
Citation: Ding, F.; Li, Y.; Ding, K.

Bounded Confidence and

Cohesion-Moderated Pressure: A

General Model for the Large-Scale

Dynamics of Ordered Opinion.

Entropy 2023, 25, 1219. https://

doi.org/10.3390/e25081219

Academic Editor: Federico Vazquez

Received: 16 June 2023

Revised: 31 July 2023

Accepted: 6 August 2023

Published: 16 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Bounded Confidence and Cohesion-Moderated Pressure:
A General Model for the Large-Scale Dynamics of
Ordered Opinion
Fangyikuang Ding 1,*, Yang Li 1 and Kejian Ding 2,*

1 Department of Sociology, East China University of Science and Technology, Shanghai 200030, China;
20003609@mail.ecust.edu.cn

2 School of physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
* Correspondence: 20003596@mail.ecust.edu.cn (F.D.); dkjian@bjtu.edu.cn (K.D.)

Abstract: Due to the development of social media, the mechanisms underlying consensus and chaos
in opinion dynamics have become open questions and have been extensively researched in disciplines
such as sociology, statistical physics, and nonlinear mathematics. In this regard, our paper establishes
a general model of opinion evolution based on micro-mechanisms such as bounded confidence,
out-group pressure, and in-group cohesion. Several core conclusions are derived through theorems
and simulation results in the model: (1) assimilation and high reachability in social networks lead
to global consensus; (2) assimilation and low reachability result in local consensus; (3) exclusion
and high reachability cause chaos; and (4) a strong “cocoon room effect” can sustain the existence
of local consensus. These conclusions collectively form the “ideal synchronization theory”, which
also includes findings related to convergence rates, consensus bifurcation, and other exploratory
conclusions. Additionally, to address questions about consensus and chaos, we develop a series
of mathematical and statistical methods, including the “energy decrease method”, the “cross-d
search method”, and the statistical test method for the dynamical models, contributing to a broader
understanding of stochastic dynamics.

Keywords: opinion; synchronization; consensus; chaos; cohesion; bounded confidence

1. Introduction
1.1. Opinion Evolution: Micro-Mechanisms and Macroscopic Issues

In recent years, owing to the rapid advancement of social media and online commu-
nities, we have witnessed a remarkable phenomenon: the potency of opinion evolution
frequently sparks intricate public opinion events and mobilizes collective action. This
captivating dynamic, intertwined with aspects such as group decision-making and related
concerns, has emerged as a prominent area of research in the field of opinion dynamics. In
this area, ordered opinions, which include common types such as political perspectives
and emotional intensity, have garnered significant attention. Existing literature addressing
this matter has primarily focused on examining the micro elements of macro consequences,
such as consensus [1], thereby establishing a fundamental problem awareness in statistical
physics. Furthermore, this research can effectively engage in constructive discourse with
social influence theory and agent-based modeling methods in the domain of mathematical
sociology [2–5]. Drawing on these foundations, certain studies in nonlinear dynamics and
social learning theory have directly formulated update rules for individual opinions based
on empirical assumptions, such as “interpersonal imitation” and “Bayesian updating” [6,7].
To elucidate the reliability of such micro assumptions, our objective is to comprehensively
review behavioral science and communication studies concerning several mechanisms,
which encompass the “bounded confidence hypothesis”, “out-group pressure mechanism”,
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and “in-group cohesion mechanisms” (their meanings will be explained below). This en-
deavor not only helps us to present the problem awareness of our paper but also establishes
a solid groundwork for subsequent modeling in the ensuing sections.

Firstly, within a particular social context, individuals often adhere to a “bounded confi-
dence” mechanism when deciding whether to engage in an interaction. In the realm of opinion
dynamics models, this can be simplified as a hypothesis: individual i possesses a confidence
threshold d and only engages with j at time t + 1 if the difference between j’s opinion value
at time t and i’s opinion value at time t falls below d(|xi(t) − xj(t)| < d) [8]. To establish
the reliability of this mechanism, we can direct our attention to some empirical research on
selective exposure and echo chambers in communication studies, which shows people tend to
contact and understand information similar to their cognitions and opinions because bounded
confidence serves as its idealized manifestation. This body of literature scrutinizes discourses
on platforms like Twitter, Facebook, and Reddit through online experiments and data mining,
illustrating that many individuals exhibit a strong inclination to interact with content that
aligns with their own, such as by commenting and sharing [9,10]. Simultaneously, some
scholars have identified that people give more weight to nearby opinions while forming their
opinions based on behavior experiments [11]. These findings can substantiate the applicability
of the “bounded confidence hypothesis” in large-scale social networks.

Secondly, having explored the local groups formed by bounded confidence/echo
chambers and their consequences, we can categorize people into in-groups and out-groups
based on a fixed agent. For a given agent i, the former encompasses “current interactors”
and “frequent interactors” of i, a phenomenon explicable by the localized bounded con-
fidence mechanism. The latter represents other individuals within social networks who
are numerous and more likely to exert overall social pressure/out-group pressure. Taking
Facebook as an illustration, individual i engages in conversations with j1. . . jn at time
t(in-groups) while simultaneously perusing a substantial volume of content posted by
unfamiliar individuals (out-groups). Both aspects can influence individual i’s opinion state
at time t + 1, and the effect from out-groups can be called as out-group pressure. In this
regard, certain literature in behavioral science and opinion dynamics regards the source of
pressure as a composite of multiple individuals’ states, such as the average of opinions held
by all out-group users, thereby revealing its “intervention” effect on individual cognition
and decision-making. Consequently, the existence of “out-group pressure mechanisms” (or
“social pressure”) is verified [12,13].

Thirdly, to exemplify the extent of influence exerted by the aforementioned mecha-
nisms on individual opinions, an exploration of the interplay between the in-group/bounded
confidence mechanism and the out-group/social pressure mechanism is warranted. This
interaction is pertinent to the “group cohesion” observed within small groups (abbreviated as
cohesion), and the meaning of this concept is the degree to which group members coordinate
and maintain consistency with each other. In this regard, it is imperative to integrate the
realms of psychology and communication to explain relevant mechanisms. Within the field
of psychology, research on cohesion can be classified into two distinct categories. Firstly, it
centers on the definition and quantification of cohesion, primarily encompassing individuals’
identification with the group and similarity among group members. However, this endeavor
encounters substantial ambiguity and lacks a universally accepted consensus [14]. Secondly, it
delves into investigating the moderating impact of in-group cohesion on out-group pressure,
wherein it diminishes individuals’ perception of pressure, leading them to resist external opin-
ions and succumb to “group blindness [15]”. Therefore, the role of social pressure mechanisms
in opinion evolution can be mitigated. Regarding communication studies, emphasis is placed
on the attribute of the “filter bubble” within small groups in social networks [16]. This con-
cept suggests that when an individual exclusively receives homogeneous information, their
exposure to divergent opinions becomes limited [17]. Extensive empirical data has validated
this phenomenon, with a significant focus placed on the “information/opinion homogeneity”
of group members. This perspective serves as a vital factor in assessing cohesion during the
evolution of opinions. In this context, the similarities among opinions within the in-group can
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serve as a metric for measuring the strength of cohesion, and we will obtain the “out-group
pressure” moderated by “in-group cohesion mechanisms” through the method.

In addition, building upon the preceding discussion on the foundational mechanisms
governing interactions between individuals, we shall augment the existing understanding
with two inconclusive micro/intermediate mechanisms (depending on individuals’ at-
tributes). This endeavor seeks to construct a comprehensive portrayal of opinion evolution,
facilitating the transition towards overarching macroscopic issues. Within this framework,
the micro-mechanism manifests as follows: when individual i engages with individual j,
they engage in reciprocal communication and imitation, thereby converging their opinions.
Alternatively, they may elect to maintain their respective opinions unaltered or actively
oppose one another, precipitating a polarization of attitudes [18]. On the other hand, the
intermediate mechanism revolves around the premise that within a given context (such as
platforms for mutual attention or dissemination), the likelihood of “individual i interacting
with individual j” varies contingent upon social network factors. This notion elucidates the
essence of “large-scale”, as denoted in the title of our scholarly contribution, signifying the
presence of a multitude of unfamiliar relationships within the network. Consequently, this
engenders a distinctive manifestation of large-scale opinion dynamics that is different from
localized dynamics.

Arising from the elucidated micro and intermediate mechanisms, we frequently en-
counter three distinct macroscopic phenomena: global consensus, local consensus, and
chaos. Global consensus denotes the convergence of all individual opinions within the sys-
tem, culminating in a nearly homogeneous state (i.e., the final count of opinion categories
(Opinion categories refer to the several kinds of opinions that the system converges to
when time approaches infinity.) represented by N (consensus) equals 1, and it’s also called
as “consensus categories” below). Local consensus signifies the convergence of opinions
within the system towards multiple states (i.e., 1 < N (consensus) < n, where n represents the
number of individuals). Lastly, chaos manifests when individual opinions fail to converge,
thereby evincing intricate fluctuations. These phenomena shall be rigorously defined in the
preliminary sections of our manuscript.

In reference to the micro-mechanisms and macroscopic phenomena, we aim to re-
spectively elucidate the problem awareness: 1. Probing the sufficient conditions for the
emergence of a global consensus within the opinion system (the question 1); 2. Delving into
the conditions for attaining the local consensus within the opinion system (the question
2-1), and also investigating the mechanisms (Conditions and mechanisms are two different
concepts in sociology. Condition refers to the factors that cause consequences, and mecha-
nism refers to the way in which conditions act on the results (usually represented as agent
action combinations and system processes).) that impede its transformation into a global
consensus (the question 2-2); 3. Exploring the conditions for the opinion system to enter
the chaos (the question 3-1) and mechanisms that hinder its transformation into a local
consensus (the question 3-2). It is important to note that the aforementioned conditions
in each of the 3 cases pertain to “individuals’ attributes” or “the potency of particular
micro-mechanisms”, while the conclusions evidently represent macroscopic outcomes,
such as consensus.

To address these questions effectively, we must pose explicit steps/problems that
warrant attention. Regarding this, we can solve three problems to answer questions 1/2/3:
1. Presenting a formal model that accurately depicts the intricacies of an opinion interaction
on a micro level (Problem A); 2. Scrutinizing the conditions and outcomes within this formal
model through mathematical deductions and numerical simulations to unravel the laws
and mechanisms underlying consensus and chaos generation (Problem B); 3. Utilizing data
from social media to infer and validate the model parameters, thereby substantiating their
alignment with real-world processes (Problem C). We will review the existing solutions to
problems A/B/C in Sections 1.2.1–1.2.3, respectively.
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1.2. General Model: Bounded Confidence and Its Properties
1.2.1. Modeling

In the realm of problem A, scholars in social dynamics have undertaken numerous
endeavors to model the fluctuations in opinions based on the aforementioned micro-
mechanisms. These models can be broadly classified into two categories, depending
on the specific context being explored. When investigating offline social dynamics and
discrete value/category perspectives, prominent models like “voter” assume a vital role in
transforming individual interactions into a collective decision-making process, enabling
effective explanations and predictions of political behaviors, such as citizen elections [19].
Conversely, models like bounded confidence/social influence demonstrate remarkable
reliability when examining the continuum/ordered opinions exchanged online [19]. These
models primarily emphasize large-scale assimilation mechanisms and can be effectively
analyzed within the context of social networks, which is precisely the focal point of our
scholarly investigation and will be elaborated upon in subsequent sections.

Within the framework of the bounded confidence hypothesis, two widely accepted
formal models are the H-K model and the D-W model. While these models differ in terms of
the mechanisms governing the evolution of opinions, they both exhibit robust convergence
and synchronization. Specifically, the H-K model is well-suited for scenarios involving
open and conversational opinion interactions, such as Reddit questions or Twitter posts. Its
updating strategy involves individuals computing the arithmetic mean of others’ opinions
within their neighborhood. The basic formulation of the H-K model is the following:
Equation (1) [6]. On the other hand, the Deffuant model operates within the context
of pairwise communication between individuals, such as Facebook conversations, and
incorporates significant stochastic attributes. It utilizes the weighted average of opinions
between pairs of individuals to update the original opinion. The basic representation of the
Deffuant model is as shown in the following Equation (2) (where xi(t) denotes the opinion
of individual i at time t):

xi(t + 1) =

∑
j:‖xi(t)−xj(t)‖≤1

xj(t)

∑
j:‖xi(t)−xj(t)‖≤1

1
(1)

xi(t + 1) = xi(t) + u
[
xj(t)− xi(t)

]
xj(t + 1) = xj(t) + u

[
xi(t)− xj(t)

] (2)

In the classic HK and DW frameworks, the assumptions of individual homogeneity, en-
vironmental certainty, and other characteristics are far from reality. Recently, scholars have
weakened these assumptions and presented complexity characteristics in the following
ways (written as strategy 1/2/3/4): (1) they have studied heterogeneous bounded confi-
dence models, which require different confidence thresholds (di) and individual learning
rates (ui) [20]; and (2) they have emphasized the asymmetric opinion updating mechanism.
In the classic Deffuant model, paired individuals often update their opinions simultane-
ously. However, this assumption can be weakened to “individual i updates their own
opinion based on individual j, but individual j does not update based on individual i” [21].
This adjustment is suitable for large-scale social networks where individual i browses
individual j’s tweets; (3) They have introduced stochastic noise to add uncertainty to the
HK model and incorporate global effects into opinion transitions. Individuals are not
only influenced by opinions within the confidence threshold but also closely related to
attitudes in the overall environment [22,23]; (4) They have added stubborn agents [24,25]
with unchanged opinions into the model and have explained the formation of opinion
polarization through simulation and empirical results [26].

Some of these revision strategies are closely related to the psychological mecha-
nisms [27,28] mentioned earlier and can be included in the general model of this article. For
strategy (1), the subsequent framework will incorporate heterogeneity to adapt to complex
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individual behaviors. For strategy (3), considering the limited research on group pressure
in opinion evolution and the neglect of its transmission effect, we can choose an appropriate
expression for random noise to represent the effect of out-group pressure on individual
interactions and regulate this effect through in-group cohesion. As for strategy (4), existing
models often lack social exclusion effects (ui is less than 0). Therefore, our paper will con-
sider this special condition as a supplement to “stubborn agents”, who are non-assimilatory
and may have consequences that differ from synchronization. In general, the integration of
different mechanisms (by revision strategies of the D-W/H-K models) can construct a new
model close to reality, serving as the solution to problem A.

1.2.2. Synchronization Research

For problem B, the pertinent literature has extensively investigated the synchroniza-
tion of bounded confidence models (the meaning of synchronization is the same as the
global consensus aforementioned in the field of opinion dynamics); however, the mecha-
nisms behind chaos remain insufficiently understood. Regarding numerical simulation,
some scholars have not only explored the sufficient conditions for the formation of global
consensus (such as d > 1/2) but have also simulated the number of consensus categories
and convergence rates under various parameter conditions [29,30]. These endeavors yield
reliable hypotheses and conjectures for subsequent theorem proofs while unearthing critical
values and “statistical laws” governing model phase transitions.

When it comes to proving the synchronization theorems, the H-K and D-W frame-
works offer two representative approaches. Under the original conditions (i.e., as per
the model proposed), researchers have demonstrated the following theorem: “individual
opinions either synchronize or diverge by more than the confidence threshold d” [31].
This conclusion possesses inherent intuitiveness: the governing rules of both model types
effectively capture the process of opinion assimilation, and when there is a global or local
consensus, it signifies a convergence of opinions. Achieving such convergence necessitates
that interactions falling within the confidence threshold exert minimal influence on opinion
values. However, multiple avenues exist to substantiate this claim, and through rigorous
mathematical analysis, one can derive a plethora of insightful conclusions (theorems).

In terms of existing methodologies, they can be broadly classified into three distinct
categories: (1) Predominantly centered on the inherent characteristics of the model, these
approaches leverage mathematical techniques such as scaling and probability approxima-
tion for processing. For instance, within the context of H-K, synchronization outcomes can
be derived through inductive reasoning based on the order-preserving property of xi(t)
under the update rule F or by considering the non-decreasing and non-increasing attributes
of the upper and lower bounds [31]. (2) Regarding bounded confidence models as dynami-
cal systems, researchers draw upon conclusions and methodologies from various fields,
including topological methods and ergodic theory. An example involves treating D-W as
a random flow, exploring its stability and attractiveness, and subsequently formulating
synchronization conditions and establishing proofs [32]. (3) Models such as D-W/H-K
might view uncertainty as a perturbation to the control system, whereby the analysis of
the stochastic system can undergo a transformation into the design of a stochastic control
algorithm. This framework, pioneered by Chen, Su, et al. [33], has been introduced and
partially developed.

In terms of the existing theorems, within the realm of homogeneous models (where
u1 = . . . = un = u, d1 = . . . = dn = d), the convergence of the H-K model has been ex-
tensively addressed, attaining either synchronization or convergence towards multiple
opinion values (with a difference between the convergence values greater than d) [31].
The D-W model can be categorized into symmetric and asymmetric cases (i.e., whether
i/j updates opinions in pairs). The former guarantees a synchronization probability of
1 when d > 1/2, while the latter has convergence rate-based findings presented by Chen
et al. [34,35]. Within the context of heterogeneity models (where individual di/ui differ from
one another), several scholars have demonstrated that their convergent features are similar
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to those of homogeneous models, and global synchronization can also be achieved when
maxdi = 1 [34,36].

The above methods are highly skilled and can be extended to the synchronous proof
of numerous opinion dynamics models. In these methods, the idea of understanding the
model as a dynamical system and proving synchronization through studying its geometric
properties is worth noting, which is expected to be used for solving problem B and further
developed in our paper.

1.2.3. Data Validation: Random Optimization and Bayesian Approaches

For problem C, it is imperative to broaden our perspective on the validation process
of various dynamic models, which can be effectively applied to the model presented
in this paper. This can be divided into parameter estimation of the model (obtaining
unknown parameter values) and theoretical testing of models with specific parameter
values (verifying the model’s capacity to explain the real world). The literature on the
former (estimation) is relatively rich, while the methods of the latter (test) are still immature,
with only some empirical attempts. In this regard, I will focus on reviewing the methods
related to the former and providing a few introductions to the practice of the latter.

In regard to parameter estimation of dynamic models (such as opinion dynamics),
existing methods can be classified into three distinct categories: (1) direct assignment of
values by leveraging the structural information of parameters; (2) utilization of optimization
techniques to search for parameters that minimize the disparity between simulation results
and empirical data; and (3) utilization of sample/prior information to statistically infer
parameters.

Regarding (1), certain literature has obtained numerical values about the number
of agents/interaction attributes in the model through experimental design or empirical
investigation [37,38]. However, due to the sensitivity of opinion updates to environmental
conditions, it is challenging for researchers to design universally applicable experimen-
tal scenarios and directly employ measured values (e.g., social learning rate u or con-
fidence threshold d) as parameter estimates in the model. As for (2), its fundamental
concept revolves around measuring the “distance” between simulated data and real data,
thereby identifying the optimal parameter values that sufficiently minimize this discrepancy
through appropriate optimization methods. This approach frequently relies on intelligent
algorithms and stochastic optimization techniques, such as particle swarm optimization or
genetic algorithms [39–41], which offer reliable search strategies for “finding parameters
that align with reality”. The convergence of these algorithms has been effectively proven
under certain conditions. Furthermore, some scholars have integrated this “distance” into
the loss function within the deep learning framework, employing gradient-based methods
to determine the optimal parameter values for fitting [42].

Regarding (3), it not only acquires model parameters that align with the actual data
(by minimizing the distance, etc.), as mentioned in (1)/(2), but also incorporates rigorous
mathematical statistical techniques and probability theory interpretation into the parameter
inference process, considering the variable distribution within the model. This includes pa-
rameter estimation and hypothesis testing. Given the intricacy of dynamic simulation rules
(models), statistical strategies employed in this approach often necessitate the utilization of
large sample theory, nonparametric estimation, and other methodologies, complemented
by Bayesian analysis. In this context, some works either integrate such models with discrete
selection frameworks or provide maximum likelihood estimates of parameters based on the
assumption of samples and updating rules (such as those related to dynamics like Markov
chains) [43]. Another publication introduces an intriguing notion, suggesting an approach
in which the initial step entails determining the posterior distribution of parameters using
the approximate Bayesian method. Subsequently, the distribution is smoothed through
kernel density estimation, ultimately leading to an integrable density function. Finally,
parameter estimators and test statistics can be computed using methods like Markov Chain
Monte Carlo (MCMC), thus offering a comprehensive framework for analysis and infer-
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ence [44]. In the forthcoming article, we shall adopt this idea as the foundation to propose
a validation method for a class of opinion dynamic models and apply it to real-world data.

Concerning theoretical testing, some scholars apply machine learning methods to seg-
ment the dataset from social media into the training set and the testing set, then determine
the accuracy of the model on the testing set [42]; if the accuracy is high, it can indicate
the reliability of the theoretical model in prediction. In addition, scholars have collected
cases of multiple social processes (such as multiple opinion evolution datasets), obtained
simulation data through numerical calculations of the model, and verified the consistency
between simulation data and case data in probability distribution [5]. In these methods, the
researcher only tests whether the model results match the actual results (such as whether
the opinion values obtained by simulation are the same as opinion values in the real world),
but the consistency test between the “model rules” and the “real rules” is ignored (such as
whether the “update method of opinions in the model” matches the “evolutionary rule of
opinions in reality”). This is a significant direction worth exploring in our paper for solving
problem C.

1.3. Literature Summary and Subsequent Research

Based on the above literature review, we have found that there are some problems
with the existing solutions to problems A/B/C: (1) For problem A, mechanisms such as
in-group cohesion and social exclusion have not yet been introduced into opinion evolution
models, resulting in insufficient consideration of their impact on consensus/chaos. (2) For
question B, the method of proving synchronization based on dynamical system theory needs
further development, which will help to confirm the law between micro-mechanisms and
macro-phenomena. (3) For problem C, we still lack effective means to test the consistency
between the theoretical model rules and real-world rules. Therefore, we will introduce
the mechanism described in (1) in the model of Section 2 (and explore its effects and
laws in Sections 3 and 4), develop the dynamic system method in the proof of theorems
in Section 2, and propose solutions to the test problem in (3) in Section 5, thus solving
problems A/B/C, respectively, and ultimately helping us answer the core questions 1/2/3
(global consensus/local consensus/chaos) in our research.

2. Model and Theorems
2.1. Overview

Based on the micro-level mechanisms described in Section 1.1, we attempt to propose
a general model for opinion evolution that reflects micro-mechanisms (such as bounded
confidence/group pressure illustrated in Section 1.1) and includes models (such as H-K/D-
W and social influence models introduced in Sections 1.1 and 1.2.1) to address Problem A.
At the same time, the model also needs to describe the macroscopic outcomes mentioned
earlier, such as global consensus/local consensus/chaos. From this, we can derive the
correlation between micro-mechanisms and macro-phenomena in the model and obtain
multiple theorems to preliminarily solve problem B.

2.2. Model

Guided by the above ideas, we establish a dynamical model consisting of the following
parts, reflecting the interaction of ordered opinions among individuals (the strict version of
our model is presented in Appendix A):

(1) Environment: The environment of our model includes a social network G = (V, E), a
confidence threshold set D = {di ∈ [0, 1] : i = 1 . . . n}, a social learning/exclusion rate
set U =

{
uij ∈ R : i, j = 1 . . . n

}
, and a pressure coefficient set

K = {ki ∈ [0, 1] : i = 1 . . . n}. Here, V = {v1 . . . vn}/E =
{

eij
}

in G represents the set
of all individuals/the set of all relationships between individuals (individuals can be
called agents in the following text). Specifically, vi represents individual i (abbreviated
as i), and eij represents the social relationship between individual i and individual
j. di in D represents the confidence threshold of vi depending on the agent i, whose
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meaning is the same as the confidence threshold in the D-W model. uij in U represents
the “social learning rate of vi towards vj’s opinion”/“the social influence rate of vj on
vi’s opinion”, that is, “the degree to which vi adopts vj’s opinion after interacting with
each other”. ki in K represents the influence of group pressure/mainstream opinion
on individual i, hence the term “pressure coefficient”.

(2) Variables: The variables of our model encompass opinion xi(t), social neighborhood
N(i), and confidence neighborhood N(i, t), which can be explained respectively. First,
Each individual vi has an opinion value at time t, denoted as xi(t) ∈ [0, 1], representing
preferences for certain goods or political positions on certain events, etc. Second, each
individual vi has a “social neighborhood”, denoted as Ni =

{
vj : eij ∈ E

}
, which

represents all individuals in the social network G who have relationships with vi, such
as being friends or following each other. Third, each individual vi has a “confidence
neighborhood” denoted as Nit =

{
vj :

∣∣xj(t)− xi(t)
∣∣ < max

(
di, dj

)}
, which repre-

sents all individuals vj whose opinion difference with vi at time t is not greater than
the larger of i’s and j’s thresholds. Under the bounded confidence hypothesis, this
represents “all agents with whom vi could potentially engage in communication at
least unilaterally” (regardless of whether “vi initiates communication with vj” or “vj
initiates communication with vi”; this is because it just needs a single person to start a
conversation in most scenes).

(3) In-group Rule: At time t, for any individual vi, considering all individuals vj in Ni∩Nit
(i.e., individuals with whom vi has a social relationship and whose opinion differences
can be trusted and accepted by vi), a subset {vi1 . . . vik} is randomly selected from
this set to interact and exchange opinions with i, and the selection is denoted as a
random event wt, with its probability defined in some contents like M1/M2/M3 in
the section of Main Theorems and Appendix A. (This is because strictly defining
probability is very cumbersome and relies on the measure theory, so it is included in
the Appendix A). This subset consists of all individuals who interact with i, written
as N(i, t). In this context, we denote the average influence of all vj’s opinions on vi as
(1/|N(i, t)|) ∑

j∈N(i,t)

(
uij·xj(t)

)
, where uij ∈ U represents the social learning rate defined

earlier, and |·| represents the cardinality of a set. Additionally, individual i retains a
portion of his original opinion, denoted as [1− (1/|N(i, t)|)· ∑

j∈N(i,t)
uij]·xi(t), where

the coefficient of xi(t) is for weight normalization purposes.
(4) Out-group Rule: At the same time, at time t, individual i browses information posted

by other individuals in the social network G and is influenced by the average opinion
Ex(t) = (1/n)· ∑

vi∈V
xi(t) of the network. The degree of this influence is adjusted by the

“difference between individual i’s opinion and the mean opinion in Ni(t)” (referred to as
“local discrepancy”), denoted as |xi(t)− (1/|N(i, t)|)· ∑

j∈N(i,t)
xj(t)|. Then, We can denote

the environmental noise experienced by individual i at time t as the following equation:
noisei(t + 1) = |xi(t) − (1/|N(i, t)|)· ∑

j∈N(i,t)
xj(t)|·(Ex(t) − (1/|N(i, t)|)· ∑

j∈N(i,t)
xj(t)),

representing the adjusted group pressure. The overall effect of this pressure on individual
i’s opinion is related to the pressure coefficient and denoted as ki·noisei(t + 1).

(5) The General Equation: Based on the rules described in (3) and (4), after opinion
exchange/random event wt occurs, the opinions of all individuals i evolve from xi(t)
to xi (t + 1), following the update equation:

xi(t + 1) = [1− (1/|N(i, t)|)· ∑
j∈N(i,t)

uij]·xi(t) + (1/|N(i, t)|) ∑
j∈N(i,t)

(
uij·xj(t)

)
+ ki·noisei(t + 1)

In this equation, the environmental noise from (4) is incorporated, and the average influence
of various vj’s on vi from (3) is considered to capture a richer range of opinion sources.
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Clearly, (1) and (2) describe the environmental setup of the model, which is necessary
for characterizing a class of social network dynamics. (3), (4), and (5) represent the evolution
rules of the model, whose effectiveness relies on the behavior patterns and ways of interac-
tions among individuals. From this perspective, we can explain how the evolution rules
are derived from the micro-level mechanisms described in Section 1.1. The correspondence
between this model and the mechanisms can be illustrated in the following Figure 1.
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Regarding (3), it integrates the “bounded confidence hypothesis” and the “social
influence mechanism”. The “bounded confidence” is reflected in the confidence threshold
d, which determines the agents in N(i, t) who have opinion differences within the threshold,
and only they can interact with the agent i. “Social influence” refers to the ability to
change others’ opinions through persuasion/control, etc. Unlike the parameter u/ui in
the homogeneous/heterogeneous H-K/D-W models (see Section 1.2.1), this influencing
ability depends on the fixed social network structure (if there is no edge between vi and vj,
there is no social influence) and has more heterogeneity (the influence of j on i varies for
different j), which can be described using Ni/U and uij in the model and is similar to the
strategies 1/4 in Section 1.2.1. This part integrates the “bounded confidence hypothesis”
and characterizes social networks/assimilation, and exclusion as different social influence
effects, represented by the yellow and blue parts in the diagram.

Regarding (4), noisei (t) is composed of the average opinion Ex(t) of the network and
the local discrepancy

∣∣xi(t)− (1/|N(i, t)|)·∑ xj(t)
∣∣ of individual i’s opinion. The former

measures group pressure, which essentially indicates the pressure and influence of “main-
stream opinions” perceived by individuals when browsing extensive information. The
latter measures internal cohesion and focuses on the consistency of individual i’s opinion
with the “internal group” to which they belong (in this case, the “small group N (i, t)”
with which i interacts at time t), which is consistent with the measurement mentioned in
Section 1.1. Thus, this part reflects the combination of the “out-group pressure mechanism”
and the “in-group cohesion mechanism” based on strategy 3 in Section 1.2.1, represented
by the purple part in the diagram.

Based on the above content, we have established a stochastic dynamic framework
that integrates bounded confidence and social influence, taking into account different
interaction mechanisms involving the in-group and the out-group. Based on this, we can
further explain the generality of this model; the D-W/H-K/Degroot models (showing
social influence) can all be viewed as special cases of this model. For D-W, it corresponds
to the case of our model under the conditions of “G is a complete graph, uij = u, there exists
a unique i and j such that |N(i, t)| = |N(j, t)| = 1, and P(i interacts with j) = 1/|V|”. For
H-K, it corresponds to the case of “G is a complete graph, 1− ui j = 1/Nit· ∑

j∈N(i,t)

(
uij
)
, and
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if
∣∣xi(t)− xj(t)

∣∣ < d, P(i interacts with j) = 1”. Similarly, the Degroot model is also an
example of our model under specific conditions (When G is a complete graph, di = 1 for
all of vi and P(i interact with j) = 1 for any i/j, our model is same with a kind of degroot
model (xi(t + 1) = ∑wij•xj(t)).),which ensures that the theorems established later can be
generalized to these types of special cases.

2.3. Main Theorems

In response to the model proposed earlier, we establish three fundamental theorems
to answer questions 1/2/3, namely the global consensus/local consensus/chaos theorem,
serving as preliminary solutions to Problem B. To this end, we first introduce three sub-
models of our main model, which aid in stating the theorems. These sub-models have the
same form as the main model but need to satisfy different conditions (representing different
social environments) and are denoted as M1/M2/M3. We will describe them separately
in the following sections. After that, we can intuitively define the macroscopic outcomes
(consensus/chaos) in our model and illustrate our theorems.

In M1, there exists an individual i in the social network G who can engage in an
opinion exchange with anyone. This requires his confidence threshold to be greater than
maxdi(0)-mindi(0), and there should be edges between vi and any vj (d(vi) = n − 1,
referred to as “star topology” in the related literature [45]). At each moment, an individual
i randomly interacts with only one individual in his neighborhood Ni ∩ Nit(|N(i, t)| = 1).
Additionally, “the conversation between any i and j” and “the social learning rates” are
symmetric (namely, i interacts with j if and only if j interacts with i; uij = uji > 0). These
conditions indicate that M1 describes an assimilation system with an “active agent” (vi),
where opinions among two individuals approach each other after the conversation. It is an
extension of the heterogeneous D-W and H-K models.

In M2, the social network G is a complete graph Kn, meaning “there is an edge
between any i and any j”. The social learning rates and confidence thresholds of all
individuals are constants (ui = u, di = d), and they are not influenced by out-group pressure
(ki = 0). Additionally, at each moment, individual i only interacts with one individual in its
neighborhood, Ni∩Nit, and “the conversation between any i and j” and “the social learning
rates” are also symmetric, the same with M1. Clearly, M2 represents an ideal scenario that
depicts the evolution of opinions within a localized social group (a relatively closed group
with closer and tighter connections among members). Moreover, M2 is a variation of the
homogeneous D-W model that allows for multiple pairs of interactions among individuals
at any time t, while D-W only allows one pair of interactions at each time step.

In M3, the social network G is only required to be a connected graph, meaning “there
is a path between any i and j connecting them”. The confidence threshold di(t) of each
individual i is a monotonically increasing function with a limit of 1. Additionally, individual
i is similar to M2 and is not influenced by out-group pressure (ki = 0). Clearly, M3 can be
understood as an “open society” where a connected graph allows unrestricted propagation
of opinions and information among individuals. The increasing confidence threshold
represents an expanded range of communication for individuals, and the absence of group
pressure indicates freedom of expression of opinions. Furthermore, the social influence
model can be viewed as a special case of M3, where di = 1 for any individual i.

In addition, we also need to clarify the definitions of several types of macroconse-
quences in the model in order to elucidate our theorems below: (1) Global consensus can
be considered as “for any individual vi and vj, when t approaches infinity, the probability
of
∣∣ xi (t) − xj (t)

∣∣ approaching 0 is 1” (strictly speaking, it is called “quasi consensus”),
which is determined by the randomness of the above model. (2) Local consensus is equiv-
alent to “the probability of N(consensus) > 1 is 1”, that is, “the probability of x1 (t). . . xn
(t) tending to multiple different values is 1”. (3) Chaos indicates that the probability of x1
(t). . . xn (t) not converging/and constantly fluctuating is 1.

Under the conditions of these three models and the core definitions presented before,
we derive sufficient conditions for achieving global consensus/local consensus/chaos.
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Based on the above discussion, these conditions also apply to the H-K, D-W, and social
influence models (with slight deductions). The formal statements of the theorems are
complex and require reference to Appendix A.

Theorem 1 (global consensus). Under M1, ([0, 1]n, Ω , F) has stable quasi-consensus.

Theorem 2 (local consensus). Under M2, i f u 6 1/2, n = [1/d] + 1, ∀x0 ∈ [0, 1]n,
P(w : Nconsensus(w, x0) 6 n) = 1.

Theorem 3 (chaos). Under M3, if F̃ is an expanding map, thus P{w : x(t) has L−Y chaos} = 1,
and it will not reach quasi-consensus.

For the stated theorems, we can provide intuitive sociological explanations: Theorem 1
indicates that in an assimilation system with active agents (M1), opinions will eventually
evolve into a global consensus. Theorem 2 suggests that in a relatively closed group
with close connections among members and high similarity (M2), the upper bound of the
number of opinion categories under local consensus decreases as d increases. Theorem 3
states that in an open society with free information propagation, broad communication, and
low group pressure (M3), if there is a certain degree of social exclusion (ui < 0), opinions
will evolve into chaos. These explanations can answer questions 1, 2-1, and 3-1 under
ideal conditions and demonstrate the significant impact of parameters di, ui, and ki on
macroscopic results, thus inspiring the subsequent simulation studies.

3. Results: Experiment Design and Simulation Analysis
3.1. Overview

Based on the model and theorems in the previous section, we attempt to explore
the macro-impact of micro-mechanisms (reflected by parameters such as uij) on opinions
through simulation in this section to further solve problem B. This is because, compared
to previous theorems, simulation can obtain weaker conditions and a wider applicability,
which is closer to the real world. Therefore, the section revolves around numerical simula-
tion and is divided into experiment design and results analysis, which will be elaborated in
the following parts.

3.2. Simulation Experiment Design

According to the ideas in Overview, considering that the aforementioned theorem
is only applicable to complete graphs and connected graphs, we perform numerical sim-
ulations on a small-world network [46] within our model. This choice ensures that the
social relationships represented by the network closely resemble the actual conditions of
opinion evolution. Furthermore, we aim to elucidate the influence of various factors, such
as network structure, confidence threshold, and social learning rate, on the formation of
consensus, to further solve problem B.

To achieve this, we will conduct multiple experiments based on our model. In these
experiments, we set up the probability P (i interacts with j) = 0.5 when vj belongs to
Nit∩Ni (except for the simulation of M1/M2/M3 to verify the theorems) and focus on
the following parameters: (1) the average degree (briefly written as d*) of the network;
(2) the social learning rate, denoted as “uij”; (3) the confidence threshold, denoted as
“di”; and (4) the group pressure coefficient, denoted as “ki”. Moreover, to elucidate the
micro-mechanisms impact on macro-level effects, we will first simulate a homogeneous
model (with an arbitrary agent i/j, uij = u, di = d, and ki = k). Additionally, we will
simulate the model under heterogeneity conditions (uij = ui/di varying upon the agent
i). These practices serve to accomplish two fundamental tasks: A. Conducting numerical
verification of the aforementioned theorem; B. Investigating the evolutionary mechanisms
of consensus/chaos under other broad conditions (both helpful for solving problem B).
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Our simulation environment can be illustrated briefly: First, the number of nodes
in the network is 300. Second, the probability of random reconnection is established at
0.3 in the small-world network, and each experiment entails no less than 50 iterations.
Furthermore, the model incorporates several parameters as variables, such as uij/di/ki,
which are manipulated across diverse experiments to ascertain their numerical impact on
the outcomes. To facilitate comprehensive analysis, we have devised distinct experimental
strategies that can be categorized into two different types mentioned above: the homoge-
neous model (for any agent i and j, uij = u, di = d) and the heterogeneous model (different
agents have different values of ui and di). Through simulation, the former unveils multiple
ideal mechanisms, whereas the latter shows a substantial departure from ideal mechanisms,
thereby enabling a thorough exploration. These experimental strategies are expounded
upon below.

To handle task A, we endeavor to validate the consistency between our simulation
results and the conclusions derived from Theorems 1–3 by opting for parameter values that
satisfy the prescribed conditions. As for task B, we should separately handle the simulation
of the homogeneous model and the heterogeneous model, as detailed and illustrated below.

For the homogeneous model, we are in pursuit of comprehending the enduring
outcomes of distinct u/d variables and discerning the remarkable influences of k. Therefore,
we shall take “the influence of the confidence threshold d on opinion outcomes” as an
example to present a comprehensive framework for conducting the control experiment in
the subsequent sections of our paper.

(1) Arising from the mechanisms of imitation and exclusion, assign the variable “u” into
two categories (denoted as u > 0/u < 0).

(2) Under these two categories of u, analyze the impact of parameter “d” on the evolution-
ary outcomes of opinions separately. When u > 0, the experimental procedure entails
the following steps: A. Control the values of u, d*, and k and observe the simulation
results at various values of “d”; B. Conduct multiple experiments using fixed parame-
ter values of d, u, d*, and k; C. Visualize the simulation results, such as the trend of
individual opinion values, frequency of global synchronization, and distribution of
consensus numbers; Similarly, when u < 0, perform simulation experiments analogous
to those conducted when u > 0, such as controlling the same values of d*.

(3) Finally, summarize and compare the obtained results to elucidate the comprehensive
influence of “d” on the evolution of opinions under different values of “u”.

In a similar vein, we can apply this experimental protocol (or select particular stages
within the protocol based on our needs) to investigate the influence of parameters, such
as “d*/k”, on the outcomes of evolution. This endeavor aims to answer questions 1/2/3
about the phenomena of synchronization and chaos.

For the heterogeneous model, our focus lies in examining the interaction between
imitators and repulsors (representing individuals i whose uij = ui > 0/uij = ui < 0 for all
agents j, respectively). This interaction raises a question, stemming from the preceding
text: when all agents are imitators (namely, they satisfy ui > 0), if given values of d/d*
can engender global or local synchronization, how many repulsors (ui < 0 transformed
from ui > 0) can disrupt synchronization and induce chaos? The conclusion drawn from
Theorem 3 is confined to the scenario where the network is connected and d is large.
However, simulation experiments can further elucidate this question, and we can break it
down into two steps:

(1) Set up the imitators/repulsors proportion, denoted as α/1−α.
(2) Employing the simulation strategy of the homogeneous model, control a set of d/d*/k

values that lead to synchronization (when ui > 0) and simulate varying α values
to comprehend their impact on consensus formation. Subsequently, we can depict
relevant charts based on the results.

Consequently, we can integrate the findings from homogeneity/heterogeneity experi-
ments to investigate the mechanism’s response to “global consensus”, “local consensus”,
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and the “chaotic state” as mentioned in the introduction (questions 1, 2, and 3 in Section 1.1,
respectively). Moreover, the subsequent text will present simulation results categorized
according to this classification (questions 1/2/3), accompanied by corresponding explana-
tions and conclusions.

3.3. Simulation Results Analysis
3.3.1. Global Consensus

In this part, we expect to provide some analysis conducive to answering question 1 (in
the Discussion), which requires us to search for the numerical conditions of global consensus
arising from the theorems proved before. Therefore, it first involves the verification of
these theorems: utilizing the aforementioned approach, we initially simulate the evolution
of opinions under the conditions outlined in the preceding Theorems 1–3. As depicted
in Figure 2a–c, the simulation shows the formation processes of global consensus, local
consensus, and chaos. These simulation results substantiate the reliability of theorems to a
certain extent.
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Additionally, to considering the theorems and the experiment design, our focus shifts
towards comprehensively elucidating the influence of some parameters on opinion dynam-
ics, especially the impact of the network’s average degree (d*)/the confidence threshold
(d)/social learning rate (u) and group pressure coefficient (k) on opinion formation. In
this context, we proceed to present an intricate analysis of the simulation results of these
four parameters while simultaneously exploring their correlation with the synchronization
patterns exhibited by our model. In the Discussion section, we will use these analyses and
conclusions to answer question 1 systematically.

In terms of network structure, specified as the average degree d*, the concept at hand
pertains to “social reachability”, denoting “the possibility of contact between agents i and j
about sharing opinions and information”. In a small-world network characterized by a high
average degree, nodes possess a greater number of adjacent nodes, thus exhibiting high
“social reachability”. Consequently, employing the aforementioned experimental approach,
we control u = 0.4/k = 0.1/d = 0.3 (and d = 0.6) to observe the simulation results across
different average degrees (d* = 2/5/8). Figure 3a–i illustrate the dual effects of the average
degree d* on the model: (1) with a high average degree d*, few categories of local consensus
emerge after multiple simulations, potentially leading to global consensus (as depicted
in Figure 3a–c); (2) when d is large, an increase in the average degree d* can accelerate
model convergence and facilitate the attainment of global consensus (as demonstrated
in Figure 3d–i). In essence, both of these phenomena can be ascribed to a fundamental
conclusion: the opinion system can achieve global consensus within a limited timeframe,
contingent upon relatively elevated social reachability (a large d*).
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Regarding the confidence threshold d, we relax the conditions specified in theo-
rem 2 for the complete graph, obtaining different results from setting d = 0.3/0.6/1 while
controlling u = 0.4/k = 0.1 and d* varying between 2/5/8. Upon examining the com-
parison between Figures 3a and 3d (Figures 3b and 3e), as well as Figures 3d and 3f
(Figures 3e and 3g), it becomes apparent that an increase in d from 0.3 to 0.6 triggers a
dramatic transformation in the final state of opinion evolution. The transition includes
a shift from multiple types of local consensus to global consensus. However, when d
escalates from 0.6 to 1, the discrepancies between the final states become less pronounced.
This particular characteristic warrants further investigation in subsequent discussions. In
general, the increase in threshold d brings out the emergence of global consensus or results
in a smaller number of local consensus categories. This attribute represented by threshold
d may be referred to as “confidence reachability”, signifying “the likelihood that agents i
and j of the system are willing to engage in subsequent interactions (In this article, contact
and interaction have different meanings. The former refers to an individual’s exposure to
information from others, while the latter refers to an individual’s willingness to commu-
nicate and update his opinion with others after exposure to information) following their
initial contact”.

In addition, it is imperative to consider the influence of the social learning rate (u) and
the group pressure coefficient (k). Before the discussion, we can designate the effects of u
and k as the assimilation effect (or exclusion effect when u < 0) and homogenization effect,
respectively. The former represents the mutual approach of opinions after interactions
between people (such as agent i and agent j), while the latter stands for the tendency of
opinions to the mainstream opinion (shown as the average opinion) arising from group
pressure. Specifically, assimilation refers to the effects of strategies such as mutual imita-
tion/persuasion in communication (taking agent i as an example, its information source
is agents interacting with i), while homogenization refers to individuals’ identification
with the opinions of the majority due to group pressure (agent i’s information source is
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all individuals in the social network). Below are detailed elucidations for these two effects
based on simulation results for parameters u and k.

For the parameter u, in accordance with the results provided in Figure 4a–c, the process
of consensus formation accelerates when the variables d/d* satisfy the synchronization
condition and u ascends from 0.2 to 0.5/0.8. In other words, when u surpasses 0, the
increase in u plays a significant role in improving the assimilation effect and speeding
up the emergence of global consensus. This is because from Figure 4a–c, the time for
different individuals’ opinions to converge on consensus is significantly reduced (while
u is increasing). Conversely, if u < 0, this assimilation effect will be transformed into
an exclusive effect, thereby rendering it inapplicable within the above framework. This
phenomenon will be discussed later in the “Chaos” section. For the parameter k, according
to the results depicted in Figure 4d–f, the value of the group pressure coefficient k exhibits
a positive correlation with the possibility of synchronization. This correlation can be
attributed to the fact that the presence of noise (i, t) inclines towards transforming divergent
individual opinions into the average opinion (although the small values of d/d * limit
communication between some individuals, such as the upper and lower opinions in
Figure 4a, the higher k allows each individual to consider the average opinion of everyone
in the network), resulting in the consensus, which is called the homogenization effect above.
The amplification of noise serves to convert local consensus into global consensus, which
will be further expounded upon in subsequent sections. On the whole, the attributes of u
and k encapsulate an additional imperative component that engenders global consensus:
the assimilation and homogenization within the opinion system.
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In the above paragraphs, we preliminarily explored the influence of parameters
d/d*/u/k on synchronization. In order to depict the formation of global consensus in
different micro-conditions more quantitatively, we conducted additional experiments to
verify the macroscopic impacts of the two core parameters aforementioned, which have
been known to have distinct roles, respectively: the average degree d* and the confidence
threshold d, representing different “reachability”. Our experiments are comprised of three
parts: (1) regarding social reachability d*, we conduct 20 simulation experiments on systems
with varying average degrees (d* = 2. . .10) while keeping d = 0.4, and the frequencies of
attaining global consensus in experiments (freq = number of global consensus/20) are
recorded, yielding Figure 5a; (2) for confidence reachability, we set d* = 5 and recorded
the frequencies of achieving global consensus for d values ranging from 0.3 to 0.6. The
corresponding results are illustrated in Figure 5d; and (3) for both social reachability
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and confidence reachability, we draw the 3-dimensional graphs to show the evolution of
opinions under different values of parameters d/d*, presented in Figure 5b,d.
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Figure 5. (a–d) Frequency of global consensus (or “synchronization”) reached by the model under
different d*/d.

From the results obtained from the experiment elaborated above, we find the synchro-
nization frequency (the frequency to achieve global consensus) is positively correlated with
d and d* (Figure 5a,c), and the number of opinion categories is decreasing when the value
of d (or d*) is increasing (Figure 5b,d). These results are consistent with the analysis in the
above paragraphs and are more reliable because of the comparison between more possible
results under many values of d and d*.

In summary, when u > 0, if the values of the confidence threshold d and the average
d* are large, the opinion tends to reach global consensus. In this mechanism, as the value
of u increases, the rate of reaching global consensus will become faster (assimilation effect).
If the value of the confidence threshold d and the average degree d* are not large enough,
a larger group pressure coefficient k can convert local consensus into global consensus
(homogenization effect). These conclusions will be further explained in the Discussion
section, and a general answer to question 1 will be provided based on the concept of
reachability defined above.

3.3.2. Local Consensus

In this part, we expect to provide some analysis conducive to answering question 2 (in
the Discussion), which requires us to search for the numerical conditions of local consensus.
Based on the mechanism obtained by the above results, we recognize the effect of u/d/d*/k
on consensus, which can be briefly summarized as assimilation (u), reachability (d and d*),
and homogenization (k). Among the three effects, u mainly affects the final result of opinion
formation through symbols, and k is not necessary for global consensus (such as k = 0
in Figure 3a); only the absolute values of d and d* play a crucial role in consensus states
(global or local). Therefore, we can focus on exploring the effects of d and d * in this section
to answer question 2 (local consensus) and probe the influence of k after this exploration.

For the purpose of understanding the relationship between d/d* and local consensus,
we can still examine the pertinent experimental results shown in Figure 5a–d in the previous
part. It indicates that when given d = 0.4 and d* = 5, both d* and d exhibit minimal impact
on the frequency of synchronization as they decrease from higher values (e.g., 0.6/7) to
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0.5/6. However, when they decrease further from 0.5/6, the synchronization frequency
becomes more sensitive to these changes. Therefore, we hypothesize that beyond a specific
threshold for d or d*, multiple “bifurcation points” emerge (a threshold), which may result
in a “truncation phenomenon”: When the parameter value surpasses this threshold, the
system may only achieve n kinds of local consensus (where n = 1 represents the global
consensus). Conversely, when the value falls below this threshold, it has n + 1 kinds of local
consensus, just like a truncation of the consensus formation process, which is regarded as
a bifurcation in the field of dynamical systems. Specifically, when an individual’s d * or
d is less than the ‘bifurcation point’, they are unable to effectively assimilate individuals
with significant differences in their own opinions/social distances (xi (t) and xj (t) with
significant differences cannot approach each other), resulting in the inability to further
narrow down opinions with significant differences. This supposition forms the crux of
answering questions 2-1 and 2-2. Hence, we will employ diverse parameter combinations of
d/d* in subsequent analyses to experimentally investigate the number of local consensuses.

To investigate the “bifurcation points” and truncation properties of d and d* separately,
we meticulously control each of the two parameters in isolation. The specific methodology
is elucidated in the figure annotations below. Based on Figure 6a–i, under a fixed d value,
the system exhibits remarkable stability across varying d*. However, the count of consensus
occurrences still exhibits a dependency on the network average degree. In contrast, as
illustrated in Figure 6j–l, with a fixed d*, the system demonstrates a pronounced sensitivity
to perturbations in d. Even a modest change of 0.2 can yield significant disparities in the
number of consensus categories, such as the conspicuous transition from a global consensus
to 2~3 kinds of local consensuses around d = 0.5. Generally speaking, if the value of d(or
d*) is fixed, the other parameter d*(or d) will have some bifurcation points transforming n
kinds of consensus into n + 1 kinds of consensus.

After elucidating the primary causal factor, namely “truncation” from the values of d
and d*, contributing to the emergence of “local consensus, “we can delve into the meditative
effect from group pressure coefficient k to the opinion formation outcomes. We control the
values of u/d/d* and vary the k, to obtain the simulation results visualized in Figure 7a,b.
These figures offer an intuitive depiction of such characteristics: while a global consensus is
observed when the parameter combination of (u, d, d*) is set as k = 0.3, reducing the group
pressure coefficient (k = 0.1) can lead to an increase in the number of consensus instances,
amounting to three, thereby emerging as a crucial property within the model. This is the
homogenization mentioned earlier, and it means that k can help the system reach global
consensus when it may lead to local consensus with no homogenization effect (k = 0), and
vice versa.

Overall, when u > 0 and values of d/d* representing confidence/social reachability
are decreasing in the opinion system, it may truncate the original consensus formation,
giving rise to more kinds of local consensus. Additionally, a small value of k can retain the
local consensus, hindering it from changing into the global consensus.

3.3.3. Chaos Phenomenon

After obtaining some results about questions 1 and 2, we will explore the chaos
described in questions 3-1 and 3-2 in this section and deeply excavate them in the Discussion.
For question 3, theorem 3 states that under the restriction of a connected graph, if F is an
expanding map (showing that people’s opinions are mutually exclusive and distant in
the communication), opinions will exhibit chaos, and consensus becomes unachievable.
Simulation results further support this conclusion. Figure 6a demonstrates that when the
assimilation mechanism shifts towards exclusion (from u > 0 to u < 0) while maintaining
strong social and confidence reachability, the system exhibits chaos within a specific range.
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To investigate this phenomenon further, we can set the experimental parameters u
to −0.3, −0.99, and 1.1, respectively, while controlling the other parameters. It is worth
noting that we need to set sufficient reachability (d/d*) to enable effective communication
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between individuals. By comparing Figure 8a–f, we observe that for −1 < u < 0, the chaotic
region expands as the absolute value of u increases (in the context of relatively large d/d*).
In other words, when reachability is high, a larger absolute value of u can cause more
people’s opinions to enter complex and repetitive fluctuations. This may illustrate the
positive correlation between u (the social exclusion rate) and the level of chaos.
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However, in the case where u is less than −1 and deviates significantly (e.g., −1.2), an
intriguing phenomenon may arise within the system, known as “polarization”, as depicted
in Figure 9a,b. Due to the bounded nature of opinions, a peculiar “pseudo convergence”
manifests, setting it apart from the local consensus of N (consensus) = 2 discussed before.
This distinction is apparent: when the number of local consensus categories is two, the
constrained reachability (d/d*) results in the global consensus formation process being
truncated, ultimately reaching a stable and convergent state. Meanwhile, the magnitude
of the final opinion range is evidently smaller than that of the initial values, indicating
a propensity towards assimilation and homogenization of individual opinions (namely,
maxxi(t)-minxi(t) < maxxi(0)-minxi(0)). But in the figures below, the “social exclusion”
mechanism (u < −1) engenders a growing disparity among individuals with divergent
opinions, leading to an expanding range of opinions over time, culminating in convergence
values situated at the upper and lower bounds of the opinion spectrum. This may serve as
a concise explanation for the polarization of opinions in reality, which needs to be discussed
in the following section.
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Finally, for the sake of ensuring consistency between our model and the real world,
it becomes imperative to utilize the heterogeneous dynamic models mentioned in the
experiment design to simulate opinion evolution. In order to explicate evolutionary patterns
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of the opinion system with multiple ui/di, we set different values of p (representing the
ratio of repulsors whose ui < 0) to apprehend the influence of disparate ui/di distributions
on synchronization. The outcomes are elucidated in Figure 10a–l. It is noteworthy that
irrespective of whether the value of d is 0.2/0.4 or 0.6, the presence of “repulsors” with a
ratio of 0.1 in the system (i.e., ui < 0) significantly disrupts the convergence of the model,
resulting in the phenomenon of “chaos”. According to subsequent investigations, this
characteristic persists even when the proportion of repulsors is 0.01, which may suggest a
small perturbation to assimilation that also possesses the capability to entirely subvert the
existing (local/global) synchronization mechanism.
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To sum up, in the homogeneous model, repulsors with u < 0 and a relatively high
level of reachability will cause chaos, and the area of opinion chaos is positively correlated
with the absolute value of u within a certain range. However, when u < 0 and deviates
from −1, the system may experience polarization. In heterogeneous models, a very small
proportion (such as p = 0.01) of repulsors (ui < 0) can disrupt assimilation and generate
chaos. These results are worth integrating with the previous results in the discussion to
form a theoretical answer to question 3.

4. Discussions: Ideal Synchronization Theory
4.1. Overview

Drawing upon the conclusions from theorems and simulation results (used for solving
problem B), we are capable of establishing an integrative explanation for questions 1/2/3,
named after ‘ideal synchronization theory’, which is also a general solution to problem
B. The theory can be divided into the main part and the supplementary conclusions: the
former focuses on providing sufficient conditions for consensus and chaos based on micro-
mechanisms like assimilation and reachability (in the ideal context), as a direct answer
to our questions; the latter exhibits some factors facilitating or hindering the consensus
formation, whose context is more similar to the real world (such as the heterogeneous ui).
We’ll first illustrate the main part of our theory below, which is comprised of discussions
about global consensus, local consensus, and chaos, respectively.

4.2. Main Part

As for global consensus (question 1), two conditions should be taken into consideration,
which are ‘assimilation’ and ‘reachability’: (1) In regard to assimilation, from the theorem 1
in Section 2.3 and the simulation result shown by Figures 2, 3, 5 and 8 in Sections 3.3.1
and 3.3.3, we regard the feature (u > 0) as essential for synchronization since few repulsors
can turn consensus into chaos (which is not a convergent state). However, the level of
assimilation (the absolute value of u) may just influence the rate of convergence, which
does not have strict restrictions. (2) With respect to reachability, it encompasses “Social
reachability” and “confidence reachability”, respectively representing the possibility of
“contact” (access to other people’s information) and “interaction” (communicating with
other people for updating the opinion). Based on the results in Figure 2, a high level of
reachability (value of d/d*) can facilitate an effective interaction among agents, ensuring
the outcome of global consensus. Specifically, when there is assimilation between agents,
agents can first contact enough other people’s opinions through high social reachability
(d* represents the number of friends they can reach), and then because of high confidence
reachability, after the contact, they can communicate with more people who have large
opinions’ differences with them (d represents acceptable differences in opinions), resulting
in mutual proximity of their opinions. This process will continue to repeat itself over a long
period of time to achieve consistency of opinion among a large number of individuals and
promote consensus. In brief, the answer to question 1 is “assimilation mechanism” and
“high reachability” (both social reachability and confidence reachability). This answer will
be noted as A1 below.

Concerning the local consensus (question 2), we should respectively reply to questions
2-1/2-2. For 2-1, the assimilation feature (u > 0) is still vital for local consensus arising
from its capacity for convergence, which is the same reason for the discussion on global
consensus. However, according to the results presented by Theorem 2 in Section 2.3 and
Figure 6 in Section 3.3.2, one of low reachability (small values of d or d*) should keep in the
opinion evolution to sustain the divergent kinds of local consensus. Therefore, the answer
to 2-1 is “assimilation mechanism” and “low reachability” (social reachability or confidence
reachability). This answer will be noted as A2 below.

And for 2-2, we discover a phenomenon called “truncation” in Figure 6 in Section 3.3.2,
which represents the process from local consensus to global consensus being “truncated”.
Generated by the reachability from high level to low level, the phenomena reflect the
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contact block (low social reachability) and the interaction block (low confidence reachability)
among people in different areas of the social network, which is one of the core mechanisms
hindering local consensus from global consensus. In other words, when the reachability
of most individuals is insufficient, they only communicate with people within their social
neighborhood (d*) or those with similar opinions (d), resulting in opinion clusters and
triggering local consensus. Moreover, from Figure 7 in Section 3.3.2, we can elucidate the
correlation between the homogenization effect (pressure coefficient k) and local consensus:
if the former is small, it can be a “maintenance mechanism” for the latter. The small
homogenization effect (small value of k) encompasses two distinct aspects: (1) during the
initial stages of opinion formation (before convergence), it lacks the requisite resistance
against the process of “truncation” caused by low reachability; (2) during the later stages
of opinion formation (after convergence), it serves as a “sustaining condition” for the
enduring existence of local consensus. We will discuss these two points separately in the
following text:

(1) Regarding the first aspect, when the value of k is small, even if the noise (i, j, t) is
substantial (indicating pronounced out-group pressure/low in-group cohesion), the
pressure perceived by individual i, denoted as k*noi(i, j, t), remains insufficient to
align his opinion with the global average opinion. Therefore, in the early stages of
opinion evolution, under the limitations of low reachability (truncation), individuals
are unable to communicate with a sufficient number of people, and due to the low-
pressure coefficient k, they cannot fully adopt the majority opinion or the average
opinion in the network. This results in a large number of individuals only assimilating
with people within their social neighborhood or people who are similar to their own
opinions (d/d * limitation) for a long time, causing multiple local consensuses within
the system.

(2) As for the second aspect, due to the regulation of cohesion (approaching | xi xj | ≈ 0),
group pressure perceived by people is too small to foster consensus formation, thus
upholding the prevailing local consensus. This is consistent with the principle of
the first aspect, which states that individuals do not consider the average opinion
(representing the majority) when there are few people communicating, but the reason
for it is that due to the enhanced in-group cohesion, individuals fall into group
blindness and no longer accept people from the out-group.

(3) These two aspects can be termed the “cocoon room mechanism”, encapsulating the
shielding effect of external information and the external group influence. In conclusion,
the answer to questions 2-2 includes the “truncation” caused by low reachability and
the “cocoon room mechanism” (high cocoon room effect means low homogenization
represented by pressure coefficient k). This answer will be noted as A2* below.

In regard to chaos (question 3), questions 3-1 and 3-2 should be answered as a whole:
From Figure 8 and the analysis of these results, a sufficient level of reachability (d) and
the exclusion effect (u < 0) are core conditions leading to the opinion chaos, which consti-
tutes the answer to question 3-1. Meanwhile, this condition is intertwined with a typical
mechanism: When individuals exhibit a rejection attitude towards the opinions of others,
the contact/interaction facilitated by social/confidence reachability can cause people’s
opinions to become distant from each other, leading to opinion chaos, which can be named
an “exclusion mechanism”. This is because when individuals are mutually exclusive (such
as in arguments), the opinions of the communicator will gradually become distant and
unable to converge. At the same time, due to the large number of individuals in the system,
their opinions will repeatedly change due to the exclusion of others (such as turning right
due to the exclusion of the left-wing people in the previous moment/turning left due
to the exclusion of the right-wing people in the later moment), ultimately resulting in
complex fluctuations. Generally speaking, the conditions of social exclusion (u < 0)/high
reachability (large d and d*) and the “exclusion mechanism” can answer questions 3-1 and
3-2, respectively. This answer will be noted as A3/A3* below.
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Based on the aforementioned conclusions, we can synthesize the answers to questions
1/2/3 (A1/A2/A2*/A3/A3*) and provide a coherent conceptual framework constituting
the core contents of “ideal synchronization theory”. The framework encompasses three
fundamental dimensions, namely “assimilation-exclusion” (designated as A-E), “high
reachability-low reachability” (designated as H-L), and “the level of cocoon house effect”
(designated as the level of C). Concerning A-E and H-L, the ensuing deductions can be
drawn: when the system has the features of A and H, the global consensus can be achieved
(A1); when it has the features of A and L, it engenders a local consensus (A2); when
it contains the features of E and H, the emergence of chaos becomes feasible (A3 and
A3*); when it consists of E and L, the system manifests more intricate and incongruous
phenomena (which do not belong to the questions of our paper). As for C, if the level of
C is low, the system can transform local consensus into global consensus by preventing
truncation phenomena, but if the level of C is high, it is not capable of doing so (A2*). These
conclusions can be effectively summarized in the Table 1 below:

Table 1. Ideal Synchronization Theory.

Ideal
Synchronization

Theory

High Reachability
(H)

Cocoon House Effect
(C) Low Reachability (L)

Assimilation (A) Global consensus
High: <—/—

Local consensus
Low: <—/—

Exclusion (E) Chaos ------------------------- Other phenomena

4.3. Supplementary Conclusions

In addition to the main framework mentioned above, the ideal synchronization
theory also includes some supplementary conclusions that are closer to the real world
(and therefore deviate from the ideal scenario). These conclusions are still related to
global consensus/local consensus/chaos, so they can be discussed separately from these
three aspects.

As far as the global consensus is concerned, we find that according to Figure 4 and
its analysis, when the level of assimilation is high (the social learning rate u is high), the
rate of convergence of opinions in the system is fast. This conclusion is essential: since the
evolution of opinions in the real world is limited by attention to specific issues and often
only includes limited updates, the rate of convergence will determine whether consensus
can be reached at last. In the general model proposed in our paper, this conclusion depends
on subsequent proof.

In terms of local consensus, we find that according to Figure 6 and its analysis, both
“social reachability d*” and “confidence reachability d” have bifurcation points, and small
perturbations around this point can change the final outcome of opinion evolution. There-
fore, we need to deeply study the bifurcation theory of stochastic dynamical systems and
apply the pertinent results to the study of this problem.

As far as chaos is concerned, we have made two interesting discoveries: (1) According
to Figure 9, in the homogeneous model, when the absolute value of the social exclusion rate
is too large (for example, u =−1.2), the opinions will eventually become polarized and lie at
the upper and lower bounds of the value range, which may explain the political polarization,
which shows the “pseudo convergence” aforementioned; (2) According to Figure 10, in the
heterogeneous model, a small proportion of repulsors can destroy consensus and lead to
chaos, which may explain the destructive effect of some social robots and the “troll” (with
exclusiveness) on public discussion.

In summary, the above conclusions are novel discoveries brought about by the gen-
eral model proposed in our paper. Although they have not yet been rigorously theo-
rized, they can demonstrate the explanatory power of the model and are expected to be
further explored.
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5. Validation: Verifying the Theory with Real Data
5.1. Overview

In the above, we have established a general model to describe the evolution of ordered
opinions (solving problem A). Through mathematical proof and simulation, we obtain the
microscopic conditions leading to consensus/chaos (solving problem B), thus providing
answers to questions 1/2/3. However, the above conclusions are theoretical and have not
yet established a connection with the real world. Therefore, we should transition to solving
problem C in this section, which requires us to estimate and test the model through real data
(from social media) in order to verify the reliability of the model and ideal synchronization
theory. It is worth noting that we will adopt the model conditions in simulation to carry
out our validation, which satisfies “uij = u” (the homogeneous model) or “uij = ui” (the
heterogeneous model) for any agent i/agent j, and the probability P (i interacts with j) = 0.5
when j belongs to Nit∩Ni, but the network is directly from our data and not a small-world
network in the simulation.

5.2. Data Description

The dataset utilized in this article is sourced from the Harvard Dataverse, which
served as the empirical foundation for the study titled “Opinion Dynamics of Online Social
Network Users: A Micro Level Analysis” [47]. This dataset, collected from VKontakte,
the preeminent social media platform in Russia, can be delineated into two fundamental
components: (1) the network of friendships among users on the platform, and (2) the
corresponding opinion values of users three times. Concerning the former, the dataset
provider employed the networkx library in Python to extract the largest connected compo-
nent within the network, which forms the central focus of our research. About the latter, the
opinion values were generated through a collaborative process involving the annotation of
texts and semi-supervised learning techniques. These values can be categorized into five
distinct political stances, delineated by the intervals [0, 0.2). . .[0.8, 1], thereby representing a
continuum ranging from strong liberals to strong conservatives in ideologies. Consequently,
this dataset serves as a valuable resource for subsequent statistical inferences and offers
substantial support for our study.

5.3. Inference Methods
5.3.1. Validation and Estimation

To validate our opinion model based on the data mentioned above, we should use
a reliable and universally applicable statistical method. In this regard, we integrate the
Bayesian approach with non-parametric estimation to derive a comprehensive framework.
The overall procedure is as follows [37]: (1) employing approximate Bayesian computation
(ABC), we generate a posterior distribution sample of parameters (ui/di/ki) by leveraging
both real data and model simulation outcomes; (2) utilizing kernel density estimation, we
smooth the empirical distribution of parameters into a posterior density function; and
(3) employing Markov Chain Monte Carlo (MCMC) [48] and other techniques, we compute
various integrals of the density function to obtain posterior estimates and test results for the
parameters, thereby accomplishing the inference task. The detailed methods are presented
in Appendix C.

5.3.2. Fitting and Testing

Based on the aforementioned estimation method, we can utilize the data to acquire
the values of ui/di/ki and subsequently generate multiple simulation samples. In order
to test whether the estimated model is sufficiently consistent with the real data (thereby
reflecting the ability of the theoretical framework to match real-world phenomena), we
initially compute indicators such as the accuracy of the simulation results. This serves as a
preliminary examination to determine the alignment between the simulated data and the
social media data.



Entropy 2023, 25, 1219 25 of 51

Simultaneously, to further establish the adequacy of the “simulation model” in com-
parison to the “real model”, we can approach it by assessing the congruity between the
simulation rule F and the real evolution rule T in terms of their distributions (mentioned
in Section 1.3 as a difficult problem). For this purpose, we have presented an exploratory
methodology, shown as follows: (1) Assuming that the genuine evolutionary rule T can be
characterized as a stochastic linear operator [49], then F and T (Due to the fact that in the
model, individual i randomly selects others to engage in conversations (which is consistent
with the randomness of daily communication), we consider F and T as two stochastic
rules) can be viewed as two finite-dimensional matrices under the event wt (namely, F(w)
and T(w) are two matrices and also two n2-dimensional random vectors); (2) Employing
numerical simulation, sampling T and F to obtain two sets of random samples denoted as
F(w) and T(w). (3) By utilizing the extended Cramé-von Mises metric [50], we determine
whether these two samples are in the same distribution. The detailed procedures for these
specific methods are also provided in Appendix C.

5.4. Results and Analysis
5.4.1. Parameter Estimation and Fitting

Based on the aforementioned methodology, we employed the network data and opin-
ion data discussed earlier to estimate the parameters. In order to strike a balance between
interpretability and predictability, we conducted estimations for both homogeneous and
heterogeneous models. The former solely incorporates three parameters, namely u/d/k,
which offer insights into the overall magnitude of the social learning rate, confidence thresh-
old, and group pressure in the real world. The latter entails 3 * |V| parameters, enabling a
closer alignment with the underlying reality and serving as a reliable predictor of opinion
trends. The subsequent table provides the estimated values for the models, along with an
assessment of the discrepancy between the predicted and actual data resulting from this
parameter estimation.

From the analysis of Table 2 and Figure 11, we obtain a remarkable finding. Even in
the case of a homogeneous model encompassing only three parameters, it exhibits superior
performance in fitting the real data. The accuracy of political stance prediction almost
reaches an impressive 0.9, with virtually no predicted values deviating from the actual
values by more than 0.2. This observation, supported by Bayesian factors derived from
Table 2 and parameters of the homogeneous model, highlights a key insight regarding
the dataset under examination in this study: The social learning rate (u) appears to be
approximately twice the group pressure coefficient (k), indicating the fundamental role
played by the “bounded confidence mechanism” in opinion evolution. Furthermore, the
confidence threshold for individual interactions hovers around 0.2/0.1, suggesting that, on
average, individuals primarily engage with others who share a similar political stance. In
conclusion, these results collectively endorse the integration of the bounded confidence
mechanism, the group pressure mechanism, and cohesion within the model as a robust
framework for generating existing data, thereby empirically affirming the effectiveness of
previous theoretical analyses.

Table 2. Estimation Results.

u/Bayesian Factor
(0.1–0.5)

d/Bayesian Factor
(0.1–0.5)

k/Bayesian Factor
(0–0.1)

0.2114; 6.72 0.178; 8.31 0.102; 5.44

ui mean di mean ki mean

0.094 0.102 0.037
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5.4.2. Distribution Test

Although the congruity between the simulation model and actual data has been
validated in the preceding section, given that both data are subject to stochastic errors and
unobservable attributes, it becomes imperative to ascertain that the simulation sequence
{x * (t)}, generated by function F, conforms to the same distribution as the real-world opinion
sequence {x (t)}, in order to further substantiate the validity of our theory. Initially, utilizing
the acquired parameters, we conduct 20 simulations, wherein the following analysis is
performed between these 20 “simulation samples” and the real samples. Consequently, two
types of visually descriptive representations are constructed: (1) a scatter/density chart
in Figure 12 depicting the relationship between real opinions and simulation opinions;
(2) density plots and histograms in Figure 12 portraying the disparity between “real
opinions” and “simulation opinions”. In relation to (1), the greater their proximity to the
y = x line, the more akin their empirical distributions become; in regard to (2), deductions
can be directly inferred through a comparative assessment of the deviations in density
curves. The aforementioned figures unequivocally demonstrate that both (1) and (2)
exhibit concurrence between the simulation and real samples, thereby offering preliminary
validation of our model/theory and parameter estimation.

Concurrently, in accordance with the test method outlined in Appendix C, we generate
a sampling frame for F and T, employing random sampling techniques to extract 50 sam-
ples. This process yielded two high-dimensional samples, respectively, derived from the
population of stochastic operators: F(w) and T(w) [49], which were applied for the test to
determine whether F and T are equally distributed. The results of our test are meticulously
documented in Table 3 (T1 and T2 are “the rule from x(0) to x(1) “and “the rule from x(1) to
x(2)”, respectively). It is discernible from the results that both F and T emanate from the
same distribution because of the large p value (which cannot refute the null hypothesis
of the same distribution between F and T), thereby attesting to the veracity of the model
rules expounded in our paper. Additionally, leveraging Proposition 4 in Appendix C, we
can further deduce the congruity between the simulation model and the real rule: the test
results in Table 3 can also ensure that our model can obtain data identically distributed
with real data because the simulation rule F* has the same distribution as the real rule.

Table 3. Test Results.

Values of Statistics for the Same Distribution Test F(w) Distribution

T1(w) distribution p value: 0.46

T2(w) distribution p value: 0.37
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6. Conclusions and Prospects
6.1. Conclusions

In this paper, we present some theorems and simulation results related to global con-
sensus/local consensus/chaos for answering questions 1/2/3, which are integrated into the
“ideal synchronization theory”. It includes the following key conclusions: (1) The opinion
formation consists of several fundamental mechanisms, namely assimilation/exclusion,
social/confidence reachability, and the “cocoon room” effect, representing “a mutual
approach of opinions after an interaction” (social learning rates and exclusion rates), “pos-
sibility of contact/interaction” (confidence thresholds and average network degree), and
“effect of shielding group pressure” (inversely correlated with the pressure coefficient
k); (2) Assimilation and high reachability lead to global consensus, assimilation and low
reachability result in local consensus, and exclusion and high reachability lead to chaos;
(3) A higher “cocoon room” effect can maintain the local consensus. Among them, the laws
related to local consensus/chaos in (2) and (3) are the core conclusions discovered in a
novel way in our paper, and more detailed contents are presented in the section of Results
and Discussions, such as the impact of social reachability/the network average degree
on consensus. Additionally, we have made some new discoveries that require further
exploration, such as the positive correlation between social learning rate u and convergence
rate, the bifurcation caused by confidence thresholds d and network average degree d*,
the polarization of opinions caused by strong social exclusion (e.g., u = −1.2), and the
disruptive effect of a small number of repulsors on consensus. These conclusions above are
the main sociological and physical contributions of our paper.

Moreover, to address questions 1/2/3 and solve problems A/B/C, we have developed
new formal methods, including the “General Model of Opinion Evolution” (a stochastic
dynamical system), the proof methods of “energy decrease” and “cross-d search” (appli-
cable to a large number of averaging dynamics), and high-dimensional statistical tests on
the evolution rules of the models (to verify the consistency between the ABM models and
the real world). The three theorems in this paper also serve as proofs of synchronization
and chaos in models like D-W and H-K. These contents further develop and confirm the
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aforementioned ideal synchronization theory but belong to the mathematical and statistical
contributions of our paper, mainly presented in Appendices A–C.

6.2. Prospect

Based on the aforementioned conclusions, a comprehensive framework can be de-
vised to elucidate the evolution of large-scale, ordered opinions. Nevertheless, within the
framework, there remain several internal concerns (which do not require us to modify our
model) and external problems (which require us to modify the model), which necessitate
future consideration. We will briefly illustrate them below.

For internal concerns, three distinct avenues merit exploration: (1) establishing theo-
rems about synchronization (global/local consensus) under weaker conditions like con-
nected graphs and asymmetric interactions, thereby constituting the refinement and gener-
alization of theorems 1/2/3 in our paper; (2) conducting a reliable analysis of the bifurcation
in our model, as evidenced by numerous simulation results, such as researching bifurcation
points of the threshold ‘d’ when given values of ‘u’ and ‘d*’, thereby further enriching the
ideal synchronization theory; (3) studying the opinion convergence rate within the model,
serving to elucidating the speed of real-world opinion formation.

For external problems, while our model possesses considerable validity, there is room
for enhancing its capacity for explanation. For this issue, engaging in a dialogue with
pertinent social theories becomes imperative. Firstly, at the individual level, it is worth-
while to emphasize the differentiation between implicit cognition and explicit behavior. To
address this, future investigations may incorporate variables that represent “private opin-
ions/expressed opinions” discretely within the model, thereby elucidating the disparity
between “attitude learning” (ideas change when influenced by others) and the “spiral of
silence” (submission to external pressures). Secondly, at the system level, the framework
fails to encompass more intricate external variables such as socioeconomic status, culture,
and semantic networks. Although the effects of such variables can be amalgamated through
the internal evolutionary attributes of opinions, bolstering a more imaginative explanation
of opinion evolution, it remains important to explicate them effectively. Therefore, estab-
lishing the relationship between the opinion system and other systems emerges as a pivotal
endeavor to be explored in subsequent research. Overall, addressing the external problems
of our framework necessitates a comprehensive integration of existing knowledge and
tools from cognitive science, social theory, and nonlinear mathematics, thereby facilitating
the promotion of rigorous theoretical construction.
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Appendix A. Strict Definitions and Theorems

Appendix A.1. Axiomatic Framework

The axiomatic framework of our model encompasses four fundamental constituents:
opinion space X, social network G, an interaction event is set Ω, and the evolution rule
F. Among these, X denotes the domain of admissible values for an agent’s opinion, xi.
G quantifies the “influence sphere of agent i”, encompassing all agents j with whom i
has the capacity to contact. Ω serves as an indicator of whether an interaction between
i and j will occur subsequent to contact. F delineates the rules governing the evolution
of group opinions following an interaction event w. This framework can be applied to
stochastic dynamics on various social networks, providing a comprehensive methodology
for modeling opinion evolution. Based on this framework, we can establish our opinion
dynamics model as a quadruple (X, G, Ω, F).

Appendix A.2. Notations

This article employs the following symbols, each serving a distinct purpose: capital
letters V, E, Ω, and X, among others, are employed to denote sets; lowercase letters vi, ei,
w, and xi are utilized to represent elements within a set; distinguished characters like F, G,
f, and g are used to signify mappings, encompassing functions and stochastic operators.
The latter notion is elaborated upon in reference [49]. Furthermore, P/m/u are employed
as notational symbols denoting set functions, specifically probability measure/Lebesgue
measure/abstract measure. Meanwhile, we adhere to the customary conventions, including:
(1) The employment of the conjunction: “,” or the symbol “,” itself to denote definitions.
(2) Standard operations, such as “~denotes the relation on a set, × signifies the product
entity of a set/topological space/probability space within the realm of category theory,
∑ represents the summation operation, / signifies the division of real numbers or the
quotient operation of a set, | • | denotes the absolute value or the cardinality of a set with
respect to the given context, || • || signifies the L2 norm of a space”. (3) Exceptional
operations: for instance, limsup/liminf denote the supremum and infimum limits of a set”,
IIA(x) is the characteristic of the set A, and h(f) represents the topological entropy of the
mapping f. (4) The domain concepts can be defined as follows: Kn signifies a complete
graph comprising n nodes, while Ω (x0) signifies the positive limit set of x0. In this
context, we solely present the symbols and their corresponding meanings that may entail
ambiguity (symbols with self-evident meanings, such as multiplication • or composite ◦, are
omitted). These symbols adhere to the established conventions in mathematical literature.
The novel symbols introduced in this paper will be elucidated and expounded upon in
subsequent definitions.

Appendix A.3. Definitions

Definition A1. Let the actor set be V = {v1, . . . ., vn}, the binary relationship set be E ⊆ (V×V)/ ∼,
and the actor-network be G = (V, E). (Inside, ~ is defined as (x, y) ∼ (y, x); let the element of E be
written as eij, eij = [vi, vj] =

[(
vi, vj

)]
, which is the equivalence class under the relationship ~, briefly

written as {i, j}/[i, j]).

Remark A1. G denotes the “social network” among individuals, such as a “friendship network”
or a “mutual following network”; V represents all individuals, where “vi represents individual i”;
E represents a certain form of mutual connection or friendship between individuals, such as “eij
represents the mutual attention between i and j”.

Definition A2. Let the interaction event set be Ωt = ∏
[i,j]∈V×V/∼

(R\{0}), thus (Ωt, B(Ωt), P)

constitutes a probability space. Inside, B(Ωt) represents the Borel algebra of Ωt. The topology of Ωt

is the sub-topology of R
n(n+1)

2 , and P is a probability measure on Ωt. Let Ω =
∞
∏

t=0
Ωt, (Ω, B(Ω), P)
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be the product probability space induced by {Ωt}t∈I (w ∈ Ω), wt ∈ Ωt, and the component of wt is
abbreviated as wt

(i,j).

Remark A2. In Ωt, wt signifies the “interactions that occur at time t”, specifically wt = {wij: i
and j are any two individuals in the social network}—where wij represents the interaction strength
between individual i and individual j at time t. If wij is greater than 0, it indicates an interaction
between i and j at time t, while if wij is less than 0, it implies no interaction between them at time t.
Additionally, wt is a random event, meaning that “whether i/j interact or not” at time t is subject
to randomness.

Definition A3. Let Interij (wt) =

{
1, wt

(i,j) > 0
0, wt

(i,j) ≤ 0
, which is a random variable (obviously a

measurable mapping).

Remark A3. Interij(wt) denotes “the interaction between individuals i and j under the random
event wt”. It takes a value of 1 if i and j interact, and 0 otherwise.

Definition A4 (Framework and Model).
Part A: General Framework
I. Stochastic Dynamics
(X, G, H, T) is a stochastic dynamic, if 1© X is a topological space, 2© G is a graph, 3© H is

a probability space, 4© T is a H− measurable (or H × X−measurable) stochastic operator, and
5© ∀ω ∈ H (or ω ∈ H × X) and T(ω) is continuous on X.

Remark A4. This definition extends the definition of topological dynamical systems. According
to the definition in this paper, X represents the range of opinions, and a state (x1. . .xn) is taken
from X, representing the initial opinions of all individuals. This state continually evolves under
the influence of the rule T(w), where w denotes randomly occurring interaction events, thereby
capturing the evolution process of the collective opinions.

II. Evolution Model
(1) Rules
Let F : Ω→ B

(
[0, 1]n, [0, 1]n

)
is a stochastic operator [49], x ∈ [0, 1]n, uij ∈ [−1, 1],

and [F(ω)(x)](i) :,


0, F̃(ω)x < 0

F̃(ω)x, 0 6 F̃(ω)x 6 1
1, F̃(ω)x > 1

1© The original rule

F̃(ωk)x(i) :, II[1,+∞]

[(
∑

j∈N(i,t,ω)
Interij(ωk)

]
[ f (ω)x]i + II(−∞, 1)

[
∑
j

Interij(ωk)

]
· x(j)

f (ω)(x)i :,

(
1−∑

j
uij/N(i, t, ω)

)
xi +

1
N(i,t,ω) ∑

(i,j)∈E(t)
uijxj · Interij(ω) · IIE

({
vi, vj

})
+noi(i, j, t + 1)j

2© The alternative rule

F̃(ωt)x(i) :, II[1,+∞]

[(
∑

j∈N(i,t,ω)
Interij(ωt)

)
· |N(i, t, ω, x0)|

]
[ f (ωt)x]i+

II(−∞,1)

[(
∑
j

Interij(ωt)

)
· |N(i, t, ω, x0)|

]
· x(i)
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f (ωt)(x)i :,

(
1−∑

j
uij/N(i, t, ω)

)
xi +

1
N(i,t,ω) ∑

(i,j)∈E(t)
uijxj · Interij(ωt)

·II(0,di)
(∣∣xi · xj

∣∣) · IIE
({

vi, vj
})

+ noi(i, j, t + 1)

Given graph G, let S ,
(
[0, 1]n, Ω, F

)
. It is easy to verify that S is a stochastic dynamic,

namely the ‘opinion dynamic’.

Remark A5.

(1) Let the opinion space X be a bounded set [0, 1]n. The image set of the rule F is also [0, 1]n, in
order to meet the measurement requirements of ordered perspectives (most datasets map them
to real values within 0–1). The mathematical definition of noi(i, j, t + 1) can be found in the
following text.

(2) The framework includes three important parameters: d represents the confidence threshold, and
i and j can interact only if the difference in their opinions is below the threshold; uij represents
the social learning rate of i from j, that is, the influence of j’s opinion on i’s opinion; and ki
represents the compression coefficient of i, indicating the degree to which individual i perceives
group pressure. There is also an important variable: N(i, t, x0, w) represents “all individuals
j interacting with individual i at time t given the initial opinions x0 and the sequence of
interaction events w”.

(3) The fundamental meaning of the above framework is that at any given time t, there exist two
categories of individuals: non-participants (referred to as NP) and participants (referred to
as P). The criterion for determining whether an individual j belongs to NP or P is based on
whether there exists an i in the random event wk who interacts with j, that is, whether the
value of Interij(wk) is zero. Based on this criterion, the opinions of individuals in NP remain
unchanged, while the opinions of individuals in P are influenced by three levels: (1) their
existing perspective xi, (2) the weighted average of the opinions xj of all individuals interacting
with them, and (3) the average opinion of the system (noise/group pressure). Among them, the
parameter uij reflects the social influence effect, and the parameter di represents the influence
of bounded confidence.

(4) The difference between the alternative rule and the original rule lies in the fact that when the
difference in opinions between individuals i and j is greater than d, under the original rule, the
probability of an interaction between i and j is 0, while under the alternative rule, i and j will
not interact.

(2) Symbols

Given S, x0 ∈ [0, 1]n, ω ∈
∞
∏
i=1

Ω
t
, let

x(t + 1, x0, ω) :, F(ωt)(x(t, x0, ω))

xi(t, x0, ω) :, x(t, x0, ω)[i]

noi : [0, 1]n × [0, 1]n × N → [0, 1] is measurable
(Given x0 ∈ X, w ∈ H, stochastic operator T),
Inside, t ∈ N and given x(0) and ω, x(t, x0, ω), xi(t, X0, ω) can be written as x(t), xi(t).
III. Probability measure
Given x0 ∈ [0, 1]n, for (Ω, B(Ω), P), P , Px0 should satisfy

1© The original rule

Px0

{
w : wij

t > 0and
∣∣xi(t)− xj(t)

∣∣ > max(di(t), dj(t))
}
= 0

Px0

{
w : if

∣∣xi(t)− xj(t)
∣∣ < max(di(t), dj(t)), then wij

t > 0
}
> 0
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di(t) : N → [0, 1] ∈ l2 , it can be represented as (di(0) · · · di(n) · · ·)
2© The alternative rule

Px0

{
w : wij

t > 0and
∣∣xi(t)− xj(t)

∣∣ > max(di(t), dj(t))
}
= 0

Px0

{
w : if

∣∣xi(t)− xj(t)
∣∣ < max(di(t), dj(t)), then wij

t > 0
}
> 0

which is the same as the original rule.

Part B: Usual Model
M1 (The symmetric/multiple-interaction/heterogeneous model)

1© P

(
∑
j

Interij(wt) ≤ 1

)
= 1 and Interij(wt) = Interji(wt);

2© ∃i , degree (vi) = n− 1, di > maxxi(0)−minxi(0);
3© di(t) = di ∈ [0, 1];
4© ∀i, [0, 1] 3 uij = uji > 0;
5© noi(i, j, t) = Press(i, j, t)

Let Press(i, j, 0) = 0, Press(i, j, t + 1) = k|xi(t)− xj(t)|
[

1
n ∑ xi(t)−

xi(t)+xj(t)
2

]
.

M2 (The symmetric/multiple-interaction/homogeneous model)

1©’ same with M1;
2©’ G = Kn;
3©’ di(t) = d ∈ [0, 1];
4©’ ∀i, ui = u ∈ [0, 1];
5©’ ∀i, ki = 0.

M3 (asymmetric/multiple-interaction)

1©” G is a connected graph;
2©” ∀ i, di↑ d = 1;
3©” ∀i, ki = 0

Remark A6.

(1) M1 implies that there exists an agent vi in the system who frequently interacts with any other
agent, and these individuals are influenced by external group pressure and internal cohesion
during interactions.

(2) M2 implies that the system is entirely determined by the “bounded confidence mechanism”, and
agents are not influenced by the external group during interactions. This is a generalization of
many existing bounded confidence models (including the D-W model).

(3) M3 implies that the system’s rules, once fixed, can combine social influence with the French-
Degroot model.

Definition A5.

E(t) = E(t, w, x0) =
{
(vi, vj) :

∣∣xi(t)− xj(t)
∣∣< d

}
,

V(t) = V(t, w, x0) =
{

vi ∈ V : ∃vj,
(
vi, vj

)
∈ E(t)

}
,

G(t) = (V(t), E(t)).

Remark A7. V(t) represents the individuals at time t who are capable of potential interactions;
E(t) represents the relationships formed by pairs (i, j) of individuals who are capable of potential
interactions at time t; and G(t) represents the network composed of V(t) and E(t), which is a
subnetwork of G (since the “set of individuals/relationships capable of an interaction at time t” is
necessarily a subset of the “set of individuals V/relationship set E” in the original social network).
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Definition A6. Given measure space
(
V, 2V , u

)
, u is the count measure on V, xi(t) is measurable

on V, the average opinion of the time t is written as x(t) or Eixi(t) ,
∫

V xi(t)du
|V| =

∑
i

xi(t)

|V| .

Remark A8. Eixi(t) denotes the arithmetic mean of the individual opinions at time t, representing
the average state of the opinion evolution system at time t.

Definition A7. Let ε: Ω→ [0, 1]n is a mapping:

ε is a generalized fixed point of F ⇔ F(ωt)ε(ωt) = ε(ωt) a.s.
ε is a stochastic fixed point of F ⇔ ε is a generalized fixed point of F, and ε is Ω- measurable.
ε is a stochastic global attractor of F ⇔, ε is a stochastic f ixed point o f F, and given

x0 ∈ [0, 1]n, P{w : t→ ∞, F(wt) ◦ · · · ◦ F(w1)(x0)→ ε} = 1.
ε is a stable stochastic fixed point of F ⇔ ε is a stochastic fixed point of F, and P { ω : ∀ε > 0,

∃δ(ε) > 0, if ‖ε0 − ε‖ < δ(ε), ∀w = {ωi}∞
i=1,

||F(ωt) · · · F(ω1)ε− F(ωt) · · · F(ω1)ε0|| < ε} = 1.

Remark A9.

(1) “The stochastic fixed point x0” implies that “after random occurrences of any opinion interac-
tion wt, the viewpoint state x0 remains unchanged, i.e., F(wt)x0 = x0”.

(2) “The stochastic global attractor x0” implies that “x0 is a stochastic fixed point, and for any
opinion state x*, after undergoing numerous evolutions according to almost any opinion rule
F(wt), it will approach/be attracted to the vicinity of state x0”.

(3) “The stochastic stable fixed point x0” implies that “x0 is a stochastic fixed point, and for
opinion states x* around x0 at time t, even after infinite evolutions according to the opinion
rule F(wt), they will still be in the vicinity of x0”.

Definition A8. Let dv(t) , dv(t, x0, ω) = maxvi,vj∈V
∣∣xi(t)− xj(t)

∣∣, dv = lim
t

supdv(t)

1© P{W :|dv|< ε} = 1⇔ Givenwandx0, x(t)hasε− consensus.
2© P{W : ∀ε > 0, |dv| < ε} = 1⇔ Given w and x0, x(t) has quasi-consensus.

3©

∃K ⊆ [0, 1]n, A ⊆ Ω, m(K) = 1 and P(A) = 1, ∀x0 ∈ K, w ∈ Ω,
P{W : ∀ε > 0, |dv| < ε} = 1

⇔
(
[0, 1]n, Ω, F

)
has quasi-consensus.

∃K ⊆ [0, 1]n, A ⊆ Ω, m(K) = 1andP(A) = 1, ∀x0 ∈ K, w ∈ Ω,

4© x(t) has quasi-consensus and F has stable stochastic fixed points
⇔
(
[0, 1]n, Ω, F

)
has stable quasi-consensus.

Remark A10. Quasi-consensus represents the probability of the system achieving global consensus
as 1, and stable quasi-consensus indicates that it is less affected by initial disturbances.

Definition A9. Given
(
[0, 1]n, Ω, F

)
, define the following concepts:

1© R(ω, x0) :, {(i, j) ∈ V ×V : |xi(t)− xj(t)| is convergent and lim
t
|xi(t)− xj(t)| = 0}, it

can be verified as an equivalent relationship;
2© Cluster(ω, x0) :, (V ×V)/R(ω, x0);
3© Nconsensus(w, x0) :, |Cluster(w, x0)|;
4© ∃K ⊆ [0, 1]n, A ⊆ Ω and P(A) = 1, ∀ω ∈ A, ∀x ∈ K, Nconsensus (ω, x) = Const ∈ N,

Nconsensus(A, K) :, consensus(w, x), N(consensus) :, N
(
A, [0, 1]n

)
Remark A11. The cluster (w, x0) represents the consensus clustering of the system’s opinions that
eventually form, given all the interactive events w that will occur and the initial opinion state x0.
Nconsensus represents the number of consensuses reached after infinite evolutions of the system.
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Definition A10. ∃ uncountable set K ⊆ [0, 1]n,

∀x, y ∈ K, lim
n

supd(Fnx, Fny) > 0, lim
n

infd(Fnx, Fny) = 0

⇔ ([0, 1]n, Ω, F)isL−Y− chaos

Remark A12. The term “LY chaos” in the above definitions refers to “the state of disorderly
fluctuations in opinions where a significant number of individuals are trapped in them”.

Appendix A.4. Main Theorems

Drawing upon the established model and axiomatic definition expounded earlier,
we hereby posit the subsequent tripartite theorems to address questions 1/2/3, corre-
spondingly. The remarks illustrate the methods and strategies of our proof for these
three theorems.

Theorem A1. Under M1, ([0, 1]n, Ω, F) has stable quasi-consensus.

Remark A13.

(1) The theorem provides a significant conclusion to address Question 1. Referring to the definition
of M1, it can be inferred that the magnitudes of the social learning rate (u) and group pressure
(k) are almost unrelated to global synchronization. However, the sequence of network degrees
and the threshold of confidence have a considerable impact on it. Furthermore, Theorem 1
explains a phenomenon known as the “active agent effect”, wherein “in a system of opinions,
if there exist active agents capable of interacting with any other individual, and there is an
assimilation effect among individuals, then the system can evolve towards global consensus”.
This inference from the theorem can also serve as a synchronicity conclusion for models such
as Deffuant et al.

(2) The proof strategy for the theorem can be illustrated as shown in the following figure, known
as the “energy decrease method” (by stochastic functional analysis and differential dynamical
systems theory). It implies that the synchronicity of the model (as seen in the upper-left
diagram) can be understood as a specific type of dynamical system attractor (as seen in
the upper-right diagram). In other words, asynchronous system states will evolve towards
synchronous states under rule F. As depicted in the upper-right diagram, the opinion values of
x1 and x2 gradually converge around x1 = x2. Based on this, the specific approach involves
constructing an energy function V that represents the degree of deviation of the system state
relative to the synchronization point. It is then demonstrated that the infimum of V remains
nearly constant and is unaffected by w (as seen in the lower-left diagram), leading to the
inclusion of the system’s positive limit set within the points x0 that keep V invariant (the
points where V equals 0). It is further explained that x0 possesses global attractiveness and
stability, thus resulting in synchronicity.

Theorem A2. Under M2, if u 6 1/2, n = [1/d] + 1, ∀x0 ∈ [0, 1]n, P(w : Nconsensus
(w, x0) 6 n) = 1.

Remark A15.

(1) The theorem provides a direction to address Question 2. It provides an upper bound on the
number of consensuses when a confidence threshold is determined and illustrates that the
threshold’s magnitude is inversely related to the quantity of consensus. The sociological
interpretation states that “when the individual tolerance level is high, the system exhibits
fewer types of consensus” (i.e., “local consistency in opinion formation”).

(2) The proof strategy for the theorem also needs to be referred to in the following figure, named the
“cross-d search” method. The approach can be explained by considering the following figure:
A. Proving the convergence of the opinion state x(t) requires first determining the minimum
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value min1(t) and then proving that “for all xj(t) that differ from min1(t) by less than d, they
can converge to a small neighborhood B = B(min1(t), δ) of min1(t)”. It is further demonstrated
that “there exists a moment T at which a minimum value min2(t) outside of B, with a distance
greater than d from B, exists”. Finally, it is shown that min2(t) satisfies the same relation
with min3(t). . .mini(t) satisfies with mini + 1(t), thus deducing that the opinions x(t) can
converge to (x1. . .xn) for any w; B. The upper bound on the number of consensuses is derived
by utilizing the convergence of the opinion states and the probability conditions of interactions
among individuals.
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Figure A1. (a) Shows that the value of V_function is decreasing over time. (b) Reflects that the
opinion2 of the actor0 and actor1 is gradually attracted to the plane of x1 = x2, i.e., entering a
synchronous state. (c) The three colored lines, respectively, represent the evolution of the opinions
of three individuals, and this type of chart is referred to as the O-T chart (Opinion-Time) in the
following text.

Theorem A3. Under M3, if F̃ is an expanding map, thus P{w : x(t) has L−Y chaos} = 1, and
it will not reach quasi-consensus.

Remark A16.

(1) Theorem 3 addresses Question 3 under the condition of an autonomous system. Its sociological
interpretation states that “when there is a certain level of social exclusion among individuals
and interactions between actors continue, the opinion system will exhibit chaotic phenomena”.

(2) The intuitive representation of chaotic phenomena can be observed in the below diagram.
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Appendix B. The Proof of Theorems

Appendix B.1. The Proof of Theorem 1

Theorem A4 (stochastic Lyapunov’s theorem). Given a stochastic dynamics (X, Ω, F), Ω is
a neighborhood of zero point O; if for all x ∈ Ω, we have V-functions that satisfy the following
requirements of (1) and (2) in Theorem 0-2, and ε = 0 is a stochastic fixed point of F, then O is a
stable stochastic fixed point of F.

Proof.
From (1), ∀w = {wt}∞

t=0 ∈ A and P(A) = 1

I. For every ε > 0 and Ωε = {x : ||x|| < ε} ⊂ Ω, let c = min
x∈∂Ωε

V(x) > 0. According to

the intermediate value theorem, we know that ∃δ > 0, when x ∈ Ωδ = {x : ||x|| < δ},
0 6 V(x) < C holds.

II. ∆V(x, wt) ≤ 0 implies that ∀x0 ∈ Ωδ, 0 6 V(x(t, x0, ω)) 6 V(x0) < c = min
x∈∂Ωε

V(x),

thus x(t, x0, w) ∈ Ωε.

Namely, when x ∈ Ωδ, ∀ω ∈ Ω, ‖x(t, x0, w)‖ = ‖F(ωt−1) ◦ · · · ◦ F(ω0)x0‖ < ε.
In summary, P{w : zero point is stable} = 1, thus the zero point O is the stable stochas-

tic fixed point. �

Theorem A5 (stochastic Lasalle’s theorem). Given the stochastic dynamics (X, Ω, F), x0 ∈ X,
Ω(x0) =

{
y ∈ X : ∀w ∈ A, t→ ∞, F[W0···Wt−1]

(x0)→ y
}

, F is continuous, and there is a function
V : X→ R satisfying:

(1) ∃A ⊆ Ω,P(A) = 1,∀w = (w1 · · ·wn · · ·) ∈ A, ∆V(X, wt) , V(F(wt) ◦ x)−V(x) ≤ 0.
(2) V is a positive definite function and is bounded.
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(3) ∃c ∈ R, P
(

w : inf
t

V(x(t, x0, w)) = c
)
= 1.

Then, ∃c, P(w : lim
t

x(t, x0, w) = x∗ and x∗ ∈ B, B is a invariant subset of V−1(c) ∩
{x : ∀w ∈ A, ∆V(w, x) = 0}) = 1.

Proof.
∀w ∈ Ω, ∀x0 = x(0) ∈ [0, 1]n, we have the iteration sequence x(t + 1) = F(wt)x(t),

1© Since x(t) = x(t, x0, w) ∈ [0, 1]n is a compact sequence, and {xt}∞
t=0 is bounded, then

{xt}∞
t=0 must have a convergent subsequence, written as

{
xtk

}
→ y ∈ Ω(x0) , thus

Ω(x0) 6= φ.
2© ∀y ∈ Ω(x0), ∃w ∈ A, because V(x(t, x0, w)) has a lower bound and it is non-

increasing, then ∃c = c(w), lim
t→∞

V(x(t, x0, w)) = c (c is related to w). Furthermore,

from the continuity of V, we know that ∃w ∈ Ω, lim
tk→∞

V(x(tk), x0, w) = V(y) = c (this

is because {V(x(tk))} is a subsequence of {V(x(t))}, and the limit of a subsequence
is equal to the limit of the sequence). ∀w ∈ A, since c(w) = const, we obtain the
conclusion that

V(Ω(x0)) = {V(y) : y ∈ Ω(x0)} =
{

V
(
limxtk

)}
= c, then P

(
Ω(x0) ⊂ V−1(c)

)
= 1

3© ∀y ∈ Ω(x0), w ∈ A, t ∈ N,

∆V(y) = ∆V(wt, y) = V(F(wt)y)−V(y)= V
(

F(wt)
◦lim

tk
x(tk, x0, w)

)
−V(y)

If F(w)(x) is continuous for x, then

∆V(y) = lim
tk

V ◦ F
(
Wtk

)
◦ x(tk)− lim

tk
V(x(tk)) , lim

tk
V2(tk)− lim

tk
V1(tk) = V2 −V1

The former/the latter can be, respectively, denoted by
{

Vt1+1 · · ·Vtk+1 · · ·
}

,
{

Vt1 · · ·Vtk

}
,

and let V1 = inf{V(x(tk)) : tk ∈ Nk ⊆ N} = Inf
t

V(x(t, x0, w)) = c, we know the below

inequality:

∀tk ∈ Nk,V2(tk) = V
[
·F
(
ωtk+1+1

)◦x(tk, x0, w)
]
6 V[x(tk, x0, w)]6 V1(tk),

so inf
t

V(x(t)) 6 V2 6 V1 6 inf
t

V(x(t)), V2 = V1, then ∆V(y) = 0.

Therefore Ω(x0) ⊆ {x : ∀(w) ∈ A, ∀w ∈ (ω), ∆V(w, x) = 0}.
From 2© 3©, P

(
Ω(x0) ⊆ V−1(c) ∩ {x : ∆V(x) = 0}

)
= P(A) = 1 holds. �

Proposition A1 (measurability). ∀x(0) ∈ [0, 1]n, for x(t) = F̃new (w, t)x(0), the mapping
F̃new ,x0(w, t) :, F̃new (w, t)◦X(0) , F(wt−1)

◦ · · · ◦F(w0)(x(0)) is a measurable mapping

relative to Ω =
∞
∏

t=0
Ωt. Namely, if A is measurable, then {w : x(t) ∈ A} is measurable.

Proof.
Let Pi : Ω = ∏

t
Ωt → Ωi is a projective mapping, ∀x(0) ∈ [0, 1]n,∀w ∈

∞
∏
i=1

Ω, we know

by conditions that x(t, w) = F̃new x0(w, t) = (F ◦ Pt−1)(w) ◦ · · · ◦ (F ◦ P1)(w)(F ◦ P0)(w)(x0).
Therefore, (F ◦ P0)x0

: Ω→ [0, 1]n is apparently a mapping, (F ◦ P1)x1
: Ω→ [0, 1]n

is the same, so we use the induction method below:
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(1) When t = 1 we have (F ◦ P1)(w)(F ◦ P0)(w)(x0), measurability clearly holds true.
(2) If the conclusion holds true when t = n− 1, we know that

1© Given x0 ∈ [0, 1]n, define x∗∗(T) , T(x), thus: When t = n, x(t, w) =

F̃new,x0(w, t) = F(Pn−1 ◦ w) ◦ xn−1(w) = F(Pn−1 ◦ w) ◦ F̃new ,x0(w, t− 1), ◦ in
the formula represents function composite and matrix multiplication. To illus-
trate the measurability of F̃new,x0 when t = n, we need to verify the measurabil-
ity of Pn−1, F relative to w and wn−1. Because Pn−1 is continuous (projective
mapping), it is also measurable, so we will verify the measurability of F.

2© For F, given w, if can be represented by a matrix below:

F̃new,x0 (ω, t)(i)

= (x1 . . . xi . . . xn)


(1/N(i, t)) · ui1 · interi1(wt)

. . . . . . . . . . . . . . .
(1− uii)

. . . . . . . . . . . . . . .
(1/N(i, t)) · uin · interin(wt)

+
(

∑
j

k · (xi − xj) ·
(

∑
Vm∈V

xm −
xi+xj

2

)
· Interij(wt)

)

Among this, Ni(t) = ∑
j

interij(wt) is measurable by the definition. Other algebraic

operations are also measurable; thus, F is measurable (inside, B(Rn, Rn) has a strong
topology induced by the operator 2-norm, and Rn has the topology induced by a Euclidian
metric).

To sum up, ∀x0 ∈ [0, 1]n ⊂ Rn, ∀t, F̃x0 is measurable, then x(t, x0, w) = F̃x0(w, · · ·wt)
is measurable relative to w = (w, · · ·wt). Furthermore, we know that ∀x0 ∈ [0, 1]n ⊂ Rn,

P({w ∈ Ω : ‖x(t, x2, w)− (a)‖ < ε}) = P
{

w =
n
∑

i=1
(xi(t, x0, w)− a)2 < ε2

}
= P

(
w : Σ(Pi ◦ x(t, x0, w)− a)2 < ε2

))
Namely, the probability of ε− consensus makes sense. �

Lemma A1. For M1/M2, ∀w ∈ Ω, ∀t ∈ N, Eixi(t) = Eixi(0).

Proof .

1© when t = 1, Eixi(1) = 1
n ∑ xi(1) = 1

n

(
∑

k/∈V(1)
xk(0) + ∑

(i,j)∈E(1)

[
uijxi(0) + (1− uij)xj(0)+

(1− uij)xj(0) + uijxi(0)
])

= 1
n

(
∑

k∈V(1)
xi(0) ∑

(i,j)∈E(1)

[
xi(0) + xj(0)

])
= 1

n ∑ xi(0) =

∑ Eixi(0)
2© if the conclusion holds when t = n, then when t = n + 1, thus we have Eixi(n + 1) =

1
n

(
∑

k∈V(1)
xk(n) + ∑

(i.j)∈E(1)

[
uijxi(n) +

(
1− uij

)
xj(n)+ (1− uij)xj(n) + uijxi(n)

])
= Eixi(n) = Eixi(0), so it also holds.

From 1© 2©, ∀t ∈ N, EiXi(t) = EiXi(0). �

Lemma A2 (stochastic system). ∀w ∈ Ω, P{F(wt) can constitute a dynamical system on
[0, 1]n

}
, P

(
w : F(wt)

(
[0, 1]n

)
= [0, 1]n

)
= 1.
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Proof.
P(F(wt) is a surjection) = 1
⇐ F∗(wt) is a surjection and P(F(wt) = F∗(wt)) = 1
⇐ F∗(wt) is nonsingular
⇐ |F∗(wt)| 6= 0 �

Lemma A3. For M1, if u > 1+|k|
2 , then ∀w, F(w) has a generalized fixed point on [0, 1]n.

Proof.
∀w ∈ Ω, From the linearity of F, we know that ||F(w)|| = sup

x 6=y

||F(w)x−F(w)y||
||x−y||

= sup
||x ||=1

||F(w)(x)||Written noi(i, j, t)as noi, based on the definitions,

‖F(w)x‖2 =
∥∥∥(xk)k/∈v(t)

∥∥∥2
+

∥∥∥∥∥∥
(
(1− uij)xi + ∑

j
uijxj · interij(wt) + noi

)
i∈V(t)

∥∥∥∥∥∥
2

6 ∑
k/∈[t)
|xk|2 + ∑

(i,j)∈E(t)

([
(1− uij)xi + uijxj

]2
+
[
(1− uij)xj + uixi

]2
+ 2|noi|2+

2
([
(1− uij)xi + uijxj

]
−
[
(1− uij)xj + uijxi

])
noi
)
6 ||x||2 = ∑

i
(xi)

2,

then we need[
(1− uij)

2
(

x2
i + x2

j

)
+ 4uij(1− uij)xixj + uij

2
(

x2
i + x2

j

)]
+ 2|noi|2 + 2

[
(1− 2uij)

(
xi − xj

)]
noi

=
[(

2uij
2 − 2x + 1

)(
x2

i + x2
j

)
+ 4uij(1− uij)xixj

]
+ 2|noi|2 + (2− 4uij)

(
xi − xj

)
noi

≤ x2
i + x2

j (∀i, j ∈ L).

Namely,

u > 1
2 ,
(
2uij

2 − 2uij
)(

x2
i + x2

j

)
+ 4uij(1− uij)xixj + 2|noi|2 + (2− 4uij)

(
xi − xj

)
noi

=
(
2uij

2 − 2uij
)(

x2
i − 2xixj + x2

j

)
+ 2|noi|2 + (2− 4uij)

(
xi − xj

)
noi

=
(
2uij

2 − 2uij
)(

xi − xj
)2

+ (2− 4uij)noi
](

xi − xj
)
+ 2|noi|2 ≤ 0,

Let dij = xi − xj ∈ [−1, 1], then
[(

2uij
2 − 2uij

)
dij + (2− 4uij)noi

]
dij + 2(noi)2 ≤ 0

holds for all dij ∈ [−1, 1], thus g
(
dij
)
=
(
uij

2 − uij
)
d2

ij + noi(1− 2uij)dij+
∣∣∣noi

∣∣∣2 6 0 holds

for all dij ∈ [−1, 1].⇐ since
(
uij

2 − uij
)
d2

ij 6 0, we have noi (i, j)[noi (i, j)+ (1− 2uij)dj] 6 0.
From the same positive and negative of dij and noi (i, j)

1© di j > 0 and noi(i, j) > 0, noi(i, j) 6 (2uij − 1)dij
2© dij < 0 and noi(i, j) < 0, noi(i, j) > (2x− 1)di j

Thus, 2uij − 1 > noi(i,j)
dij

= |noi(i, j)/xi − xj| holds, we just need to compute its up-
per bound:

|noi(i, j)|/
∣∣xi − xj

∣∣ = |k||xi − xj||maxminij|/|xi − xj| = |k| · |
xi + xj

2
− 1

n∑
i

xi| 6 |k|

So when u > 1+|k|
2 , F(w) has a fixed point εw. Define ε : Ω→ X as ε(w) = εw.

Therefore, F has a generalized fixed point ε. �

Lemma A4. Under M1/M2, for ([0, 1]n, Ω, F), ε(x0) = (Eixi(0))
n
i=1 is a stochastic fixed point

of F.
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Proof .

(1) Generalized fixed point

From Lemma A2, [0, 1]n is invariant relative to F(wt), so the phase space of our system
is invariant. Then, based on Lemma A3, F(wt) has a generalized fixed point, which can be
obtained by using the following methods:

Given wt ∈ Ωt, we can find all (i, j) that make Interij (wt) = 1. Arbitrarily chosen a
pair of (i, j), then we know(

1− uij
)

xi + uijxj + noi(i, j) = xi; namely, uij
(
xj − xi

)
= −noi(i, j)(

1− uij
)

xj + uijxi − noi(i, j) = xj; namely, uij
(
xi − xj

)
= noi(i, j)

Namely, xi − xj =
noi(i,j)

uij
. Let ε(w) =

(
· · · xi · · · xj · · ·

)
, xi = xj +

noi(i,j)
uij

.

Then, if xi = xj,
noi(i,j)

uij
= 0.

Denote ε(x(t, x0, w)) = (EiXi(t) · · · EiXi(t) · · · EiXi(t)). From Lemma A1, it can be
written as ε(x0) = (EiXi(0) · · · EiXi(0) · · · EiXi(0)) and is a fixed point of F(w) apparently.

Since w ∈ Ω is arbitrarily chosen, it is a generalized fixed point of F.

(2) Measurability

ε(x0) = (Ex(0))n
i−1 is a constant mapping, so it is continuous, and then it is measurable.

From (1) (2), ε(x0) is a Ω—measurable generalized fixed point of F, so ε(x0) is a
stochastic fixed point of F. �

Lemma A5. Under M1, if y(t) = x(t) − ε(x0), then y(t + 1) = F(wt)y(t). Namely, the
evolutionary rule of y(t) is same with x(t).

Proof.
Given x0 ∈ [0, 1]n, w ∈ Ω arbitrarily, let ε(x0) = (Eixi(0))i∈I .
From y(t) = x(t) − ε(x0), we have x(t) = y(t) + ε(x0), thus the below conclusion

holds:
1© if ∀j, Interij(wt) = 0, then yi(t + 1) = yi(t)
2© if ∃j, Interij (wt) = 1, then

xi(t + 1) = [y(t + 1) + ε(x0)]i = (1− uij)
(

yi(t) + εi(x0)
)
+ uij(yj(t) + εj(x0)) + noi(i, j, t)

Namely,

yi(t + 1) = (1− uij)yi(t) + uij

(
εj(x0)− εi(x0)

)
+ noi(i, j, t) = (1− uij)yi(t) + uijyj(t) + noi(i, j, t)

�

Lemma A6. Under M1, ∀x(0) ∈ [0, 1]n, ε(x0) is a stable stochastic fixed point of
(
[0, 1]n, Ω, F

)
.

Proof.
For stochastic fixed point 0, given w ∈ Ω arbitrarily and considering V(y) = ∑

i
|yi|,

∀t ∈ N, we know that

(1) If ∀i, j, Interij(wt) = 0, then ∆V(y(t)) = 0
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(2) If ∃i, j, Interij(wt) 6= 0, from Lemma A5, we know

∆V(y(t), wt) = V(y(t + 1))−V(y(t))
= ∑

(i,j)∈E(t)

[∣∣(1− uij)yi(t) + uijyj(t) + uij
(
εj(x0)− εi(x0)

)
+ noi(i, j)

∣∣− ∣∣yj(t)
∣∣]

+ ∑
(i,j)∈E(t)

[∣∣(1− uij)yj(t) + uijyi(t) + uij
(
εi(x0)− εj(x0)

)
− noi(i, j)

∣∣− ∣∣yj(t)
∣∣]

6 ∑
(i,j)∈E(t)

[
(1− uij)|yi(t)|+

∣∣uijyj(t) + uij
(
εj(x0)− εi(x0)

)
+ noi(i, j)

∣∣∣∣−∣∣yi(t)
∣∣]

+ ∑
(i,j)∈E(t)

[
(1− uij)

∣∣yj(t)
∣∣+ ∣∣uijyi(t) + uij

(
εi(x0)− εj(x0)

)
− noi(i, j)

∣∣− |yi(t)|
]

= ∑−uij|yi(t)|+ uij

∣∣∣yj(t) +
(
εj(x0)− εi(x0)

)
+ noi(i,j)

uij

∣∣∣
+∑−uij

∣∣yj(t)
∣∣+ uij

∣∣∣yi(t) +
(
εi(x0)− εj(x0)

)
− noi(i,j)

uij

∣∣∣
= uij∑

(∣∣yj(t)
∣∣− |yi(t)|

)
+ uij∑

(
|yi(t)| −

∣∣yj(t)
∣∣)

= 0

This shows ∆V is negative constant. Arising from the stochastic Lyapunov’s theorem,
y(t) is stable at O, thus x(t) is stable at ε(x0). �

Lemma A7. For M1, ∀x(0) ∈ [0, 1]n, If |k|< u < 1−|k|, ε(x0) is a stochastic global attractor of(
[0, 1]n, Ω, F

)
.

Proof.
Part A: Simplification

Arbitrarily given w ∈ Ω, ∀t ∈ N, let maxminij = Eixi(t) −
xi(t)+xj(t)

2 , and given
x(0) ∈ [0, 1]n

(1) if E(t) = φ, ∆V(y, wt) = 0
(2) if E(t) 6= φ, ∆V(y, wt)

=

[
∑

i∈u(t)

∣∣(1− uij)yi(t) + uijyj(t) + uij
(
εj(x0)− εi(x0)

)
+ noi(i, j)

∣∣+
∑

j∈v(t)

∣∣(1− uij)yj(t) + uijyi(t) + uij
(
εi(x0)− εj(x0)

)
− noi(i, j)

∣∣]− ∑
V(t)
|yk(t)|

= ∑
∣∣(1− uij)yi(t) + uijyj(t) + noi(i, j)

∣∣− |yi(t)|+∑
∣∣(1− uij)yj(t) + uijyi(t)− noi(i, j)

∣∣− ∣∣yj(t)
∣∣

= ∑
∣∣(1− uij)yi(t) + uijyj(t) + k

(
yi(t)− yj(t)

)
maxminij

∣∣− |yi(t)|
+∑

∣∣(1− uij)yj(t) + uijyi(t) + k
(
yj(t)− yi(t)

)
maxminij

∣∣− ∣∣yj(t)
∣∣

= ∑
∣∣(1− uij + kmaxminij)yi(t) + (uij − kmaxminij)yj(t)

∣∣− |yi(t)|
+∑

∣∣(1− uij + kmaxminij)yj(t) + (uij − kmaxminij)yi(t)
∣∣− ∣∣yj(t)

∣∣ (or the same with above)
= ∑

∣∣yi(t) + (uij − kmaxminij)
(
yj(t)− yi(t)

)∣∣− |yi(t)|
+∑

∣∣yj(t) + (uij − kmaxminij)
(
yi(t)− yj(t)

)∣∣− ∣∣yj(t)
∣∣

Denote lij = uij − kmaxminij and l∗ij = uij + kmaxminij, From
∣∣k∣∣< uij < 1−

∣∣k∣∣,
1©1− uij >

∣∣k∣∣> −kmaxminij 2©uij >
∣∣k∣∣> kkaxminij

3©1− uij >
∣∣k∣∣> kmaxminij 4©uij >

∣∣k∣∣> −kmaxminij

Then, we have lij > 0 and lij∗ > 0, thus

∆(y(t), w) = ∑
(ij)∈E(t)

{[ ∣∣(1− lij
)
yi(t) + lijyj(t)

∣∣+∣∣(1− lij
)
yj(t) + lijyi(t)

∣∣]− [|yi(t)|+
∣∣yj(t)

∣∣]
Part B: Scaling
Given w, t satisfy (2), if 0 < lij < 1, we know: when ∀i, j, yi(t) · yj(t) > 0, ∆V(y, w) = 0

when ∃i, j, yi(t) · yj(t) < 0, ∆V(y, w) < 0.
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Part C: Lower bound
Given w ∈ Ω arbitrarily, given j satisfying dj = 1 and degree

(
vj
)
= |V| − 1

(1) V(t) > 0, obviously, 0 is the lower bound of V(t), thus P{infV(t) ≥ 0} = 1

(2) If P
{

inf
t

V(t) = 0
}

< 1, namely ∃K, P
(

0 < K = inf
t

V(t)
)
> 0, then ∃A ⊆ Ω, P(A) > 0,

∀w ∈ A, we have V(t) > K and ∀ε > 0, ∃t∗, V(t∗) < K + ε. From the non-descending
feature of V(t), we know ∀t > t∗, V(t) < K + ε. Given the N enough large, given
ε = 1

n K enough small, when t = t∗, V(t∗, W) 6= 0, there are two conditions:

1© Let Q =
{

w : yj(t∗) = 0
}

, M , {w : ∃i ∈ I, Interij (t∗) = 1, i is not in synchronization}
state}, N , {w : ∃i ∈ I, Interij (t∗) = 1, i is in synchronization state }, P(M ∪ N)c = 0,
we can, respectively, discuss by A and B below. A. To consider M,

P
(

Q ∩
{

w : ∀k > 0, Inf
t

V(t) < k
}
∩M

)
= P(Q ∩ M), which is because: for wt sat-

isfying Interij (wt) = 1, if i is not in synchronization state, yj(t∗ + 1) will be not in synchro-
nization state, and ∀t > t∗, ∀k, Interij(wt)= 1 and xk(t) · xj(t) > 0, so xj(t+ 1) 6= Eixi(0),
namely, yj(t + 1) 6= 0. Therefore,

P(Q ∩M) = P
(
Q ∩M ∩

{
w : ∃t > t∗, Intermj(wt) = 1 and xm(t) · xj(t) < 0

})
6 P(Q ∩M ∩ {V(t + k) < V(t + k)− δ}) 6 P(Q ∩M ∩ {∀k > 0, Inf

t
V(t) < k})

≤ P(Q ∩M)

Thus, we can take appropriate N and ε, which can satisfy the below conclusion:

P
(

Q ∩M ∩
{

w : Inf
t

V(t) = K > 0
})

= P(Q ∩M)− P(Q ∩M) = 0

B. To consider N, further define the set that is not in synchronization state
NS(t) = {k : yk(t) 6= 0}(t > t∗).
B1. Obviously, P(Q ∩ N ∩ {K > 0} ∩ {∃t > t∗, Ns(t) = φ)}) = 0.
B2. P(Q ∩ N ∩ {k > 0}) = 0 + P(Q ∩ N ∩ {k > 0} ∩ {∀t > t∗, NS(t) 6= φ})
≤ P(Q ∩ {k > 0} ∩ N ∩ {∃t′ > t∗, k ∈ NS(t′) , Interkj(t′) = 1, yk(t′)yj(t′) < 0

}
}

≤ P
(

Q ∩ {k > 0} ∩
{

Int
t

V(t) < K
})

= 0 Therefore, from A and B, we know that

{P(Q ∩ {K > 0}) = P(Q ∩ N ∩ {K > 0}) + P(Q ∩M ∩ {K > 0}) + 0 = 0

2© For w ∈ QC, namely, for j, yj(t∗) 6= 0, which is similar to A in 1©, then P
(
QC ∩ {K > 0}

)
= 0.

To synthesize 1© 2©, P({K > 0}) = 0, which is a contradiction, thus P
(

inf
t

V(t) = 0
)
= 1.

Part D: QED
Therefore, to synthesize Parts A/B/C, based on the stochastic Lasalle’s theorem, O is

the stochastic global attractor of y(t). Then from the arbitrary features of x(0) and w, ε(x0)
is the stochastic global attractor of

(
[0, 1]n, Ω, F

)
. �

Lemma A8. If
(
[0, 1]n, Ω, F

)
has a stochastic global attractor ε(x0), x(t) will have quasi-consensus.

Proof.
Because ε(x0) is a stochastic global attractor, we can obtain A satisfying P(A) = 1,

and given w ∈ A arbitrarily, since ε(x0) = (x0 · · · · · · , x0), we have ∀ε > 0, ∃N, t > N
‖x(t)− ε(x0)‖ < ε. From the convergent feature of norm ‖·‖, ∀i, xi(t)→ E (i)(x0) = x0
holds. Therefore, ∀l, k ∈ I, from xl(t)→ x0 and xk(t)→ x0 , we obtain ∀ε > 0, ∀l, k, for
ε
2 , ∃Tl , Tk, ∀t > Tlk = max(Tl , Tk), |xl(t)− x0| < ε

2 and |x0 − xl(t)| < ε
2 , so we know that∣∣xl(t)− xk(t)

∣∣< ε
2 + ε

2 = ε , then ∀ε > 0, ∃N, t > N, dv(t) = sup
k,l
|xk(t)− xl(t)| < ε, and
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then dv = lim
t

supdv(t) = 0, x(t) will have quasi-consensus arising from the arbitrary

choice of w. �

Theorem A6. For M1,
(
[0, 1]n, Ω, F

)
has a stable quasi-consensus.

Proof.
1© From Lemmas A6 and A7, the translation system y(t) has a stable stochastic fixed point and

stochastic global attractor o. Therefore, ∃P(A) = 1, ∀w ∈ A, t→ ∞, x(t)− x(0)→ 0,
x(t)→ x(0) , so x(0) is a stable stochastic fixed point and stochastic global attractor
of x(t).

2© From Lemma A8, we know that stochastic global attraction can lead to a quasi-
consensus. Further, based on the stability of x(0),

(
[0, 1]n, Ω, F

)
has a stable quasi-

consensus. �

Appendix B.2. The Proof of Theorem 2

Proposition A2. ∀x0 ∈ [0, 1]n, under the alternative rule in the definition,
A2 =

{
w : Interij(wt) · II(0,d)

(∣∣xi(t)− xj(t)
∣∣) = 1(P1)

}
, and under the original rule in the

definition, A1 =
{

w : Interij (wt) = 1(P2)
}

, then A2 = A1.

Proof.
Namely, we need to prove “ P1 ⇔ P2 ”
“⇒” If P1 holds, we have Interij (wt) = 1, Y2 holds.
“⇐” If P2 holds and P1 does not hold, namely interij (wt) = 1 and

∣∣xi(t)− xj(t)
∣∣ > d,

from the 2©of rule 2, we know: when ∀i, signi(w
′) = signi(w), P

(
{w′} ∩

{∣∣xi(t)− xj(t)
∣∣ < d

})
= P

(
{w} ∩

{∣∣xi(t)− xj(t)
∣∣ < d

})
, then

0 6= P
({

w : wij > 0
}
∩
{∣∣xi(t)− xj(t)

∣∣ > d
})

= ∑ P
(
{w} ∩

{∣∣xi(t)− xj(t)
∣∣ < d

})
Thus, ∃w∗, P

(
{w∗} ∩

{∣∣xi(t)− xj(t)
∣∣ < d

})
6= 0, so P

(
{w} ∩

{∣∣xi(t)− xj(t)
∣∣ < d

})
6= 0,

which is a contradiction, so P1 holds. �

Remark A17. The equivalence of the original rule and the alternative rule is known from the
proposition. Therefore, Theorem 2 can be proved below under the alternative rule.

Proposition A3. P(A1) = 1, P(A2) = 1, then P(A1 ∩ A2) = 1.

Proof. It obviously holds on the basis of basic probability theory. �

Lemma A9. For M2, when u 6 1
2 , P{w : i f min

i∈V(t)
xi(t)interact at the timet, then

min
i∈V(t+1)

xi(t + 1)− min
i∈V(t)

xi(t) > u(xσt (2)(t)− xσt (1)(t))} = 1.

Proof.

I. Given x0 ∈ [0, 1]n arbitrarily, Let σt : {1 · · · n} → {1 · · · n} be a permutation of V(t),
which sorts i in V(t) from small to large by the value of xi(t), and can be denoted as

σt(x(t)) =
(

x
σ(i)(t)

)n

t=1
. Given t ∈ Nandi, j ∈ V(t), we obtain: ∃A ⊆ Ω, PA = 1,

∀w ∈ A, for i that interacts with the other agent at the time t; the equation reflecting
its dynamics can be briefly written as xi(t + 1) = (1− u)xi(t) + u · 1

Ni(t)
∑

k∈Ni(t)
xk(t).

Thus, we know x
σt(1)

(t + 1) − x
σt(1)

(t) > (1 − u)x
σt(1)

(t) + ux
σt(2)

(t) − x
σt(1)

(t) =

u
(

x
σt(2)

(t)− x
σt(1)

(t)
)

and x
σt+1(1)

(t + 1) >min
[
x

σt(1)
(t + 1), 1

2

(
x

σt(1)
(t) + x

σt(2)
(t)
)]

,
so the inequality holds below: min

i∈V(t)
xi(t + 1)− min

i∈V(t)
xi(t) = xσt+1(1)

(t + 1)− xσt(1)(t) >
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min
[
u
(

x
σt(2)

(t)− x
σt(1)

(t)
)

, 1
2

(
x

σt(2)
(t)− x

σt(1)
(t)
)]

= u
(

x
σt(2)

(t)− x
σt(1)

(t)
)

, written
as Inq1 in the following part.

II. Given the set A same as above, ∀w ∈ A, we consider V(t + 1) and know:

(1) When Vc(t) = {k ∈ V : B(xk(t)), d) = φ} and let B(t) = {k : xk(t) 6 min
i∈V(t)

xi(t)

or xk(t) > max
i∈V(t)

xi(t)(P2(t))}, we obtain ∀xk(t) ∈ Vc(t)∩ B(t), xk(t+ 1) = xk(t)

and minxi(t)/maxxi(t) is non-decreasing/non-increasing, then xk(t + 1) ∈ Vc(t +
1) ∩ Bc(t + 1) and we know that Vc(t) ∩ B(t) ⊆ Vc(t + 1)

(2) ∀k ∈ Vc(t)∩BC(t), namely B(xk(t), d) = φ and min
i∈V(t)

xi(t) < xk(t) < max
i∈V(t)

xi(t),

suppose only one k that satisfies this condition (which can be generalized to n),
from the non-existence of xl(t) ∈ B(xk(t), d), we know: there is a partitioning
of V(t), namely V1(t) ∩ V2(t) = φ and V1(t) ∪ V2(t) = V(t), which can satisfy
xk(t)− max

i∈V1(t)
xi(t) > d and min

j∈V2(t)
xj(t)− xk(t) > d. Thus, ∀m ∈ V1(t), n ∈ V2(t),

II (−∞, d)(|xm(t)− xn(t)|) = 0 and xk(t + 1) = xk(t), we have
1© (fixed agents) ∀p /∈ V1(t) ∪V2(t), p 6= k, xp(t + 1);

= xp(t) /∈ B(xk(t + 1), d);
2© (Activable agents) from d(V1(t), V2(t)) > d, we know max

m∈V1(t)
xm(t+ 1) 6

max
m∈V1(t)

xm(t) and min
n∈V1(t)

xn(t + 1) > min
n∈V1(t)

xn(t) holds, and ∀p ∈ V1(t)∪

V2(t), xp(t + 1) /∈ B(xk(t + 1)), d
)
, so k /∈ V(t + 1). Therefore, k ∈

Vc(t + 1), namely Vc(t) ∩ Bc(t) ⊆ Vc(t + 1).

From (1) and (2) of II, given A, we obtain the below conclusion:
∀w ∈ A, Vc(t) = (Vc(t) ∩ B(t)) ∪(Vc(t) ∩ Bc(t)) ⊆ Vc(t + 1), namely V(t + 1) ⊆

V(t), thus 1 > P{w : V(t + 1) ≤ V(t)} > P(A) = 1, so the probability is equal to 1.
Then, from I and II, we know ∀x0 ∈ [0, 1]n, ∀w ∈ A, since min

i∈V(t+1)
xi(t + 1) ≥

min
i∈V(t)

xi(t + 1), for the condition which min xi(t) participates the interaction, we have

P
{

w : i f min
i∈V(t)

xi(t)interact at the time t, min
i∈V(t+1)

xi(t + 1)− min
i∈V(t)

xi(t) > u(xσt (2)(t)− xσt (1)(t))
}

= 1.

�

Lemma A10. When u ≤ 1/2, P(∃x0 ∈ [0, 1]n, t→ ∞, x(t)→ x0) = 1 .

Proof.
Given x(0) ∈ [0, 1]n, w ∈ Ω arbitrarily, let E∗(t) =

{
xi(t) : ∃xj(t), 0<

∣∣xi(t)− xj(t)
∣∣ < d

}
.

Obviously, E∗(t) = φ or |E∗(t)| > 2.

1. xi(t) Under E∗(t) (or above E*(t)) will be convergent. ∀xl(t) < minE∗(t), xk(t) >
maxE∗(t), we have xl(t)−minE∗(t) < −d, xk(t)−maxE∗(t) > d. From Lemma A9,
we deduce that minE∗(t + 1) > minE∗(t) and maxE∗(t + 1) 6 maxE∗(t). Thus, xl(t +
1)−minE∗(t+ 1) < −d and xk(t+ 1)−maxE∗(t+ 1) > d, so xl(t+ 1) /∈ E∗(t+ 1) and
xk(t+ 1) /∈ E∗(t+ 1). Then, it is known by induction that xl(t+ k), xk(t+ k) /∈ E∗(t+ k).
Therefore, ∃T, ∀t′ > T and t > T, ∀xk(T) ≤ minE∗(T) or xk(T) > maxE∗(T), xk(t′) =
xk(t). Namely, xk(t)→ xk , and we can obtain the equation:

P({∃t, xk(t) /∈ [minE∗(t), maxE∗(t)]} ∩ {xn(t)→ xk}) = P(∃t, xk(t) /∈ [minE∗(A), maxE∗(t)])

2. xi(t) in E*(t) will be convergent (namely, xk(t) ∈ [minE∗(t), maxE∗(t)]), given ω ∈ Ω
arbitrarily.
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(1) If ∃t, E∗(t) = φ, then ∀i/j,
∣∣xi(t)− xj(t)

∣∣ > d, so xi(t + 1) = xi(t) keep the
feature, E∗(t + 1) = φ. By induction, we know ∀t′ > t, E∗(t′) = φ, thus
x(t)→ x0 holds, and

P({∀t, xk(t) ∈ [minE∗(t), maxE∗(t)]} ∩ {∃t : E∗(t) = ∅} ∩ {x(t)→ x(0)})
= P({∀t, xk(t) ∈ [minE∗(t), maxE∗(t)]}∩{∃t : E∗(t) = φ})

(2) if ∀t, E∗(t) 6= φ, given t, let min1(t) = min
i∈V(t)

xi(t) (also equal to minE∗(t)).

From Lemma A9 and ω ∈ A (A is the set given in Lemma A9), we know
{min1(t) : t ∈ N} is bounded and non-decreasing, thus t→ ∞ , min1(t)→ x1 .

1© To consider the limit of min1(t), written as x1, By the convergence of min1(t), ∀δ > 0,
∃T, ∀t > T, x1 −min1(t) < δ. From min(t) ∈ E∗(t), we know B(min1(t), d) 6= φ.
I. Suppose ∃A1 ⊆ A and P(A1) > 0, P(w ∈ A1 : ∃δ > 0, ∀T > 0, ∃t > T (written as
T1 · · · Tn · · · ), xj(t) ∈ B(min1(t), d) and xj(t)−min(t) > δ

)
> 0. For the condition

that “xj(t ∈ B(min1(t)d) and xj(t)−min1(t) > δ”, we know: given w, given T = T0,
firstly, there is a t = T1 > T0 satisfying the condition; then let T = T1, there is a t =
T2 > T1 satisfying the condition. . . Based on this procedure, for w in A, there are count-
able Ti(i ∈ N) satisfying the condition. II. Based on the conclusion of I, let up(t) =
{xi(t) ∈ E∗(t) : min(t) ≤ xi(t) ≤ x1}, which is obviously not equal to φ. Given the ap-
agogical hypothesis is P(M) , P{∃δ > 0, ∀Ti, ∃t = Ti+1 > Ti, ∃xj(t) ∈ B(min1(t), d),
then|xj(t)−min1(t)| > δ}, we know the below conclusion:

P

 ∑
up(t)

xi(t) > |up(t)|(x1 + d)

 > P(w : ∃I ⊆ N, |I| = N, ∃δ > 0, ∩
ti∈I

{
Inter

(
min1(ti), x(j), (ti)

)
(wti ) = 1

}

and ∃(j), x(j)(ti)−min1(ti) > δ
)
> p(M) > 0.

For the proof of the first equal sign, we take t > T0 and fix the up(t), given min1(t) =
xk t(t) ∈ up(t), if xi(t) ∈ up(t), Inter

(
xkt(t), xi(t)

)
= 1, ∑

up(t)
xi(t) will not change;

if xj(t) /∈ up(t), Inter
(

xkt(t), xj(t)
)

= 1, ∑ xi(t) will increase more than l (from
Lemma A9). For the proof of the second inequality, from I, the cardinality of {Ti}∞

i=1
is same with N and P

(
interij(Ti) ∩

{
x1(Ti)− xj(Ti) < d

})
> 0, thus t→ ∞ , |I| =

N,∩{inter( min1(ti), x(j)(ti))(wti ) = 1} and
∣∣xj(t)−min(ti)

∣∣ > δ, the inequality holds.
From this, P[∃k′, E(up(t + k)) > E(up(t)) + k′ · uδ > n(x1 + d)] > 0, and E represents
the sum of elements in up(t), which is a contradiction. Therefore, ∀A1 ⊆ A and P(A1) >
0, P

(
w ∈ A1 : ∀δ > 0, ∃T > 0, ∀t > T, xj(t) ∈ B(min1(t), d

)
⇒ xj(t) ∈

B(min1(t), δ)) = P(A1). Furthermore, Let A1 = A, P
{

w : ∀δ > 0, ∃T > 0, ∀t > T, xj(t)
∈ B(min1(t), d)⇒ xj(t) ∈ B(min1(t), δ)

}
= 1 III, From II, the probability of “∀δ > 0,

∃T1 = T(δ), ∀t > T1, ∀xj(t) ∈ B(min1(T1), d),
∣∣xj(t)−min1(T1)

∣∣ < δ” is equal to
1. Furthermore, given w, we define min2(t) = min

{xi(t)}\B(min1(t),d)
xi(t), and use the ap-

agogical arguments. For w in measure P in II, ∃m > 0, P(K2) , P(w : ∀t, ∃xi(t) ∈
B(min1(t), d), min2(t) ∈ B(xi(t), d)) > m, we take δ = d

2 , and find T
(

d
2

)
based on II

satisfying P
{

w : t > T
(

d
2

)
, xj(t) ∈ B(min1(t), d), then xj(t) ∈ B(min1(t), d/2)

}
, then

we take t > T(δ) and consider the apagogical arguments hypothesis, knowing some
points below:
A. P(w ∈ K2 : t → ∞,∃{ti}∞

i=1, ∩
x(t)∈B(min1(t),d)

∩
t1···tn
{Inter(xk(t), min2(t)) (wti) = 1}) =

P(K2)
B. Given w, if Inter(xk(t), min2(t)) = 1, ∑

i∈B(min1(t),d)
xi(t + 1) > ∑ xi(t) + u · d

2 . Thus,

P({w : t→ ∞, ∑ xi(t)→ ∞ }) > m > 0, which is a contradiction, so P(∃t, min2(t) does
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not exist, or ∃T, min2(t) > max
B(min1(t),d)

xi(t) + d
)

= 1, and then we obtain

P(∃T, t > T,∀xk(t) ∈ B(min1(t), d), Inter(min2(t), xk(t)) = 0} = 1.
2© To consider mini(t), 1 < i ≤ w. When i > 1, we define mini(t) like min2(t) in 1©, and

view mini(t) as min1(t), mini + 1(t) as min2(t). After discussing like above process,
we know: ∀i ∈ {2 · · ·w}, ∃Ti, ∀t > Ti, B(mini(t), d) ∩ B(mini + 1(t), d) = φ, then
P({∃T, t > T, Interij(wt) = 1}) = 0(xi(t) ∈ B(mini(t), d), xj(t) ∈ B(mini + 1(t), d)).
Furthermore, we have P(∃max(T1 . . . Tn), ∀t > max(T1 · · · Tn), Interij(wt) = 1) = 0,
which satisfies xi(t) ∈ B(min(l + 1, d)), xj(t) ∈ B(mink(t), d) and k 6= l. Because |V| <
∞, ∃ i (just finite numbers of i, which written as m) ∀xp(t) ∈ [mini(t), mini(t)+ d], xp(t)
→ xi. After ordering, we prove that x(t)→ (x1 · · · x1 . . . xm · · · xm) . In conclusion,
when x(0) belongs to [0, 1]n and w belongs to A, t→ ∞, ∃x0, x(t)→ x0, we have
P(∃x0 ∈ [0, 1]n, t→ ∞, x(t)→ x0) = P(A) = 1 . �

Theorem A7. For M2, when u 6 1
2 , n = [1/d] + 1, arbitrarily given a starting point

x∗ ∈ [0, 1]n, P(w : Nconsensus (w, x0) 6 n) = 1.

Proof.
Given x0 arbitrarily, when d > 1

n , P(N consensus (w, x0) > n) > 0, so ∃ A and P(A)
> 0, ∀w ∈ A, there are xi(t) · · · xn+1(t) satisfying x1(t)→ x1, · · · , xn+1(t)→ xn+1 and
xi 6= xj. From Lemma A10, we know P(x(t)→ x0) = 1, and based on d > 1

n obtain
P(A ∩ {w : x(t)→ x0}) > 0. Arbitrarily given w, if

∣∣xi − xj
∣∣ < d, let ε0 = d −

∣∣xi − xj
∣∣,∣∣xi(t)− xj(t)

∣∣ ≤ |xi(t)− xi|+
∣∣xi − xj

∣∣+∣∣xi − xj(t)
∣∣ = ∣∣xj(t)− xi

∣∣+ ∣∣xj(t)− xj
∣∣+(d− ε0).

From xi(t)→ xi, xj(t)→ xj , ∃T1, T2 ∀t > T = max(T1, T2), |xi(t)− xi| < ε0
2 and∣∣xj(t)− xj

∣∣ < ε0
2 , so

∣∣xi(t)− xj(t)
∣∣ < d. Therefore, ∀t > T, xi(t), xj(t) ∈ E∗(t), namely

“∃!T, t > T, E∗(t) = φ or
∣∣xi(t)− xj(t)

∣∣ > d” (written as M), and based on the Lemma
A10, P

(
∃T′, ∀t > T′, E∗(t) = φor

∣∣xi(t)− xj(t)
∣∣ > d

)
= 1, so P(M) = 0 is contradicted with

P(M) > P(A ∩ {w : x(t)→ x0} , so P(N consensus (w, x0) > n) = 0, and ∀x0,
P(N consensus (w, x0) 6 n) = 1. �

Appendix B.3. The Proof of Theorem 3

Lemma A11. For M3, ∃F̃ ∈ Mn(R), P
{

w : ∃T, t > T, F(wt) = F̃
}
= 1.

Proof. From the remarks in definitions, the conclusion is obvious. �

Lemma A12. If
∼
Fisaexpanding mapping(∃α > 1, d(

∼
Fx,
∼
Fy) > αd(x, y)), then F̃ is an expansive

mapping.

Proof.
If F̃ is expanding, then, given x1, x2 ∈ [0, 1]n arbitrarily, let e = 1 ∃α > 1, d

(
F̃x1, F̃x2

)
>

α · d(x1, x2).
From induction, we know that when n > N = logα

1
d(x,x2)

+ 1, d
(

F̃nx1, F̃nx2

)
>

αnd(x1, x2) > 1 = e, so F̃ is a expansive mapping. �

Lemma A13. If ([0, 1]n, Ω, F̃) has L−Y chaos, it will not have quasi-consensus.
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Proof.
1© For ([0, 1]n, Ω, F̃) has L − Y chaos, ∃A ⊆ [0, 1]n, ∀x, y ∈ A, we obtain that

lim
n

supd
(

F̃n
x , F̃n

y

)
6= liminf

n
d
(

F̃nx, F̃ny
)

, ∃{nki},
{

nkj

}
, lim

nki
d
(

F̃nx, F̃ny
)
6=

lim
nkj

d
(

F̃nx, F̃ny
)

, so limd
(

F̃nx, F̃ny
)

does not exist.

2© Suppose ([0, 1]n, Ω, F̃) has quasi-consensus, and it also has L-Y chaos, when n→ ∞ ,
Let F̃nx → (a · · · a), F̃ny→ (b · · · b) , From the continuity of the norm, we know
that lim

n
d
(

F̃nx, F̃ny
)
= lim

n

∥∥∥F̃n(x− y)
∥∥∥ =

∥∥∥lim
n

F̃n(x− y)
∥∥∥ =

∥∥∥lim
n

F̃nx− lim
n

F̃ny
∥∥∥ =

||(a− b, · · · , a− b)|| exists, which is contradicted with 1©, so the hypothesis does not
hold. Therefore, if ([0, 1]n, Ω, F̃) has L−Y chaos, it will not have quasi-consensus. �

Lemma A14. ∃k > 0, F̃k has 2-order shift invariant set. Namely,
(
[0, 1]n, F̃k

)
is topological

conjugate with one-sided symbolic system
(
SZ+, b

)
.

Proof.

I. (1) ∃ compact set A1, A2, F̃k A1 ⊃ (A1 ∪ A2) and F̃k A2 ⊃ (A1 ∪ A2) Let A1 =

B(a1, ε) ⊂ [0, 1]n, A2 = B(a2, ε) ⊂ [0, 1]n, a1 = (x1 · · · x1), a2 = (x2 · · · x2), thus
a1, a2 are the fixed points of F̃. Then we can take a obviously enough small ε, making
A1 ∩ A2 = φ and A1, A2 compact (bounded closed set).

1© Let d(1)max = sup
b∈A2

d(a, b) < 1, because F̃ is a homeomorphism, F̃(∂A1) = ∂F̃(A1).

After induction, we know that ∀m > 1, F̃m(∂A1) = ∂F̃m(A1). Therefore,
given arbitrarily y ∈ ∂F̃(A1), d(y, a) = d(F̃x, a) > ld(x, a), x ∈ ∂A (namely
x is on the sphere). Similarly, after induction, we can obtain d

(
F̃mx, a

)
>

lm · d(x, a). Let m1 =

[
logl

d(1)max
d(x,a)

]
+ 1, d

(
F̃m1 x, a

)
> l[logl

d(1)max
d(x,a) ]+1 , d(x, a) >

d(1)max
d(x,a) · d(x, a) = d(1)max , then ∀ y ∈ F̃t(∂A1), t > m1, d

(
F̃tx, a

)
> d

(
F̃m1 x, a

)
>

d(1)max , namely, the distance between the boundary of F̃t1 A1 and a1 is more than
d(1)max. Meanwhile, because the homeomorphism F̃ keeps the simply connected
feature (homeomorphism⇒ homotopy⇒ same Fundamental group⇒ simply
connected), F̃t A1 is still a closed manifold, and all points inside ∂F̃t A1 still
belong to F̃t A1, thus A2 ⊆ B

(
a1, d(1)max

)
⊆ F̃t A1 and A1 ⊆ B

(
a1, d(1)max

)
⊆

F̃t A1, namely, A1 ∪ A2 ⊆ F̃t A1. Therefore, the first conclusion is proved.

2© Same with 1©, we can find m2 =

[
logl

d(1)max
d(x,b)

]
+ 1, wherein d(2)max = sup

a∈A1

d(a, a2),

so ∀t > m2, A1 ∪ A2 ⊆ F̃t A2

To synthesize 1© 2©, let k = max(m1, m2), then A1 ∪ A2 ⊂ F̃k A1, A1 ∪ A2 ⊂ F̃k A2.
II. A1, A2 can ‘shrink to less than or equal to a point’.

Because 1 = ||I|| =
∥∥∥F̃−1 · F

∥∥∥ =
∥∥∥F̃−1

∥∥∥ · ∥∥∥F̃
∥∥∥ ,
∥∥∥F̃−1

∥∥∥ = 1
‖F̃‖ < 1, we know ∀x, y ∈

d
(

F̃−1x, F̃−1y
)
< d(x, y), then∀F̃−kx ∈ F̃−k A1, F̃−ky ∈ F̃−k A2, d

(
F̃−kx, (α)

)
< d

(
x, (a)i∈I

)
and d

(
F̃−ky, (b)

)
< d(y, (b)), so F̃−k A1 ∩ F̃−k A2 = φ, N

(
F̃−k A1 ∩ F̃−k A2

)
6 1 is satisfied.

From the theorem in [51], the conclusion holds. �

Theorem A8. For M3, if F̃ is a expanding mapping, P{([0, 1]n, Ω, F̃) has L− Y chaos} = 1,
and ([0, 1]n, Ω, F̃) does not have quasi-consensus.
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Proof.
From Lemma A12, for M3, P

{
w : ∃F̃∃T, ∀t > T, F(wt) = F̃

}
= 1. Then, given w in

this set, F̃ is fixed. Let x̃(0) = x(T + 1), we know the limit feature of x̃(t) is same with x(t).
The following deduction is derived and based on the given w, F̃, x(0);
Let the Lebesgue measure of [0, 1]n written as m : B

(
[0, 1]n

)
→ [0, 1] , for the measur-

able mapping F̃, we construct a invariant measure u(A) = lim
n

1
n

n
∑

i=1
m
(

F̃−1 A
)

. Topological

entropy in the following part are based on the F̃-invariant measure u.
1©

(
[0, 1]n, d

)
is compact and F̃ is continuous. For [0, 1]n, because [0, 1]n ⊂ B(0,

√
n).

and [0, 1]n is a closed set (under the metric topology), [0, 1]n can be a metric subspace
of Rn based on the sub-topology/sub-metric. Thus,

(
[0, 1]n, d

)
is compact; For F̃, we

know (F̃)i = L ◦ (F)i.Fi is the component of linear mapping, and is obviously contin-

uous. L =


x, x ∈ (0, 1)
0, x ≤ 0
1, x ≥ 1

is also continuous, so ∀i, (F̃)i is continuous. Therefore F̃

is continuous.
2© F̃is expanding, then F̃ is expansive and h(F̃) > 0. From Lemma A12, if F̃ is expanding,

then F̃ is expansive. Then, from Lemma A14, we know h(F̃) = 1
k h
(

F̃k
)
= 1

k h(σ) =
1
k lg2 > 0

3© ([0, 1]n ,̃ F) has L−Y chaos and does not have quasi-consensus. From h
(

F̃
)
> 0 and

the theorem in [52], ([0, 1]n ,̃ F) has L−Y chaos. Then, from Lemma A13, it does not
have quasi-consensus. In conclusion, from Lemma A11, we know P{([0, 1]n, Ω, F̃) has
L−Y chaos} = 1, and ([0, 1]n, Ω, F̃) does not have quasi-consensus. �

Appendix C. The Methods for Estimation and Test

Appendix C.1. The Method for Estimation

The estimation method for our model consists of three steps: (1) employing approxi-
mate Bayesian computation (ABC), we obtain a posterior distribution sample of parameters
(ui/di/ki) by leveraging both real data and model simulation outcomes; (2) utilizing kernel
density estimation, we smooth the empirical distribution of parameters into a posterior
density function; (3) employing Markov Chain Monte Carlo (MCMC), we compute various
integrals of the density function to obtain posterior estimates. The detailed procedure is
discussed below.

Regarding (1), we can adopt the conventional approach of approximate Bayesian
computing, which necessitates the initial random selection of multiple values for ui/di/ki,
followed by the computation of simulation results under these parameter values. If the
discrepancy between the results and the actual data falls below a critical value, denoted as
e, the parameter value is deemed acceptable; otherwise, it is rejected. Multiple approaches
exist for determining the critical value of e. Our proposed solution involves the implemen-
tation of a “sensitivity reduction” strategy: (1) Initially, we select a decreasing sequence
of e values and substitute them into the model to obtain the posterior distribution of the
parameters. (2) Once the impact of decreasing the value of e on the posterior distribution
becomes negligible, we halt the calculation process and employ the final value as the
selected e value.

For (2), given the constrained parameter information (ui ∈ [−1, 1] and di ∈ [0, 1]), we can
opt for the standard Gaussian distribution as the kernel function and employ classical techniques
to formulate the kernel density. Concurrently, leveraging the computed deviation term of the

kernel function, we will utilize the equation hopt = κ−2/5
2 κ1/5

{∫ [
f (2)(x)

]2
dx
}−1/5

n−1/5,

where κ =
∫

k(v)v2dv and κ =
∫

k2(v)dv [53], to ascertain the most suitable bandwidth. This
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approach enables us to obtain a posterior density, pi (u), which effectively addresses the challenges
of both undersmoothing and oversmoothing.

In reference to (3), based on the principles of Markov Chain Monte Carlo (MCMC), we
utilize the esteemed Metropolis–Hastings algorithm to facilitate integral computation. Our
primary focus revolves around acquiring two essential metrics: the posterior expectation
of parameters and Bayesian factors. Specifically, the estimation of the posterior expecta-
tion of variable “u” entails evaluating

∫ 1
−1 u·pi(u)du. Furthermore, the Bayesian factor

encapsulates the probability of “u” assuming values within a predetermined range.
For the purpose of posterior expectation estimation, let us illustrate our approach

within the framework of MCMC. Initially, we adopt the uniform distribution U(a, b) as
our proposed distribution. After selecting the initial value “xt”, we generate prospective
values “x’” drawn from U(a, b). Subsequently, we compute the acceptance probability and,
based on this likelihood, assign “x’” as “xt + 1”. Analogously, we can obtain a sequence of
numerical values {x0. . .. . .xn} that form Markov chains, characterized by their stationary
distribution aligning with the posterior distribution. By virtue of the central limit theorem,
the arithmetic mean of this sequence can be regarded as the posterior expectation estimate.
Moreover, this method extends its utility to calculate integral results for the Bayesian factor
as well.

Appendix C.2. The Algorithm for Testing

Step1 Obtain the sampling frame of F by simulation, namely {F(wi) : ωi ⊆W ⊆ Ω},
N = 10000

Step2 Obtain the sampling frame of T1 and T2, namely {T1(ωi) : ||T(ωi)x0 − x1|| < ε},
{T2(ωi) : ‖T(ωi)x1 − x2‖ < ε}, N = 10000

Step3 Obtain samples from the sampling frame of F, T1, T2, n = 50.

Step4 Test F
D
≡ T1 and F

D
≡ T2, if they all holds, T ≡ T1 ≡ T2. Thus, F ≡ T.

Appendix C.3. Equivalence of Rules(F/T) and Distributions(xˆ(t)/x(t))

Proposition A4. If F
D
≡ T, then (x(0), x(1), x(2)) and x̂(0), x̂(1), x̂(2) have the same distribution.

Proof.
P{w : (x(0), x̂(1), x̂(2)) 6 (a, b, c)}, (“≤” represents the vector order)
= P

{
w :
(

x(0), F(ω)x(0), F2(w)x(0)
)
≤ (a, b, c)

}
= P

{
w : x(0) 6 a, F(ω)x(0) 6 b, F2(w)x(0) 6 c

}
= P

{(
w : x(0) 6 a, T(ω)x(0) 6 b, T2(w)x(0) 6 c

)}
∩ {T(ω) = F(ω)}

= P
{

ω : x(0) 6 a, T(ω)x(0) 6 b, T2(w)x(0) 6 c
}

= P{w : (x(0), x(1), x(2)) 6 (a, b, c)}
The last holds but with only one equality because ∀B ∈ B(Ω), we have that
P(A) = 1, P(B) > P(B∩ A) = 1− P(Bc ∪ Ac) > 1− (P(Bc) + P(Ac)) = 1− P(Bc) =

P(B), so P(B) = P(B ∩ A). Let B =
{

ω : x(0) 6 a, T(ω)x(0) 6 b, T2(w)x(0) 6 c
}

, A =
{T(ω) = F(ω)}, then the conclusion holds. �
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