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Abstract: For the point-to-point additive white Gaussian noise (AWGN) channel with an eaves-
dropper and feedback, it has already been shown that the secrecy capacity can be achieved by a
secret key-based feedback scheme, where the channel feedback is used for secret sharing, and then
encrypting the transmitted message by the shared key. By secret sharing, any capacity-achieving
coding scheme for the AWGN channel without feedback can be secure by itself, which indicates that
the capacity of the same model without the secrecy constraint also affords an achievable secrecy rate
to the AWGN channel with an eavesdropper and feedback. Then it is natural to ask: is the secret
key-based feedback scheme still the optimal scheme for the AWGN multiple-access channel (MAC)
with an external eavesdropper and channel feedback (AWGN-MAC-E-CF), namely, achieving the
secrecy capacity region of the AWGN-MAC-E-CF? In this paper, we show that the answer to the
aforementioned question is no, and propose the optimal feedback coding scheme for the AWGN-
MAC-E-CF, which combines an existing linear feedback scheme for the AWGN MAC with feedback
and the secret key scheme in the literature. This paper provides a way to find optimal coding schemes
for AWGN multi-user channels in the presence of an external eavesdropper and channel feedback.

Keywords: AWGN MAC; feedback; secrecy capacity; wiretap channel

1. Introduction

The model of the wiretap channel lays the foundation of physical layer security (PLS).
In references [1,2], it has been shown that the secrecy capacity of the additive white Gaussian
noise (AWGN) wiretap channel model, which is the maximum transmission rate under
the perfect weak secrecy (PWS) constraint, is equal to the difference between the channel
capacities of the legal receiver and the eavesdropper, and this indicates that to achieve
secrecy, the loss of transmission rate is inevitable.

Though channel feedback does not increase the capacity of a point-to-point memory-
less channel [3], references [4,5] found that the feedback channel can be used to generate a
secret key shared between the legal parties. Then, the transmitter encrypting via the trans-
mitted message by this key, the secrecy capacity of the wiretap channel can be enhanced.
Subsequently, references [6,7] further showed that for modulo-additive and AWGN cases,
the secret key schemes in references [4,5] are optimal and achieve the capacities of the
same models without feedback and the secrecy constraint. Then it is natural to ask: is the
secret key-based feedback scheme still the optimal scheme for the AWGN multiple-access
channel (MAC) with an external eavesdropper and channel feedback (AWGN-MAC-E-CF),
namely, achieving the secrecy capacity region of the AWGN-MAC-E-CF? The answer to
the aforementioned question is no, and this is due to the fact that feedback increases the
capacity region of the AWGN MAC [8], and the secret key scheme only achieves the ca-
pacity region of the AWGN MAC without feedback. Then another question is: what is the
optimal feedback scheme for the AWGN-MAC-E-CF, and is the secrecy capacity region of
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the AWGN-MAC-E-CF equal to the capacity region of the AWGN MAC with feedback,
which is in parallel to the fact that the secrecy capacity of the point-to-point AWGN channel
with an eavesdropper and feedback equals the capacity of the same model without the
secrecy constraint [6,7].

In [9], it has been shown that the classical Schalkwijk-Kailath (SK) scheme [10], which
is a capacity-achieving scheme for the point-to-point AWGN channel with feedback, also
achieves the secrecy capacity of the point-to-point AWGN channel with an eavesdropper
and feedback. Motivated by [9], in this paper, we combine Ozarow’s SK-type scheme for
the AWGN MAC with feedback [8] and the secret key scheme in the literature to show
that the secrecy capacity region of the AWGN-MAC-E-CF is equal to the capacity region
of the AWGN MAC with feedback. The basic intuition behind this scheme is explained
below. In [9], it has been shown that the SK scheme satisfies the PWS by itself and achieves
the capacity of the point-to-point AWGN channel with feedback. In a similar way, we
show that Ozarow’s extended SK scheme [8] satisfies the PWS by itself, however, we find
that this SK-type scheme does not achieve the entire capacity region of the AWGN MAC
with feedback. To show that every point in the capacity region of the AWGN MAC with
feedback satisfies PWS, we split the transmitted message of one transmitter into two parts,
where one part together with the message of the other transmitter are encoded by Ozarow’s
SK-type scheme, and the other part is encrypted by a key which is generated by the channel
noise at the first time instant and this key is only known by the legal parties. Following the
security property of the SK-type scheme and the secret key, we show that every point in
the capacity region of the AWGN MAC with feedback satisfies PWS, which indicates that
the secrecy capacity region of the AWGN-MAC-E-CF is equal to the capacity region of the
AWGN MAC with feedback.

2. Model Formulation and Main Result
2.1. Model Formulation

For the AWGN-MAC-E-CF (see Figure 1), the i-th (i ∈ {1, 2, . . . , N}) channel inputs
and outputs are given by

Figure 1. The AWGN MAC with an external eavesdropper and channel feedback.

Yi = X1,i + X2,i + ηi, Zi = X1,i + X2,i + ηe,i, i ∈ {1, 2, . . . , N}
Z̃i−1 = Yi−1 + ηd,i−1, i ∈ {1, 2, . . . , N − 1}

(1)

where Xk,i (k ∈ {1, 2}) is the channel codeword subject to an average power constraint Pk,
namely, 1

N ∑N
i=1 E[X2

k,i] ≤ Pk, Yi is the legal receiver’s channel output. Here, note that the
eavesdropper eavesdrops the codewords X1,i and X2,i by an eavesdropping channel with
output Zi, and eavesdrops the feedback signal Yi−1 by another eavesdropping channel with
output Z̃i−1. In addition, ηi ∼ N (0, σ2), ηe,i ∼ N (0, σ2

e ), ηd,i ∼ N (0, σ2
d ) are AWGNs, and

they are independent of one another.
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The transmitted message Wk (k ∈ {1, 2}) is uniformly drawn inWk = {1, 2, . . . , |Wk|}),
and at time i ∈ {1, 2, . . . , N}, the codeword Xk,i (k ∈ {1, 2}) is a (stochastic) function of
the message Wk and the feedback Yi−1 = (Y1, . . . , Yi−1). At time N, the legal receiver
obtains (Ŵ1, Ŵ2) = ψ(YN), where ψ is the decoding function and the average decoding
error probability is denoted by

Pe = Pr[(Ŵ1, Ŵ2) 6= (W1, W2)] =
∑w1,w2∈W1,W2

Pr {ψ(YN) 6= (w1, w2)|(W1, W2) = (w1, w2) }
|W1||W2|

. (2)

The eavesdropper’s equivocation rate of W1 and W2 is denoted by

∆ =
1
N

H(W1, W2|ZN , Z̃N−1). (3)

A rate pair (R1, R2) is achievable with PWS if for any ε > 0 and sufficiently large N, there
exist channel encoders-decoders such that

log |Wk|
N

≥ Rk − ε, ∆ ≥ R1 + R2 − ε, Pe ≤ ε. (4)

The secrecy capacity region C f
s,mac of the AWGN-MAC-E-CF is composed of all achievable

secrecy rate pairs defined above.

2.2. Main Result

The following Theorem 1 shows that C f
s,mac equals the capacity of AWGN MAC with

feedback.

Theorem 1. C f
s,mac = C

f
mac, where C f

mac is the capacity region of the AWGN MAC with feedback [8]
(the model of Figure 1 without the secrecy constraint), and it is given by C f

mac =
⋃

0≤ρ≤1 R(ρ), and

R(ρ) =
{
(R1, R2) : R1 ≤

1
2

log
[

1 +
P1

σ2 (1− ρ2)

]
,

R2 ≤
1
2

log
[

1 +
P2

σ2 (1− ρ2)

]
,

R1 + R2 ≤
1
2

log
(

1 +
P1 + P2 + 2ρ

√
P1P2

σ2

)}
.

(5)

Proof. See Section 3.

Remark 1. Applying the secret key feedback schemes in [6,7] to AWGN MAC with feedback, it
is easy to see that any capacity-achieving coding scheme for the AWGN MAC without feedback
is secure by itself, which indicates that the secret key inner bound C f−in−1

s,mac on C f
s,mac is in fact the

capacity region Cmac of the AWGN MAC without feedback, i.e.,

C f−in−1
s,mac = Cmac =

{
(R1, R2) : R1 ≤

1
2

log
(

1 +
P1

σ2

)
,

R2 ≤
1
2

log
(

1 +
P2

σ2

)
, R1 + R2 ≤

1
2

log
(

1 +
P1 + P2

σ2

)}
.

(6)

Comparing (5) and (6), we conclude that the secret key scheme is not optimal for the AWGN-MAC-
E-CF. In the next section, we propose a new feedback scheme that achieves C f

s,mac in Theorem 1.

2.3. Numerical Example

The following Figure 2 plots C f
s,mac and C f−in−1

s,mac for P1 = 5, P2 = 5, σ2 = 5, σ2
e = 5. It

is easy to see that the gap is obvious and the secret key feedback scheme is not optimal for
the AWGN-MAC-E-CF.
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Figure 2. Capacity results on the AWGN-MAC-E-CF, where P1 = 5, P2 = 5, σ2 = 5, σ2
e = 5.

3. Proof of the Theorem 1

First, note that C f
s,mac cannot exceed the capacity region of the same model without

the secrecy constraint, i.e., C f
s,mac ⊆ C

f
mac. Then, it remains to be proven that any rate pair

(R1, R2) ∈ C
f
mac is achievable with PWS defined in (4), which is equivalent to show that

for any 0 ≤ ρ ≤ 1, R(ρ) in (5) is achievable with PWS. In Figure 3, we plot R(ρ) for all
0 ≤ ρ ≤ 1, where ρ∗ is the ρ satisfying the sum of the right hand side (RHS) of the first two
inequalities in (5), which equals the RHS of the third inequality, which is equivalent to ρ∗

(the solution in (0, 1)), of

σ2(σ2 + P1 + P2 + 2
√

P1P2ρ) = [σ2 + P1(1− ρ2)][σ2 + P2(1− ρ2)]. (7)

From Figure 3, we see that when ρ∗ < ρ ≤ 1, R(ρ) is included in R(ρ∗), hence we only
need to prove that for any 0 ≤ ρ ≤ ρ∗, R(ρ) is achievable with PWS. In the remainder of
this section, the proof is given by two cases, i.e., ρ = ρ∗ and 0 ≤ ρ < ρ∗. The details are
given below.

Figure 3. Illustration of R(ρ) for 0 ≤ ρ ≤ 1.

3.1. Case 1: ρ = ρ∗

In this case, we directly show that Ozarow’s SK-type feedback scheme for AWGN
MAC with feedback [8] is achievable with PWS. The basic intuition behind this scheme is
described below. First, recall that for the classical point-to-point SK scheme, the receiver
estimates the transmitted message by minimum mean square estimation (MMSE), and
through a noiseless feedback channel, the estimation error of the receiver’s estimation is
known by the transmitter since he knows the real transmitted message, and hence in the
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next time, the transmitter encodes this estimation error as a codeword and sends it to the
receiver with the AWGN channel. By iteration, the receiver’s estimation error vanishes
as the coding blocklength tends to infinity. Then, for the two-user AWGN MAC with
noiseless feedback, by viewing each other’s transmitted codeword as part of the channel
noise, this MAC model can be equivalent to two point-to-point AWGN channels with
noiseless feedback. In addition to this, to further increase the sum rate of this MAC model,
a modulation factor ρ is applied to the second user’s encoder, which helps to enhance the
mutual information between the transceiver. The detail of this scheme is given below.

For k ∈ {1, 2}, letWk = {1, 2, . . . , 2NRk} be the message set of Wk, divide the interval
[−0.5, 0.5] into 2NRk equally spaced sub-intervals, and each sub-interval center is mapped
to a value inWk. The center of the sub-interval with respect to (w.r.t.) Wk is denoted by Θk,
where its variance approximately equals 1

12 .
Coding procedure :
At time instant 1, Transmitter 2 sends nothing but zero, i.e., X2,1 = 0, and Transmitter

1 sends
X1,1 =

√
12P1Θ1 + S, (8)

where S ∼ N (0, σ2
0 ) is a Gaussian random variable and it is independent of the transmitted

message and all signals in Figure 1. Here, S is used to obtain a steady ρi for 2 ≤ i ≤ N, and
this will be explained later.

Once the legal receiver obtains Y1 =
√

12P1Θ1 + S + η1, his first estimation Θ̂1,1 about
Θ1 is given by

Θ̂1,1 =
Y1√
12P1

= Θ1 +
S + η1√

12P1
. (9)

For continuity, define the legal receiver’s first estimation of Θ2 as Θ̂2,1 = 0.
At the end of time instant 1, Transmitter 1 receives Y1 via channel feedback, and he

computes the error ε1,1 of the legal receiver’s first estimation about Θ1 by

ε1,1 = Θ̂1,1 −Θ1 =
S + η1√

12P1
, (10)

where the variance of ε1,1 is given by

α1,1 = Var(ε1,1) = E

[(
S + η1√

12P1

)2
]
=

σ2
0 + σ2

12P1
. (11)

At time instant 2, Transmitter 1 sends nothing but zero, i.e., X1,2 = 0, and Transmitter
2 sends

X2,2 =
√

12P2Θ2 + S. (12)

Once the legal receiver obtains Y2 =
√

12P2Θ + S + η2, his second estimation Θ̂2,2 about
Θ2 is given by

Θ̂2,2 =
Y2√
12P2

= Θ2 +
S + η2√

12P2
. (13)

For continuity, define the legal receiver’s second estimation of Θ1 as Θ̂1,2 = Θ̂1,1, which
indicates that ε1,2 = ε1,1, and α1,2 = α1,1.

At the end of time instant 2, Transmitter 2 receives Y2 via channel feedback, and
computes the error ε2,2 of the legal receiver’s second estimation about Θ2 by

ε2,2 = Θ̂2,2 −Θ2 =
S + η2√

12P2
, (14)
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where the variance of ε2,2 is given by

α2,2 = Var(ε2,2) = E

[(
S + η2√

12P2

)2
]
=

σ2
0 + σ2

12P2
. (15)

At time instant 3 ≤ i ≤ N, first, define

ρi−1 =
E[ε1,i−1ε2,i−1]√

α1,i−1α2,i−1
(16)

as the correlation coefficient of ε1,i−1 and ε2,i−1, which are the legal receiver’s estimation
errors of Θ1 and Θ2 at the time instant i− 1. Moreover, note that αk,i−1 (k ∈ {1, 2}) is the
variance of εk,i−1. Next, define the symbolic function sgn(ρi−1) of ρi−1 as

sgn(ρi−1) =

{
1, ρi−1 ≥ 0

−1, ρi−1 < 0
(17)

which is used as a modulation factor maximizing the mutual information between the
transmitters and the legal receiver. Then, Transmitters 1 and 2 send

X1,i =

√
P1

α1,i−1
ε1,i−1, X2,i =

√
P2

α2,i−1
ε2,i−1 · sgn(ρi−1), respectively. (18)

Once receiving Yi = X1,i + X2,i + ηi, the legal receiver updates his estimation of Θk by

Θ̂k,i = Θ̂k,i−1 − βk,iYi, (19)

where

βk,i =
E[εk,i−1Yi]

E[Y2
i ]

. (20)

Since εk,i = Θ̂k,i −Θk, (19) can be rewritten as

εk,i = εk,i−1 − βk,iYi. (21)

For 3 ≤ i ≤ N, the variance αk,i (k ∈ {1, 2}) of εk,i can be calculated as

αk,i = αk,i−1
σ2 + Pk(1− ρ2

i−1)

P1 + P2 + 2
√

P1P2|ρi−1|+ σ2 . (22)

Now, substituting (21) and (22) into (16), we have

ρi =
ρi−1σ2 − sgn(ρk−1)

√
P1P2(1− ρ2

i−1)√
[P1(1− ρ2

i−1) + σ2][P2(1− ρ2
i−1) + σ2]

, (23)

where

ρ2 =
σ2

0
σ2

0 + σ2
. (24)

In general, |ρi| 6= |ρi−1|, to find a steady point in |ρi|, i.e., |ρi| = |ρi−1|, we substitute (23)
into 1− ρ2

i = 1− ρ2
i−1, which is equivalent to

σ2
(

σ2 + P1 + P2 + 2
√

P1P2ρi−1

)
=
[
σ2 + P1(1− ρ2

i−1)
][

σ2 + P2(1− ρ2
i−1)

]
. (25)
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Here, note that the equation in (25) is exactly the same as that in (7), and ρ∗ is the solution to
this equation. Hence, choosing an appropriate variance σ2

0 of S such that ρ2 in (24) satisfies
ρ2 = ρ∗, we conclude that |ρi| = ρ∗ for all 2 ≤ i ≤ N.

Next, following the error probability analysis in [8], we conclude that if (R1, R2) ∈ R(ρ∗),
Pe → 0, as N → ∞. Now it remains to show that any rate pair (R1, R2) ∈ R(ρ∗) satisfies
PWS; see the details below.

Equivocation analysis: first, note that for 3 ≤ i ≤ N, the codewords X1,i and X2,i are
linear combinations of η1, . . . , ηi−1, and S, which is in parallel to that of the classical SK
scheme [9] for the point-to-point AWGN channel. Then the eavesdropper’s equivocation
rate is bounded by

∆ =
1
N

H(W1, W2|ZN , Z̃N−1)
(a)
=

1
N

H(Θ1, Θ2|ZN , Z̃N−1)

≥ 1
N

H(Θ1, Θ2|ZN , Z̃N−1, η1, . . . , ηN , S)

=
1
N

H(Θ1, Θ2|
√

12P1Θ1 + S + ηe,1︸ ︷︷ ︸
Z1

,
√

12P2Θ2 + S + ηe,2︸ ︷︷ ︸
Z2

, X1,3 + X2,3 + ηe,3, . . . , X1,N + X2,N + ηe,N︸ ︷︷ ︸
Z3,...,ZN

, η1, . . . , ηN , S,

√
12P1Θ1 + S + η1 + ηd,1︸ ︷︷ ︸

Z̃1

,
√

12P2Θ2 + S + η2 + ηd,2︸ ︷︷ ︸
Z̃2

, X1,3 + X2,3 + η3 + ηd,3, . . . , X1,N−1 + X2,N−1 + ηN−1 + ηd,N−1︸ ︷︷ ︸
Z̃3,...,Z̃N−1

)

(b)
=

1
N

H(Θ1, Θ2|
√

12P1Θ1 + ηe,1,
√

12P2Θ2 + ηe,2,
√

12P1Θ1 + ηd,1,
√

12P2Θ2 + ηd,2,

ηe,3, . . . , ηe,N , ηd,3, . . . , ηd,N−1, η1, . . . , ηN , S)
(c)
=

1
N

H(Θ1, Θ2|
√

12P1Θ1 + ηe,1,
√

12P2Θ2 + ηe,2,
√

12P1Θ1 + ηd,1,
√

12P2Θ2 + ηd,2)

(d)
≥

H(Θ1) + H(Θ2) + h(ηd,1) + h(ηd,2) + h(ηe,1) + h(ηe,2)

N
− h(

√
12P1Θ1 + ηe,1) + h(

√
12P2Θ2 + ηe,2)

N

−
h(
√

12P1Θ1 + ηd,1) + h(
√

12P2Θ2 + ηd,2)

N
(e)
≥ R1 + R2 −

1
N

[
1
2

log
(

1 +
P1

σ2
e

)
+

1
2

log
(

1 +
P2

σ2
e

)]
︸ ︷︷ ︸

information leakage on the forward channel

− 1
N

[
1
2

log

(
1 +

P1

σ2
d

)
+

1
2

log

(
1 +

P2

σ2
d

)]
︸ ︷︷ ︸

information leakage on the feedback channel

,

(26)
where (a) follows from the fact that Θk (k = 1, 2) is a deterministic function of Wk, (b) follows
from the fact that X1,i and X2,i are linear combinations of η1, . . . , ηi−1, and S, (c) follows
from the fact that Θ1, Θ2, ηe,1, ηe,2, ηd,1, ηd,2 are independent of ηe,3, . . . , ηe,N , η1,. . . , ηN ,
ηd,3, . . . , ηd,N , and S, (d) follows from the fact that Θ1, Θ2, ηe,1, ηe,2, ηd,1, ηd,2 are independent
of one another, (e) follows from H(Θ1) = NR1, H(Θ2) = NR2, and the variance of Θk
(k = 1, 2) equals 1

12 as N tends to infinity.
From (26), we conclude that choosing sufficiently large N, the secrecy constraint

∆ = H(W1,W2|ZN ,Z̃N−1)
N ≥ R1 + R2 − ε in (4) is guaranteed, which indicates that any pair

(R1, R2) in R(ρ∗) is achievable with PWS.

3.2. Case 2: 0 ≤ ρ < ρ∗

In this case, we show that the pentagon rate region R(0 ≤ ρ < ρ∗) in Figure 3 is
achievable with PWS. We only need to show that the corner point Q is achievable with PWS,
then by symmetry, Q′ is also achievable with PWS, finally, using time sharing between
Q and Q′, the line QQ′ is achievable with PWS, which indicates that the entire region
R(0 ≤ ρ < ρ∗) is achievable with PWS. The secure coding scheme that achieves Q is briefly
explained below. Divide the message W1 of Transmitter 1 into two parts, where one part
together with the message W2 of Transmitter 2 are encoded by the SK-type scheme shown
in case 1, and the other part of W1 is encrypted by a key which is generated by the channel
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noise at the first time instant and this key is only known by the legal parties. In case 1 we
have shown that Ozarow’s SK-type scheme is achievable with PWS, and note that the other
part of W1 is also achievable with PWS since it is protected by a secret key, which indicates
that the whole scheme satisfies PWS. The details of our proposed scheme are given below.

Message splitting: the message W1 is divided into two independent parts (Wa, Wb),
where Wa takes values inWa = {1, 2, . . . , 2NRa}, Wb takes values inWb = {1, 2, . . . , 2NRb},
and Ra + Rb = R1. W2 takes values inW2 = {1, 2, . . . , 2NR2}. Divide the interval [−0.5, 0.5]
into 2NRl (l ∈ {b, 2}) equally spaced sub-intervals, and each sub-interval center corresponds
to a value in Wl . The center of the sub-interval w.r.t. Wb (W2) is denoted by Θ1 (Θ2), where
the variance of Θk (k ∈ {1, 2}) approximately equals 1

12 .
Secret key generation: at time instant 1, Transmitters 1 and 2 send X1,1 = X2,1 = 0. The

legal receiver receives Y1 = X1,1 + X2,1 + η1 = η1, and transmits Y1 back to the transmitters.
Since Y1 is continuous, we can generate a secret key K with arbitrary rate from Y1 and this
key is uniformly distributed inWa = {1, 2, . . . , 2NRa}.

Encoding-decoding procedure: at time instants 2 and 3, the transmission codewords are
exactly the same as those in case 1 at time instants 1 and 2, namely, X1,2 =

√
12P1Θ1 + S,

X2,2 = 0, X1,3 = 0 and X2,3 =
√

12P2Θ2 + S.
At time instant 4 ≤ i ≤ N, Transmitters 1 and 2 send

X1,i = Ui + Vi = Ui +

√
(1− γ)P1

α1,i−1
ε1,i−1, X2,i =

√
P2

α2,i−1
ε2,i−1sgn(ρi−1), (27)

respectively, where Ui is the codeword of the encrypted sub-message Wa⊕K with transmis-
sion power γP1 (0 ≤ γ ≤ 1), Vi is the codeword of the sub-message Wb with transmission
power (1 − γ)P1. Here, note that the codeword UN

4 = (U4, . . . , UN) is generated by
Shannon’s random coding scheme [3], namely, each component of UN

4 is i.i.d. generated
according to the Gaussian distribution with zero mean and variance γP1, and UN

4 is one-to-
one mapped to a value of Wa ⊕ K. In addition, for 4 ≤ i ≤ N, Vi and X2,i (codewords for
Wb and W2) are generated in the same way as the SK-type scheme of case 1, where Ui + ηi is
viewed as the “channel noise” for the codewords Vi and X2,i. Note that ε1,i, ε2,i, α1,i, α2,i, ρi,
and sgn(ρi) are defined in the same way as those in Section 3.1 by replacing ηi by Ui + ηi.

Decoding procedure: successive cancellation decoding is employed, specifically, first,
viewing Ui + ηi as the equivalent channel noise and using the SK-type decoding scheme
in case 1, for sufficiently large N, Wb and W2 can be decoded by the legal receiver with
arbitrary small decoding error probability if

Rb ≤
1
2

log
[

1 +
(1− γ)P1

σ2 + γP1
(1− ρ∗∗2)

]
,

R2 ≤
1
2

log
[

1 +
P2

σ2 + γP1
(1− ρ∗∗2)

]
,

(28)

where ρ∗∗ is the solution in (0, 1) of

(σ2 + γP1)[σ
2 + γP1 + (1− γ)P1 + P2 + 2

√
(1− γ)P1P2ρ∗∗]

=
[
σ2 + γP1 + (1− γ)P1(1− ρ∗∗2)

][
σ2 + γP1 + P2(1− ρ∗∗2)

]
.

(29)

Here, note that N
N−1 Rb and N

N−1 R2 are actual transmission rates of Wb and W2, respectively.
For sufficiently large N, N

N−1 Rb and N
N−1 R2 tend to Rb and R2, respectively.

After decoding Wb and W2, the legal receiver subtracts Vi and X2,i from his received
signal Yi, which indicates that the channel noise of the equivalent channel for the trans-
mission of Ui is ηi, then based on the channel coding theorem [3], we conclude that for
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sufficiently large N, Wa can be decoded by the legal receiver with arbitrary small decoding
error probability if

Ra ≤
1
2

log
(

1 +
γP1

σ2

)
. (30)

Here, note that N
N−3 Rb is the actual transmission rate of Wa, and for sufficiently large N,

N
N−3 Rb tends to Ra.

From (28) and (30), R1 = Ra + Rb, and letting ρ =
√
(1− γ)ρ∗∗, we conclude that any

pair (R1, R2) in R(0 ≤ ρ < ρ∗) is achievable. Now it remains to be shown that any rate pair
(R1, R2) ∈ R(0 ≤ ρ < ρ∗) satisfies PWS; see the details below.

Equivocation analysis: the eavesdropper’s equivocation rate is bounded by

H(W1, W2|ZN , Z̃N−1)

N
=

H(Wa, Wb, W2|ZN , Z̃N−1)

N

=
H(Wa|ZN , Z̃N−1)

N
+

H(Wb, W2|Wa, ZN , Z̃N−1)

N
.

(31)

The first term in (31) can be calculated by

H(Wa|ZN , Z̃N−1)

N
≥

H(Wa|ZN , Z̃N−1, UN
4 )

N
(a)
=

H(Wa|UN
4 )

N
(b)
=

H(Wa|UN
4 , Wa ⊕ K)
N

=
H(K|UN

4 , Wa ⊕ K)
N

(c)
=

H(K)
N

= Ra,

(32)

where (a) follows from the Markov chain Wa → UN
4 → (ZN , Z̃N−1), (b) follows from UN

4 is
a deterministic function of (Wa ⊕ K), and (c) follows from K is independent of (Wa ⊕ K)
and UN

4 , and K is uniformly drawn from {1, 2, . . . , 2NRa}.
For the second term in (31), along the lines of the equivocation analysis in case 1, we

conclude that

1
N

H(Wb, W2|ZN , Z̃N−1, Wa) =
1
N

H(Wb, W2|ZN , Z̃N−1, Wa, UN
4 )

≥ Rb + R2 −
1

2N
log
(

1 +
P1

σ2
e

)
− 1

2N
log
(

1 +
P2

σ2
e

)
− 1

2N
log

(
1 +

P1

σ2
d

)
− 1

2N
log

(
1 +

P2

σ2
d

)
.

(33)

Substituting (32) and (33) into (31), choosing sufficiently large N, ∆ = H(W1,W2|ZN ,Z̃N−1)
N ≥

R1 + R2 − ε is guaranteed, which completes the proof.

4. Discussion

In this section, we show that Ozarow’s scheme is in fact a secure finite blocklength
(FBL) coding scheme, and characterize its sum rate under fixed coding blocklength, decod-
ing error probability and the eavesdropper’s uncertainty about the transmitted messages.
Then, we further explain the results via numerical examples.

4.1. The Definition of the Secure FBL Scheme for the AWGN-MAC-E-CF

For the AWGN-MAC-E-CF, the channel’s input and output relationship is given in
Section 2.1.

A (N, |W1|, |W2|, P1, P2)-code under average power constraints consists of:

• Message Wk(k ∈ {1, 2}), uniformly drawn inWk = {1, 2, . . . , |Wk|}.
• Encoder k with outputs Xk,i = fk,i(Wk, Yi−1

k,1 ) satisfies the average power constraints

1
N

N

∑
i=1

E[X2
k,i] ≤ Pk, (34)

where fk,i(·) is a (stochastic) function.
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• The decoder with outputs
(Ŵ1, Ŵ2) = ψ(YN), (35)

where ψ is the decoding function of the Receiver.

The average decoding error probability Pek is defined as

Pe = Pr[(Ŵ1, Ŵ2) 6= (W1, W2)] =
∑w1,w2∈W1,W2

Pr {ψ(YN) 6= (w1, w2)|(W1, W2) = (w1, w2) }
|W1||W2|

. (36)

In addition, define the eavesdropper’s normalized equivocation (also called the secrecy
level) as

∆ f =
H(W1, W2|ZN , Z̃N−1)

H(W1, W2)
, (37)

where 0 ≤ ∆ ≤ 1. The (N, ε, δ)-rate pair (R1(N, ε, δ), R2(N, ε, δ)) is achievable with a
secrecy level of δ(0 ≤ δ ≤ 1) if for given blocklength N, error probability ε and secrecy
level δ, there exists a (N, |W1|, |W2|, P1, P2)-code described above such that

log |W1|
N

= R1(N, ε, δ),
log |W2|

N
= R2(N, ε, δ), Pe ≤ ε, ∆ f ≥ δ. (38)

For the AWGN-MAC-E-CF, the achievable sum-rate is denoted by

Rsum(N, ε, δ) = R1(N, ε, δ) + R2(N, ε, δ), (39)

and the maximal sum-rate R∗sum(N, ε, δ) is the maximum sum-rate Rsum(N, ε, δ) defined
in (39).

4.2. Main Result

Theorem 2. For given decoding error probability ε and boding blocklength N, let Rsum(N, ε) be
the achievable sum-rate of the SK-type scheme for the AWGN-MAC-E-CF without the consideration
of secrecy. Then for a given secrecy level δ, if the coding blocklength N in Rsum(N, ε) satisfies

NRsum(N, ε) ≥ 1
2(1− δ)

log

[(
1 +

P1

σ2
e

)(
1 +

P2

σ2
e

)(
1 +

P1

σ2
d

)(
1 +

P2

σ2
d

)]
, (40)

the rate Rsum(N, ε) also serves as a lower bound on the maximal sum-rate R∗sum(N, ε, δ), i.e.,

R∗sum(N, ε, δ) ≥ Rsum(N, ε), (41)

where

Rsum(N, ε) =
1
2

log
(

1 +
P1 + P2 + 2ρ∗

√
P1P2

σ2

)
− 1

N
log

((
1 +

P1 + P2 + 2ρ∗
√

P1P2

σ2

)
σ2

0 + σ2

12
√

P1P2

[
Q−1

( ε

2

)]2
)

,
(42)

ρ∗ is the largest solution in (0, 1) of

σ2
(

σ2 + P1 + P2 + 2
√

P1P2ρ
)
=
[
σ2 + P1(1− ρ2)

][
σ2 + P2(1− ρ2)

]
, (43)

and σ2
0 satisfies

σ2
0

σ2
0 + σ2

= ρ∗. (44)

Proof. See Section 4.4.
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4.3. Numerical Results

Define the minimum blocklength N satisfying (40) as the PLS requirement blocklength
threshold. Figure 4 plots the relationship between secrecy level, decoding error probability,
and PLS requirement blocklength threshold for the AWGN MAC with an external eaves-
dropper and feedback (P1 = P2 = 2, σ2 = 1). From Figure 4, we conclude that for a fixed
decoding error probability, the PLS requirement threshold is increasing while the secrecy
level is increasing. Moreover, when the decoding error probability ε = 10−7 and the secrecy
level δ = 0.99, the PLS requirement blocklength threshold is about 115.

Figure 4. The relationship between secrecy level, decoding error probability, and PLS requirement
blocklength threshold for the AWGN MAC with an external eavesdropper and feedback (P1 = P2 = 2,
σ2 = 1).

Figure 5 plots the decoding error probability Pe of Ozarow’s SK scheme [8] and LDPC
code [11] for P1 = P2 = 2, and the length of transmission bits is 80. From Figure 5, we
conclude that compared with LDPC scheme, the average error probability Pe of Ozarow’s
SK scheme decays much faster with the increasing coding blocklength N.

Figure 5. Comparison of the decoding error probability Pe for P1 = P2 = 2, σ2 = 1 and N taking
values in [0, 8000].

4.4. Proof of the Theorem 2

Encoding-decoding procudure: in fact, Ozarow’s scheme [8] is inherently a secure
FBL coding scheme. The encoding and decoding processes are exactly the same as those
described in Section 3.1, so we omit the detailed explanation here.
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Decoding error probability analysis: the target error probability of the whole scheme is
chosen to be ε. Then, we let the error probability of transmitting Wk be Pe,k which at most
ε/2, i.e.,

Pe,k ≤
ε

2
. (45)

From (45) and the error probability analysis in [10], we have

Rk(N, ε) =
1
2

log
[
1 + Pk(1− ρ∗2)

]
− 1

2N
log

([
1 + Pk(1− ρ∗2)

]2 σ2
0 + σ2

k
12Pk

[
Q−1

( ε

2

)]2
)

. (46)

Let Rk(N, ε) be message Wk’s achievable rate of the SK-type scheme for the AWGN-MAC-
E-CF without the consideration of secrecy. From (39) and (46), we have Rsum(N, ε) which is
given in (42).

Equivocation analysis: now we show the above scheme satisfies the PLS requirement
when the coding blocklength is larger than a threshold.

∆ f =
H(W1, W2|ZN , Z̃N−1)

H(W1, W2)
≥ H(W1, W2|ZN , Z̃N−1, η1, . . . , ηN , S)

H(W1, W2)

≥ 1
H(W1, W2)

H(W1, W2|ZN , Z̃N−1, η1, . . . , ηN , S)

=
1

H(W1, W2)
H(W1, W2|

√
12P1Θ1 + S + ηe,1︸ ︷︷ ︸

Z1

,
√

12P2Θ2 + S + ηe,2︸ ︷︷ ︸
Z2

, X1,3 + X2,3 + ηe,3, . . . , X1,N + X2,N + ηe,N︸ ︷︷ ︸
Z3,...,ZN

,

√
12P1Θ1 + S + η1 + ηd,1︸ ︷︷ ︸

Z̃1

,
√

12P2Θ2 + S + η2 + ηd,2︸ ︷︷ ︸
Z̃2

, X1,3 + X2,3 + η3 + ηd,3, . . . , X1,N−1 + X2,N−1 + ηN−1 + ηd,N−1︸ ︷︷ ︸
Z̃3,...,Z̃N−1

,

η1, . . . , ηN , S)
(d)
=

1
H(W1, W2)

H(W1, W2|
√

12P1Θ1 + ηe,1,
√

12P2Θ2 + ηe,2,
√

12P1Θ1 + ηd,1,
√

12P2Θ2 + ηd,2,

ηe,3, . . . , ηe,N , ηd,3, . . . , ηd,N−1, η1, . . . , ηN , S)
(e)
=

1
H(W1, W2)

H(W1, W2|
√

12P1Θ1 + ηe,1,
√

12P2Θ2 + ηe,2,
√

12P1Θ1 + ηd,1,
√

12P2Θ2 + ηd,2)

( f )
≥

H(W1, W2) + h(ηd,1) + h(ηd,2) + h(ηe,1) + h(ηe,2)

H(W1, W2)
− h(

√
12P1Θ1 + ηe,1) + h(

√
12P2Θ2 + ηe,2)

H(W1, W2)

−
h(
√

12P1Θ1 + ηd,1) + h(
√

12P2Θ2 + ηd,2)

H(W1, W2)

(g)
≥ 1−

log
(

1 + P1
σ2

e

)
+ log

(
1 + P2

σ2
e

)
+ log

(
1 + P1

σ2
d

)
+ log

(
1 + P2

σ2
d

)
2NRsum(N, ε)

,

(47)
where (d) follows from the fact that X1,i and X2,i are linear combinations of η1, . . . , ηi−1, and
S, (e) follows from the fact that Θ1, Θ2, ηe,1, ηe,2, ηd,1, ηd,2 are independent of ηe,3, . . . , ηe,N ,
η1,. . . , ηN , ηd,3, . . . , ηd,N , and S, (f) follows from the fact that W1, W2, ηe,1, ηe,2, ηd,1, ηd,2
are independent of one another and the fact that Θk (k = 1, 2) is a deterministic function
of Wk, (g) follows from the fact that H(W1, W2) = NRsum(N, ε)(Rsum(N, ε) is defined in
Theorem 2) , and the maximum differential entropy lemma [3]. Substituting (47) into (38),
the secrecy constraint

∆ ≥ 1−
log
(

1 + P1
σ2

e

)
+ log

(
1 + P2

σ2
e

)
+ log

(
1 + P1

σ2
d

)
+ log

(
1 + P2

σ2
d

)
2NRsum(N, ε)

≥ δ (48)
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is guaranteed by choosing blocklength N such that

NRsum(N, ε) ≥ 1
2(1− δ)

log

[(
1 +

P1

σ2
e

)(
1 +

P2

σ2
e

)(
1 +

P1

σ2
d

)(
1 +

P2

σ2
d

)]
. (49)

The proof of Theorem 2 is completed.

5. Conclusions and Future Work

In this paper, we show that for the AWGN-MAC-E-CF, the traditional secret key
feedback scheme is not optimal, and propose an optimal scheme that achieves the secrecy
capacity region of the AWGN-MAC-E-CF, which combines the linear feedback coding
scheme for the same model without the secrecy constraint and the secret key scheme.
Possible future work could consist of checking whether this kind of hybrid scheme is
still optimal for other multi-user AWGN channel models in the presence of an external
eavesdropper and channel feedback.
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