# Entropic Density Functional Theory

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

#### 2.1. The Quantum MaxEnt Method

#### 2.2. Optimal Approximations of Density Operators

## 3. Density Functional Formalism

#### 3.1. Introducing Density as the Relevant Variable

#### 3.2. The Entropic DFT Variational Principle

#### 3.3. The DFT Theorem

**Theorem 1**(The Density Functional Theorem)

**.**

**Proof.**

## 4. The Kohn–Sham Approximation Scheme

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Kohn, W. Noble Lecture: Electronic structure of matter—Wave functions and density functionals. Rev. Mod. Phys.
**1999**, 71, 1253. [Google Scholar] [CrossRef] - Jones, R.O. Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys.
**2015**, 87, 897. [Google Scholar] [CrossRef] - Argaman, M.; Makov, G. Density functional theory: An introduction. Am. J. Phys.
**2000**, 68, 69. [Google Scholar] [CrossRef] - Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev.
**1964**, 136, B864. [Google Scholar] [CrossRef] - Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev.
**1965**, 140, A1133. [Google Scholar] [CrossRef] - Mermin, D. Thermal properties of inhomogeneous electron gas. Phys. Rev.
**1965**, 137, A1441. [Google Scholar] [CrossRef] - Eschrig, H. T > 0 ensemble-state density functional theory via Legendre transform. Phys. Rev. B
**2010**, 82, 205120. [Google Scholar] [CrossRef] - Pribram-Jones, A.; Pittalis, S.; Gross, E.; Burke, K. Thermal Density Functional Theory in Context. In Frontiers and Challenges in Warm Dense Matter, Lecture Notes in Computational Science and Engineering; Graziani, F., Desjarlais, M.P., Redmer, R., Trickey, S.B., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; Volume 96, pp. 25–60. [Google Scholar]
- Burke, K.; Smith, J.C.; Grabowski, P.E.; Pribram-Jones, A. Exact conditions on the temperature dependence of density functionals. Phys. Rev. B
**2016**, 93, 195132. [Google Scholar] [CrossRef] - Ebner, C.; Saam, W.F.; Stroud, D. Density-functional theory of simple classical fluids. I. Surfaces. Phys. Rev. A
**1976**, 14, 2264. [Google Scholar] [CrossRef] - Evans, R. The nature of the liquid-vapor interface and other topics in the statistical mechanics of non-uniform classical fluids. Adv. Phys.
**1979**, 28, 143–200. [Google Scholar] [CrossRef] - Tarazona, P. Free-energy density functional for hard spheres. Phys. Rev. A
**1985**, 31, 2672. [Google Scholar] [CrossRef] [PubMed] - Rosenfeld, Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett.
**1989**, 63, 980. [Google Scholar] [CrossRef] [PubMed] - Evans, R.; Oettel, M.; Roth, R.; Kahl, G. New developments in classical density functional theory. J. Phys. Condens. Matter
**2016**, 28, 240401. [Google Scholar] [CrossRef] [PubMed] - Yousefi, A.; Caticha, A. An entropic approach to classical density functional theory. Phys. Sci. Forum
**2021**, 3, 13. [Google Scholar] - Tseng, C.-Y.; Caticha, A. Using relative entropy to find optimal approximations: An application to simple fluids. Phys. A
**2008**, 387, 6759. [Google Scholar] [CrossRef] - Alipour, M.; Badooei, Z. Information theoretic approach provides a reliable description for kinetic component of correlation energy density functional. Int. J. Quantum Chem.
**2018**, 118, 23. [Google Scholar] [CrossRef] - Rong, C.; Wang, B.; Zhao, D.; Liu, S. Information-theoretic approach in density functional theory and its recent applications to chemical problems. Wires Comput. Mol. Sci.
**2020**, 10, 4. [Google Scholar] [CrossRef] - Nagy, A. Fisher information in density functional theory. J. Chem. Phys.
**2003**, 119, 9401. [Google Scholar] [CrossRef] - Nalewajski, R.F. Information principles in the theory of electronic structure. Chem. Phys. Lett.
**2003**, 372, 28–34. [Google Scholar] [CrossRef] - Freiden, B.R. Physics from Fisher Information: A Unification; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Brillouin, L. Science and Information Theory; Academic Press: New York, NY, USA, 1952. [Google Scholar]
- Brillouin, L. The negentropy principle of information. J. Appl. Phys.
**1953**, 24, 1152. [Google Scholar] [CrossRef] - Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev.
**1957**, 106, 620. [Google Scholar] [CrossRef] - Jaynes, E.T. Information theory and statistical mechanics II. Phys. Rev.
**1957**, 108, 171. [Google Scholar] [CrossRef] - Jaynes, E.T. Where do we stand on maximum entropy? In The Maximum Entropy Principle; Levine, R.D., Tribus, M., Eds.; MIT Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J.
**1948**, 27, 3. [Google Scholar] [CrossRef] - Shore, J.; Johnson, R. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory
**1980**, 26, 26–37. [Google Scholar] [CrossRef] - Skilling, J. The Axioms of Maximum Entropy. In Maximum-Entropy and Bayesian Methods in Science and Engineering: Foundations; Springer: Dordrecht, The Netherlands, 1988; pp. 173–187. [Google Scholar]
- Caticha, A. Relative Entropy and Inductive Inference. arXiv
**2004**, arXiv:physics/0311093. [Google Scholar] - Caticha, A.; Giffin, A. Updating Probabilities. arXiv
**2006**, arXiv:physics/0608185. [Google Scholar] - Caticha, A. Information and Entropy. arXiv
**2007**, arXiv:0710.1068. [Google Scholar] - Vanslette, K. Entropic Updating of Probabilities and Density Matrices. Entropy
**2017**, 19, 664. [Google Scholar] [CrossRef] - Caticha, A. Entropic Physics: Probability, Entropy and the Foundations of Physics. Available online: https://www.arielcaticha.com/ (accessed on 20 November 2023).
- Caticha, A. Quantum Mechanics as Hamilton-Killing Flows on a Statistical Manifold. Phys. Sci. Forum
**2021**, 3, 12. [Google Scholar] - Umegaki, H. Conditional expectation in an operator algebra. IV. Entropy and information. Kodai Math Sem. Rep.
**1962**, 14, 59–85. [Google Scholar] [CrossRef] - Rajeev, S.G. A Hamilton-Jacobi formalism for thermodynamics. Ann. Phys.
**2008**, 323, 2265–2285. [Google Scholar] [CrossRef] - Balian, R.; Valentin, P. Hamiltonian structure of thermodynamics with gauge. Eur. Phys. J. B
**2001**, 21, 269–282. [Google Scholar] [CrossRef] - Lieb, E.H. Density functionals for Coulomb systems. Int. J. Quantum Chem.
**1983**, 24, 243. [Google Scholar] [CrossRef] - Fukuda, R.; Kotani, T.; Suzuki, Y.; Yokojima, S. Density functional theory through Legendre transformation. Prog. Theor. Phys.
**1994**, 92, 833–862. [Google Scholar] [CrossRef] - Yousefi, A. Entropic Density Functional Theory: Entropic Inference and the Equilibrium State of Inhomogeneous Fluids; State University of New York at Albany ProQuest Dissertation Publishing: Albany, NY, USA, 2021; p. 28863510. [Google Scholar]
- Feynman, R.P. Statistical Mechanics: A Set of Lectures; CRC Press: Boca Raton, FL, USA, 1972. [Google Scholar]
- Caticha, A. The Entropic Dynamics Approach to Quantum Mechanics. Entropy
**2019**, 21, 943. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Yousefi, A.; Caticha, A.
Entropic Density Functional Theory. *Entropy* **2024**, *26*, 10.
https://doi.org/10.3390/e26010010

**AMA Style**

Yousefi A, Caticha A.
Entropic Density Functional Theory. *Entropy*. 2024; 26(1):10.
https://doi.org/10.3390/e26010010

**Chicago/Turabian Style**

Yousefi, Ahmad, and Ariel Caticha.
2024. "Entropic Density Functional Theory" *Entropy* 26, no. 1: 10.
https://doi.org/10.3390/e26010010