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Abstract: A novel dimension splitting method is proposed for the efficient numerical simulation of a
biochemotaxis model, which is a coupled system of chemotaxis–fluid equations and incompressible
Navier–Stokes equations. A second-order pressure correction method is employed to decouple
the velocity and pressure for the Navier–Stokes equations. Then, the alternating direction implicit
scheme is used to solve the velocity equation, and the operator with dimension splitting effect is
used instead of the traditional elliptic operator to solve the pressure equation. For the chemotactic
equation, the operator splitting method and extrapolation technique are used to solve oxygen and
cell density to achieve second-order time accuracy. The proposed dimension splitting method splits
the two-dimensional problem into a one-dimensional problem by splitting the spatial derivative,
which reduces the computation and storage costs. Finally, through interesting experiments, we show
the evolution of the cell plume shape during the descent process. The effect of changing specific
parameters on the velocity and plume shape during the descent process is also studied.
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1. Introduction

Biochemotaxis models are used to describe oxidation patterns of some cells in nature.
These cells tend to inhabit viscous fluids. The cells and chemical attractants are moved
about with the fluid. The gravity produced by the cell aggregation then has an impact on the
fluid’s flow. Therefore, the biochemotaxis equation is usually coupled to the incompressible
Navier–Stokes (NS) equation that governs fluid motion. The aim of this study is to develop
an effective second-order dimension splitting scheme for the chemotaxis-Navier–Stokes
equations proposed by [1,2]. This scheme is designed to achieve the accurate and fast
numerical simulation of cell biochemotaxis. The chemotaxis-Navier–Stokes model includes
a reaction–diffusion equation that involves changes in oxygen concentration, a convection–
diffusion equation that describes how cells travel along an oxygen concentration gradient,
and an incompressible Navier–Stokes equation that governs the motility of the fluid.

We now introduce the dimensionless chemotaxis-Navier–Stokes equation and define
the dimensionless parameters. The equation is defined in terms of non-negative parameters,
namely α, β, γ, and ζ, as well as the Schmidt number Sc. We briefly outline these parameters
and their meaning in the equation:

α =
χqcair

αn
, β =

qrL2

cairαn
, γ =

Vbqrg(ρb − ρ)L3

ηαn
, ζ =

αc

αn
, Sc =

η

αnρ
, (1)

where L and qr are characteristic length and characteristic cell density, respectively. cair is
the air’s oxygen concentration. Vb is the volume of the cell, g = 9.8 m/s2 is the gravitational
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acceleration, and ρb is the density of the cell [3]. In addition, the diffusion coefficients αn,
αc and the chemotactic sensitivity χq are non-negative. In a smooth, open, bounded, and
square two-dimensional domain Ω ⊂ R2 and a time interval (0, T], the dimensionless
chemotaxis-Navier–Stokes system is as follows:

∂q
∂t

+ u∇q− ∆q + α∇ · (qr(c)∇c) = 0, in Ω× (0, T],

∂c
∂t

+ u∇c− ζ∆c + βr(c)q = 0, in Ω× (0, T],

∂u
∂t

+ (u · ∇)u− Sc∆u + Sc∇p = −f(q), in Ω× (0, T],

∇ · u = 0, in Ω,

(2)

where the variable q = q(x) denotes the cell density with x = (x1, x2) and the oxygen
concentration is indicated by the variable c = c(x). The variables u = (v1, v2)

T , and
p = p(x) are defined as the velocity and the pressure of the incompressible NS equation
with a density ρ and viscosity η, respectively. Moreover, f(q) = (0, Scγq)T and:

r(c) =
1
2

(
tanh

(
c− 0.3

ε
+ 1
))

, (3)

where ε > 0 is a small constant. Let ∂Ω be the boundary of computational domain Ω. The
boundary ∂Ωtop represents the fluid–air interface. ∂Ωtop is the boundary at the bottom of
computational domain Ω and ∂Ωlr is the boundary at the left and right of computational
domain Ω. On the ∂Ωtop, there is no cell flux and the air’s oxygen concentration cair has
saturated. In this paper, the numerical simulation is considered in a closed area with only
the top contacting air, so the boundary conditions are set as:

αr(c)q
∂c

∂x2
− ∂q

∂x2
= 0, c = 1, u = 0, on ∂Ωtop × (0, T],

∂q
∂x2

=
∂c

∂x2
= 0, u = 0, on ∂Ωbot × (0, T],

∂q
∂x1

=
∂c

∂x1
= u = 0, on ∂Ωlr × (0, T].

(4)

In addition, the initial conditions are:

u|t=0 = u0, q|t=0 = q0, c|t=0 = c0. (5)

As shown above, the chemotaxis-Navier–Stokes system is a non-linear, coupled system
with multiple variables. To efficiently solve this system, it is important to decouple the equa-
tions. Additionally, a fine-mesh discretization is necessary for achieving high-resolution
results in the two-dimensional case. However, it may result in high storage requirements
and computational complexity. Thus, achieving high resolution while maintaining stability
and computational efficiency remains an important research field.

In response to numerical instabilities and maintaining algorithmic accuracy, researchers
have developed many effective numerical methods. In [4], a high-resolution hybrid finite-
volume finite-difference method is developed for the chemotaxis–fluid system. The method
takes two different approaches to study two different parts of the system (chemotaxis and
fluid). In [3], based on the linear finite element method, Huang et al. applied the flux-
corrected transport algorithm to the chemotactic equation to ensure high resolution and
stability. In [5], the chemotactic stage uses a high-resolution method (from CLAWPACK)
that captures steep gradients, whereas the diffusion step employs the stable TR-BDF2
methods. In [6], to achieve stability, a finite volume approach based on a second-order
central upwind structure is used. Recently, Wang et al. established a new convergence-fluid
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diffusion domain (cf-DD) model, which is derived using a diffusion domain, and developed
a second-order hybrid finite-volume finite-difference method to ensure correctness and
high resolution [7]. The above works mainly consider the stability and high precision
of numerical solutions. For two-dimensional problems, standard spatial discretization is
performed directly in two-dimensional space, which has high computational complexity
and storage requirements. In this paper, the dimension splitting method is used to solve
the computational efficiency problem.

In response to the huge storage and computational effort required for two-dimensional
discretization, the dimension splitting method is developed. The key is to split the operator
according to the direction of the spatial derivative. An early dimension splitting method
was the alternate direction implicit (ADI) method, which relied heavily on the finite dif-
ference method [8,9]. Operator splitting can be used in combination with most common
numerical methods, so it is widely chosen as a dimension reduction method. For example,
the operator splitting method is used for the convection Cahn–Hilliard equation [10], the
Allen–Cahn-type equation [11], and the phase field crystal equation [12].

Our innovation is to establish a fast and low-cost numerical method for the chemotaxis-
Navier–Stokes equation by using the dimension splitting method. First, a second-order
pressure correction scheme with splitting effect is used to decouple the NS equation.
The key is to use the operator A = (I − ∂xx)

(
I − ∂yy

)
instead of the elliptic operator to

correct the pressure [13], so that the decoupled two-dimensional pressure equation can
be split into one-dimensional problem for computation. The ADI scheme is then used to
solve the decoupled velocity field equation. For the chemotaxis equation, by dividing the
second-order spatial partial derivatives, the sequential splitting method is employed to the
dimensionality reduction, and then the time accuracy is improved to the second-order by
an extrapolation method. The proposed method decomposes the two-dimensional equation
into one-dimensional PDE subproblems. The computation of one-dimensional subproblems
in the same direction is independent, so that parallel computation can be performed, which
greatly reduces the computation and storage effort. For space discretization, the MAC finite
difference scheme is considered [14,15].

The rest of the paper is organized as follows. In Section 2, we show the dimension
splitting method for the coupled system of chemotaxis–fluid equations and incompressible
Navier–Stokes equations. In addition, the marker-and-cell (MAC) finite difference scheme is
introduced. In Section 3, we show some numerical experiments to demonstrate the efficacy
of the suggested strategy. The concluding Section 4 of the article provides a comprehensive
summary of the findings and discussions from the preceding sections, encapsulating the
key takeaways and observations.

2. Numerical Schemes

In this section, we present the dimension splitting scheme of the chemotaxis-Navier–
Stokes model and the second-order central difference scheme in the MAC grid configuration.

The Dimension Splitting for the Chemotaxis-Navier–Stokes System

We give a second-order pressure-stabilization perturbation scheme for the NS equa-
tion in (6): 

∂u
∂t

+ (u · ∇)u + Sc∇p− Sc∆u = −f(q),

δtAψ +∇ · u = 0,
δtpt = ψ− χη∇ · u,

∂ψ

∂n

∣∣∣∣
Ω
= 0,

u|∂Ω = 0,

(6)

whereA = (I − ∂xx)
(

I − ∂yy
)

and 0 < χ ≤ 1. The operatorA replaces the Poisson operator
in the majority of the literature, so the two-dimensional pressure equation is decomposed
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into one-dimensional subproblems to compute. In addition, this method not only has the
advantage of high efficiency, but also has the same stability and convergence of Poisson
projection (reference [13]).

Let δt be the time step size, tn = nδt, n = 0, 1, . . . Let un, cn, and qn be the approxi-
mations of u, c, and q at tn, respectively. pn− 1

2 is the approximation of p at tn− 1
2 . Setting

p−
1
2 = ψ−

1
2 = 0, in each time interval

(
tn−1, tn]. Therefore, the second-order and fast

numerical solution of the chemotaxis-Navier–Stokes equation can be obtained by Steps 1–5
as follows.

Step 1: The ADI scheme for updating the velocity field:

ũn − un−1

δt
+ (u∗ · ∇)u∗ + Sc∇p∗ − Sc∆un−1 = −f(q∗),

ūn − ũn

δt
− Sc

2
∂xx

(
ūn − un−1

)
= 0,

un − ūn

δt
− Sc

2
∂yy

(
un − un−1

)
= 0,

(7)

where p∗ = pn− 3
2 + ψn− 3

2 , u∗ = 3
2 un−1 − 1

2 un−2, and q∗ = 3
2 qn−1 − 1

2 qn−2. The variables
ūn and un fulfill the Dirichlet boundary conditions corresponding to the boundaries of the
X- and Y-directions, respectively.

Step 2: The dimension splitting scheme for updating the pressure pn− 1
2 :

ψ̄n− 1
2 − ∂xxψ̄n− 1

2 = −∇ · u
n

δt
,

ψn− 1
2 − ∂yyψn− 1

2 = ψ̄n− 1
2 ,

pn− 1
2 = pn− 3

2 + ψn− 1
2 − 1

2
χη∇ ·

(
un + un−1

)
,

(8)

where 0 < χ ≤ 1 is to ensure second-order accuracy. The variables ψ̄n− 1
2 and ψn− 1

2 satisfy
the homogeneous Neumann boundary conditions corresponding to the boundaries of X-
and Y-directions, respectively.
Step 3: The dimension splitting scheme for solving the oxygen concentration c based on

the first-order operator splitting method:
c̄n − cn−1

δt
+ vn

1 ∂xcn−1 − ζ∂xx c̄n +
βr(cn−1)qn−1

2
= 0,

cn − c̄n

δt
+ vn

2 ∂y c̄n − ζ∂yycn +
βr(c̄n)qn−1

2
= 0,

(9)

where the variables c̄n and cn satisfy the boundary conditions given by (4) corresponding
to the X- and Y-directions, respectively.
Step 4: The dimension splitting scheme for solving the cell density q based on the first-

order operator splitting method:
q̄n − qn−1

δt
+ vn

1 ∂xqn−1 − ∂xx q̄n + α∂x

(
qn−1r(cn)∂xcn

)
= 0,

qn − q̄n

δt
+ vn

2 ∂y q̄n − ∂yyqn + α∂y
(
q̄nr(cn)∂ycn) = 0.

(10)

where the variables q̄n and qn satisfy the boundary conditions given by (4) corresponding
to the X- and Y-directions, respectively.
Step 5: Since the numerical solutions qn and cn have only first-order accuracy in time, this

paper uses an extrapolation method to improve the convergence order to second-
order. Using Step 3 and Step 4, the time step δt and 1

2 δt are, respectively, used in
the time interval [tn−1, tn] to obtain the first-order solutions at tn as

(
cn,1, qn,1) and(

cn,2, qn,2). The numerical solution of u at time tn− 1
2 is obtained by 1

2
(
un−1 + un).
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Then, we get second-order solutions by adopting the extrapolation cn = −cn,1 + 2cn,2

and qn = −qn,1 + 2qn,2.

3. The MAC Finite Difference Scheme

When applying the standard finite difference scheme directly in a standard Cartesian
grid for the incompressible Navier–Stokes equation, the resulting numerical pressure is
unstable. To address this issue, we use the second-order central difference scheme in the
MAC grid configuration to provide a fully discrete scheme for the dimension splitting
method above. In the MAC scheme [15], the unknown variable (v1, v2, p) is placed in
different positions, as illustrated in Figure 1.

Figure 1. A diagram of the location of variables (v1, v2, p, q, c).

Set the computational domain as Ω = Ωx×Ωy = [xa, xb]× [ya, yb], and then a uniform
Cartesian grid can be obtained:

xi = xa + ihx, i = 0, 1, 2, . . . , Nx, hx = xb−xa
Nx

,
yj = ya + jhy, j = 0, 1, 2, . . . , Ny, hy = yb−ya

Ny
,

(11)

where Nx and Ny are given integers; xa, xb, and ya, yb are the start and end points of Ω in
the x and y directions, respectively. For intermediate nodes, we can define as:

x̆i = xa + ĭhx = xa + (i +
1
2
)hx, i = 0, 1, 2, . . . , Nx − 1,

y̆j = ya + j̆hy = ya + (j +
1
2
)hy, j = 0, 1, 2, . . . , Ny − 1.

(12)

To calculate the gradient of the pressure p in the decoupled velocity equation, we define:

δ̂x pi, j̆ =
pĭ, j̆ − pĭ−1, j̆

hx
, δ̂y pĭ,j =

pĭ, j̆ − pĭ, j̆−1

hy
. (13)

For the partial derivatives of variables p, q, and c at the cell center, we let U = (p, q, c), Ui,j =
U
(
xi, yj

)
, and Uĭ, j̆ = U

(
x̆i, y̆j

)
. Define ∇hUĭ, j̆ =

(
δx, δy

)
Uĭ, j̆, and ∆hUĭ, j̆ =

(
δxx + δyy

)
Uĭ, j̆,

where:

δxUĭ, j̆ =
Uĭ+1, j̆ −Uĭ−1, j̆

2hx
, δxxUĭ, j̆ =

Uĭ−1, j̆ − 2Uĭ, j̆ + Uĭ+1, j̆

h2
x

, (14)

δyUĭ, j̆ =
Uĭ, j̆+1 −Uĭ, j̆−1

2hy
, δyyUĭ, j̆ =

Uĭ, j̆−1 − 2Uĭ, j̆ + Uĭ, j̆+1

h2
y

. (15)
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Define the divergence of velocity on cell center as
(
∇̄h · un)

ĭ, j̆ = δ̄xv1,ĭ, j̆ + δ̄yv2,ĭ, j̆, where:

δ̄xv1,ĭ, j̆ =
v1,i+1, j̆ − v1,i, j̆

hx
, δ̄yv2,ĭ, j̆ =

v2,ĭ,j+1 − v2,ĭ,j

hy
. (16)

The first and second partial derivatives of v1 at the position of v1 are given by:

δ
{1}
x v1,i, j̆ =

v1,i+1, j̆ − v1,i−1, j̆

2hx
, δ

{1}
xx v1,i, j̆ =

v1,i−1, j̆ − 2v1,i, j̆ + v1,i+1, j̆

h2
x

, (17)

δ
{1}
y v1,i, j̆ =

v1,i, j̆+1 − v1,i, j̆−1

2hy
, δ

{1}
yy v1,i, j̆ =

v1,i, j̆−1 − 2v1,i, j̆ + v1,i, j̆+1

h2
y

. (18)

The first and second partial derivatives of v2 at the position of v2 are given by:

δ
{2}
x v2,ĭ,j =

v2,ĭ+1,j − v2,ĭ−1,j

2hx
, δ

{2}
xx v2,ĭ,j =

v2,ĭ−1,j − 2v2,ĭ,j + v2,ĭ+1,j

h2
x

, (19)

δ
{2}
y v2,ĭ,j =

v2,ĭ,j+1 − v2,ĭ,j−1

2hy
, δ

{2}
yy v2,ĭ,j =

v2,ĭ,j−1 − 2v2,ĭ,j + v2,ĭ,j+1

h2
y

. (20)

Then, we let ∇{1}h =
(

δ
{1}
x , δ

{1}
y

)
, ∇{2}h =

(
δ
{2}
x , δ

{2}
y

)
, ∆{1}h =

(
δ
{1}
xx + δ

{1}
yy

)
, ∆{2}h =(

δ
{2}
xx + δ

{2}
yy

)
.

The full discretization for the chemotaxis-Navier–Stokes system can be summarized
with the following five steps.

Step 1: vn
1 can be obtained by sequentially solving three subproblems (21)–(23):

ṽn
1,i, j̆
− vn−1

1,i, j̆

δt
+ ui, j̆ · ∇

{1}
h v1,i, j̆ + Scδx p∗i, j̆ − Sc∆{1}h vn−1

1,i, j̆
= −f(q∗)i, j̆. (21)

X-direction: for all j = 0, 1, 2, . . . , Ny − 1, solve v̄n
1 by:

v̄n
1,i, j̆
− ṽn

1,i, j̆

δt
− Sc

2
δ
{1}
xx

(
v̄n

1,i, j̆ − vn−1
1,i, j̆

)
= 0. (22)

Y-direction: for all i = 0, 1, 2, . . . , Nx, solve vn
1 by:

vn
1,i, j̆
− v̄n

1,i, j̆

δt
− Sc

2
δ
{1}
yy

(
vn

1,i, j̆ − vn−1
1,i, j̆

)
= 0. (23)

vn
2 can be obtained by sequentially solving three subproblems (24)–(26):

ṽn
2,ĭ,j
− vn−1

2,ĭ,j

δt
+ uĭ,j · ∇

{2}
h v2,ĭ,j + Scδx p∗ĭ,j − Sc∆{2}h vn−1

2,ĭ,j
= −f(q∗)ĭ,j. (24)

X-direction: for all j = 0, 1, 2, . . . , Ny, solve v̄n
2 by:

v̄n
2,ĭ,j
− ṽn

2,ĭ,j

δt
− Sc

2
δ
{2}
xx

(
v̄n

2,ĭ,j − vn−1
2,ĭ,j

)
= 0. (25)

Y-direction: for all i = 0, 1, 2, . . . , Nx − 1, solve vn
2 by:

vn
2,ĭ,j
− v̄n

2,ĭ,j

δt
− Sc

2
δ
{2}
yy

(
vn

2,ĭ,j − vn−1
2,ĭ,j

)
= 0. (26)
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Step 2: Computing the intermediate variable ψn by solving X- and Y-direction subprob-
lems and updating pressure:

X-direction: for all j = 0, 1, 2, . . . , Ny − 1, solve ψ̄n− 1
2 by:

ψ̄
n− 1

2
ĭ, j̆
− δxxψ̄

n− 1
2

ĭ, j̆
= −

(
∇̄h · un)

ĭ, j̆

δt
. (27)

Y-direction: for all i = 0, 1, 2, . . . , Nx − 1, solve ψn− 1
2 by:

ψ
n− 1

2
ĭ, j̆
− δyyψ̂

n− 1
2

ĭ, j̆
= ψ

n− 1
2

ĭ, j̆
. (28)

Updating pressure by:

pn− 1
2

ĭ, j̆
= pn− 3

2
ĭ, j̆

+ ψ
n− 1

2
ĭ, j̆
− 1

2
χη
(
∇̄h · un + ∇̄hun−1

)
ĭ, j̆

. (29)

Step 3: cn can be obtained by resolving X- and Y-direction subproblems:

X-direction: for all j = 0, 1, 2, . . . , Ny − 1, solve c̄n by:

c̄n
ĭ, j̆
− cn−1

ĭ, j̆

δt
+ vn

1,ĭ, j̆δxcn−1
ĭ, j̆
− ζδxx c̄n

ĭ, j̆ +
βr(cn−1

ĭ, j̆
)qn−1

ĭ, j̆

2
= 0. (30)

Y-direction: for all i = 0, 1, 2, . . . , Nx − 1, solve cn by:

cn
ĭ, j̆
− c̄n

ĭ, j̆

δt
+ vn

2,ĭ, j̆δy c̄n
ĭ, j̆ − ζδyycn

ĭ, j̆ +
βr(c̄n−1

ĭ, j̆
)qn−1

ĭ, j̆

2
= 0. (31)

Step 4: qn can be obtained by resolving X- and Y-direction subproblems:

X-direction: for all j = 0, 1, 2, . . . , Ny − 1, solve q̄n by:

q̄n
ĭ, j̆
− qn−1

ĭ, j̆

δt
+ vn

1,ĭ, j̆δxqn−1
ĭ, j̆
− δxx q̄n

ĭ, j̆ + αδx

(
qn−1

ĭ, j̆
r(cn

ĭ, j̆)δxcn
ĭ, j̆

)
= 0. (32)

Y-direction: for all i = 0, 1, 2, . . . , Nx − 1, solve qn by:

qn
ĭ, j̆
− q̄n

ĭ, j̆

δt
+ vn

2,ĭ, j̆δy q̄n
ĭ, j̆ − δyyqn

ĭ, j̆ + αδy

(
q̄n

ĭ, j̆r(c
n
ĭ, j̆)δycn

ĭ, j̆

)
= 0. (33)

For the discretization of mixed boundary conditions, we achieve this by using the ghost cell
technique [4], i.e., the values of virtual points are determined according to the boundary
conditions:

qi,j+1 := qi,je
α(1−ci,j), ci,j+1 = 1, qi,0 := qi,1, ci,0 = ci,1. (34)

As mentioned above, the two-dimensional chemotaxis-Navier–Stokes model has
been decomposed into a series of ODEs and one-dimensional PDEs subproblems, thus
requiring only a line-by-line solution. One-dimensional subproblems can be computed in
parallel since they can be computed independently of one another in the same direction.
Therefore, the dimension splitting method greatly reduces the storage space and improves
the computational efficiency.
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4. Numerical Simulations
4.1. Convergence Test

In this part, we test the method’s convergence. The computational domain is set to be
Ω = [−1, 1]2 for 0 ≤ t ≤ T := 1. The exact solution for the convergence test is chosen as:

q =
(

x− x2
)2(

y− y2
)2

t,

c =
(

x− x2
)2(

y− y2
)2

t,
p = sin(πy) cos(πx) sin(t),
v1 = sin(2πy) sin2(πx)π sin(t),
v2 = − sin(2πx) sin2(πy)π sin(t).

(35)

The parameters α, β, γ, ζ, η, Sc, and r(c) are set to be one. The value range of χ is 0 < χ ≤ 1.
However, through our computational experience, most of the models coupled with in-
compressible NS equations have good numerical performance when χ = 1

2 . Therefore,
this article fixes the χ as 1

2 based on computational experience. For simplicity, Dirichlet
boundary conditions are used for velocity variables and homogeneous Newman boundary
conditions for cell and oxygen variables. The spatial discretization size hx and hy is deter-
mined by taking {50, 75, 100, 125, 150, 175, 200} divisions in each coordinate direction. To
make it easier to verify second-order convergence in space-time, we set the time step size
as δt = 0.1 min{hx, hy}. The error is measured through discrete l2-norm, i.e.,

l2−error =

√√√√√∑Nx
i=1
∑Ny

j=1

(
Un

i,j −U(xi, yj, tn)
)2

Nx Ny
(36)

Figure 2a displays the l2 errors for all unknown variables between the numerical
solution and the precise solution at t = 1. It is clear that all unknown variables’ error trends
are parallel to the second-order reference line, proving that the suggested technique is
second-order convergent.

0.005 0.01 0.015 0.02

h

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

l2
 e

rr
o
r

2D convergence result

ref-second order

l
2
-error u

l
2
-error q

l
2
-error c

(a)

0.005 0.01 0.015 0.02

h

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

l2
 e

rr
o
r

2D convergence result

ref-second order

l
2
-error u

l
2
-error q

l
2
-error c

(b)

Figure 2. The convergence and accuracy comparison results of the proposed method. (a) The
proposed dimension splitting method. (b) Standard FD discretization without dimension splitting.
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4.2. Efficiency Test

All numerical simulations in this article were performed on Matlab2020b, running on
an Intel (R) Core (TM) i7-10510u CPU (2.30 GHz) laptop. To evaluate computational effi-
ciency, we compare the time required to solve the chemotaxis-Navier–Stokes equation using
dimension splitting and non-dimension splitting schemes. The dimension splitting scheme
adopts the spatiotemporal second-order scheme proposed in Section 2 of this paper. The
non-dimension splitting scheme uses the second-order projection method in reference [16].
The initial conditions and parameters are the same as in the previous subsection. Table 1
shows the time taken for an iteration. We can see that dimension splitting can significantly
improve computational efficiency. For a more rigorous comparison, the computational
accuracy of non-dimension splitting and dimension splitting schemes is shown in Figure 2.
Their accuracy is comparable and both reach second-order convergence. For storage, in
the two-dimensional case, the storage requirement of the non-dimension splitting scheme
is O((Nx Ny)2), whereas the dimension splitting method is only O(Nx Ny). To sum up, the
dimension splitting scheme proposed in this paper has obvious advantages in efficiency.

Table 1. Efficiency comparison of the proposed method with non-dimension splitting scheme.

Space Subdivision n = 64 n = 128 n = 256 n = 512 n = 1024 n = 2048

Dimension splitting 0.194 s 0.154 s 0.260 s 1.543 s 14.745 s 105.419 s

Non-dimension
splitting 0.264 s 0.470 s 2.344 s 13.146 s 71.192 s 513.749 s

4.3. Simulating the Biochemotaxis Phenomenon

To numerically simulate the biochemotaxis phenomenon, we ran a number of com-
putational tests on the dimensionless chemotaxis-Navier–Stokes model. Mixed boundary
conditions (4) are considered. The step sizes are hx = 0.02, hy = 0.005, δt = 0.0001. The
computational domain is set to be Ω = (3, 3)× (0, 1).

In all subsequent numerical result graphs shown, the first column is cell density q,
the second column is chemoattractant concentration c, and the third column is the fluid
velocity field u. All large values of q ≥ 1 are painted the same shade of red in order to color
and emphasize the plumes optimally.

4.3.1. Effect of Increased ζ

In this subsection, we investigate how altering the parameter ζ alters how the cell
density changes over time. We perform tests with different values of ζ : ζ = 5, 25, and 50.
Other parameters are fixed as α = 10, Sc = 500, β = 50, η = 1, and γ = 5000. We set the
initial data as:

q0(x, y) =
{

1, if y > 0.499− 0.01 sin((x− 1.5)π),
0.5, else,

c0(x, y) = 1, u0(x, y) = 0. (37)

In Figure 3, we can see that at the moment t = 0.07, a large number of cells form a
high-concentration cell layer on the air–fluid interface with sufficient oxygen. Due to the
Taylor–Rayleigh instability, the biochemotaxis phenomenon occurs and the plume begins
to appear. At t = 0.092, the plume sinks to the lower half and is finger-shaped. At t = 0.1,
the lower part of the finger-shaped plume becomes larger. At t = 0.113, the finger-shaped
plume changes to a mushroom-shaped plume. Upon examining Figures 4 and 5, we can
see that the plume appears earlier in each phase. Therefore, we can conclude that as ζ
increases, the finger-shaped plume appears earlier and faster, and the shape of the plume
changes faster and faster. In other words, increasing the value of ζ accelerates the sinking
speed of the plume.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3. Simulation results of a biochemotaxis phenomenon with ζ = 5, β = 50, γ = 5000. (a) q at
t = 0.07. (b) c at t = 0.07. (c) u at t = 0.07. (d) q at t = 0.092. (e) c at t = 0.092. (f) u at t = 0.092. (g) q
at t = 0.1. (h) c at t = 0.1. (i) u at t = 0.1. (j) q at t = 0.113. (k) c at t = 0.113. (l) u at t = 0.113.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4. Simulation results of a biochemotaxis phenomenon ζ = 25, β = 50, γ = 5000. (a) q at
t = 0.035. (b) c at t = 0.035. (c) u at t = 0.035. (d) q at t = 0.052. (e) c at t = 0.052. (f) u at t = 0.052.
(g) q at t = 0.06. (h) c at t = 0.06. (i) u at t = 0.06. (j) q at t = 0.07. (k) c at t = 0.07. (l) u at t = 0.07.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Simulation results of a biochemotaxis phenomenon ζ = 50, β = 50, γ = 5000. (a) q at
t = 0.03. (b) c at t = 0.03. (c) u at t = 0.03. (d)q at t = 0.05 . (e) c at t = 0.05. (f) u at t = 0.05. (g) q at
t = 0.058. (h) c at t = 0.058. (i) u at t = 0.058. (j) q at t = 0.067. (k) c at t = 0.067. (l) u at t = 0.067.

4.3.2. Effect of Increased β and γ

In this part, we examine what happens to the cell plume as β and γ are increased.
Other parameters are fixed as α = 10, Sc = 500, η = 1, and ζ = 5. The initial values are still
set to (37). Comparing Figures 3, 6 and 7, we can see that the cell plume appears earlier
and the plume sinks faster by increasing β and γ.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6. Simulation results of a biochemotaxis phenomenon ζ = 5, β = 10, γ = 1000. (a) q at
t = 0.25. (b) c at t = 0.25. (c) u at t = 0.25. (d) q at t = 0.35. (e) c at t = 0.35. (f) u at t = 0.35. (g) q at
t = 0.4. (h) c at t = 0.4. (i) u at t = 0.4. (j) q at t = 0.5. (k) c at t = 0.5. (l) t = 0.5.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7. Simulation results of a biochemotaxis phenomenon ζ = 5, β = 30, γ = 3000. (a) q at
t = 0.09. (b) c at t = 0.09. (c) u at t = 0.09. (d) q at t = 0.12. (e) c at t = 0.12. (f) u at t = 0.12. (g) q at
t = 0.13. (h) c at t = 0.13. (i) u at t = 0.13. (j) q at t = 0.15. (k) c at t = 0.15. (l) u at t = 0.15.

4.3.3. Test with Random Initial Density of Cells

The initial density of cells in this paragraph is adjusted to q0(x, y) = 0.8 + 0.2 · rand,
with rand being a random number uniformly distributed between 0∼1. Other initial values
are consistent with (37). The simulation parameters are set as ζ = 5, α = 10, Sc = 500,
η = 1, β = 50, and γ = 5000. In Figure 8, we can clearly see that our numerical approach
accurately captures the descent dynamics of the plume. The convective instability occurs
at t = 0.095. Apparently, the plumes are unevenly spaced and sink at different rates. At
t = 0.141, two rapidly sinking plumes form mushroom shapes. At t = 0.144, all the plumes
form mushroom shapes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8. Simulation results of a biochemotaxis phenomenon with initial value q0(x, y) = 0.8 + 0.2 ·
rand. (a) q at t = 0.095. (b) c at t = 0.095. (c) u at t = 0.095. (d) q at t = 0.13. (e) c at t = 0.13. (f) u at
t = 0.13. (g) q at t = 0.141. (h) c at t = 0.141. (i) u at t = 0.141. (j) q at t = 0.144. (k) c at t = 0.144.
(l) u at t = 0.144.

5. Conclusions

A fast dimension splitting scheme for chemotactic-Navier–Stokes systems is proposed.
This method combines the pressure correction method with the dimension splitting effect,
the ADI method, the operator splitting method, and the extrapolation method to achieve
a fast second-order solution. The method decomposes the two-dimensional model into a
series of one-dimensional subproblems, thus reducing computational complexity and storage
space. The effectiveness and practicability of this method are demonstrated by numerical
experiments simulating chemotaxis. Future research will focus on the following directions:
(1) the dimension splitting schemes for three-dimensional chemotactic-Navier–Stokes systems:
the method proposed in this article can be appropriately modified for solving the coupling
system of the incompressible NS equation and the second-order parabolic equation. For example,
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the effective numerical results of the Allen–Cahn model of two-phase incompressible fluid, the
surfactant model of binary fluid, etc., are what we will present in the future. (2) Due to the
complexity and nonlinearity of the model, its stability analysis is a challenging problem, which
will continue to be solved in the future. (3) The rapid numerical simulation of biochemotaxis
in complex regions has more important practical application value. How to establish the
dimensional splitting scheme of complex regions is the focus of our follow-up research.
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