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Abstract: Over the past three decades, describing the reality surrounding us using the language
of complex networks has become very useful and therefore popular. One of the most important
features, especially of real networks, is their complexity, which often manifests itself in a fractal
or even multifractal structure. As a generalization of fractal analysis, the multifractal analysis of
complex networks is a useful tool for identifying and quantitatively describing the spatial hierarchy
of both theoretical and numerical fractal patterns. Nowadays, there are many methods of multifractal
analysis. However, all these methods take into account only the fact of connection between nodes
(and eventually the weight of edges) and do not take into account the real positions (coordinates) of
nodes in space. However, intuition suggests that the geometry of network nodes’ position should
have a significant impact on the true fractal structure. Many networks identified in nature (e.g.,
air connection networks, energy networks, social networks, mountain ridge networks, networks of
neurones in the brain, and street networks) have their own often unique and characteristic geometry,
which is not taken into account in the identification process of multifractality in commonly used
methods. In this paper, we propose a multifractal network analysis method that takes into account
both connections between nodes and the location coordinates of nodes (network geometry). We
show the results for different geometrical variants of the same network and reveal that this method,
contrary to the commonly used method, is sensitive to changes in network geometry. We also carry
out tests for synthetic as well as real-world networks.

Keywords: complex networks; fractal networks; models of complex networks; universality

1. Introduction

The mathematical modeling of networks dates back to the late 1950s, when Erdős
and Rényi initiated the field of random graphs [1] and scientists began to develop it.
Mathematically, a network is a representation of a real complex system and is defined
as a collection of nodes (vertices) and links (edges) between pairs of nodes. Complex
networks have naturally become a convenient tool for studying complex systems where
many elements (nodes) are observed and connected to each other by a certain interaction
(edge). It turns out that one of the greatest challenges in the world of science is the
precise and complete description of complex systems, and network research has become an
important and indispensable element of this process. Due to their usefulness in studying
real-world complex systems, the study of complex networks and multifractal analysis has
been developed in many fields such as mathematics, physics, and chemistry [2–4]; biological
systems [5–9]; economics [10,11]; computer science [12–17]; language and sociology [18–22];
and geology [23].

Most real networks show interesting topological features, and their inter-node con-
nections are complex in nature. Often, the study of their characteristics boils down to the
analysis of: the assortativeness between vertices, clustering coefficient, degree distribu-
tion, reciprocity, centrality, or shortest paths. It seems that a useful and promising tool
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for identifying the possible complexity of a network structure is fractal analysis, which
has been one of the most dynamically developing topics in the last two decades. More-
over, it has been noticed that complex structures can be more effectively characterized
in the process of multifractal analysis, where a function of dimensions is replaced by a
non-trivial resultant of single fractal dimensions. One of the most important findings in
physics was the description of fractal geometry by Mandelbrot [24]. While these beautiful
geometric fractal structures apply to structures in physical space, new forms of fractality
have been observed in networks, which are the result of complex interactions between
nodes. Nowadays, it is assumed that a network’s fractality is the result of its individual or
resultant properties and mechanisms such as: self-similarity, the growth phenomenon, the
small-world phenomenon, scale-free degree distribution, and self-organization [25–32].

There are two main types of methods for identifying the (multi)fractal properties of
complex networks: cluster-growing methods and box-covering methods. Classical box-
covering algorithms are focused on solving the problem of how to cover the whole network
with the minimum number of boxes, which is related to the family of NP-hard problems
(non-deterministic polynomial time) [33]. This family of algorithms includes compact box
burning [33], maximum excluded mass burning [34], fixed-size box counting [35,36], and
random sequential box covering [37,38]. Cluster-growing methods are an alternative to the
traditional box-counting (or -covering) methods. They are based on the method proposed
in [39,40]. To put it simply, this method resembles a sandbox and focuses on the scaling
of the masses versus the size through sandboxes growing from randomly selected centers.
To avoid ambiguity in the results due to the randomness of the method, calculations
are repeated for many nodes (seeds) and then averaged. The extension of the sandbox
method for the multifractal analysis of complex networks was proposed by Liu et al. [41],
which supported the claim that the sandbox algorithm is more accurate than box-counting
algorithms for calculating multifractal parameters. This method has also been improved
and extended to weighted networks [42–45].

Characterizing the complexity of a network is very important, e.g., because the func-
tions of a network that represents a given system are the result of its structure. For example,
the structure (geometry and relative positions) of an airport connection network affects
its efficiency; the structure of the network of synaptic connections in the brain affects its
efficiency; and the position of atoms in a material affects the chemical and mechanical
properties of the material. Therefore, it should be emphasized that neither the box-covering
method nor the sandbox method take into account the network parameters (e.g., the fact
that nodes are connected) and their coordinates in space and positions in relation to each
other (geometry). In order to overcome the above issues, in this paper we propose a
method for the multifractal analysis of complex networks based on both box-counting and
sandbox methods.

2. Sandbox Algorithms
2.1. The Standard Sandbox Algorithm

The idea and main steps of the existing sandbox algorithm (SB) for the multifractal
analysis of network Q can be described as follows:

(1) The set of the radius r (1 ≤ r ≤ d) of the sandbox is determined, where d denotes the
diameter of the network Q.

(2) A node set C(r) is randomly chosen as the centers of the sandboxes.
(3) The number of nodes Mi(r) covered by the sandbox with the center node i ∈ C(r)

and radius r is counted. This process for one of the center nodes i and r = {2, 7, 8} is
illustrated in Figure 1a–c. It should be emphasized that r is not a geometric radius but
a measure of the propagation over the closest neighboring nodes of the Q network.

(4) For each scaling parameter q 6= 1, the average 〈[Mi(r)]q−1〉 over all sandboxes of
radius r is calculated.

(5) For a fixed set of radii selected from 1 ≤ r ≤ d, steps (2)–(4) are repeated.
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(6) If linear dependence between ln(〈[Mi(r)]q−1〉)/(q− 1) and ln(r/d) is observed, then
one can refer to the (multi)fractal nature of the investigated network Q and calculate
the reliable generalized fractal dimension Dq and the singularity spectrum f (α) as
follows:

Dq = lim
r→0

ln〈[Mi(r)]q−1〉
ln(r/d)

1
q− 1

, q ∈ <, q 6= 1, (1)

τq = (q− 1)Dq; α =
d
dq

τq and f (α) = qα− τq, (2)

where α is called the singularity (Hölder) exponent. The wealth of multifractality
present in the analyzed Q network can be defined as both the spread of the general-
ized fractal dimension Dq: ∆Dq = Dqmin − Dqmax and the width of the multrifractal
spectrum f (α): ∆α = αmax(qmin)− αmin(qmax), where qmin and qmax are, respectively,
the minimal and the maximal values of the deformation parameter q.

M (2)=5

(a)

M (7)=17

(b)

M (8)=23

(c)

Figure 1. The standard sandbox algorithm. The number of nodes M(r) covered by the sandbox with
the same center node for three different radius values r = {2, 7, 8}.

2.2. The Geometric Sandbox Algorithm

Let us consider the same network in different geometrical representations where the
nodes have the same structure of connections but are distributed differently in relation to
each other in the plane (Figures 2 and 3). Changing the position of the nodes changes the
length of the edges but does not change the nodes’ degree. Without taking into account
the weights between nodes, from the network point of view, these networks are identical—
for each of them, the result of the standard SB algorithm is identical. However, our
intuition tells us that these networks may (and even should) have different characteristics
of complexity. Of course, there is a sandbox version of the algorithm that takes into account
the weights of connections between nodes where the weight can be, e.g., the distance



Entropy 2023, 25, 1324 4 of 12

between two neighboring nodes. However, this is just an interaction between neighbors,
and more global peer-to-peer interactions are not considered. In order to take into account
both the geometric position of the nodes and their network properties in the multifractal
analysis, we propose a modified SB algorithm—the geometric sandbox algorithm (GSB).
The next steps of the GSB algorithm are as follows:

Original network

(a)

(b)

(c)

(d)

(e)

Figure 2. The same network in different geometrical representations ((a)–(e)) where nodes have the
same structure of connections and degree but are distributed differently in relation to each other in
the plane. In each case, only the geometric coordinates of the location of each node change, and thus
the length of the edge.
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Original geometry

Amazon RiversNetwork

Figure 3. Alternative geometries of the real tributary network of the Amazon River.

(1) The set of the radius of circles R (0 < R ≤ P) of the sandbox is determined, where
P denotes the geometric diameter (the distance between the most distant nodes) of
the network Q. In practice, however, we choose the smaller R (0 < R ≤ P/5). Unlike
the standard SB, here the radius R is not, in general, an integer number (expressed as
multiples of the edge), but is a geometric distance (a real number).

(2) A node set C(R) is randomly chosen as the centers of the sandboxes.
(3) The number of nodes Mi(R) covered by the sandbox with center node i ∈ C(R) and

radius R of the circle is counted. The number Mi(R) does not always include all nodes
within the circle. As Figure 4 shows, the number Mi(R) includes only those nodes
that form a connected graph with node i (nodes marked in black, although they are in
a circle, are not included in Mi(R)). Counting only nodes that form a graph connected
to node i ensures that we do not include nodes in a circle of radius R that do not
directly interact with the central node i (we do not count nodes from which we cannot
reach node i along the edges). This approach to counting nodes is a convolution of the
classic SB and the box-covering methods: we count nodes from a given box (circles
here, though there may also be another flat figure), but only those that have a network
connection with the center node. This process for R = {5.5, 9, 8.3} is illustrated in
Figure 4. The nodes included in the M(R) number are marked in blue.

(4) Steps (4)–(6) are the same as for the standard SB algorithm.
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(a') M (5.5)=18 (b') M (9)=39

(c') M (8.3)=22

Figure 4. An example of the counting of network nodes in the GSB method for 3 radii R of a circle.
Examples (a′) and (b′) use two different circle radii R = {5.5, 9} for the same central node. Example
(c′) shows the counting of nodes for a different central node and radius R = 8.3.

3. Numerical Tests

In order to test the possible influence of the network geometry, i.e., the geometric
position of the nodes in the network, we considered three networks: the real network of the
ridges of the Ligurian mountains, a tree-type network, and a scale-free network. For each
type of network, multifractal analysis was performed for four alternative geometries of the
same network. Changes in the geometry of each network were made in such a way that the
location of the nodes was changed; thus, both the distances between the nearest neighbors
and the relative distances between all other nodes were changed (see Figure 2 and 3, where
alternative geometries of the Amazon River network are shown). It should be emphasised
that changes in geometry do not change the degree of nodes, so the classic SB method,
regardless of the geometry (appearance) of the network, gives the same result. Of course,
there is a weighted variant of the classic SB method that can take into account the distances
between nodes [42], but unlike the GSB method proposed here, the weighted variant of the
SB method cannot take into account the relative positions of all nodes. Geometric changes
to the network (alternative geometries) were made in the Mathematica software system
(the ’GraphM’ package was used for this; ’IGraphM’ is a Mathematica package for use in
complex networks and graph theory research. The creator of the interface was Szabolcs
Horvát [46]). An example is shown in Figure 5, presenting four different geometric variants
of the Ligurian mountain ridges, tree-type network, and scale-free network, respectively:

(1) IGLayout FruchtermanReingold (the vertices were deployed on a plane according
to the Fruchterman–Reingold algorithm) [47];

(2) IGLayoutReingoldTilfordCircular (the vertices were deployed on a plane according
to the Reingold–Tilford algorithm) [48];

(3) IGLayoutGraphOpt (algorithm by Michael Schmuhl) [49];
(4) IGLayoutRandom (the vertices were deployed uniformly and randomly on a plane) [49].

To improve the clarity of the figure, the number of network nodes was significantly
reduced, which in the case of the mountain ridges meant that only part of the mountain
range is shown.
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(1)

(2)
(3)

(4)

(1)

(2)

(3)
(4)

(1)

(2)
(3)

(4)

Figure 5. Four variants of geometry ((1)–(4)) for three types of networks: top—a network of Ligurian
mountain ridges; middle—a tree network; bottom—a scale-free network. Changing the geometry
consisted in changing the position of the nodes on the plane but did not involve changing the nodes’
degree. In order for better visualization, networks with a small number of nodes are shown.

Figures 6–8 show the results of the multifractal analysis using the classic SB method
and its modification proposed here, i.e., the GSB method. For the tree network (Figure 7)
and the scale-free network (Figure 8), the network size was the same at 40,000 nodes. This
number was chosen because the number of nodes for the real mountain ridge network
was 40,396 nodes (Figure 6). The results for the generated (synthetic) tree and scale-free
networks were averaged over 10 independent realizations.

The following notations are used: (a) represents the results for the SB method; (b,
c, d, e) are the results for the GSB method. In the case of (a) and (b), a network with
the same geometry was analyzed. For an easier comparison of the results, the graphs
are presented in the same numerical range. For each network, the fluctuation function
(< [M(R)](q−1) > /(q − 1)) ≡ F was determined first (graphs with index (1)) . Then,
if the fluctuation function F on the log–log scale was a straight line, we determined the
fractal dimension Dq and the singularity spectrum f (α) (graphs with index (2) and (3),
respectively). In the case of both the real network (Figure 6) and the other two synthetic
networks (Figures 7 and 8), it can be seen that changing the network geometry changed the
multifractal characteristics. In four cases, the fractal nature of the network was not found
because the F fluctuation function did not scale in the full range of q values (Figure 6e) or
there was no scaling in the entire q range and R radius (Figures 7e and 8a,e). Therefore, in
these cases, it was not reasonable to determine subsequent multifractal characteristics.
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The SB algorithm for the ridge network of the Ligurian mountains indicated the
multifractal nature of the network (Figure 6(a1–a3)), where the width of the multifractal
spectrum ∆α = 0.19.
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Figure 6. The multifractal analysis using the classic sandbox algorithm (a1–a3) and its modification,
i.e., the geometric sandbox method (other graphs) of the network of Ligurian mountain ridges. The
first two rows are the results for the original real network; rows (c–e) are the results for alternative
geometries of the original network using the GSB algorithm. Columns (1), (2), and (3) show fluctuation
functions, the fractal dimension, and the multifractal spectrum, respectively.

Figure 6(b1–b3) shows the results of the GSB method for the original network geometry,
which was geometrically similar to Figure 5 (1). It can be seen that taking the geometry into
account did not significantly affect the multifractal characteristics, i.e., ∆α = 0.22. We only
observed a slight shift of the whole spectrum to the right. The next three rows of graphs in
Figure 6 show the results of the GSB algorithm for three different geometries—similarly
to the first row in Figure 5 ((2)–(4)). It can be seen that the change in the real network
geometry of the mountain ridge entailed a change in the multifractal characteristics, and
the widest spectrum was observed for cases (c) and (d). In the case of (e), only the fractal
dimension Dq and the multifractal spectrum f (α) for q < 0 are shown because scaling
in the full range of scales was observed only for these values. Furthermore, for this type
of geometry (analogous to Figure 5 (4)), where the nodes were randomly distributed, the
shift of the whole spectrum towards α = 1 was visible, suggesting the depletion of the
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complexity of the network, and elements of the monofractal nature of the network could
only be seen for q < 0.
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Figure 7. The multifractal analysis using the classic sandbox algorithm (a1–a3) and its modification,
i.e., the geometric sandbox method (other graphs) of a synthetic tree-type network. The rows show
the results for alternative geometries of the network. Columns (1), (2), and (3) show the fluctuation
functions, fractal dimension, and multifractal spectrum, respectively.

Figure 7a–e shows the results for a synthetic tree network with the geometric repre-
sentations shown in Figure 5 (middle row 1–4). The results of representation (1) are shown
in a1, a2, and a3 (SB) and b1, b2, and b3 (GSB). It should be noted that example (1) was
qualitatively similar to the real ridge geometry of the Ligurian mountains; therefore, the
results were similar to the results for the original mountain geometry. For geometries (2)
and (3), we could also see the influence of the geometry on the fractal nature of the lattice
(Figure 7c,d). For geometry (2), the spectrum was the widest and most shifted to the right.
In the case of (e), for geometry (4), where the nodes were arranged randomly, similarly to
the real network, we observed a lack of scaling of the fluctuation function in the interval r
long enough to confirm the fractal nature of this network. Insignificant scaling elements
could be seen only in a short range of small lengths r. Therefore, no attempt was made
to estimate Dq and f (α), suggesting that this type of network with such a geometry is
not fractal.
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Figure 8. Multifractal analysis using the classic sandbox algorithm (a1–a3) and its modification, i.e.,
the geometric sandbox method (other graphs) of a synthetic scale-free network. The rows show the
results for alternative geometries of the network. Columns (1), (2), and (3) show the fluctuation
functions, fractal dimension, and multifractal spectrum, respectively.

Figure 8a–e show the results for a synthetic Barabasi–Albert-type scale-free network.
In this type of network, the degree distribution has a low-power nature, which may
suggest the fractality of this network. However, the classic SB method suggested quite
the opposite (Figure 8a)—the fluctuation function did not scale, so the fractal dimension
Dq and the multifractal spectrum f (α) did not exist. However, when we applied the GSB
method taking into account the geometry of the network, fractality appeared and, as in
the previous examples, was dependent on the type of geometry (Figure 8b–d). In cases
(b–d), the F fluctuation function was exponential in the whole range r, and the multifractal
spectra were relatively wide (∆α took values of 0.81, 0.82, and 1.3). The values of ∆α
that were significantly higher than zero testified to the complex nature of these networks.
For geometry (e), where the nodes were distributed randomly (in the geometrical sense),
similarly to the previously discussed types of network, the fluctuation function was not
low-power; therefore, it was not justified to calculate other fractal characteristics.

4. Conclusions

This article presented a different approach to the study of the multifractality of complex
networks. For this purpose, we proposed a modification of the sandbox method. The
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geometric sandbox takes into account both connections between nodes and the location
coordinates of nodes (network geometry). This approach combines both a typical sandbox
network approach (only considering nodes connected to each other) and a box-counting
approach (only including nodes lying within a circle of radius R). We tested our method for
different geometrical variants of the same synthetic and real networks. It has been shown
that networks with a geometry that is pleasing to the human eye have wider multifractal
spectra, in contrast to those where the nodes are randomly distributed (these types of
network are not fractal). The test results confirmed that the complexity of the network
(its multifractal characteristics) is sensitive to changes in its geometry (the coordinates
of nodes).

Therefore, it seems that the method proposed here could be a useful tool for identifying
and studying the degeneration of network multifractal structures in the case of not only
2D but also 3D networks, where geometry often plays an important role—for example, the
study of changes in DNA structures or brain neural networks.

Author Contributions: Writing—review & editing, R.R.; Project administration, E.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the Centre for Innovation and Transfer of Natural
Sciences and Engineering Knowledge of the University of Rzeszow, Poland (project RPPK.01.03.00-
18-001/10).

Conflicts of Interest: The authors declare no conflict of interest. Any funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Erdős, P.; Rényi, A. On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Kö̈zl. 1960, 5, 17–61.
2. Stanley, H.E.; Meakin, P. Multifractal phenomena in physics and chemistry. Nature 1988, 335, 405–409. [CrossRef]
3. Yu, Z.G.; Anh, V.; Eastes, R. Multifractal analysis of geomagnetic storm and solar flare indices and their class dependence. J.

Geophys. Res. 2009, 114, A05214. [CrossRef]
4. Lindinger, J.; Buchleitner, A.; Rodríguez, A. Many-body multifractality throughout bosonic superfluid and mott insulator phases.

Phys. Rev. Lett. 2019, 122, 106603. [CrossRef] [PubMed]
5. Ivanov, P.C.; Amaral, L.A.N.; Goldberger, A.L.; Havlin, S.; Rosenblum, M.G.; Struzik, Z.R.; Stanley, H.E. Multifractality in human

heartbeat dynamics. Nature 1999, 399, 461–465. [CrossRef] [PubMed]
6. Yu, Z.G.; Anh, V.; Lau, K.S. Measure representation and multifractal analysis of complete genomes. Phys. Rev. E 2001, 64, 031903.

[CrossRef] [PubMed]
7. Yu, Z.G.; Anh, V.; Lau, K.S. Multifractal and correlation analyses of protein sequences from complete genomes. Phys. Rev. E 2003,

68, 021913. [CrossRef]
8. Jeong, H.; Tombor, B.; Albert, R.; Oltvai, Z.N.; Barabasi, A.L. The large-scale organization of metabolic networks. Nature 2000, 407,

651–654. [CrossRef]
9. Jeong, H.; Mason, S.; Barabasi, A.L.; Oltvai, Z.N. Lethality and centrality in protein networks. Nature 2001, 411, 41–42. [CrossRef]
10. Anh, V.; Tieng, Q.M.; Tse, Y.K. Cointegration of stochastic multifractals with application to foreign exchange rates. Int. Trans. Op.

Res. 2000, 7, 349–363. [CrossRef]
11. Oh, G.; Eom, C.; Havlin, S.; Jung, W.S.; Wang, F.; Stanley, H.E.; Kim, S. A multifractal analysis of Asian foreign exchange markets.

Eur. Phys. J. B 2012, 85, 214. [CrossRef]
12. Faloutsos, M.; Faloutsos, P.; Faloutsos, C. On power-law relationships of the Internet topology. Comput. Commun. Rev. 2008, 29,

251–262. [CrossRef]
13. Zegura, E.W.; Calvert, K.L.; Donahoo, M.J. A quantitative comparison of graph-based models for Internet topology. IEEE/ACM

Trans. Netw. 1997, 5, 770–783. [CrossRef]
14. Pastor-Satorras, R.; Vazquez, A.; Vespignani, A. Dynamical and correlation properties of the Internet. Phys. Rev. Lett. 2001, 87,

258701. [CrossRef] [PubMed]
15. Albert, R.; Jeong, H.; Barabasi, A.L. Diameter of the world-wide web. Nature 1999, 401, 130–131. [CrossRef]
16. Butler, D. Souped-up search engines. Nature 2000, 405, 112–115. [CrossRef] [PubMed]
17. Broder, A.; Kumar, R.; Maghoul, F.; Raghavan, P.; Rajagopalan, S.; Stata, R.; Tomkins, A.; Wiener, J. Graph structure in the web.

Comput. Netw. 2000, 33, 309–320. [CrossRef]
18. Liljeros, F.; Edling, C.R.; Amaral, L.A.N.; Stanley, H.E.; Aberg, Y. The web of human sexual contacts. Nature 2001, 411, 907–908.

[CrossRef]

http://doi.org/10.1038/335405a0
http://dx.doi.org/10.1029/2008JA013854
http://dx.doi.org/10.1103/PhysRevLett.122.106603
http://www.ncbi.nlm.nih.gov/pubmed/30932664
http://dx.doi.org/10.1038/20924
http://www.ncbi.nlm.nih.gov/pubmed/10365957
http://dx.doi.org/10.1103/PhysRevE.64.031903
http://www.ncbi.nlm.nih.gov/pubmed/11580363
http://dx.doi.org/10.1103/PhysRevE.68.021913
http://dx.doi.org/10.1038/35036627
http://dx.doi.org/10.1038/35075138
http://dx.doi.org/10.1111/j.1475-3995.2000.tb00204.x
http://dx.doi.org/10.1140/epjb/e2012-20570-0
http://dx.doi.org/10.1145/316194.316229
http://dx.doi.org/10.1109/90.650138
http://dx.doi.org/10.1103/PhysRevLett.87.258701
http://www.ncbi.nlm.nih.gov/pubmed/11736611
http://dx.doi.org/10.1038/43601
http://dx.doi.org/10.1038/35012148
http://www.ncbi.nlm.nih.gov/pubmed/10821246
http://dx.doi.org/10.1016/S1389-1286(00)00083-9
http://dx.doi.org/10.1038/35082140


Entropy 2023, 25, 1324 12 of 12

19. Ronen, S.; Gonçalves, B.; Hua, K.Z.; Vespignanib, A.; Pinkere, S.; Hidalgoa, C.A. Links that speak: The global language network
and its association with global fame. Proc. Natl. Acad. Sci. USA 2014, 111, 5616–5622. [CrossRef]

20. Newman, M.E.J. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 2001, 98, 404–409. [CrossRef]
21. Barabasi, A.L.; Jeong, H.; Neda, Z.; Ravasz, E.; Schubert, A.; Vicsek, T. Evolution of the social network of scientific collaborations.

Phys. A 2002, 311, 590–614. [CrossRef]
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