomatizing the method for updating probabilities through a variational
principle that involved maximizing an entropy functional satisfying certain desirable
properties. The question of why one should adopt a variational principle was later clarified
by Skilling [29], who proposed a simple ranking strategy; in order to select an optimal
distribution (he had in mind the more general case of positive additive distributions which
include, e.g., intensities in an image), one proceeds by ranking the distributions according
to some preference criteria and then choosing the one which ranks the highest. The ranking
scheme is naturally implemented by associating a real number—the entropy—to each
distribution with the preference criteria fixed through the axioms of Shore and Johnson.
In later work, the nature of the method of maximum entropy was further streamlined as a
scheme designed to update probabilities when confronted with new information. In this
approach, the question “what is information?” receives a very simple answer. Information is
just the constraints we decide to impose on our beliefs, and there is no need to define “amounts”
of information. The motivation behind the design criteria was clarified and their number
reduced from five to two [30–33] (reviewed in [34,35]).

2.1. The Quantum MaxEnt Method

The task of extending the method of maximum entropy to the quantum domain as a
method to update density operators was carried out by Vanslette [33]. The goal is to update
a prior density operator σ̂ when provided with new information in the form of the expected
value of some self-adjoint operators ⟨Âi⟩ = Ai. Vanslette showed that the Umegaki relative
entropy [36],

Sr[ρ̂|σ̂]
def
= −Tr(ρ̂ log ρ̂ − ρ̂ log σ̂) , (1)

provides the unique criterion to rank density operators ρ̂ relative to the prior σ̂.
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The maximization of Sr[ρ̂|σ̂] subject to the constraints ⟨Âi⟩ = Ai and normalization,

δ
[
Sr[ρ̂|σ̂] + α0(1 − Trρ̂) + ∑i αi(Ai − Trρ̂Âi)

]
= 0 , (2)

leads to the posterior density operator

ρ̂∗ =
1
Z

exp
(

log σ̂ − ∑i αi Âi

)
, (3)

where
Z(αi) = eα0 = Tr exp

(
log σ̂ − ∑i αi Âi

)
. (4)

Substituting ρ̂∗ back into Equation (1) gives the value of the maximized entropy,

S(Ai)
def
= Sr[ρ̂

∗|σ̂] = ∑i αi Ai + log Z . (5)

It is widely known that the classical MaxEnt method leads to a mathematical formalism
characterized by a contact structure (see, e.g., [37,38]). In a parallel development, the use of
Legendre transforms in the context of DFT has also been widely explored [7,39,40]. These
results can be extended to the quantum domain, leading to a similar contact structure (see,
e.g., [41]). The significance of these results is that the physical content of the formalism is
preserved under Legendre transformations quite independently of restrictions to thermal equi-
librium and of the physical significance of the so-called “free energies” or Massieu functions.

2.2. Optimal Approximations of Density Operators

The last prerequisite for the construction of the DFT formalism is a systematic method
of approximation for density operators. The method we adopt is an extension of the
technique developed by Tseng and Caticha in the classical context [16]. The problem is
that the exact probability distributions Q obtained using the MaxEnt method are often too
intractable to be useful in actual calculations. The solution is to consider a family of more
tractable trial distributions Pθ dependent on some parameters θ. The goal is to select the
trial distribution Pθ∗ that best approximates the exact distribution Q. In [16], it was argued
that the criterion to select the optimal parameters θ∗ is again provided by the method of
maximum entropy; the optimal Pθ∗ is that which is “closest” to the exact Q in the sense that
it maximizes the relative entropy S[Pθ |Q].

Next, we extend this approximation technique to the quantum domain. We consider a
family of tractable density operators ρ̂θ parameterized by parameters θ. The member of
the trial family ρ̂θ that best approximates the exact density operator ρ̂∗ is the one which
maximizes the entropy of ρ̂θ relative to ρ̂∗:

∂

∂θ
Sr[ρ̂θ |ρ̂∗]

∣∣∣∣
θ=θ∗

= 0 . (6)

As an example, consider the special case where ρ̂∗ and ρ̂θ take the exponential form,

ρ̂∗ =
1
Z

e−βĤ and ρ̂θ =
1

Zθ
e−βĤθ ; (7)

The Gibbs inequality,
Sr[ρ̂θ |ρ̂∗] ≤ 0 , (8)

reduces to the Bogolyubov inequality,

F ≤ Fθ + ⟨Ĥ − Ĥθ⟩θ , (9)

where
F = − 1

β
log Z , Fθ = − 1

β
log Zθ , and ⟨·⟩θ = Tr[ρ̂θ(·)] . (10)
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Thus, the argument above shows that the popular approximation method based on the
Bogolyubov inequality (see, e.g., [42]) is a special case of the more general approximation
method based on entropy maximization.

3. Density Functional Formalism

The goal of the DFT formalism is to find tractable approximations to study the structure
of matter. The first crucial step is to recognize that the quantity that captures the desired
structural information is the electron density n(x). We wish to design a formalism in which
the central role played by the electron density is explicitly displayed.

In the absence of magnetic fields, the time-independent Schrödinger equation for an
electron gas of N particles is

Ĥ|ψ⟩ = E|ψ⟩ , (11)

where

Ĥv = Ĥ(0) + V̂ = K̂ + Û + V̂ =
N

∑
i=1

p̂2
i

2m
+

e2

2

N

∑
j ̸=k

1
|x̂j − x̂k|

+
N

∑
l=1

v(x̂l) , (12)

and |ψ⟩ is an antisymmetrized product of N two-spinor orbitals. The potential Û describes
interparticle interactions and the potential V̂ describes interactions with nuclei and other
external potentials.

3.1. Introducing Density as the Relevant Variable

We are interested in the thermal properties of an inhomogeneous electron fluid, and
therefore, we need trial states that describe both thermal equilibrium and inhomogeneity.
The former is imposed by a constraint on the expected value of energy and the latter
is incorporated by constraints on the expected value n(x) of the electron density n̂(x).
The continuous density function n(x) plays a role analogous to the discrete parameters θ in
Equations (6)–(10).

Adopting a uniform prior, the relevant trial states are obtained by maximizing the entropy

Sr[ρ̂|1̂] = −Trρ̂ log ρ̂ , (13)

subject to the constraints

Trρ̂ = 1 , (14)

Trρ̂Ĥv = E , (15)

and Trρ̂n̂(x) = n(x) , (16)

where

n̂(x) =
N

∑
i=1

δ(x̂i − x) and
∫

d3x n(x) = N . (17)

To be clear, throughout this work, the trace is taken over the Hilbert space of a fixed number
N of particles, and in this respect, our formalism resembles the canonical ensemble approach.
Indeed, all states |ψ⟩ in the Hilbert space are eigenstates of the number operator,

N̂|ψ⟩ =
∫

d3x n̂(x)|ψ⟩ = N|ψ⟩ so that ⟨ψ|N̂|ψ⟩ = N , (18)

but they need not be eigenstates of the density operators n̂(x). Our formalism differs from
the canonical formalism in that Equation (16) represents an additional infinite number of
constraints—one constraint on the expected density function n(x) at each point in space.
Due to (18), the expected density function n(x) is not arbitrary; it is constrained to obey (18).
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Proceeding to the MaxEnt analog of Equation (3), we find the trial density operator

ρ̂n =
1

Zv
exp

(
−βĤv −

∫
d3x α(x)n̂(x)

)
, (19)

where

Zv(β; α] = Tr exp
(
−βĤv −

∫
d3x α(x)n̂(x)

)
, (20)

and where β and the infinite number of Lagrange multipliers α(x) are implicitly deter-
mined by

∂ log Zv(β; α]

∂β
= −E and

δ log Zv(β; α]

δα(x)
= −n(x) , (21)

with the additional constraint (17),∫
d3x n(x) = −

∫
d3x

δZv(β; α]

δα(x)
= N . (22)

The notation Zv(β; α] indicates that Z is a function of β and a functional of α(x) and
depends on v(x) through the Hamiltonian Ĥv. At this point in the argument, there is no
implication that the trial states ρ̂n are in any way more computationally tractable than the
exact state ρ̂∗ obtained from (19) by setting α(x) to zero.

Next, we calculate the entropy of ρ̂n relative to the uniform prior to define the trial
entropy,

Sr[ρ̂n|1̂] = βE +
∫

d3x α(x)n(x) + log Zv(β; α]
def
= Sv(E; n] . (23)

An important symmetry of the DFT formalism, which is what makes the whole DFT
formalism work, arises from the fact that the dependence of ρ̂n and Zv(β; α] on v(x) and
α(x) occurs only through the particular combination

αint(x) def
= α(x) + βv(x) . (24)

The reason for the subscript ‘int’, which denotes ‘intrinsic’, will become clear later in
Equation (56). This DFT symmetry implies that a change in the potential v(x) can be
compensated by a suitable change in the multiplier α(x) in such a way that αint(x) and
the expected density n(x) remain unaffected. From (12) and (24), we find that (20) can be
written as

Zv(β; α] = Tr exp
(
−βĤ(0) −

∫
d3x αint(x)n̂(x)

)
def
= Z(β; αint] , (25)

so that Equations (19) and (21) become

ρ̂n =
1

Z(β; αint]
exp

(
−βĤ(0) −

∫
d3x αint(x)n̂(x)

)
(26)

and

n(x) = − δ log Z(β; αint]

δαint(x)
. (27)

3.2. The Entropic DFT Variational Principle

The exact canonical density operator ρ̂∗ is found by maximizing (13) subject to (14)
and (15). The result can be read off Equation (19) by setting α(x) = 0:

ρ̂∗ =
1

Zv(β)
exp

(
−βĤv

)
and Zv(β) = Tr exp

(
−βĤv

)
. (28)
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(We use a star ∗ to denote exact canonical quantities.) The goal is to approximate ρ̂∗ by the
best matching member of the family {ρ̂n} with all density operators referring to the same β
and N. This involves maximizing the entropy of ρ̂n relative to ρ̂∗:

δSr[ρ̂n|ρ̂∗]
δn(x)

∣∣∣∣
β,N

= 0 . (29)

From (19) and (28), we find

Sr[ρ̂n|ρ̂∗] =
∫

d3x α(x)n(x) + log Zv(β; α]− log Zv(β) . (30)

Introducing a Lagrange multiplier α∗ to enforce the constraint on N, we have

δ

δn(x)

[
Sr[ρ̂n|ρ̂∗] + α∗

(
N −

∫
d3x′ n(x′)

)]
β

= 0 . (31)

From the construction above, one might expect that the optimal ρ̂n coincides with the
exact ρ̂∗. We can check that this is indeed the case. Substituting Equation (30) into (31), we
find ∫

d3x′
[

n(x′) +
δ log Zv(β; α]

δα(x′)

]
δα(x′)
δn(x)

= α∗ − α(x) (32)

The LHS vanishes by Equation (21). Therefore, the optimal ρ̂n is achieved for α(x) = α∗.
From (19), (28) and (30), we see that α∗ = 0, which means that imposing the N constraint
was unnecessary; the optimal density reproduces the exact density n∗(x), whether the
variations δn(x) preserve the total N or not.

We conclude that the entropic DFT variational principle,

δSr[ρ̂n|ρ̂∗]
δn(x)

∣∣∣∣
n∗(x)

= 0 , (33)

leads to an optimal ρ̂n which coincides with the exact canonical ρ̂∗ in Equation (28):

ρ̂
opt
n = ρ̂∗, where αopt(x) = α∗ = 0 . (34)

Thus, at this point, our “approximation” scheme is (trivially) exact; by explicit construction,
we have demonstrated the existence of a functional of the density n(x), β, and N—the
relative entropy Sr[ρ̂n|ρ̂∗]—that assumes its maximum value at the exact density n∗(x).
At this point, however, we have not yet shown that this variational principle is equivalent
to the thermal DFT principle derived by Mermin [6]. This we show next.

3.3. The DFT Theorem

Equations (23) and (30) allow us to write

Sr[ρ̂n|ρ̂∗] = −βΩv(β; n]− log Zv(β) (35)

where we have introduced the “free energy” functional

Ωv(β; n] def
= E − 1

β
Sv(E; n] . (36)

The new functional Ωv,

Ωv(β; n] = − 1
β

∫
d3x α(x)n(x)− 1

β
log Zv(β; α] , (37)
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allows us to rewrite the entropic variational principle (31) as

δΩv(β; n]
δn(x)

∣∣∣∣
n∗(x)

= 0 . (38)

The optimal density n∗(x) is found by minimizing Ωv(β; n] at fixed β and N. Furthermore,
from (37), the multipliers α(x) are obtained from

α(x) = −β
δΩv(β; n]

δn(x)
. (39)

From Equation (34), αopt(x) = α∗ = const, we obtain

∇ δΩv(β; n]
δn(x)

∣∣∣∣
n∗(x)

= 0 , (40)

which has been called the “core integro-differential equation of DFT” [11].
To proceed further, substitute (12), (15), into (36) to find

Ωv(β; n] = ⟨K̂ + Û⟩ρ̂n +
∫

d3x v(x)n(x)− 1
β

Sv(E; n] , (41)

so that
Ωv(β; n] = Fv(β; n] +

∫
d3x v(x)n(x) , (42)

where we have introduced

Fv(β; n] def
= ⟨K̂ + Û⟩ρ̂n −

1
β

Sv(E; n] . (43)

We are now ready to state the finite temperature DFT theorem.

Theorem 1 (The Density Functional Theorem). The density functional Fv[n] is independent of
the external potential v(x),

δFv(β; n]
δv(x)

∣∣∣∣
β,n(x)

= 0 . (44)

This result justifies dropping the index v,

F(β; n]
def
= Fv(β; n] , (45)

and referring to F(β; n] as the intrinsic density functional (The term ‘intrinsic’ indicates that
F(β; n] is independent of the external potential v(x)).

Proof. The crucial observation behind the entropic DFT formalism is that ρ̂n and Zv(β; α]
depend on the external potential v(x) and the Lagrange multiplier function α(x) only
through the particular combination αint(x) defined in (24). Substitute (23)–(25) into (43)
to obtain

Fv(β; n] = − 1
β

∫
d3x αint(x)n(x)− 1

β
log Z(β; αint] . (46)

Then, the derivative δ/δv(x′) at fixed β and n(x) is

δFv(β; n]
δv(x′)

=
∫

d3x′′
δFv(β; n]
δαint(x′′)

δαint(x′′)
δv(x′)

∣∣∣∣
β,n(x)

. (47)
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Equation (26) shows that keeping n(x) fixed is achieved by keeping αint(x) fixed and
vice versa; therefore,

δαint(x′′)
δv(x′)

∣∣∣∣
β,n(x)

=
δαint(x′′)

δv(x′)

∣∣∣∣
β,αint(x)

= 0 , (48)

which implies (44) and concludes the proof.

Equations (19) and (40) suggest that (up to an additive constant) the multiplier α(x) plays
a role analogous to that of a chemical potential. Let us then use Equation (39) to introduce

γ(x) def
= −α(x)

β
=

δΩv(β; n]
δn(x)

, (49)

which we shall call the “local chemical potential”. The core Equation (40) has a natural
interpretation; the condition for neighboring volume elements to be in equilibrium is that
the local chemical potential be uniform:

∇γ(x)|n∗ = 0 . (50)

The optimal value of γ(x) is

γ∗ = −α∗

β
= 0 so that ∇γ∗ = 0 . (51)

From Equation (42), we have

δΩv(β; n] = δF(β; n] +
∫

d3x[n(x)δv(x) + v(x)δn(x)] , (52)

while Equation (49) gives

δΩv(β; n] =
∫

d3x
(

δΩv

δv(x)
δv(x) +

δΩv

δn(x)
δn(x)

)
=

∫
d3x[n(x)δv(x) + γ(x)δn(x)] . (53)

Subtracting these two equations gives

δF(β; n] =
∫

d3x[γ(x)− v(x)]δn(x) , (54)

which shows that δF/δn can be interpreted as the local intrinsic chemical potential,

δF(β; n]
δn(x)

def
= γint(x) , (55)

with

γ(x) = γint(x) + v(x) and γint(x) = −αint(x)
β

. (56)

Evaluating at n∗ gives the equilibrium intrinsic chemical potential,

δF(β; n]
δn(x)

∣∣∣∣
n∗

= γ∗
int(x) . (57)

(The term ‘intrinsic’ reminds us that both γint(x) and γ∗
int(x) are independent of the external

potential v(x)).
We mentioned earlier that the multiplier α(x) plays a role analogous to that of a chemical

potential. We can now be more explicit. Let

µ(x) = µ(x; n] and µint(x) = µint(x; n] (58)
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be the actual chemical potential and the intrinsic chemical potential at location x,

µ(x; n] = µint(x; n] + v(x) . (59)

Equilibrium among different volume elements is achieved when

∇µ(x; n]|n∗ = 0 =⇒ µ(x; n∗] = µ∗ = const. (60)

Then, Equations (49)–(51) lead us to identify

γ(x) = µ(x)− µ∗ so that γ∗ = 0 , (61)

and
γint(x) = µint(x; n]− µ(x; n∗] . (62)

We can express the eDFT variational principle in terms of F. Using Equations (38)
and (42), we find

δ

δn(x)

(
F(β; n] +

∫
d3x′ v(x′)n(x′)

)∣∣∣∣
n∗(x)

= 0 . (63)

To summarize, we have reproduced the foundational theorem behind the thermal DFT
formalism as an application of maximum entropy methods. This is the main result of this
paper. The treatment, so far, has been exact. In the next section, as an illustration of the
method, we adapt the well-known Kohn–Sham model to the entropic DFT approach.

4. The Kohn–Sham Approximation Scheme

The exact calculation of F(β; n] requires calculating Z(β; αint]. Unfortunately, this is
just as difficult as calculating the original canonical partition function Zv(β), which was
precisely what we wanted to avoid. An analogous problem arises in the standard many-
body theory; even for relatively small particle numbers, the calculation of the N-particle
wave function becomes impractically difficult because the wave function Ψ(⃗r1 . . . r⃗N) lives
in a 3N-dimensional configuration space. The DFT framework attempts to evade this
problem by focusing attention on the hopefully easier problem of calculating the density
n(x), which is a function that lives in a mere three dimensions. Unfortunately, the problem
is not solved, but merely transferred to the calculation of the functional F(β; n]. Not all
is lost, however, because the reformulation in terms of the density n(x) suggests new
useful approximations.

The discussion below parallels closely the ground state formulation of Kohn and
Sham [5]. It differs from the grand canonical thermal DFT of Mermin [6] in that here we
remain within the canonical framework of fixed particle number. In common with the
Hartree–Fock approximation, the Kohn–Sham model reduces an interacting many-particle
Schrödinger equation to that of a single particle in the presence of an effective potential that
includes exchange and correlation effects. An important advantage is that, unlike Hartree–
Fock, the Kohn–Sham framework can in principle be exact. In practice, however, the success
of the model hinges on whether the approximations for exchange and correlations are
sufficiently simple and accurate. Fortunately, the “local density approximation”, which is
exact for a uniform electron gas, and should remain valid for slowly varying potentials,
has turned out to be quite successful for the prediction of bond lengths and molecular
structures even when these involve inhomogeneities at the atomic scale.

Referring to Equation (43), the idea is that F(β; n] can be split into three terms,

F(β; n] = F0(β; n] + UC[n] + Fxc(β; n] . (64)
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The first term F0(β; n] represents the intrinsic free energy of a gas of non-interacting and
uncorrelated particles at the same temperature and density. The second term UC[n] is the
classical Coulomb interaction,

UC[n] =
e2

2

∫
d3xd3x′

n(x)n(x′)
|x − x′| , (65)

which represents the dominant contribution from the interparticle potential term ⟨Û⟩ρ̂n

in (43). The third term Fxc(β; n] is a correction that accounts for all additional exchange and
correlations effects. To the extent that we can define Fxc(β; n] to be the difference

Fxc(β; n] def
= F(β; n]− F0(β; n]− UC[n] , (66)

Equation (64) is trivially exact.
We are now ready to substitute (64) into the eDFT variational principle (63). The

result is [
δF0

δn(x)
+ v(x) +

∫
d3x′

e2n(x′)
|x − x′| + vxc(x; n]

]
n∗(x)

= 0 , (67)

where we introduced
vxc(x; n] def

=
δFxc

δn(x)
. (68)

So far this is exact. However, to make further progress, we note that although exchange cor-
relations are intrinsically non-local, for a thermal system, we can assume that entanglement
effects are appreciable only over short distances. Therefore, it might not be unreasonable to
approximate Fxc by a sum over independent volume elements. Accordingly, we adopt the
so-called local density approximation,

Fxc(β; n] ≈ FLDA
xc (β; n] =

∫
d3x fxc(n(x))n(x) , (69)

where the function fxc(n) is assumed to be known; it is the exchange correlation free energy
per particle for a uniform electron gas with density n. The corresponding potential

vxc(x) =
d

du
( fxc(u)u)

∣∣∣∣
u=n(x)

(70)

is therefore also known.
To find the optimal density n∗(x) that solves the variational Equation (67), we can use

the same trick introduced by Kohn and Sham. They noticed that their variational equation
for the ground state—the analogue of our Equation (67)—is exactly of the form one obtains
for a gas of non-interacting and uncorrelated particles moving in an effective single-particle
potential. This leads us to rewrite (67) as[

δF0

δn(x)
+ veff(x)

]
n∗(x)

= 0 , (71)

where

veff(x) = v(x) +
∫

d3x′
e2n(x′)
|x − x′| + vxc(x) . (72)

Thus, the problem of N interacting particles has been translated into the problem of a single
particle moving in a density-dependent effective potential created by all the other particles.
This shows that we can adopt the same iterative procedure followed with the Hartree
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self-consistent potential. If n(j)(x) is the density at the jth iteration, use (72) to construct the
potential v(j)

eff(x), and solve the single-particle equation,[
−1

2
∇2 + v(j)

eff(x)
]

ψ
(j)
k (x) = ε

(j)
k ψ

(j)
k (x) . (73)

Then, we construct the density n(j+1)(x) for the next iteration as the thermal average,

n(j+1)(x) =
kmax

∑
k=1

|ψ(j)
k (x)|2

1 + exp[β(ε(j)
k − µ)]

(74)

where the cutoff kmax is such that the occupation of orbitals with k > kmax can be neglected
and µ is found by imposing

∫
d3x n(x) = N. The process is repeated until convergence to

the optimal n∗ is achieved.
Just as in the standard Kohn–Sham model, neither the single-particle potential veff(x) nor

the wave functions ψk and energies εk are to be given any real physical interpretation. They
are auxiliary quantities whose only purpose is the calculation of the physical density n∗(x).

5. Conclusions

To summarize our conclusions:
We have produced a reconstruction of DFT that makes explicit how DFT fits within an

ongoing research program that places the concepts of entropy and information at the very
foundation for all of physics (see, e.g., [34]). This includes statistical mechanics [22–26],
quantum mechanics [35,43], and as we have shown in this work, also the main techniques
to study structure—variational principles including mean field methods and DFT.

We extended the use of entropy as a systematic method to generate optimal approxi-
mations from the classical to the quantum domain. This allowed an entropic reconstruction
of quantum DFT. This process involves a family of trial density operators parameterized by
the particle density. The optimal density operator is found by maximizing the quantum
entropy relative to the exact canonical density operator. This approach reproduces the
variational principle of DFT and allows a proof of the Hohenberg–Kohn theorem at finite
temperature that is simpler in that it evades some of the subtleties of the ground state
formalism. Our formalism differs from previous approaches in that (i) the central role of
entropy is explicit, and (ii) we remain with the canonical ensemble formalism.
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