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Abstract: This paper studies blind source separation (BSS) for frequency hopping (FH) sources. These
radio frequency (RF) signals are observed by a uniform linear array (ULA) over (i) line-of-sight (LOS),
(ii) single-cluster, and (iii) multiple-cluster Spatial Channel Model (SCM) settings. The sources are
stationary, spatially sparse, and their activity is intermittent and assumed to follow a hidden Markov
model (HMM). BSS is achieved by leveraging direction of arrival (DOA) information through an FH
estimation stage, a DOA estimation stage, and a pairing stage with the latter associating FH patterns
with physical sources via their estimated DOAs. Current methods in the literature do not perform the
association of multiple frequency hops to the sources they are transmitted from. We bridge this gap
by pairing the FH estimates with DOA estimates and labeling signals to their sources, irrespective of
their hopped frequencies. A state filtering technique, referred to as hidden state filtering (HSF), is
developed to refine DOA estimates for sources that follow a HMM. Numerical results demonstrate
that the proposed approach is capable of separating multiple intermittent FH sources.

Keywords: blind source separation; frequency hopping; direction of arrival; 3GPP spatial channel
model; hidden markov model

1. Introduction

Frequency hopping (FH) spread spectrum signals have been widely studied and
adopted for wireless communications due to a multitude of advantages, such as their low
probability of detection and their inherent robustness to jamming [1–3]. Estimating and
tracking parameters of multiple FH signals have important applications in both civilian
and military fields, such as collision avoidance [4,5], cognitive radio [6,7], and interception
of non-cooperative communications [8,9]. The estimation of FH signal parameters for the
purpose of intercepting non-cooperative sources is the focus of this work.

The FH sources assumed in this paper transmit at frequencies that change pseudo-
randomly within a block of spectrum. Parameters such as hop time, hopping pattern, and
frequencies are random and unknown at the receiver. The localization and separation of
multiple FH sources without knowledge of these parameters is posed as a blind source
separation (BSS) problem [10].

To perform BSS of multiple FH sources, it is not sufficient to produce a frequency
versus time map of power of the observed signals; it is also necessary to associate the
signals to physical sources. We refer to the task of associating frequency hops to a source
as the problem of labeling of FH signals. Since frequency hop estimates cannot determine
which of several sources transmitted the signal, it is necessary to estimate information that
is source specific and extraneous to the FH pattern. To achieve this, one can leverage the
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knowledge that all signals transmitted by a source via line-of-sight (LOS) propagation have
the same direction of arrival (DOA) information.

Estimating the DOAs of the sources is made more challenging if signals are received
via multipath propagation. Measurement data analysis in [11] demonstrates that physical
structures in the channel act as secondary sources, forming separable clusters with narrow
angular spread around the clusters [12–14]. Several cluster-based channel models can be
found in the literature, such as the 3GPP Spatial Channel Model (SCM) [15–17], WINNER
II [18], and the 3GPP Clustered Delay Line (CDL) model [19]. In [15–17], the SCM is
defined for different scenarios, namely suburban macro, urban macro and urban micro. The
urban micro channel propagation environment deals with LOS sources, and the other two
propagation environments take the effects of multipath propagation into account and deal
with non-line-of-sight (NLOS) sources. In this work, signals are observed over channels
that follow the SCM model for three propagation environments: (i) LOS, (ii) single-cluster,
and (iii) multiple-cluster settings.

1.1. Related Work

Among various approaches used to solve the BSS problem of FH sources is time-
frequency analysis (TFA) [20–23]. TFA methods are applied to study representations of
the received FH signal in both time and frequency domains. However, as captured by
the uncertainty principle, it is not possible to reach good time and frequency resolutions
simultaneously [24]. TFA methods also suffer from cross-term interference and spectral
leakage, resulting in high SNR requirements [25].

TFA-based methods have been used as exploratory tools towards more refined so-
lutions to blind estimation of hop timings and frequencies. When only one FH signal is
present, reference [26] proposes to first apply TFA to estimate the hopping pattern, and,
subsequently, a particle filter operates on the initial estimation. The initial estimation of
hopping patterns in [26] depends on TFA-based methods, and therefore has high signal-to-
noise (SNR) requirements. A blind maximum-likelihood (ML)-based iterative algorithm
is proposed in [27] that estimates hop timing and frequency hops for a single user. The
ML-based algorithm has been shown to have lower SNR requirements than TFA-based
approaches in [27]. However, the formulation in [27] cannot be generalized to multiple FH
signals.

For multiple FH signals, the method proposed in [28] implements a dynamic programming-
based ML estimator that yields estimates of joint hop timings and frequencies. An approach
based on sparse linear regression is introduced to estimate the hop timings and frequencies
of multiple FH signals in [29]. Each hop in [28,29] is treated as a distinct source. This
method is not suitable for grouping frequency hops according to physical sources. To
associate frequency hops to a source and label FH signals, the DOAs of the sources are
estimated as they are source specific extraneous to the FH pattern.

In reference [30], a two-step approach is introduced to estimate DOA, hop timings,
and frequency hops for multiple sources. A TFA method is applied to signals received by
a uniform linear array (ULA) to identify a hop-free duration for DOA estimation. After
the DOAs are recovered, joint estimation of hop timings and frequencies is performed for
each signal originating from the same DOA. However, as mentioned earlier, references
like [30] that rely on TFA-based approaches for initial estimations suffer from cross-term
interference and high SNR requirements. The joint estimation of FH parameters and DOA
for multiple sources is studied in [31–34] under the assumption that all sources are active
throughout the entire observation interval. Additionally, in reference [34], the hop periods
are assumed uniform. None of the approaches in [31–34] are able to incorporate sources
that are sparse spatially and have intermittent activity, and probabilistic source models,
such as Markov models. A comprehensive summary of the approaches in the current
literature and their limitations can be found in Table 1.
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Table 1. Short descriptions and limitations of approaches from current literature.

References Description of Approach Limitations

[20–23,30] Time-frequency analysis to obtain
representation of FH signals

Not possible to obtain good resolution in both time and
frequency domains; cross-term interference; spectral leakage;
high SNR requirements

[26] TFA as an exploratory tool, applying particle
filter on initial estimations Limited by the assumption that only one FH signal is present

[27] Blind ML-based iterative algorithm to estimate
hop timing and frequency Cannot be generalized to multiple FH signals

[28] Dynamic programming ML estimator for
multiple signals Treats each hop as a distinct source; cannot be used for multiple

sources that each transmit at multiple frequencies by hopping
[29] Sparse linear regression for multiple FH signals

[31–33]
Joint estimation of FH parameters and DOA

Assumes all sources are active for the entire observation period

[34] Assumes all hop periods are uniform

1.2. Main Contributions

This work addresses the problem of BSS of FH sources, which are stationary, spatially
sparse, have activity that is intermittent and follow a hidden Markov model. Three different
propagation environments of the SCM channel models are considered, namely (i) LOS,
(ii) single-cluster, and (iii) multiple-cluster settings.

Blind source separation of frequency hopping sources is a problem that has been
tackled in RF communications before. However, it is not sufficient to just produce a
frequency versus time of observed signals; it is also necessary to associate the signals to
physical sources. Current methods lack the association of multiple frequency hops to
the sources they are transmitted from. We fulfill this gap in our paper by pairing the FH
estimates with DOA estimates and labeling signals to their sources, irrespective of their
hopped frequencies. This is performed for both LOS and NLOS channels.

Compared to the conference version [35], this paper studies sources that transmit FH
signals over both LOS and NLOS channels; and, compared to [36], this paper includes
a comparative study of two filtering approaches that refine the estimations to provide
improved source labeling.

The main contributions of this paper are as follows:

1. A sparse representation framework is introduced to determine frequency hops and
DOA of propagation paths of signals emitted by physical RF sources. FH and DOA
estimations are posed and solved as sparse representation problems;

2. A method is developed to associate FH and source activity of multiple sources, thus
effectively achieving blind source separation;

3. It is shown that applying hidden state filtering (HSF) improves BSS performance;
4. An algorithm is developed that combines HSF with the estimation of HMM parame-

ters, implementing the filtering without prior knowledge of the model parameters.

The rest of the paper is organized as follows. The system model with aperiodic FH
and the hidden Markov source model are presented in Section 2. In Section 3, we propose
the approach to separate FH, source activity and assign labels to signals transmitted
from different sources. In Section 4, simulation-based numerical results demonstrate the
performance of the proposed approach, and Section 5 reports our conclusions.

Notation: Notation 1 : T denotes the sequence 1, 2, . . . , T. Vectors are denoted by
boldface lower case letters, such as x. All vectors are assumed to be column vectors.
Matrices are denoted by boldface upper-case letters, such as X. The transpose of X is
denoted as X′.
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2. System Model
2.1. Setting and Channel Model

We consider N sources capable of transmitting intermittent FH signals. These sources
switch carrier frequency in a randomized fashion across multiple frequency hops. Signals
emitted by the sources are received at a uniform linear array (ULA) with J receiving antenna
sensors spaced at uniform d intervals.

The total number of sources N may be larger than the number of sensors J, but the
number of active sources at any given time is lower than the number of sensors. The
observation interval is T discrete time units, and, without loss of generality, the sampling
interval corresponds to one time unit. The cumulative time a source is active is a small
fraction of the observation interval. Source activity is assumed to be governed by a Markov
model, as described below. The on–off patterns of each source change slowly, making
transitions intermittent, but smooth. The intermittent activity of the sources is illustrated in
Figure 1.
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Figure 1. Intermittent source activity. The filled blocks denote active sources at different time instants.

A hop duration is the period of time between two consecutive switches of the carrier
frequency of a source. The time of the k-th frequency switch is denoted tk, and thus the
duration of the corresponding hop is (tk+1 − tk). When multiple sources are active, the hop
duration is determined by the source with the shortest time between frequency hops. An
example is shown in Figure 2.
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Figure 2. Source activity of two FH sources depicted by filled blocks with distinct shading. Time
duration tk ≤ t < tk+1 denotes a single hop with hop index k where sources with mean DOAs θi and
θi+1 transmit with frequencies fi and fi+1, respectively.
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Sources are assumed to be observed over channels that follow the SCM. The SCM is a
statistical channel model developed by 3GPP for three propagation environments: (i) LOS,
(ii) single-cluster, and (iii) multiple-cluster settings [15–17]. Over an LOS propagation envi-
ronment, a source is observed with a single DOA. With the single-cluster environment, a
source is observed over a cluster of possibly unresolvable multipath propagation paths. For
the multiple-cluster environment, the multipath results in multiple clusters of propagation
paths. In this work, BSS of FH sources is considered over each of the three propagation
environments.

For the SCM with multiple clusters, assuming synchronized sensors, the signal re-
ceived at the jth sensor in the time interval tk ≤ t < tk+1 corresponding to the kth hop is
given by

y(j, t) =
Nk

∑
i=1

{ Li

∑
l=1

√
Pl
M

M

∑
m=1

c(m)
i,l (t)aj(θ

(m)
i,l )

}
ht( fi) + w(j, t), (1)

where Nk is the number of active sources during the kth hop (Nk � N); Li is the number
of clusters for the ith source; Pl is the power of the lth cluster of the ith source which is
normalized so that the total average power for all clusters is equal to one; M is the number
of unresolvable multipaths per cluster that have similar characteristics. The number of
sources that could be active during the kth hop is less than the number of sensors J, i.e.,
Nk < J. The variable h( fi) is the frequency mode of the lth cluster of the ith source, and
a(θ(m)

i,l ) is the spatial mode of the mth multipath of the lth cluster of the ith source. aj(·)
and ht(·) denote the corresponding jth and tth powers; c(m)

i,l (t) is the complex amplitude of
the mth multipath of the lth cluster of the ith source; and w(m, t) is the additive zero-mean
complex Gaussian noise with variance σ2

w. The frequency mode is given by h( fi) = ej2π fi ,
with fi ∈ [ fmin, fmax] being the carrier frequency of the ith source during the kth hop. The
hop frequencies are measured relative to the carrier frequency of the receiver. The spatial

mode is given by a(θ(m)
i,l ) = ej2π(d/λ) sin(θ(m)

i,l ), where d/λ is the spacing between antennae

expressed in units of wavelength λ, and θ
(m)
i,l is the DOA of the mth multipath of the lth

cluster of the ith source. The DOA θ
(m)
i,l can be decomposed as θ

(m)
i,l = θi,l + ϑ

(m)
i,l , where

θi,l is the mean DOA of the lth cluster of the ith source, and ϑ
(m)
i,l is the deviation from the

mean DOA, which is modeled as an i.i.d. Gaussian random variable with zero mean and
variance σ2

θ . For the single-cluster propagation environment, Li = 1 and ϑ
(m)
i,l 6= 0, whereas

for the LOS propagation environment, Li = 1 and ϑ
(m)
i,l = 0.

For hop k and the corresponding time interval, tk ≤ t < tk+1, observations y(j, t) are
collected in a J × (tk+1 − tk) matrix Yk. Combining observations across all hops, matrices
Yk are concatenated to form the J × T observation matrix Y.

2.2. Source Activity Model

Sources are subject to intermittent activity. Activity is also “smooth”, i.e., the on–off
patterns of sources vary slowly. A source’s activity pattern is assumed to be governed by
a hidden Markov model (HMM). The HMM has been used in many instances to model
communication systems [37–40]. An HMM imprints a memory on the system that is used
to mimic the behavior of a communication system’s channel coding.

The activity pattern of a source is represented by a binary state sequence s(t) which
indicates whether at time t a source is active (s(t) = 1) or not (s(t) = 0). As discussed
previously, a physical source may be observed over multiple DOAs. The term “source
activity pattern” is used here generically, and it refers either to a physical source or an
individual DOA. It is assumed that the individual DOA activity patterns associated with
a physical source are “similar”. Two activity patterns associated with different DOAs are
considered “similar” if they match over a prescribed fraction of the time samples at which
their values are 1.
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A diagram representing the HMM of a source is shown in Figure 3. In the figure,
the sequence s(1 : T) represents the hidden states, while sequence z(1 : t) represents the
observed sequence. Like state symbols, observation symbols are binary, z(t) ∈ {0, 1},
where z(t) = 1 indicates the observed activity of the source at time t, and z(t) = 0 indicates
that source was inactive at time t. In addition to states and observations, an HMM is
characterized by state transition probabilities, observation symbol probabilities, and initial
state probabilities [41]. These are specified below for a source.

...

...

OFF ON

Figure 3. Hidden Markov model (HMM) for a source.

State transition probabilities are represented by the state transition matrix A = {aij},
j = 0, 1 where the state transition probability distribution is given by aij = P(s(t) =
j|s(t − 1) = i). Observation symbols probabilities are represented by the observation
matrix B = {bj(k)}, j, k = 0, 1 where bj(k) denotes the observation symbol probability
distribution in state j, bj(k) = P(z(t) = k|s(t) = j). We use notation bj(z(t)) to indicate
the probability of observed value z(t) conditioned on s(t) = j, bj(z(t)) = P(z(t)|s(t) = j).
The initial state probability distribution is π = {π0, π1}, where π0 = P(s(1) = 0) and
π1 = P(s(1) = 1). The parameters of an HMM are succinctly denoted by Ω, where
Ω = (A, B, π).

3. Method

The signal model in (1) has three sets of unknowns, namely DOAs θ, frequencies f ,
and complex amplitudes c. Each physical source may emit multiple frequencies as part of
an FH pattern, and it may be observed over multiple DOAs for multipath channels. The
goal of the process presented in this section is to determine physical sources, and for each
physical source to determine an activity pattern and a FH pattern. Two main ideas are that
even though a physical source may be observed over many DOAs, the individual DOA
activity patterns of a physical source are “similar”. DOA information is paired with FH
information to associate FH patterns with physical sources. In the following, an approach
is proposed that uses the received signal matrix Y to estimate FH and activity patterns over
the course of the observation interval T. This approach includes an FH estimation stage, a
DOA estimation stage, hidden state filtering to refine DOA estimates, and a pairing stage
that combines information from the previous stages to associated FH patterns with physical
sources. Figure 4 elucidates the relations between the signal processing tasks developed in
this section. Each of the processing tasks is detailed next.
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Hidden state filtering
(Algorithm 1 for MPE)
(Algorithm 2 for MAP)

Model learning
(Algorithm 3)  

Observed state

FH estimation
(Equation 4)

Pairing
(Algorithm 4)

FH pattern
per source

DOA estimation
(Equation 6)

Figure 4. Block diagram of the proposed algorithm to separate multiple FH sources.

3.1. FH Estimation

The estimation of the frequency hops at each time instant 0 ≤ t ≤ T is posed as a
sparse representation problem. In the following, we define a dictionary matrix, a matrix of
unknowns, a measurement matrix, and a noise matrix. For setting up the dictionary, we let
set F = { f1, f2, . . . , fG f }, with cardinality G f � Nk, comprise all possible hop frequencies
fi. The FH estimation stage samples the frequency by using this grid of frequencies F. The
frequency grid is used to define the G f -length modal vector h̃ f (t) at sampling instant t:

h̃ f (t) = [ht( f1), ht( f2), . . . , ht( fG f )]. (2)

Next, this vector is expanded to include all T sampling instants in a TG f -length vector
h f (t) = [0′G f

, . . . , 0′G f︸ ︷︷ ︸
t

, h̃′f (t), 0′G f
, . . . , 0G f︸ ︷︷ ︸
T−t−1

]′, where 0G f is a vector containing G f zeros. The

FH modal dictionary H f is then defined at the T × TG f matrix

H f = [h f (1), h f (2), . . . , h f (T)]′. (3)

The selection of matrix H f is determined by the choice of frequency grid F via the
relation between h̃ f (t), h f (t) and H f . We let x f (j, t) be the G f -length vector of unknown
complex amplitudes associated with the grid frequencies at time t and sensor j. This
vector is then expanded to form the TG f -length vector that includes all T time instants
x∗f (j) = [x′f (j, 1), x′f (j, 2), . . . , x′f (j, T)]′. Across all J sensors and T time instants, the TG f × J
matrix of complex amplitudes is defined as X f = [x∗f (1), x∗f (2), . . . , x∗f (J)]. The solution
to the problem being formulated relies on the assumption that vector x(j, t) has sparsity.
Sparsity entails vector x(j, t) having non-zero entries corresponding only to the active
frequencies at each time instant t.

A sparse estimate of the frequency hopping pattern per source X f (or equivalently an
estimate of x f (j, t) for all j and all t) is denoted as X̂ f (or x̂ f (j, t)), and it is found by solving
the following optimization problem:

X̂ f = arg min
x f

‖Y′ −H f X f ‖2
2 + λ f

M

∑
m=1

T

∑
t=1
‖x f (j, t)‖1. (4)

The `1-norm in (4) enforces the sparsity constraint. Hperparameter λ f controls the
sparsity of the solution. A large λ f increases the penalty of non-zero elements of x f (j, t).
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3.2. DOA Estimation

To formulate the problem of estimating the DOA of sources at each time instant
0 ≤ t ≤ T as a sparse representation problem, we again define a dictionary matrix and a
matrix of unknowns. A grid comprising Gd possible DOAs, Θ = [θ1, θ2, . . . , θGd ], is used to
define the J × Gd DOA modal dictionary

Hd = [a(θ1), a(θ2), . . . , a(θGd)], (5)

where a(θi) is the steering vector associated with DOA θi defined as a(θi) = [1, a(θi), . . . , aJ−1(θi)]
′

(see Equation (1) for other definitions).
We let xd(t) be the Gd-length vector of unknown complex amplitudes associated

with grid DOAs at time t. Across all T sampling instants, the Gd × T matrix of complex
amplitudes is defined as Xd = [xd(1), xd(2), . . . , xd(T)]. Given observations Y, a sparse
estimate of the DOA pattern Xd (or, equivalently, an estimate of xd(t) for all t) is denoted as
X̂d (or x̂d(t)), and it is found by solving the following optimization problem:

X̂d = arg min
xd

‖Y−HdXd‖2
2 + λd

T

∑
t=1
‖xd(t)‖1. (6)

Similar to the optimization problem for estimating the frequency hops, the formulation
includes hyperparameter λd that controls sparsity.

3.3. Hidden State Filtering

We let x̂d(t) denote a non-zero component of solution x̂d(t) to the optimization prob-
lem in Equation (6). Then, x̂d(t) is associated with a single source, and if state s(t) of the
source were known, x̃d(t) = x̂d(t) · s(t) would be a refined estimate of x̂d(t) in the sense
that a spurious component would be removed from the solution to Equation (6) if x̂d(t) 6= 0
but s(t) = 0. Conversely, the solution would stand if s(t) = 1. While state s(t) is hidden to
the observer, it may be inferred from state observations. We let set C = {x|x 6= 0}; then,
observation z(t) of the state of a source is obtained as z(t) = 1C{x̂d(t)}, where 1C denotes
the indicator function of set C. Hidden state filtering is the problem of inferring state
sequence s(1 : T) for each source given an observation sequence z(1 : T) of the source and
an HMM model Ω. In the remainder of this subsection, we discuss the forward–backward
procedure, which is then used to solve the HSF problem. The algorithms implementing
these methods assume that the HMM parameter Ω is known. The estimation of parameter
Ω, when it is not known a priori, is addressed in the subsequent subsection.

3.3.1. Forward–Backward Procedure

The forward–backward procedure comprises the iterative calculation of forward and
backward variables given the observed sequence and model parameter Ω. Forward variable
αj(t) is defined as the probability of a state at time t given the observed sequence up to and
including time t:

αj(t) , P(s(t) = j|z(1 : t), Ω), j = 0, 1. (7)

Solving for αj(t) consists of the following steps [41]:

1. Initialization:
αi(1) = πibi(z(1)), i = 0, 1. (8)

2. Induction:

αj(t + 1) =

[
∑

i∈{0,1}
αi(t)aij

]
bj(z(t)),

j = 0, 1, 0 ≤ t ≤ T − 1. (9)
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3. Termination:
P(z(1 : T)|Ω) = ∑

i=0,1
αi(T). (10)

Backward variable βi(t) is defined as the probability of the observation sequence from
t + 1 to the end of the sequence, conditioned on state s(t) = i

βi(t) , P(z(t + 1 : T)|s(t) = i, Ω), i = 0, 1. (11)

Solving for βi(t) consists of the following steps [41]:

1. Initialization:
βi(T) = 1, i = 0, 1. (12)

2. Induction

βi(t) = ∑
j∈{0,1}

aijbj(z(t + 1))β j(t + 1),

i = 0, 1, t = T − 1, T − 2, . . . , 1. (13)

HSF methods discussed next use the forward and backward variables.

3.3.2. Individually Most Probable States

There are different ways of finding the “optimal” state sequence s(1 : T) given the
observed sequence z(1 : T) and the HMM parameter Ω. One reasonable criterion is to
choose, at each time t, the state that is most probable given the observed sequence and the
HMM parameter. We denote the belief state as follows:

γi(t) , P(s(t) = i|z(1 : T), Ω). (14)

It can be shown that variable γi(t) may be expressed in terms of the forward–backward
variables [41]:

γi(t) =
αi(t)βi(t)

∑
j∈{0,1}

αj(t)β j(t)
. (15)

The most probable estimate (MPE) to a state at time t is the solution to the following
problem:

ŝMPE(t) = arg max
i=0,1

γi(t). (16)

We note that the MPE to a state may be computed directly from the forward–backward
variables. The MPE state sequence for a source is expressed as follows:

ŝMPE(1 : T) = {ŝMPE(1), ŝMPE(2), . . . , ŝMPE(T)}. (17)

Using the MPE state sequence, the matrix of complex amplitudes containing the filtered
vectors can be calculated as outlined in Algorithm 1.

Algorithm 1 Hidden State Filtering (MPE)

1: Input: Matrix of complex amplitudes X̂d and HMM model paramter Ω
2: Output: Inferred state sequence ŝMPE(1 : T)
3: for each non-zero row of X̂d do
4: for t = 1 : T do
5: z(t) = 1c{x̂d(t)}
6: Calculate ŝMPE(t) from Equation (16)
7: end for
8: end for



Entropy 2023, 25, 1292 10 of 18

3.3.3. Most Probable Sequence of States

The most probable sequence of states given the observed sequence of a source is
known as the maximum a posteriori (MAP) estimate and is given by

ŝMAP(1 : T) = arg max
s(1:T)

P(s(1 : T)|z(1 : T)). (18)

The MAP estimate may be computed using the well-known Viterbi algorithm [42]. The
following quantity is defined:

ρi(t) , max
s(1:t−1)

P(s(1 : t− 1), s(t) = i|z(1 : t), Ω), (19)

which represents the joint probability of reaching state i at time t and taking the most
probable path. A recursive expression for this probability is obtained noting that if ρi(t− 1)
is known, then ρj(t) may be computed by accounting for the transition from state i at time
t− 1 to state j at time t. This probability may be computed using quantities previously
defined according to

ρj(t) = (max
i

ρi(t− 1))aij)bj(z(t)). (20)

The argument that maximizes Equation (20) is denoted as ψj(t) , arg max
i=0,1

(ρi(t− 1)aij).

Following this procedure, the first state that can be determined as part of the most probable
path is the final state s(T), since any earlier determination may be affected by later times.
The algorithm is summarized as follows:

1. Initialization:
ρi(1) = πibi(z(1)), i = 0, 1, (21a)

ψi(1) = 0, i = 0, 1. (21b)

2. Recursion:

ρj(t) = (max
i

ρi(t− 1)aij)bj(z(t)), 2 ≤ t ≤ T, j = 0, 1, (22a)

ψj(t) , arg max
i=0,1

(ρi(t− 1)aij), 2 ≤ t ≤ T, j = 0, 1. (22b)

3. Termination:
ŝMAP(T) = arg max

i=0,1
(ρi(T)). (23)

4. MAP path:
ŝMAP(t) = ψŝ(t+1)(t + 1), t = T − 1, T − 2, . . . , 1. (24)

Using the MAP path, the matrix of complex amplitudes containing the filtered vectors
can be calculated as outlined in Algorithm 2.

Algorithm 2 Hidden State Filtering (MAP)

1: Input: Matrix of complex amplitudes X̂d and HMM model parameter Ω
2: Output: Inferred state sequence ŝMAP(1 : T)
3: for each non-zero row of X̂d do
4: for t = 1 : T do
5: z(t) = 1c{x̂d(t)}
6: Calculate ŝMAP(t) from Equation (24)
7: end for
8: end for
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3.3.4. Learning HMM Parameters

The HSF methods discussed previously assume the HMM parameters Ω = (A, B, π)
are known. In practice, however, it cannot be assumed that the model is known in a blind
scenario. The goal here is to describe a method by which Ω is estimated based on the
observed sequences. Here, the observed sequence refers to the observed activity of a source.
The HMM parameters are learnt from the observed sequences of the sources detected
as active according to Ω̂ = arg max

Ω
P(z(1 : T|Ω). For the first active source, the HMM

parameter Ω = (A, B, π) is randomly initialized. For the subsequent active sources, Ω
obtained from the previous active source is used for initialization. The parameter obtained
from the last active source is then used to calculate the hidden state sequences using
the MPE and MAP methods. For the purpose of estimating the HMM parameter Ω, the
following quantity is defined:

ξi,j(t) = P(s(t) = i, s(t + 1) = j|z(1 : T), Ω). (25)

It can be shown that variable ξi,j(t) may be expressed in terms of forward–backward
variables [41]:

ξi,j(t) =
αi(t)aijbj(z(t + 1))β j(t + 1)

∑
i=0,1

∑
j=0,1

αi(t)aijbj(z(t + 1))β j(t + 1)
. (26)

Utilizing the forward variable αj(t) defined in Equation (7), the backward variable
βi(t) defined in Equation (11), the belief state γi(t) defined in Equation (14) and the quantity
ξi,j(t) defined in Equation (25) , the HMM parameters are learned in the following steps:

1. Initialization: Randomly initialize Ω = (A, B, π) for the first active source.
2. For an estimated active source:

(a) Use Equations (8)–(10) to calculate αj(t) and Equations (12) and (13) to calculate
βi(t).

(b) Use Equation (15) to calculate γi(t) and Equation (26) to calculate ξi,j(t).

(c) Update model parameters:
π̂i = γi(1), (27a)

âij =

T−1
∑

t=1
ξi,j(t)

T−1
∑

t=1
γi(t)

, (27b)

b̂j(k) =

T
∑

t=1
1(z(t) = k)γj(t)

T
∑

t=1
γj(t)

. (27c)

Here, 1(a) is the indicator function, i.e., 1(a) = 1 if a is true, and 0 otherwise.
(d) Set Ω̂ = (Â, B̂, π̂), and repeat step (2).

The last HMM parameters Ω̂ = (Â, B̂, π̂) obtained after running through the observed
sequences of all sources is considered as the common model for all sources. The HMM
parameter learning is outlined in Algorithm 3.
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Algorithm 3 Learning HMM parameters

1: Input: Matrix of complex amplitudes X̂d
2: Output: Learnt HMM parameters Ω̂ = (Â, B̂, π̂)
3: Initialize Ω = (A, B, π).
4: for each non-zero row of X̂d do
5: for T = 1 : t do
6: z(t) = 1c{x̂d(t)}
7: while no convergence do
8: Obtain αj(t) and βi(t) using Forward-Backward procedure
9: Update Ω̂ = (Â, B̂, π̂) using Equations (27a)–(27c)

10: end while
11: Ω← Ω̂.
12: end for
13: end for

3.4. Pairing

Given the FH and DOA estimates, the final stage is to pair them. For each time instant
t, the pairing stage is designed to pick a combination of DOA and FH estimates that provide
the best fit to the observed data.

To perform the pairing, two new dictionaries H̃d and H̃ f are formed from the original
respective dictionaries Hd and H f . The new dictionary H̃d is defined as a submatrix of Hd,
with elements corresponding to non-zero entries in X̃d. Similarly, the new dictionary H̃ f is
defined as a submatrix of H f , with elements corresponding to non-zero entries in X̂ f . The
new dictionaries are introduced to limit the computational cost of the pairing operation
and used to create a new dictionary [43]. The Kronecker product of H̃d and H̃ f defines this
new dictionary H̃:

H̃ = H̃d ⊗ H̃ f . (28)

This dictionary is a grid that contains all active frequencies for each active source over
the entire observation interval. The pairing stage utilizes the newly formed dictionary H̃ to
output matrix X, which contains the complex amplitudes of sources which are indexed by
their hop frequencies and their DOAs. The following optimization problem is solved:

X̂ = arg min
x
‖Y− H̃X‖2

2 + λ
T

∑
t=1
‖x(t)‖1 (29)

to obtain a sparse vector x(t) whose non-zero elements are the estimated complex ampli-
tudes. Here, λ is the hyperparameter that controls the sparsity of x(t). The pairing of FH
estimates and source activity is outlined in Algorithm 4.

Algorithm 4 Pairing of source activity and FH estimates

1: Input: Matrices X̃d, X̂ f and dictionaries Hd, H f

2: Output: Matrix of paired source activity and FH estimates X̂
3: Obtain new dictionary H̃d from Hd using Xd
4: Obtain new dictionary H̃ f from H f using X f
5: Create dictionary H̃ using Equation (28)
6: Obtain X̂ from Equation (29)

Source separation is obtained by labeling the sources according to DOA estimates. A
source label may be associated with multiple frequency hops. Furthermore, the pairing
stage is also capable of reducing false alarms in the FH and DOA estimation stages by
considering a source to be active at a given time instant only if it produces a joint FH and
DOA estimate.
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4. Results

In this section, numerical results are presented to demonstrate the performance of the
proposed approach to separate intermittent FH signals. We assume that the activity for
each source is defined by an HMM with transition probabilities a01 = 0.02 and a10 = 0.02.
A modal dictionary for DOA estimation is considered with Gd = 36 bins, each having a
bin size of 5 degrees. The FH grid has G f = 40 bins with a spacing of 50 kHz for a 2 MHz
total bandwidth. The signals being transmitted are slow FH signals in which each hop
contains one or more symbols. Frequency hops do not violate the narrowband assumption
for DOA estimation. The number of unresolveable multipaths per cluster is M = 20 and
the deviation from mean DOA of each cluster has a variance of σ2

θ = 2 degrees. In the
following figures, we consider two clusters per source while referring to sources in the
multiple-cluster model. The weights of the various optimization problems included in this
paper are hyperparameters, and they are chosen in accordance with methods expanded
in [37]. Experiments are run on Matlab R2020a on a computer with Intel® CoreTM i5 CPU
and Windows OS.

The performance criterion chosen is the receiver operating characteristic (ROC), in
which the probability of correct detection Pd is plotted against the probability of false alarm
Pf a. The probability of correct detection for source activity is computed as the ratio of the
number of correctly detected sources to the number of true active sources. A source activity
is deemed a correct detection if it has a “similar” source activity over the total observation
interval to a true active source. Multiple activity patterns associated with different DOAs
are considered “similar” if they match over a prescribed fraction of the time samples at
which their values are one. Through experimentation, this fraction is chosen to be 0.95.
The probability of false alarm for source activity is the ratio of the number of spuriously
detected sources over the entire observation interval to the number of true active sources.
Source activity is spurious if a source is detected to be active when no true source is active.
Analogous definitions apply to Pd and Pf a of frequency hops and to paired activity.

Figure 5 shows the ROC of FH estimation for 5 sources with an SNR per source of
10 dB. For Pf a = 0.3, FH estimation Pd = 0.98. The performance of the FH estimation
affects the source separation, as the pairing uses the estimations from both the previous
stages to pick a pair of source activity and FH pattern that best fits the received signals at
each time instant. This is demonstrated later, in the ROC of paired activity.
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Figure 5. Pd versus Pf a of FH estimates (5 sources, J = 20 sensors, T = 1000 samples, SNR = 10 dB).

Figure 6 demonstrates the effect of HSF on the correct detection of activity for 5 LOS
sources with an SNR per source of 10 dB. The figure shows the ROC performance with two
HSF techniques. The ROC is obtained by solving Equation (6), followed by the thresholding
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of X̂d. The threshold ranges from the smallest to the largest values in matrix X̂d obtained by
solving Equation (6). Each point of the ROC, consisting of a pair of probability of correct
detection and probability of false alarm, corresponds to one of these threshold values.
Without filtering, for Pf a of activity = 0.3, Pd of activity = 0.67. For the same Pf a, with MPE
applied, Pd = 0.86 when Ω is learned, and Pd = 0.87 when Ω is known. With MAP applied,
Pd = 0.96 when Ω is learned, and Pd = 0.97 when Ω is known.
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Figure 6. Pd versus Pf a of activity with and without HSF for LOS sources (5 sources, J = 20 sensors,
T = 1000 samples, SNR = 10 dB).

Figures 7 and 8 demonstrate the effect of HSF on the correct detection of activity for
single-cluster and multiple-cluster propagation environments, respectively. DOA estimates
in these figures are considered “similar” when the fraction measuring similarity is 0.95.
Improvement in performance is observed in activity when HSF is applied. In the next
figures, we apply MAP filtering with unknown HMM parameter Ω only.
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Figure 7. Pd versus Pf a of activity with and without HSF for single-cluster propagation environment
(5 sources, J = 20 sensors, T = 1000 samples, SNR = 10 dB).
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Figure 8. Pd versus Pf a of activity with and without HSF for multiple-cluster propagation environ-
ment (5 sources, J = 20 sensors, T = 1000 samples, SNR = 10 dB).

The performance of pairing is demonstrated next. Figure 9 shows the ROCs of paired
activity for all propagation environments, LOS, single cluster and multiple cluster, when
the fraction measuring similarity is 0.95. For Pf a = 0.3, Pd = 0.94 for the LOS propagation
environment, Pd = 0.84 for the single-cluster propagation environment, and Pd = 0.83 for
the multiple-cluster propagation environment.
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Figure 9. Pd versus Pf a of paired activity for LOS, single-cluster and multiple-cluster propagation
environments (5 sources, J = 20 sensors, T = 1000 samples, SNR = 10 dB).

Figure 10 plots the probability of detection as a function of the number of LOS inter-
mittent sources that are detected as active during the observation interval. The detection
threshold is set at a probability of false alarm Pf a = 0.15. It is observed that the performance
of both the FH and DOA estimation stages affect the performance of the pairing stage.
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Figure 10. Pd when Pf a = 0.15 versus number of intermittent sources detected as active during
observation interval in the LOS propagation environment (J = 20 sensors, T = 1000 samples,
SNR = 10 dB).

5. Discussion

In this paper, an approach is proposed to solve the BSS problem for FH sources that
are stationary, spatially sparse and have intermittent activity observed over channels that
follow the spatial channel model for three propagation environments. The source memory
is utilized in the filtering of source activity to enhance performance. Current methods in the
literature do not perform the association of multiple frequency hops to the sources they are
transmitted from. We bridge this gap by pairing the FH estimates with DOA estimates and
labeling signals to their sources, irrespective of their hopped frequencies. The pairing stage
uses the estimations from the previous stages to pick a pair of the DOA and FH patterns
that best fits the received signals at each time instant. The pairing assigns source labels
to the signals and is capable of reducing false alarms that arise in the individual stages,
thus improving the accuracy of the proposed approach as confirmed by numerical results.
Numerical results demonstrate that HSF improves BSS performance, and that MAP HSF
outperforms MPE HSF.
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