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Abstract: Images, as a crucial information carrier in the era of big data, are constantly generated,
stored, and transmitted. Determining how to guarantee the security of images is a hot topic in
the information security community. Image encryption is a simple and direct approach for this
purpose. In order to cope with this issue, we propose a novel scheme based on eight-base DNA-level
permutation and diffusion, termed as EDPD, for color image encryption in this paper. The proposed
EDPD integrates secure hash algorithm-512 (SHA-512), a four-dimensional hyperchaotic system,
and eight-base DNA-level permutation and diffusion that conducts on one-dimensional sequences
and three-dimensional cubes. To be more specific, the EDPD has four main stages. First, four initial
values for the proposed chaotic system are generated from plaintext color images using SHA-512,
and a four-dimensional hyperchaotic system is constructed using the initial values and control
parameters. Second, a hyperchaotic sequence is generated from the four-dimensional hyperchaotic
system for consequent encryption operations. Third, multiple permutation and diffusion operations
are conducted on different dimensions with dynamic eight-base DNA-level encoding and algebraic
operation rules determined via the hyperchaotic sequence. Finally, DNA decoding is performed in
order to obtain the cipher images. Experimental results from some common testing images verify
that the EDPD has excellent performance in color image encryption and can resist various attacks.
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1. Introduction

Nowadays, with the rapid development of Internet technology and the widespread
use of intelligent devices, the network has been integrated into people’s daily lives, and
the corresponding information security issues have attracted more attention. In the era of
big data, a huge amount of information is transmitted on the network every moment. As
an effective and universal information carrier, images’ security is of particular interest [1].
Illegal access to images by unauthorized users is a major concern, and the encryption of
images is an effective means of protecting image information. However, since images
feature bulky data, high redundancy, and strong correlation between pixels, traditional
encryption algorithms such as the data encryption standard (DES), advanced encryption
standard (AES), and international data encryption algorithm (IDEA) are not suitable for
image encryption. In order to deal with this problem, the popular technique of chaos-based
image encryption has been widely discussed and applied by researchers [2–4]. Numerous
routes have been taken in the design and innovation of current chaotic image encryption
schemes, such as introducing and using S-box [5–7], Latin square [8–10], multiple data-level
encryption operations [11–13], and different chaotic systems [14–16]. Additionally, chaotic
systems can also take on various forms, such as continuous systems [17,18], fractional-order
systems [19,20], complex systems [21,22], and discrete systems [23–25]. They have advan-
tages such as pseudorandomness, synchronization, ergodicity, and extreme sensitivity
to initial values and parameters, and some of these properties are beneficial for image
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encryption [26]. In recent years, various chaotic image encryption approaches have been
demonstrated to be very effective [27–29].

Diffusion is used to change the values of pixels in images, and permutation is one
of the confusion methods that can be dedicated to disrupting the positions of pixels.
These are among the most commonly used image encryption operations, and it is also
possible to handle both diffusion and permutation jointly. Researchers usually design image
encryption algorithms based on these operations and chaotic systems, mainly conducting
diffusion and/or permutation according to the pseudorandom sequences generated from
chaotic systems to ensure excellent security and robustness [10,30,31]. Valandar et al.
proposed a fast color image encryption method based on a three-dimensional chaotic map
and used the strategy of dividing the image to perform permutation and diffusion [32]. Li
et al. used a skew tent system and a Rucklidge system to design an efficient and secure color
image encryption scheme based on bit-level permutation, and the algorithm processed
three color components simultaneously and considered the correlation between them [33].
Liu et al. presented a joint permutation and diffusion color image encryption algorithm
based on a Hopfield chaotic neural network [34]. Ref. [35] employed a four-dimensional
chaotic system to generate a pseudorandom sequence for consequent operations and then
conducted image encryption via multiple-bit permutation and diffusion according to the
chaotic sequence. Hua et al. designed a color image encryption method based on cross-
plane permutation and non-sequential diffusion by constructing a two-dimensional logistic
tent modular map [36]. Ge et al. proposed a novel diffusion scheme for hyperchaotic image
encryption, following the “divide and conquer” strategy [37,38]. Each of these techniques
performed successfully in resisting different types of attacks. Intuitively, image encryption
operations are not limited to the pixel level and bit level but can also be based on the
deoxyribonucleic acid (DNA) level [39,40].

Blocks of pixels are higher-level data while DNA-level data and bit-level data are
lower-level data. For the same processing power, an encryption employing lower-level
data usually achieves better performance of encryption. The reason for this is that the lower
the data level in this case, the more processed units will be involved in encryption [41].
Due to the vast parallelism, huge storage space, and ultra-low power consumption of
DNA computing [42], some researchers have designed highly efficient and secure image
encryption schemes using the technology of combining DNA operation and chaos [7,43,44].
Zhang and Han used an image hashing algorithm to generate the initial value and control
parameter of a six-dimensional chaotic system and mainly combined it with DNA dynamic
encoding and arithmetic operations for color image encryption [45]. Malik et al. presented a
method with high plaintext sensitivity for color image encryption, which included a chaotic
dynamical system and DNA computing, and combining permutation at the pixel level
with diffusion at the DNA level [46]. Ref. [47] chose four-dimensional memristive chaos to
generate chaotic matrices using the plain image, the salt key, and the control parameters and
next executed dynamic DNA encoding via them; later, they applied dynamic confusion and
diffusion to the encoded DNA matrices. Ref. [48] constructed an approach based on a five-
dimensional chaotic system, pixel-level dynamic filtering, DNA computing, and operations
on 3D Latin cubes and focused on transforming DNA-level images into several 3D DNA-
level cubes to be computed using Latin cube. Zhou et al. proposed a dynamic DNA image
encryption algorithm based on the secure hash algorithm-512 (SHA-512), which employed
two chaotic systems, dynamic DNA encoding, DNA sequencing operations, and conditional
shifting, and had two rounds of permutation with diffusion [49]. Chai et al. introduced a
color image cryptosystem based on an improved genetic algorithm and matrix semi-tensor
product, and they employed its adaptive block-based image preprocessing technology
to deal with the red, green, and blue components of the color plain image; after DNA
encoding, the resulting sequences can be shuffled via a double crossover operation of inter–
intra components and diffused using a DNA complementary cycle mutation strategy [50].
Ref. [51] combined the quantum DNA codex with quantum Hilbert scrambling to present
an enhanced quantum image encryption technique that offers high security with robustness
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and withstands statistical analysis and differential attacks. All of these schemes perform
well for the high-security encryption of images.

In general, most DNA-level image encryption algorithms rely on the same DNA
structure consisting of four bases. Traditional DNA encoding involves mapping ‘00’, ‘01’,
‘10’, and ‘11’ to the four DNA bases ‘A’, ‘T’, ‘C’, and ‘G’. These bases can be encoded in
compliance with the complementary pairing principles. Nevertheless, researchers have
actually succeeded in synthesizing DNA sequences using a stable double-helix structure
for storing and transcribing genetic information in an eight-base system a few years ago,
and the new set of artificial bases includes ‘S’, ‘B’, ‘P’, and ‘Z’ [52]. Notably, the encoding
of eight-base DNA necessitates three bits and is far more varied in encoding rules that
conform to the principles of complementary pairing of ‘A’ and ‘T’, ‘C’ and ‘G’, ‘S’ and
‘B’, and ‘P’ and ‘Z’ compared with the traditional four-base DNA. Thus, the utilization of
eight-base DNA encoding and computation can be well suited for color image encryption.

Using the eight-base DNA structure, we propose a novel color image encryption
scheme based on a four-dimensional hyperchaotic system, dynamic encoding and algebraic
operations of eight-base DNA, and permutation and diffusion on eight-base DNA level
data, termed as EDPD. Specifically, EDPD involves four main stages: (1) The secure hash
algorithm-512 (SHA-512) combined with an input plaintext color image is applied to
generate the initial values of the hyperchaotic system. Each color image is assigned a unique
hyperchaotic sequence, derived from the four-dimensional hyperchaotic system using its
specific initial values and control parameters. This sequence serves as the foundation
for subsequent encryption. (2) The input image is transformed into a one-dimensional
DNA sequence according to the eight-base DNA encoding rules determined using a subset
of the chaotic sequence; then, the DNA sequence is permuted via the sorting indices
of another chaotic sequence subset. After that, DNA-level diffusion is conducted, and
then, the DNA sequence is permuted again via a different sorted chaotic subsequence.
(3) The one-dimensional sequence is then converted into one or several DNA cubes. For
each DNA cube, EDPD employs circular shifts of rows and columns as permutation and
utilizes eight-base DNA-level algebraic operations as diffusion on three planes in each
of the three axis directions per round, while each plane uses different eight-base DNA
algebraic operation rules according to other hyperchaotic subsequences. (4) All the DNA
cubes are integrated back into a singular one-dimensional sequence. Subsequently, the
integrated sequence is decoded to a pixel-level color image via the rules represented by the
hyperchaotic subsequence used at the time of encoding. It is important to note that, due to
preceding permutations, the rules actually used for decoding each base at this time may be
different from those used for encoding it before.

The main contributions of the proposed EDPD are threefold: (1) A newly proposed
three-dimensional hyperchaotic system has been extended into four-dimensional version,
which has better hyperchaotic attributes. All the subsequent operations of image encryption
rely on the hyperchaotic sequence generated using this hyperchaotic system. (2) Eight-
base DNA is introduced to color image encryption. Distinct encoding rules, decoding
rules, and algebraic operations with eight-base DNA are designed for the permutation
and diffusion of color images. Notably, the capability to encode three bits for each DNA
base renders it exceptionally suitable for color image encryption involving three channels.
(3) Extensive experiments demonstrate that the proposed EDPD is effective for color image
encryption. The key innovation of this work is the application of the eight-base DNA to
image encryption for the first time.

The structure of the remaining sections of this paper is as follows. In Section 2,
a brief description of the original three-dimensional hyperchaotic system and the traditional
DNA encoding with algebraic operations is summarized. In Section 3, a novel color image
encryption algorithm based on the modified four-dimensional hyperchaotic system with
the eight-base DNA-level multiple permutation and diffusion on different dimensions is
presented in detail. In Section 4, extensive experiments are conducted on some common
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testing images to validate the effectiveness of our proposed EDPD, and the experimental
results are reported and analyzed. Finally, in Section 5, the paper is concluded.

2. Related Work
2.1. Original Three-Dimensional Hyperchaotic System

Chaos has been extensively used in many research fields since Lorenz first found the
chaotic attractor in 1963 [53]. In 2022, Wei et al. presented an improved three-dimensional
chaotic system by integrating the logistic map and the ICMIC map through a closed-loop
coupling mechanism for image encryption, which is formulated as Equation (1) [25].
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In this system, x, y, and z are state variables and a, b, and c are constant parameters.
The fundamental characteristic of chaos is its extreme sensitivity to initial values,

resulting in trajectories originating from even slightly distinct initial values diverging expo-
nentially over time. A chaotic system has a Lyapunov exponent (LE) for each dimension.
The LEs are used to measure the separation rate of infinitesimally close trajectories, which
also reflect the expanding or contracting nature of the system between adjacent orbits
in phase space [54]. A positive LE signifies a system that is both chaotic and expanding.
When a system has two or more positive LEs, it can be regarded as a hyperchaotic system.
The LEs of System (1) calculated with control parameters (a, b, c) = (0.1, π, π) and initial
values (x0, y0, z0) = (0.3, 0.4, 0.5) on 50,000 iterations via the Jacobi matrix and QR method
can obtain three results: LE1 = 6.97688, LE2 = 5.43797, and LE3 = 3.88227 [55]. Therefore,
System (1) is hyperchaotic. In addition, several chaotic systems proposed in recent years
are also hyperchaotic [4,33,48].

2.2. Traditional DNA Computing

The traditional DNA molecule contains four distinct nucleic acid bases: adenine (‘A’),
guanine (‘G’), cytosine (‘C’), and thymine (‘T’), where ‘A’ and ‘T’ are complementary and
‘G’ and ‘C’ are complementary. Since 0 and 1 in binary numbers are also complementary
as DNA base pairing and each pixel value of the image can be represented by exactly one
eight-bit binary number, images can be transformed from the pixel level to the bit level and
then to the DNA level, where each pair of bits is converted to one base. Moreover, there are
a total of 24 types of permutation via the utilization of the four bases ‘A’, ‘T’, ‘C’, and ‘G’
to encode ‘00’, ‘01’, ‘10’, and ‘11’. However, due to the complementary principles of both
DNA bases and binary numbers, there are only eight types of DNA encoding rules that
satisfy the Watson-Crick structure [56], as listed in Table 1.

Table 1. Traditional DNA encoding rules.

Rule 1 2 3 4 5 6 7 8

00 A A C C T T G G
01 G C A T C G A T
10 C G T A G C T A
11 T T G G A A C C

According to these rules, DNA-level algebraic operations are able to resemble the
operations in the binary number system, such as addition (⊕), subtraction (	), and XOR (⊗).
These algebraic operations are usually applied to image encryption tasks as DNA-level
diffusion. Moreover, due to multiple encoding rules, DNA algebraic operations differ
from binary operations and can produce various results via different rules. In essence,
DNA algebraic operations yield consistent results when executed in accordance with
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predetermined encoding rules. For example, the results of DNA addition, subtraction, and
XOR operations based on encoding Rule 2 are listed in Table 2.

Table 2. Traditional DNA algebraic addition (⊕), subtraction (	), and XOR (⊗) operations.

⊕ A C G T 	 A C G T ⊗ A C G T

A A C G T A A T G C A A C G T
C C G T A C C A T G C C A T G
G G T A C G G C A T G G T A C
T T A C G T T G C A T T G C A

3. The Proposed Color Image Encryption Approach
3.1. Modified Four-Dimensional Hyperchaotic System

In general, a combined or more complex chaotic system has higher security of en-
cryption than low-dimensional chaos. Therefore, we improve System (1) into a new
four-dimensional one, formulated as Equation (2).
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In this system, the parameters a, b, and c retain their values from System (1), while the
state variables are x, y, z, and w. We set the control parameters (a, b, c) = (0.1, 3, 2π)
and initial values (x0, y0, z0, w0) = (0.3, 0.4, 0.5, 0.6) on 50,000 iterations for the proposed
four-dimensional chaotic system. The chaotic attractors of System (2) are shown in Figure 1.
The corresponding LEs are LE1 = 8.34298, LE2 = 6.62369, LE3 = 5.44832, and LE4 = 4.35038.
Since the modified system has four positive LEs, it exhibits hyperchaotic characteristics.
Furthermore, the first three LEs are greater than those of System (1).

Figure 1. Attractors of the proposed four-dimensional hyperchaotic system with the parameters
(a, b, c) = (0.1, 3, 2π) and initial values (x0, y0, z0, w0) = (0.3, 0.4, 0.5, 0.6) on 50,000 iterations.

In order to investigate the influence of each control parameter variation on the per-
formance of the System (2), the spectra of LEs and bifurcation diagrams are plotted in
Figure 2a–c and Figure 2d–f, respectively. As indicated by these figures, the four LEs consis-
tently remain positive under these conditions. Specially, as the parameter a becomes smaller
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or the parameter c becomes larger, the four LEs and the performance of the hyperchaotic
system keep increasing. And, when the parameter b > 1, the four LEs maintain stability. In
addition, no bifurcation is observed within these figures, and the distribution of the state
variables consistently reflects chaotic properties. In summary, owing to its sensitivity to ini-
tial values and complex dynamical behaviors, the modified four-dimensional hyperchaotic
system is highly suitable for color image encryption.

Figure 2. Spectra of Lyapunov exponents and bifurcation diagrams of the proposed four-dimensional
hyperchaotic system with initial values (x0, y0, z0, w0) = (0.3, 0.4, 0.5, 0.6). (a,d) Spectra of Lyapunov
exponents and bifurcation diagram with parameter a when b = 3, c = 2π. (b,e) Spectra of Lyapunov
exponents and bifurcation diagram with parameter b when a = 0.1, c = 2π. (c,f) Spectra of Lyapunov
exponents and bifurcation diagram with parameter c when a = 0.1, b = 3.

3.2. The Presented Eight-Base DNA Computing

Hoshika et al. synthesized the novel eight-base DNA sequences in 2019, which can
store and transcribe genetic information with stable double-helix structures like conven-
tional DNA sequences [52]. In the eight-base DNA structure, in addition to the traditional
four bases ‘A’, ‘T’, ‘C’, and ‘G’, there are the other four artificial bases ‘S’, ‘B’, ‘P’, and ‘Z’.
The principles of complementary pairing in the eight-base DNA are ‘A’ with ‘T’, ‘C’ with
‘G’, ‘S’ with ‘B’, and ‘P’ with ‘Z’. Consequently, for eight-base DNA encoding, each three bits
are converted to a single base, which are ‘000’, ‘001’, ‘010’, ‘011’, ‘100’, ‘101’, ‘110’, and ‘111’.
Although there are a total of 40,320 possible permutations of the eight bases, only 384 ones
conform to the complementary pairing principles of eight-base DNA. Obviously, the total
number of encoding rules for eight-base DNA significantly surpasses that of conventional
DNA. Ten of these encoding rules are listed in Table 3.

Based on the traditional DNA algebraic operations, the eight-base DNA-level
addition (⊕), subtraction (	), and XOR (⊗) are able to resemble the corresponding oper-
ations in the three-bit binary number. However, owing to the far more varied eight-base
DNA encoding rules, the algebraic operations between two bases become more complex.
For example, the results of these algebraic operations based on eight-base DNA encoding
Rule 1 are listed in Tables 4–6. Since the more bases and much richer encoding rules make
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the algebraic operations between bases more varied and complex, using an eight-base
DNA-level encryption scheme can bring more benefits for image security.

Table 3. Ten of the eight-base DNA encoding rules.

Rule 1 2 3 4 5 6 7 8 9 10

000 A B C Z T B G S P A
001 Z G T A G P B T S B
010 C A S B P G A P T C
011 S P Z C S A Z C G P
100 B Z P G B T P G C Z
101 G T B S Z C T Z A G
110 P C A T C Z S A B S
111 T S G P A S C B Z T

Table 4. Eight-base DNA algebraic addition (⊕).

⊕ A Z C S B G P T

A A Z C S B G P T
Z Z C S B G P T A
C C S B G P T A Z
S S B G P T A Z C
B B G P T A Z C S
G G P T A Z C S B
P P T A Z C S B G
T T A Z C S B G P

Table 5. Eight-base DNA algebraic subtraction (	).

	 A Z C S B G P T

A A T P G B S C Z
Z Z A T P G B S C
C C Z A T P G B S
S S C Z A T P G B
B B S C Z A T P G
G G B S C Z A T P
P P G B S C Z A T
T T P G B S C Z A

Table 6. Eight-base DNA algebraic XOR (⊗).

⊗ A Z C S B G P T

A A Z C S B G P T
Z Z A S C G B T P
C C S A Z P T B G
S S C Z A T P G B
B B G P T A Z C S
G G B T P Z A S C
P P T B G C S A Z
T T P G B S C Z A

3.3. Hyperchaotic Sequence Generation

Encryption methods that use the same key for multiple different images are vulnerable
to known-plaintext and chosen-plaintext attacks. To enhance the ability of resisting these
risks, the proposed EDPD introduces the information of input images into their keys to
make each image have a unique key. In this way, it is difficult for attackers to break the
keys even if they are analyzed by using some existing or optionally generated plaintext-
ciphertext pairs because the generation of the each key introduces information of a plain



Entropy 2023, 25, 1268 8 of 27

image itself thus disturbing the regularity. Specifically, the SHA-512 algorithm is used
to calculate the hash value from a plaintext image. This hash value is then divided into
four parts, each of which contributes to generating the initial values of the hyperchaotic
system. This approach ensures that every color image obtains its specific initial values.
Subsequently, we can use the control parameters and four initial values to generate the
hyperchaotic sequence via System (2). The whole procedure is described as follows:

Step 1: Convert the plain color image into a one-dimensional sequence, and calculate its
SHA-512 hash value, denoted as K.

Step 2: Divide the hash value K into 64 blocks, where each block contains an eight-bit
integer.

Step 3: Express the 64 blocks of K as K = {k1, k2, · · · , k64}. Due to a total of four initial values
of System (2), there are four intermediate parameters t1, t2, t3, and t4 calculated
using Equation (3).

t1 = b1 +
1

256 (k1 ⊗ k2 ⊗ · · · ⊗ k16)

t2 = b2 +
1

256 (k17 ⊗ k18 ⊗ · · · ⊗ k32)

t3 = b3 +
1

256 (k33 ⊗ k34 ⊗ · · · ⊗ k48)

t4 = mean(b1 + b2 + b3) +
1

256 (k49 ⊗ k50 ⊗ · · · ⊗ k64)

(3)

where b1, b2, and b3 are three user-defined real-number parameters, and mean and
⊗ represent the average and bitwise XOR operation, respectively.

Step 4: Employ the intermediate parameters t1, t2, t3, and t4 to obtain the initial values x0,
y0, z0, and w0 of the four-dimensional hyperchaotic system via Equation (4).

x0 = mod((t2+t3+t4) × 108, 256)
255

y0 = mod((t1+t3+t4) × 108, 256)
255

z0 = mod((t1+t2+t4) × 108, 256)
255

w0 = mod((t1+t2+t3) × 108, 256)
255

(4)

where mod represents the module operation. In case one or more of the four initial
values x0, y0, z0, and w0 are 0 or 1, these values should be replaced with the average
of the other initial values. If they are all 0 or 1, make them equal to 1

π arctan(a) + 1
2 ,

1
π arctan(b) + 1

2 , 1
π arctan(c) + 1

2 , and 1
π arctan(a + b + c) + 1

2 in turn, where a, b,
and c are the System (2). Thus, all initial values fall within the range of (0, 1),
enabling the System (2) to iterate the computation properly.

Step 5: Input the control parameters a, b, and c with the initial values x0, y0, z0, and w0
into System (2) to generate a hyperchaotic matrix, and then, transform it into a
hyperchaotic sequence as S for the subsequent encryption of the plain color image.
In addition, the length of the sequence is the number of elements within it and
labeled as L = h × w × d × 8, where h, w, and d denote the height, width, and
number of channels of the input color image, respectively.

Step 6: According to System (2) and Figure 1, the hyperchaotic sequence S should take
values within the range of [−1, 0)∪(0, 1). To prepare for the subsequent color
image encryption, extract two subsequences as Sp

1 and Sp
2 of length L/3 from the

hyperchaotic sequence S, and then, adjust the values of the hyperchaotic sequence S
to integers within 1 to 384 using Equation (5).

S = b(|S× 108| − b|S× 108|c)× 384c+ 1 (5)

where | · | and b·c denote the operations of absolute and rounding down.
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3.4. The Permutation and Diffusion at One-Dimensional Sequence Level

Prior to the permutation and diffusion, the plain color image is encoded into eight-
base DNA level by using a hyperchaotic subsequence Sed to determine the eight-base
DNA encoding rules dynamically for each three bits. The length of the resulting DNA
sequence D is L/3. The subsequent permutation and diffusion operations performed on
the one-dimensional sequence D comprise the following steps:

Step 1: Arrange the hyperchaotic subsequence Sp
1 in ascending order, thereby obtaining

the indices of the sorted elements in the original sequence. Subsequently, use
these new indices to scramble the positions of bases in the DNA sequence D as the
first permutation.

Step 2: Extract a subsequence Sd with length L/3 from the hyperchaotic sequence S, and
use the elements in Sd to determine the eight-base DNA algebraic operation rules
on the DNA sequence D. The simple diffusion process at one-dimensional sequence
level is described using Equation (6).

Di =

{
Di ⊕ DLD , i = 1
Di ⊕ Di−1, 1 < i ≤ LD

(6)

where Di represents a certain base in the DNA sequence D, LD denotes the length of
the DNA sequence D, and⊕ indicates eight-base DNA-level addition with different
algebraic operation rules.

Step 3: Referring to Step 1, sort the hyperchaotic subsequence Sp
2 for scrambling the DNA

sequence D again as the second permutation.

On the one-dimensional sequence, the first permutation performs a global position
disruption of the eight-base DNA sequence D, and the eight-base DNA-level diffusion
makes the algebraic operation of each base associated with its last base, while the second
permutation extends the effects of diffusion to the whole eight-base DNA sequence D.

3.5. The Permutation at Three-Dimensional Cube Level

After the permutation and diffusion at the one-dimensional sequence level, the subse-
quent phase involves conducting eight-base DNA-level operations at the three-dimensional
cube level. Thus, the eight-base DNA sequence D requires reshaping to one or several
cubes. Specifically, given the length LD = L/3 of the eight-base DNA sequence encoded
from the input color image, if the result of 3

√
LD is an integer, the prism length of the only

cube is E = 3
√

LD. Otherwise, 3
√

LD/2N keeps running until its value becomes an integer,
where N is an increasing positive integer, and the prism length of each of the 2N cubes
is E = 3

√
LD/2N in the end. For example, a color image with size 512 × 512 × 3 can be

transformed into an eight-base DNA-level cube with size 128 × 128 × 128, while another
color image with size 256 × 256 × 3 will become two eight-base DNA-level cubes both
with size 64 × 64 × 64.

In this encryption session, the details of permutation and diffusion on each eight-base
DNA-level cube are the same. For each cube C, we first execute the permutation, and the
scheme is based on the hyperchaotic subsequences and circular shifts.

Circular shift is a very useful method of permutation that usually includes operations
on rows and columns within a plane, as shown in Figure 3. More specifically, the number
of steps in each row or column circular shift is generally determined using the values of
hyperchaotic sequence. Then, for each row, the corresponding number of pixels on the right
side are circularly moved to the left side in turn according to the number of steps, while
the pixels originally on the left side are moved to the right side in turn simultaneously.
Similarly, for each column, some pixels at the bottom are circularly moved to the top in
order, while those at the top are pushed to the bottom. The permutation on C is described
in Algorithm 1 in detail.
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Algorithm 1 The permutation on a single eight-base DNA-level cube

Input: an eight-base DNA-level cube C, the prism length E of the cube, and three hyper-
chaotic subsequences Hp

j (j = 1, 2, 3)
Output: the eight-base DNA-level cube C after the permutation

1: function CUBEPERMUTATION(C, E, Hp
j )

2: for i = 1 : E do
3: for j = 1 : 3 do
4: Pi,1 ← C(i, :, :);
5: Pi,2 ← C(:, i, :);
6: Pi,3 ← C(:, :, i);
7: for t = 1 : E do
8: Shi f ts← Hp

j (2× (i− 1)× E + t);
9: Circular shift Pi,j(t, :) to right by Shifts;

10: end for
11: for t = 1 : E do
12: Shi f ts← Hp

j (2× (i− 1)× E + E + t);
13: Circular shift Pi,j(:, t) to bottom by Shifts;
14: end for
15: C(i, :, :)← Pi,1;
16: C(:, i, :)← Pi,2;
17: C(:, :, i)← Pi,3;
18: end for
19: end for
20: return C;
21: end function

Figure 3. Schematic diagram of circular shifts of rows and columns in a plane. The numbers indicate
the step size of the circular shift. The dashed lines and solid arrows show the shifting direction. The
pixels in the blue boxes are shifted to the right or down, while those in the pink ones are circularly
shifted to the left or top.

Step 1: For each eight-base DNA-level cube C, extract a subsequence with a length of
6 × E2 from the hyperchaotic sequence S, and then split this subsequence into
three subsequences with a length of 2 × E2 each, which are designated as Hp

1 , Hp
2 ,

and Hp
3 , respectively. Finally, the values of these subsequences are scaled to range

between 1 and E− 1.
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Step 2: Start the iteration with a total number of rounds E that represents the quantity of
the planes of each axis direction in a cube, and perform the permutation for the
current planes of the three axis directions in turn per round. For each current plane,
execute circular shifts on all rows and all columns of DNA bases in turn by using
the elements in the hyperchaotic subsequence Hp

1 , Hp
2 , or Hp

3 in order.
Step 3: Reiterate Step 2 until the end of the iteration, which completes the permutation on

a single cube C.

If there are multiple cubes, the permutation details of remaining cubes follow the same
process as described above.

3.6. The Diffusion at Three-Dimensional Cube Level

After the permutation of the current eight-base DNA-level cube C, the subsequent
step involves diffusion. In this way, besides the three hyperchaotic subsequences used to
determine the algebraic operation rules between any two bases of eight-base DNA, there is
also an auxiliary eight-base DNA-level cube with the same size as C that is encoded and
transformed from another hyperchaotic subsequence. The specific diffusion process of C is
explained in Algorithm 2 and is described as follows.

Algorithm 2 The diffusion on a single eight-base DNA-level cube

Input: an eight-base DNA-level cube C after the permutation, an auxiliary hyperchaotic
eight-base DNA-level cube G, the same prism length E of the cube C and G, and three
hyperchaotic subsequences Hd

j (j = 1, 2, 3)
Output: the eight-base DNA-level cube C after the diffusion

1: function CUBEDIFFUSION(C, G, E, Hd
j )

2: C(1, :, :) = (C(1, :, :)⊕ G(E, :, :))⊗ (C(E, :, :)⊕ G(1, :, :)) with Rule Hd
1 (1);

3: C(:, 1, :) = (C(:, 1, :)⊕ G(:, E, :))⊗ (C(:, E, :)⊕ G(:, 1, :)) with Rule Hd
2 (1);

4: C(:, :, 1) = (C(:, :, 1)⊕ G(:, :, E))⊗ (C(:, :, E)⊕ G(:, :, 1)) with Rule Hd
3 (1);

5: for i = 2 : E do
6: C(i, :, :) = (C(i, :, :)⊕ G(i− 1, :, :))⊗ (C(i− 1, :, :)⊕ G(i, :, :)) with Rule Hd

1 (i);
7: C(:, i, :) = (C(:, i, :)⊕ G(:, i− 1, :))⊗ (C(:, i− 1, :)⊕ G(:, i, :)) with Rule Hd

2 (i);
8: C(:, :, i) = (C(:, :, i)⊕ G(:, :, i− 1))⊗ (C(:, :, i− 1)⊕ G(:, :, i)) with Rule Hd

3 (i);
9: end for

10: return C;
11: end function

Step 1: For each eight-base DNA-level cube C, extract a subsequence with a length of
3 × E from the hyperchaotic sequence S, and then, split this subsequence into three
subsequences with a length of E, which are denoted as Hd

1 , Hd
2 , and Hd

3 , respec-
tively. Moreover, obtain another subsequence of length L/3 from the hyperchaotic
sequence S, and scale the values of this subsequence to a range between 0 and 7
via the module operation. Then, transform these values of the subsequence into
three-bit binary numbers, and then, dynamically encode them into eight-base DNA
sequence by the hyperchaotic subsequence Sed. Finally, reshape them into one or
more three-dimensional cubes G with the same size as the eight-base DNA-level
cube C.

Step 2: Start the iteration with a total number of rounds E that represent the number of the
planes of each axis direction in a cube, and perform the diffusion for the current
planes of the three axis directions in turn per round. For each plane of the eight-base
DNA-level cube C, eight-base DNA algebraic operations are performed on it with
G at corresponding positions of the planes. Specifically, the corresponding DNA
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base positions between each C and G, along with the details of DNA algebraic
operations are depicted in Equation (7).

Ci,j =

{
(Ci,j ⊕ GE,j)⊗ (CE,j ⊕ Gi,j), i = 1
(Ci,j ⊕ Gi−1,j)⊗ (Ci−1,j ⊕ Gi,j), 1 < i ≤ E

(7)

where j denotes the direction of the current axis of the cube and takes values of 1, 2,
or 3. Ci,j and Gi,j represent the planes corresponding to cubes C and G at position i
in the j-axis direction. And, the algebraic operation rules of the eight-base DNA in
the E planes in each axis direction are determined using the elements in Hd

1 , Hd
2 ,

and Hd
3 , respectively.

Step 3: Continue executing Step 2 until the end of the iteration to complete the diffusion
on a single cube C.

If there are multiple cubes, the diffusion algorithm for the remaining cubes is the same
as the above process. After completing all the permutation and diffusion rounds on the
eight-base DNA-level cubes, they are transformed into a one-dimensional sequence and
decoded using the hyperchaotic subsequence Sed. Since the positions of the DNA bases
have been changed using the permutation, they actually mostly use different encoding and
decoding rules. Finally, the bit sequence obtained via eight-base DNA decoding is converted
back to the pixel level and the pixel sequence is reshaped into a cipher color image.

3.7. Framework of the Proposed EDPD

The permutation and diffusion of the proposed color image encryption scheme EDPD
are conducted on the eight-base DNA level. We use a total of two stages of both the permu-
tation and diffusion sessions, and they are designed and applied at the one-dimensional
sequence and three-dimensional cube levels, respectively. Moreover, the encoding rules,
decoding rules, and algebraic operation rules are dynamically determined using the hyper-
chaotic subsequences. In summary, the flowchart of the proposed EDPD is illustrated in
Figure 4, wherein we define the execution of all steps from the plaintext color image to the
cipher color image as a single round of encryption, symbolized as R.

Figure 4. The framework of the proposed EDPD.

Step 1: Combine the SHA-512 algorithm with an input plaintext color image to generate
the four initial values of the hyperchaotic system (2).
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Step 2: Input the three control parameters and four initial values into the hyperchaotic
system in (2) to generate a hyperchaotic sequence S. Preserve two hyperchaotic
subsequences, Sp

1 and Sp
2 , for the permutation at the subsequent one-dimensional

sequence level, and adjust the values of the whole hyperchaotic sequence S to fall
within 1 to 384.

Step 3: Transform the plain color image from the pixel level to the bit level, and use
a hyperchaotic subsequence Sed for dynamic eight-base DNA encoding of the
bit-level image, where every three bits are converted into one base according to
the corresponding encoding rule. Thus, the bit-level image is transformed into a
one-dimensional eight-base DNA sequence D.

Step 4: Sort the hyperchaotic subsequence Sp
1 in ascending order, and then, use the in-

dices to scramble the positions of bases in the one-dimensional eight-base DNA
sequence D.

Step 5: Extract a hyperchaotic subsequence Sd from S to dynamically determine the eight-
base DNA algebraic operation rules between two eight-base DNA bases. Then,
apply it to the diffusion at the one-dimensional sequence level for each iteration
round using Equation (6).

Step 6: Sort the hyperchaotic subsequence Sp
2 in ascending order, and then, use the indices

to perform global permutation.
Step 7: Reshape the eight-base DNA sequence D into one or more cubes with a prism

length E, and obtain three hyperchaotic subsequences Hp
1 , Hp

2 , and Hp
3 from S,

whose values are all scaled into the range 1 to E− 1. For each eight-base DNA-
level cube C, employ the Algorithm 1 with these hyperchaotic subsequences for
the permutation.

Step 8: Transform and reshape a hyperchaotic subsequence into one or more eight-base
DNA-level cubes G by using the hyperchaotic subsequence Sed for the dynamic
eight-base DNA encoding, and split another hyperchaotic subsequence into three
subsets Hd

1 , Hd
2 and Hd

3 . Input these hyperchaotic subsequences, as well as each
cube C and G into Algorithm 2 to execute the diffusion.

Step 9: Transform the one or more three-dimensional eight-base DNA-level cubes back to
a one-dimensional sequence, and decode it into a pixel-level color cipher image
using the hyperchaotic subsequence Sed.

The proposed EDPD consists of five parts: hyperchaotic sequence generation
(Steps 1–2), transformation from the pixel level to the eight-base DNA level (Step 3), two
permutation steps and a diffusion step between them at the one-dimensional sequence
level (Steps 4–6), permutation and diffusion alternation at the three-dimensional cube level
(Steps 7–8), and transformation from the eight-base DNA level back to the pixel level to
obtain the final color cipher image (Step 9). These parts are visually depicted in Figure 4.
Due to all encryption stages being at the eight-base DNA level, the permutation operations
that modify the positions of bases of eight-base DNA change the corresponding values of
the pixels naturally and result in the diffusion of pixels.

By using SHA-512, the information carried by the input plaintext color image influ-
ences the generation of the initial values of the hyperchaotic system, which can in turn
generate a unique hyperchaotic sequence to enhance resistance against known-plaintext
and chosen-plaintext attacks. Moreover, the eight-base DNA encoding has 384 rules, a
significant increase compared with the traditional DNA encoding’s eight rules. Applying
these rules for dynamic encoding can significantly improve the performance and security
of encryption. The subsequent permutation and diffusion at both the one-dimensional
sequence level and three-dimensional cube level enhance resistance against differential
attacks while bolstering the security and robustness of color image encryption.

The decryption process for the color cipher image is the inverse of the above steps. It
needs to reverse the plain image with cipher image and the DNA encoding with decoding
stages in Figure 4. Furthermore, all permutation and diffusion stages are executed in reverse
order, and the traversal operations in them have to be reversed as well. In particular, during
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eight-base DNA algebraic operations in decryption, DNA additions employed in encryption
are replaced with DNA subtractions, while DNA XOR operations remain unchanged.

4. Experimental Results
4.1. Experimental Settings

To evaluate the performance of the proposed EDPD, we conducted a series of experi-
ments and compared it with other recent state-of-the-art color image encryption methods.
Specifically, we list all the parameters used in these experiments in Table 7. The user-defined
parameters b1, b2, and b3 in Equation (3) were used to generate the initial values of the
proposed four-dimensional hyperchaotic system. In the experiments, we set the values
of a, b, and c to be exactly equal to b1, b2, and b3, respectively. In addition, considering
the length L = h × w × d × 8 of the final hyperchaotic sequence, we set the number of
iterations for generating a hyperchaotic sequence to n = h × w × d × 2−1, where h, w and d
represent the height, width, and number of channels of the plain color image, respectively.
In particular, we set the total number of complete encryption operations once. Performing
multiple iterations would require a longer hyperchaotic sequence, leading to a significant
increase in encryption time.

Eight RGB color images were used as test images for our experiments, as detailed
in Table 8. All images share a common size of 512 × 512 × 3 pixels. Notably, the first
five images are widely used standard test images, while the last three are available from
Ref. [51].

All experiments were conducted using MATLAB R2021b (Mathworks, Natick, MA,
USA) on a PC with 64-bit Windows 11 OS (Microsoft, Redmond, WA, USA) , an R7-5800H
CPU at 3.20 GHz, and 16 GB RAM.

Table 7. Experiment parameters.

Parameters Description Value

User-defined parameters used with SHA-512 b1 = 0.1, b2 = 3, b3 = 2π
Control parameters of the hyperchaotic system a = 0.1, b = 3, c = 2π

Iteration times of the hyperchaotic system n = h × w × d × 2−1
Encryption rounds R = 1

Table 8. Test images.

Image Size (h × w × d)

Airplane 512 × 512 × 3
Baboon 512 × 512 × 3
Peppers 512 × 512 × 3
Sailboat 512 × 512 × 3
Splash 512 × 512 × 3

Pineapple 512 × 512 × 3
Rose 512 × 512 × 3

Plants 512 × 512 × 3

4.2. Security Key Analysis

Security keys play a pivotal role in image encryption, and an excellent image en-
cryption scheme should have a large key space and high key sensitivity, which can resist
brute-force attacks.

4.2.1. Key Space

An effective image encryption approach should possess a key space of considerable
size to resist brute-force attacks. If the size of a key space is larger than 2100, it can provide
enough security against brute-force attacks carried out with modern computing capabili-
ties. In the proposed EDPD, the four initial values x0, y0, z0, and w0 of the hyperchaotic
system (2) can be employed as the security keys. If the precision of each security key with
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a floating point type is 10−15, the total key space is 1015×4 = 1060 ≈ 2199, which is much
larger than 2100. Thus, the EDPD is excellent at resisting brute-force attacks. Moreover, by
incorporating the hash value of the input plaintext color image, the iteration count of the
hyperchaotic system, and even the number of encryption rounds as additional security
keys, the key space can be easily further expanded.

4.2.2. Sensitivity to Security Keys

An effective image encryption method must exhibit a high level of sensitivity to
the security keys. In other words, when the security keys change extremely slightly, the
resulting decrypted image will be completely different from the correct plain image. In the
proposed EDPD, the security keys are associated with the input plaintext color images. For
the key sensitivity test, we set up two groups of slightly different security keys for each
testing image to decrypt the corresponding cipher image, which are g1 = (x0, y0, z0, w0) and
g2 = (x0 + 10−15, y0, z0, w0). The decrypted results obtained using g1 and g2, respectively,
are shown in Figure 5. Obviously, even an exceedingly tiny variation of 10−15 between the
two security key sets leads to a vastly distinct decryption outcome and make the cipher
image impossible to be recovered correctly. Therefore, the proposed EDPD demonstrates a
notable sensitivity to the security keys.

Figure 5. Decrypted images with security keys g1 and g2. The first row and the second row are with
g1 and g2, respectively. From left to right: Airplane, Baboon, Peppers, Sailboat, Splash, Pineapple,
Rose, and Plants.

4.3. Statistical Analysis

Statistical analysis typically includes histogram analysis, information entropy analysis,
and correlation analysis. An effective image encryption scheme should ensure that the
cipher images have high information entropies, flat histograms, and low correlations. In
this way, the ideal image encryption algorithm can effectively resist statistical attacks.

4.3.1. Histogram Analysis

The histogram of an image records the number of times each pixel appears, which
reflects pixel-level frequency distribution. In general, natural images must have an uneven
distribution of pixels; thus, their histograms are irregular. In image encryption tasks, the
histograms of plain images commonly contain irregular shapes such as undulating peaks
and valleys. A qualified image encryption approach should transform the original uneven
distribution of pixels to flatten the histograms of cipher images as much as possible. The
histograms of plain color images and their corresponding cipher images generated using
EDPD are shown in Figure 6.

From the figure, it can be found that the histograms of plain color image channels
are shown uneven and irregular pixel-level frequency distributions. However, the his-
tograms of the three color channels of almost all the corresponding cipher images are very
flat and similar. Although the histograms of the plain color images differ significantly,
the corresponding cipher images share uniform and closely matching histograms, with
pixel values occurring roughly 1000 times. According to the results of the histograms, it
can be concluded that the cipher images produced using EDPD have quite uniform and
flat pixel-level frequency distribution. Therefore, EDPD is highly effective at resisting
histogram attacks.
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Figure 6. Images and histograms. The first to the fourth columns are, respectively, the plain images
and their histograms on the three channels R, G, and B. The fifth to the last columns are, respectively,
the corresponding cipher images and their histograms on the three channels R, G, and B.

4.3.2. Information Entropy

Information entropy (IE) is a fundamental concept in information theory, which is
proposed to solve the problem of quantitative measurement of information. In general,
it is often used as an indicator to describe the uncertainty and randomness of a complex
system, which can be also explained as the probability of occurrence of discrete random
events. Given a single channel C of a color image with 28 = 256 gray-scale levels, its IE can
be calculated using Equation (8).

IE(C) = −
255

∑
i=0

pilog2 pi (8)

where pi denotes the probability of gray-scale level i appearing in the whole channel C.
When there is only one gray-scale level, the IE attains its minimal value of 0. If every
gray-scale appears with equal probability, 1

256 , the IE obtains its maximal value of 8. In fact,
the IE of each channel of a natural color image is usually less than 8. Therefore, an excellent
color image encryption scheme should aim for an IE value as close to 8 as possible for each
channel. In this way, all histograms of the cipher images can be very uniform and flat at the
same time.

We list the IEs of the testing images and their corresponding cipher images using the
proposed EDPD and the other compared color image encryption schemes in Table 9. It
can be seen that the IEs of these plain color images are far below the maximum theoretical
value 8, while the IEs of all the cipher images except for the method of Ref. [51] achieve a
range from 7.9992 to 7.9994. Moreover, among the approaches, the proposed EDPD obtains
the highest IEs in 13 out of 24 cases and has the most occurrences, followed by the scheme
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of Ref. [36], with 12 occurrences; that of Ref. [31], with 11; that of Ref. [10], with 10; that of
Ref. [34], with 8 out of 15 cases; and that of Ref. [51], with 2 out of 9 cases. Therefore, the
presented EDPD is advantageous over or comparable with other approaches in terms of IE,
effectively resisting entropy attacks.

Table 9. The IEs of the testing images.

Image Channel Input
Cipher Images

EDPD Ref. [10] Ref. [31] Ref. [34] Ref. [36] Ref. [51]

Airplane R 6.7178 7.9993 7.9993 7.9993 7.9994 7.9993 -
G 6.7990 7.9993 7.9993 7.9993 7.9993 7.9993 -
B 6.2138 7.9994 79993 7.9992 7.9993 7.9992 -

Baboon R 7.7067 7.9993 7.9993 7.9992 7.9994 7.9994 -
G 7.4744 7.9992 7.9993 7.9995 7.9994 7.9993 -
B 7.7522 7.9994 7.9993 7.9993 7.9992 7.9994 -

Peppers R 7.3388 7.9992 7.9994 7.9992 7.9994 7.9994 -
G 7.4963 7.9993 7.9993 7.9993 7.9993 7.9992 -
B 7.0583 7.9994 7.9993 7.9994 7.9993 7.9993 -

Sailboat R 7.3124 7.9993 7.9993 7.9992 7.9994 7.9994 -
G 7.6429 7.9993 7.9993 7.9993 7.9993 7.9992 -
B 7.2136 7.9992 7.9993 7.9993 7.9994 7.9994 -

Splash R 6.9481 7.9992 7.9994 7.9993 7.9993 7.9994 -
G 6.8845 7.9994 7.9993 7.9992 7.9993 7.9993 -
B 6.1265 7.9994 7.9992 7.9993 7.9993 7.9992 -

Pineapple R 7.7570 7.9992 7.9993 7.9993 - 7.9993 7.9993
G 7.6830 7.9993 7.9993 7.9993 - 7.9993 7.9990
B 7.2726 7.9993 7.9993 7.9993 - 7.9994 7.9992

Rose R 7.7334 7.9992 7.9992 7.9992 - 7.9993 7.9991
G 7.2488 7.9993 7.9993 7.9993 - 7.9992 7.9993
B 6.8987 7.9994 7.9993 7.9992 - 7.9992 7.9989

Plants R 7.8729 7.9993 7.9993 7.9993 - 7.9993 7.9992
G 7.7675 7.9992 7.9992 7.9993 - 7.9993 7.9990
B 7.7106 7.9993 7.9993 7.9993 - 7.9992 7.9991

4.3.3. Correlation Analysis

High correlations exist among neighboring pixels of natural images, which means
these pixels are very similar or even identical. An excellent image encryption method
should break such a situation to make the correlations in the cipher images significantly
decrease, ideally to the point of near-zero correlation. To measure the correlations in the
images, the correlation coefficient γ is defined as Equation (9).

E(x) =
1
M

M

∑
i=1

xi

D(x) =
1
M

M

∑
i=1

(xi − E(x))2

cov(x, y) =
1
M

M

∑
i=1

(xi − E(x))(yi − E(y))

γ =
cov(x, y)√
D(x)D(y)

(9)

In this equation, x and y are gray-scale levels of two adjacent pixels in a channel of a
color image; M is the total number of pixel pairs; and E(x), D(x), and cov(x, y) denote the
expectation of x, the standard deviation of x, and the covariance of x and y, respectively.

Calculating the correlations of an image or a certain color channel needs to involve all
the current pixels. The correlations of the plain images and cipher images are presented
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in Table 10, where γh, γv, and γd represent the correlation at the horizontal, vertical, and
diagonal directions, respectively. Since correlation coefficients can be positive or negative,
the lowest absolute values of the correlation coefficients are shown in bold for each case,
which indicates the best results. From the table, it is clear that all the plain color images
have high correlation coefficients close to 1 in each channel, showing that there are strong
correlations in the plain color images. Conversely, all the corresponding cipher images
obtain very low correlations, which indicates that these encryption schemes have the ability
to break the strong correlations in the plain color images. The experimental results show
that the absolute values of the correlation coefficients of the cipher images are mostly close
to 0. Among all results in the table, our proposed EDPD achieves the lowest correlations
in 21 out of 72 cases and has the highest occurrences, followed by the scheme of Refs. [31]
with 20 cases; those of Ref. [10,36], both with 16 cases; that of Ref. [34], with 1 out of 45 cases;
and that of Ref. [51], with 1 out of 27 cases. Thus, the comparison results validate that our
proposed EDPD achieves superior performance in terms of correlation.

Table 10. The correlation coefficients γ of the testing images.

Image Channel γ Input
Cipher Images

EDPD Ref. [10] Ref. [31] Ref. [34] Ref. [36] Ref. [51]

Airplane R γh 0.9726 −0.0010 0.0021 0.0011 −0.0056 −0.0002 -
γv 0.9507 −0.0006 −0.0012 −0.0000 −0.0151 0.0014 -
γd 0.9346 0.0006 −0.0011 −0.0027 0.0014 −0.0002 -

G γh 0.9425 −0.0008 0.0018 −0.0050 −0.0095 −0.0023 -
γv 0.9665 0.0021 −0.0018 0.0015 0.0133 −0.0010 -
γd 0.9312 0.0014 0.0026 −0.0012 0.0189 0.0001 -

B γh 0.9633 −0.0012 0.0020 0.0011 −0.0025 0.0021 -
γv 0.9162 0.0003 0.0001 0.0037 −0.0159 −0.0035 -
γd 0.9110 −0.0002 −0.0020 −0.0003 −0.0001 −0.0015 -

Baboon R γh 0.9218 −0.0002 0.0025 0.0033 0.0018 0.0035 -
γv 0.8624 0.0010 0.0020 −0.0013 0.0038 0.0013 -
γd 0.8531 −0.0001 0.0000 −0.0009 −0.0016 −0.0006 -

G γh 0.8643 −0.0008 −0.0018 0.0018 −0.0013 −0.0013 -
γv 0.7591 −0.0017 −0.0005 0.0004 0.0176 0.0011 -
γd 0.7299 −0.0016 0.0015 −0.0003 0.0040 −0.0001 -

B γh 0.9071 0.0017 −0.0019 −0.0005 −0.0112 −0.0023 -
γv 0.8782 0.0010 0.0024 −0.0004 0.0018 0.0005 -
γd 0.8411 0.0016 0.0013 −0.0005 0.0082 −0.0031 -

Peppers R γh 0.9618 0.0008 0.0019 0.0002 0.0054 0.0003 -
γv 0.9640 0.0013 0.0005 −0.0011 −0.0042 −0.0009 -
γd 0.9575 0.0037 −0.0024 −0.0024 −0.0177 −0.0001 -

G γh 0.9777 0.0028 0.0027 −0.0003 −0.0055 −0.0038 -
γv 0.9771 0.0021 0.0035 0.0044 0.0119 −0.0028 -
γd 0.9698 0.0007 −0.0008 −0.0003 0.0046 −0.0010 -

B γh 0.9628 −0.0015 0.0014 0.0034 −0.0021 0.0009 -
γv 0.9619 0.0002 0.0017 0.0007 0.0104 −0.0062 -
γd 0.9478 −0.0007 0.0003 −0.0003 −0.0021 −0.0012 -

Sailboat R γh 0.9544 −0.0001 0.0021 −0.0006 −0.0025 −0.0015 -
γv 0.9529 −0.0005 −0.0048 0.0011 −0.0092 0.0008 -
γd 0.9396 −0.0000 −0.0024 −0.0023 −0.0095 0.0010 -

G γh 0.9692 −0.0042 0.0023 0.0006 0.0124 0.0001 -
γv 0.9627 0.0008 −0.0012 0.0013 0.0102 −0.0025 -
γd 0.9520 −0.0011 −0.0013 −0.0003 −0.0057 −0.0023 -

B γh 0.9690 0.0007 0.0032 −0.0001 −0.0073 −0.0027 -
γv 0.9688 0.0022 −0.0016 0.0019 0.0135 0.0017 -
γd 0.9521 −0.0025 −0.0006 0.0001 0.0034 0.0017 -
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Table 10. Cont.

Image Channel γ Input
Cipher Images

EDPD Ref. [10] Ref. [31] Ref. [34] Ref. [36] Ref. [51]

Splash R γh 0.9936 0.0026 −0.0029 0.0021 −0.0073 0.0018 -
γv 0.9946 −0.0001 −0.0028 −0.0012 0.0136 0.0024 -
γd 0.9893 −0.0011 0.0004 −0.0007 −0.0006 −0.0023 -

G γh 0.9796 −0.0000 −0.0025 0.0025 −0.0066 −0.0027 -
γv 0.9831 0.0019 0.0008 −0.0003 0.0202 0.0017 -
γd 0.9712 −0.0005 0.0009 0.0002 −0.0075 −0.0014 -

B γh 0.9626 0.0038 0.0038 0.0030 −0.0026 −0.0016 -
γv 0.9700 0.0013 −0.0037 −0.0025 0.0023 0.0024 -
γd 0.9653 −0.0004 0.0013 −0.0011 −0.0045 0.0005 -

Pineapple R γh 0.9819 0.0010 0.0002 0.0029 - −0.0045 0.0002
γv 0.9807 0.0024 −0.0031 0.0035 - −0.0001 0.0045
γd 0.9681 −0.0007 0.0005 0.0003 - −0.0012 0.0051

G γh 0.9753 0.0006 0.0005 −0.0024 - −0.0023 0.0026
γv 0.9739 −0.0008 −0.0026 −0.0020 - −0.0023 0.0012
γd 0.9568 −0.0001 −0.0019 −0.0034 - −0.0015 0.0044

B γh 0.9586 0.0010 0.0001 0.0008 - −0.0016 0.0037
γv 0.9570 −0.0007 0.0018 0.0023 - −0.0000 0.0046
γd 0.9294 −0.0004 −0.0011 0.0009 - −0.0013 0.0029

Rose R γh 0.9819 −0.0035 −0.0018 −0.0039 - 0.0048 0.0028
γv 0.9831 −0.0007 −0.0016 0.0002 - −0.0019 0.0049
γd 0.9703 −0.0008 −0.0001 −0.0002 - 0.0008 0.0049

G γh 0.9646 0.0026 −0.0031 0.0015 - −0.0001 0.0055
γv 0.9641 0.0040 0.0005 0.0009 - −0.0003 0.0023
γd 0.9371 0.0033 0.0000 −0.0018 - −0.0012 0.0086

B γh 0.9458 −0.0034 0.0004 −0.0018 - −0.0002 0.0034
γv 0.9449 −0.0016 0.0001 0.0027 - 0.0005 0.0053
γd 0.9026 0.0001 0.0010 −0.0001 - −0.0005 0.0014

Plants R γh 0.9545 −0.0002 0.0007 0.0001 - 0.0024 0.0010
γv 0.9581 −0.0007 −0.0003 0.0008 - −0.0015 0.0081
γd 0.9249 0.0022 −0.0007 0.0038 - −0.0005 0.0004

G γh 0.9488 −0.0000 −0.0017 −0.0030 - 0.0007 0.0052
γv 0.9523 0.0002 0.0023 −0.0029 - 0.0006 0.0043
γd 0.9151 0.0024 −0.0010 0.0015 - 0.0017 0.0025

B γh 0.9484 −0.0011 −0.0010 0.0034 - 0.0004 0.0057
γv 0.9519 −0.0026 0.0015 0.0005 - 0.0046 0.0042
γd 0.9143 −0.0011 −0.0011 −0.0014 - −0.0012 0.0033

Moreover, we choose 2000 random pairs of adjacent pixels from each plain color
image and its corresponding cipher image generated using our presented EDPD to plot
the correlations in the horizontal direction in Figure 7. It can be clearly seen that the
gray-scale levels of most neighboring pixels of the plain color images are concentrated
near the diagonal line, indicating that the high correlations are in these plain color images.
In contrast, all the corresponding cipher color images make their pixels fill in the whole
planes, showing their quite low correlations. It further confirms that the proposed EDPD
has a good ability to break the correlations existing in the plain color images.

According to the above statistical analysis, the cipher color images produced using
our proposed EDPD have high information entropies, uniform and flat histograms, and
low correlations. These features indicate that the proposed EDPD can effectively resist
statistical attacks.
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Figure 7. Correlations of 2000 random pairs of adjacent pixels in the horizontal direction. The R, G,
and B values of the pixels are shown in red, green, and blue, respectively.

4.4. Analysis of Resisting Differential Attacks

Differential attacks are another type of attack that attackers use to compare the varia-
tions between a plain image and its cipher image to find the plaintext or desired security
key. If a small variation in a plain image causes its corresponding cipher image to produce
only a small variation as well, attackers are able to easily crack the encryption scheme.
Therefore, a robust image encryption scheme should ensure that even minor modifications
in a plain image generate substantially different cipher images, thus fortifying its resistance
against differential attacks. There are two common evaluation indicators to measure the
ability of the image encryption scheme to resist differential attacks, which are the number
of pixels change rate (NPCR) and the unified average changing intensity (UACI). The two
indicators are defined by Equation (10) and Equation (11), respectively.

NPCR =
1

h× w

h

∑
i=1

w

∑
j=1

δi,j × 100% (10)

UACI =
1

h× w× 255

h

∑
i=1

w

∑
j=1
|Q1

i,j −Q2
i,j| × 100% (11)

where h and w are the height and width of the cipher images Q1 and Q2; Q1
i,j and Q2

i,j

denote the pixel values at the position of (i, j) in Q1 and Q2, respectively; and δi,j is used to
determine whether the pixel values of Q1

i,j and Q2
i,j differ from each other, as defined and

indicated by Equation (12).

δi,j =

{
0, Q1

i,j = Q2
i,j

1, Q1
i,j 6= Q2

i,j
(12)
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The NPCR denotes the variation ratio of two cipher images, whose plain images
are only marginally different. The UACI indicates the average intensity of the differences
between two cipher images caused by tiny changes in a plain image. According to the study
of Wu et al., given a significance level α = 0.05 and an eight-bit gray-scale image with size
of 512 × 512, passing the NPCR test should ensure that the NPCR score exceeds 99.5893%,
while passing the UACI test should make the UACI score fall into the range of (33.3730%
and 33.5541%) [57]. We add 1 to the value of a randomly selected pixel in a channel of the
plain color image and encrypt it, and then compute the NPCR score and the UACI score
for this channel using the original cipher image and the new cipher image. This process is
repeated ten times for each channel of each color image using our proposed EDPD. The
average NPCR and UACI scores are then calculated and compared for the testing images.
The results are shown in Tables 11 and 12. In addition, the values that fail the NPCR or
UACI test are italicized within these tables.

Table 11. The NPCR (%) of the testing images.

Image Channel
Cipher Images

EDPD Ref. [10] Ref. [31] Ref. [34] Ref. [36] Ref. [51]

Airplane R 99.6056 99.6118 99.6045 99.6063 99.6121 -
G 99.6116 99.6107 99.6125 99.6033 99.6164 -
B 99.6138 99.6184 99.6233 99.6029 99.6107 -

Average 99.6103 99.6136 99.6134 99.6042 99.6131 -
Baboon R 99.6045 99.6117 99.6029 99.6048 99.6104 -

G 99.6108 99.6109 99.6069 99.6059 99.6106 -
B 99.6191 99.6094 99.6117 99.6071 99.6090 -

Average 99.6115 99.6107 99.6072 99.6059 99.6100 -
Peppers R 99.6080 99.6074 99.6144 99.5975 99.6118 -

G 99.6069 99.6064 99.6177 99.6052 99.6047 -
B 99.6041 99.6048 99.6190 99.6037 99.6122 -

Average 99.6063 99.6062 99.6170 99.6021 99.6096 -
Sailboat R 99.6112 99.6144 99.6045 99.6089 99.6058 -

G 99.6070 99.6069 99.6167 99.5983 99.6047 -
B 99.6061 99.6117 99.5990 99.6174 99.6035 -

Average 99.6081 99.6110 99.6067 99.6082 99.6047 -
Splash R 99.6087 99.6118 99.6135 99.6037 99.6064 -

G 99.6112 99.6114 99.6110 99.6020 99.6084 -
B 99.6050 99.6078 99.5993 99.6082 99.6080 -

Average 99.6083 99.6103 99.6079 99.6046 99.6076 -
Pineapple R 99.6039 99.6091 99.5932 - 99.6123 -

G 99.6019 99.6014 99.6043 - 99.6093 -
B 99.6093 99.6034 99.6029 - 99.6085 -

Average 99.6050 99.6046 99.6001 - 99.6100 99.6138
Rose R 99.6017 99.6128 99.6126 - 99.6169 -

G 99.6138 99.6098 99.6112 - 99.6048 -
B 99.6049 99.6069 99.6080 - 99.6028 -

Average 99.6068 99.6098 99.6106 - 99.6082 99.6204
Plants R 99.6007 99.6013 99.6052 - 99.6074 -

G 99.6059 99.6136 99.6087 - 99.6024 -
B 99.6132 99.6062 99.6064 - 99.6111 -

Average 99.6066 99.6070 99.6067 - 99.6070 99.6097
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Table 12. The UACI (%) of the testing images.

Image Channel
Cipher Images

EDPD Ref. [10] Ref. [31] Ref. [34] Ref. [36] Ref. [51]

Airplane R 33.4938 33.4655 33.4393 31.9665 33.4671 -
G 33.4756 33.4599 33.4644 33.1449 33.4304 -
B 33.4568 33.4647 33.4332 32.7264 33.4561 -

Average 33.4754 33.4634 33.4456 32.6126 33.4512 -
Baboon R 33.4655 33.4583 33.4285 29.9931 33.4538 -

G 33.4101 33.4907 33.4941 28.5822 33.4838 -
B 33.4822 33.4578 33.4867 31.2384 33.4615 -

Average 33.4526 33.4689 33.4698 29.9379 33.4664 -
Peppers R 33.4564 33.4537 33.4579 29.0588 33.4929 -

G 33.4727 33.4811 33.4696 33.4382 33.4243 -
B 33.4897 33.3860 33.4905 33.4001 33.4763 -

Average 33.4729 33.4402 33.4727 31.9657 33.4645 -
Sailboat R 33.4386 33.4532 33.4763 27.9264 33.4981 -

G 33.4555 33.4721 33.4765 33.4203 33.4675 -
B 33.4438 33.4793 33.4591 33.4025 33.4551 -

Average 33.4460 33.4682 33.4706 31.5831 33.4736 -
Splash R 33.5129 33.4724 33.4592 33.4427 33.4524 -

G 33.4478 33.4659 33.4771 33.4605 33.4739 -
B 33.4273 33.4741 33.4828 31.9747 33.4991 -

Average 33.4627 33.4708 33.4730 32.9593 33.4751 -
Pineapple R 33.4567 33.4814 33.4675 - 33.4670 -

G 33.4468 33.4633 33.4837 - 33.4479 -
B 33.4682 33.4748 33.4635 - 33.4832 -

Average 33.4572 33.4732 33.4716 - 33.4660 33.4944
Rose R 33.4883 33.4874 33.4716 - 33.4700 -

G 33.4388 33.4603 33.4548 - 33.5072 -
B 33.4678 33.4481 33.4917 - 33.4819 -

Average 33.4650 33.4653 33.4727 - 33.4864 33.5147
Plants R 33.4920 33.4548 33.4880 - 33.4735 -

G 33.4955 33.4689 33.4253 - 33.4004 -
B 33.4887 33.4661 33.4734 - 33.4659 -

Average 33.4921 33.4633 33.4622 - 33.4466 33.5643

From these tables, we can find that all the color image encryption methods pass the
NPCR test for all testing images. As a contrary, not every scheme passes the UACI test.
In Table 12, the encryption scheme of Ref. [34] fails to reach the passing range of the UACI
test in 14 out of 32 cases, and the method of Ref. [51] fails the UACI test once as the score is
out of the passing range. Moreover, the proposed EDPD performs well in both the NPCR
and UACI tests across all testing images. To summarize, our proposed EDPD can effectively
resist differential attacks.

4.5. Robust Analysis

In practical scenarios, it is inevitable that noise or data loss occurs during the trans-
mission of images, which leads to contamination of the cipher images. In contrast to the
resistance to differential attacks, robustness is concerned with the ability to recover from
the decryption of contaminated cipher images. Therefore, an effective image encryption
scheme should have enough robustness, making it possible to recover the original images
from the decryption of contaminated cipher images to some extent.

To assess the robustness of the proposed EDPD, we first add 0.5%, 1%, 2.5%, 5% and
10% salt and pepper noise to the cipher image Peppers and then decrypt the noisy images
using our encryption method. The noise test results are shown in Figure 8, and it is clear
that our encryption scheme can recover the cipher images significantly when the noise
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level is less than 5%. Even in the case of 10% noise, although the decrypted image Peppers
is blurry, its profile can be still clearly recognized.

Then, we crop 1%, 6.25%, 11.3%, 25%, and 50% pixels at the center of the cipher image
Peppers as data loss, and then, use our method to decrypt them and present the crop test
results in Figure 9. We can see that, when the data loss ratio is less than 25%, our encryption
scheme can recover the image Peppers very well. Even at the highest tested data loss
percentage of 50%, the profile and shape of the image Peppers can be also slightly faintly
recognized.

In summary, the proposed EDPD has exceptional robustness and can very effectively
resist noise attacks and cropping attacks.

Figure 8. Noise attack results of the cipher image Peppers. The first row: cipher images with 0.5%,
1%, 2.5%, 5%, and 10% salt and pepper noise added. The second row: the decrypted images from the
corresponding cipher images in the first row.

Figure 9. Cropping attack results of the cipher image Peppers (The cropped area is shown in black).
The first row: cipher images with 1%, 6.25%, 11.3%, 25%, and 50% data loss. The second row: the
decrypted images from the corresponding cipher images in the first row.

4.6. Discussion

The proposed EDPD takes about 6.2745 s on average to encrypt a color image of
size 512 × 512 × 3 in our experimental environment, while the decryption process takes
about 6.1212 s on average. Since the DNA operations are actually string manipulations
and the eight-base DNA involves far more encoding rules, our encryption scheme is
somewhat time-consuming. An effective way to boost speed is to provide lookup tables for
all encoding and algebraic operation rules at the eight-base DNA level.

In hyperchaotic image encryption, many encryption operations depend on generated
hyperchaotic sequences that are usually represented by floating-point numbers, which may
cause information loss because of their encoding strategies. In the proposed EDPD, we use
64-bit floating-point numbers, which have a significant precision of 10−15 according to the
IEEE 754 standard. Therefore, as long as we retain up to 15 decimal places, we can obtain
definite numerical values, resulting in a definite sorting order and integers. Similarly, as
long as we use the same floating-point encoding standard and retaining scheme during
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decryption, we can generate the same hyperchaotic sequence during encryption, enabling
us to fully decrypt the image.

The above experimental results indicate that the proposed EDPD is able to resist
brute-force attacks, statistical attacks, differential attacks, noise attacks, and cropping
attacks. Moreover, since the generation of initial values of the presented four-dimensional
hyperchaotic system introduces the influence of the information of the input plaintext color
images, every image has its own unique security key to resist known-plaintext attacks
and chosen-plaintext attacks. It is worth noting that instead of introducing the plaintext
information of color images directly into key generation, we use SHA-512 to extract hash
values from plaintext images, split them into multiple parts, and then obtain different
keys with some calculations in Section 3.3 of our manuscript, which protects the plaintext
information of color images to some extent. In addition, the intricate encryption process
and the utilization of hyperchaotic sequences and eight-base DNA computing contribute to
the algorithm’s robustness against decryption attempts. Collectively, our proposed EDPD
is very effective for image encryption.

The effectiveness of the proposed EDPD owes to its advantages: (1) Information about
hash values of the input plaintext color image is introduced into the initial values of the
four-dimensional hyperchaotic system to generate the hyperchaotic sequence, which makes
each encrypted color image have a unique key and improves the ability of resisting known-
plaintext and chosen-plaintext attacks. (2) The eight-base DNA structure brings far more
varied encoding rules, and each three-bit block has its own DNA encoding and decoding
rules changing with the plain color image. Thus, the diversity of dynamic DNA-level
diffusion, as well as the performance and security of color image encryption are improved.
(3) The dynamic DNA-level diffusion has the ability to expand a tiny alterations in the
input color image to the whole cipher image to resist differential attacks effectively.

5. Conclusions

Image encryption is an important task in ensuring the security of images during
storage and transmission. Diffusion to change pixel values and permutation to disrupt
pixel positions are often common operations for image encryption, and these operations can
also be employed on the bit level and DNA level. Furthermore, the manipulations of lower-
level data including bits and DNA can affect more pixels and thus improve encryption
performance. Bit-level operations generally involve only permutation, while DNA-level
operations are suitable for both permutation and diffusion. To enrich the diversity of DNA
manipulations, the eight-base DNA-level encoding and algebraic operations are designed
according to the widely recognized new eight-base DNA structure. Thus, the proposed
EDPD employs the eight-base DNA-level permutation and diffusion, as well as a modified
four-dimensional hyperchaotic system.

The proposed EDPD color image encryption approach begins by employing SHA-512
to derive hash information from an input color image and combines it to generate the initial
values of the presented hyperchaotic system. Then, it uses the control parameters and
initial values of the hyperchaotic system to produce a long enough hyperchaotic sequence,
as well as extracts subsequences from it and adjusts the range of values. Finally, two
main stages of permutation and diffusion at the one-dimensional sequence level and three-
dimensional cube level are designed and constructed as the specific encryption algorithms,
which are based on the hyperchaotic subsequences and eight-base DNA encoding with
algebraic operations. In the future, innovative approaches to eight-base DNA algebraic
operations will be explored, and eight-base DNA-level encryption will be integrated with
novel methodologies in conjunction with hyperchaotic systems.
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