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Abstract: Low-illumination image enhancement technology is a topic of interest in the field of image
processing. However, while improving image brightness, it is difficult to effectively maintain the
texture and details of the image, and the quality of the image cannot be guaranteed. In order to solve
this problem, this paper proposed a low-illumination enhancement method based on structural and
detail layers. Firstly, we designed an SRetinex-Net model. The network is mainly divided into two
parts: a decomposition module and an enhancement module. Second, the decomposition module
mainly adopts the SU-Net structure, which is an unsupervised network that decomposes the input
image into a structural layer image and detail layer image. Afterward, the enhancement module
mainly adopts the SDE-Net structure, which is divided into two branches: the SDE-S branch and
the SDE-D branch. The SDE-S branch mainly enhances and adjusts the brightness of the structural
layer image through Ehnet and Adnet to prevent insufficient or overexposed brightness enhancement
in the image. The SDE-D branch is mainly denoised and enhanced with textural details through a
denoising module. This network structure can greatly reduce computational costs. Moreover, we
also improved the total variation optimization model as a mixed loss function and added structural
metrics and textural metrics as variables on the basis of the original loss function, which can well
separate the structure edge and texture edge. Numerous experiments have shown that our structure
has a more significant impact on the brightness and detail preservation of image restoration.

Keywords: low-illumination image enhancement; image decomposition; U-Net; Retinex-Net

1. Introduction

With the development of electronic devices, digital images have played an important
role in our lives. They are widely used in fields such as traffic management, medicine [1],
satellite remote sensing, and target recognition and tracking. However, the complexity of
the shooting environment often leads to low-quality phenomena, such as low recognition,
color distortion, and loss of details. Due to the low quality of images, subsequent computer
vision tasks become difficult. Because image enhancement can improve the visibility and
practicality of low-illumination images, it has important research value.

At present, image enhancement is mainly divided into traditional methods and deep-
learning-based methods. Retinex theory, a model for brightness and color perception
in human vision and a commonly used low-illumination image enhancement method,
was proposed by Land [2] in the 1970s. Afterward, many scholars continued to build on
this basis, from the single-scale Retinex (SSR) algorithm to the multi-scale Retinex (MSR)
algorithm [3] and then to MSR with color recovery (MSRCR) [4]. However, both SSR and
MSR generally exhibit color distortion. Compared with other algorithms, the MSRCR
algorithm has a better color restoration ability, but it has high computational complexity
and many adjustable parameters that are difficult to adaptively select. In addition, on
the basis of Retinex theory, some simple and efficient image enhancement methods based
on the Retinex model have been proposed for low-illumination image enhancement [5],
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such as LIME [6], RobustRetinex [7], and JED [8]. Reference [9] also proposed a convex
variational model, which could effectively decompose the gradient field of an image into
prominent edges and a relatively smoother illumination field through first- and second-
order total change regularization. In summary, although these traditional methods can
effectively enhance image brightness and preserve high-frequency information such as
edges and corners, they cannot effectively avoid problems such as uneven contrast and
color distortion.

In recent years, enhancement methods based on deep learning have gradually devel-
oped. The first network based on deep learning to solve low-light image enhancement
was LLNet [10]. Paired images, including low-light images and normal images, were
input into the network model and trained through automatic encoders to learn the basic
signal features in low-light images and adaptively improve the brightness and denoising
ability. This method loses details during image reconstruction, resulting in a slightly blurry
enhancement of the final image. Afterward, the Retinex-Net network model was proposed
by combining Retinex theory with divine-level convolutional networks [11]. Firstly, an
image was decomposed into illumination maps and reflection maps through the decompo-
sition network. Secondly, the illumination image was enhanced through an enhancement
network, and finally, the enhanced illumination image was multiplied by the decomposed
reflection image to obtain the final enhanced image. After Retinex-Net, an author proposed
a method to improve the quality of low-light images by analyzing the histogram of the
images and utilizing deep learning techniques. For example, the MBLLEN [12] algorithm
is a low-light image enhancement algorithm based on a multi-branch network. This algo-
rithm extracts rich image features from different levels, enhances images through multiple
sub-networks, and finally generates output images through multi-branch fusion. Another
algorithm is the EnlightenGAN [13] algorithm, which improves the quality of low-light
images through local discriminators and attention modules. This algorithm has shown
good enhancement effects in real scenes, but there are still some shadow areas in some
images. Kind [14] used a trainable denoising module for reflectivity recovery. In addition,
a learnable mapping function was designed in the lighting adjustment module, where
images could be flexibly restored at user-specific lighting levels. Sci [15] adopted a new self-
adjustment lighting framework and established a cascaded lighting learning process with
weight sharing to achieve fast and flexible image enhancement. These methods all have
good enhancement performance. In real-world scenes, unclear details and inappropriate
exposure are common. However, the existing methods fail to solve the above problems.

The proposed method draws inspiration from the Retinex theory [16]. The Retinex
model can divide an image into two parts: the incident component and the irradiation
component. Specifically, the irradiation component reflects the distribution of light in the
shooting environment. The reflection component represents the essential properties of
an image. In this paper, the image is decomposed into two parts: a structural layer and
a detail layer. The structural layer mainly refers to the main contour or global geometric
structure information of the image, and the clear boundaries and connected regions are
the main reasons for light decay. The detail layer refers to the image containing small
scales and details, which are usually periodic and oscillatory. Based on the above ideas, a
low-illumination image enhancement method based on a structural layer and a detail layer
is proposed. The main contributions of this article include:

(1) This proposed SRetinex-Net model is mainly divided into two parts: a decomposition
module and an enhancement module. The decomposition module mainly adopts the
SU-Net structure, which decomposes the input image into a structural layer image and
a detail layer image. The enhancement module mainly adopts the SDE-Net structure,
which is divided into two branches: the SDE-S branch and the SDE-D branch. The
SDE-S branch mainly enhances the brightness of the structural layer, while the SDE-D
branch enhances the textural detail of the detail layer.

(2) The SU-Net structure is an unsupervised network, which mainly extracts and merges
the structural features of input images through a sampling layer and skip connection.
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A brightness calibration module was added to the SDE-S branch. After the brightness
enhancement of the structural layer image through the Ehnet module, the feature
extraction and reconstruction of the enhanced image should be completed through
the Adnet module to adjust the image brightness, making the image brightness
more balanced and accurate. The SDE-D branch is mainly denoised and enhanced
with detailed textures through a denoising module. This network structure greatly
improves computational efficiency.

(3) The total variation optimization model was improved as a mixed loss function, and
the structure component and texture component were added as variables on the basis
of the original loss function, which can make the edge and texture better separated so
that the edge of the structural layer image is clear and the details of the detail layer
image are more abundant.

(4) Compared with previous methods, the structural layer image structure obtained by
decomposing the image is more complete in preservation, and the detail layer image
contains more abundant details. In image enhancement, our method does not refer
to normal light images. We can adaptively adjust image brightness to better match
human visual effects and have conducted extensive experimental comparisons to
demonstrate the superiority of our method. Compared with all other methods, we can
self-calibrate image brightness, enhance image contrast, and improve image details
and visibility.

2. Methods

The low-illumination image enhancement method based on convolutional neural
networks makes it difficult to generate complete details during image reconstruction, which
can easily lead to slightly blurry enhancement results. To solve this problem, this paper
proposes a low-illuminance enhancement method based on decomposing the image into a
structural layer and a detail layer. First, the color space of the source image is transformed
from RGB to HSV. Then, the V image component is decomposed into a structural layer and
a detail layer. Furthermore, the structural layer image’s brightness is enhanced through
structural branching, while the detail layer image’s textural details are enhanced through
detail branching. Finally, the enhanced structural layer and detail layer are multiplied to
obtain the enhanced V-component image. The enhanced V-component image is combined
with the H- and S-component images and transformed into a color space to obtain the final
low-illumination-enhanced image.

2.1. Framework of the Proposed Method

Firstly, the color space of the source image is transformed from RGB to HSV. Secondly,
the source image is decomposed into the H-, S-, and V-channel components, which can
be referred to as Ih, Is, and IV, respectively. Finally, the H and S image channels remain
unchanged, and the V image channel is extracted as the input to the network. Afterward, the
input image IV can be decomposed into the structural layer IVs and detail layer IVk via the
decomposition module, which is the input of the enhancement module. Next, the structural
layer IVs is fed into the SDE-S branch to enhance the brightness. The detail layer IVk is fed
into the SDE-D branch to enhance the details. Then, the brightness enhancement image
IVs
′ and the detail enhancement image IVk

′, which are the outputs of the two branches, are
multiplied to obtain the enhanced image IV

′ of the V-channel component. Finally, the final
enhanced image I′ is obtained by fusing the components of the Ih, Is, and IV

′ channels and
converting it from the HSV space to the RGB space.

As shown in Figure 1, the proposed method can enhance and maintain the detail
information of an image while enhancing the brightness and contrast of the image, ensuring
the visual quality of the enhanced image.
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2.2. Structure of the Network
2.2.1. Decomposition Module

Compared with the Retinex-based method, the decomposition model decomposes
the input image into structural layer images IVs and detail layer images IVk, rather than
illumination and reflection images. Therefore, we do not need to label images with normal
brightness to constrain the network training.

The original U-net structure [17] consumes considerable training time and has the
problem of repeated training. Because there are no labels for the structural layers and
detail layers of the trained images, we need to retrain each image during training. In
order to satisfy this condition, a SU-Net structure is proposed, which mainly uses multiple
convolution layers and a nonlinear activation function connection, including an upper
sampling layer, lower sampling layer, and skip connection. Because we input a single-
channel image, the first layer of convolution has 1 input channel and 64 output channels,
the last layer of convolution has 64 input channels and 1 output channel, and the remaining
convolution has 64 input and output channels. The entire network completes the feature
extraction and reconstruction of images.

2.2.2. Enhancement Module

The enhancement module adopts an SDE-Net structure. The network is divided
into two branches: the SDE-S branch and the SDE-D branch. The SDE-S branch mainly
enhances the brightness of the structural layer Ivs to obtain the enhanced structural layer
image IVs

′, while the SDE-D branch enhances the textural details of the detail layer Ivk to
obtain the enhanced detail layer image IVk

′. Ehnet in the SDE-S branch is mainly composed
of multiple convolution layers and an activation function, and the size of the convolution
kernel is 3 × 3. The input channel number of the first convolutional layer is 1, and the
output channel number of the last convolutional layer is 1. It mainly performs feature
extraction and reconstruction on the input image to enhance image brightness. Adnet is a
brightness adjustment network that receives a preliminary brightness-enhanced images
output via Ehnet, performs feature extraction and reconstruction on the input image to
adjust the brightness of the image, prevents image brightness overexposure or insufficient
brightness, and makes the brightness of the image more balanced and accurate. Adnet
mainly consists of blocks composed of multiple convolutional layers, each with two 3 × 3,
a reduction layer, and an activation function. The number of input channels of the first
convolution layer is 1, and the number of output channels of the last convolution layer is
1. The SDE-D branch enhances the texture details of the detail layer Ivk through a noise
reduction module. This approach can greatly improve computational efficiency, as shown
in Figure 2.
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2.3. Loss Function
2.3.1. Fully Variational Loss Function

The image can be divided into different image layers based on various methods.
For example, the image can be divided into high-frequency and low-frequency signals
based on frequency domain methods, and the original image can be decomposed into
illumination images and reflection images based on the Retinex algorithm. The image can
be decomposed into structural layers and detail layers. The structural layer mainly refers
to the main contour or global geometric structural information of the image, with clear
boundaries and connected regions. The detail layer refers to a layer that contains small
scales and details, which are typically periodic and oscillatory. There are many methods
for image decomposition, and image filters can be used for filtering, such as the rolling
filter algorithm [18]. A Gaussian filter is used to remove texture, while bilateral filters are
used to restore edges, which also causes ringing and artifacts around the edges. Image
decomposition can also be achieved using methods such as the TV (total variation) full
variation model [19] and the relative total variation (RTV) model [20].

Herein, we use the total variation model as the basis for the optimization framework,
and the common total variation objective formula is as follows:

S = argmin
s

∑i(‖ u(i)− I(i) ‖m+ ‖ β∇u(i) ‖n) (1)

We represent the intensity of the input image, its structural layer components, and
its detail layer components as I, S, and K, respectively. Our goal is to obtain unknown
structural layer images S and detail layer images K from known input images I. Because I =
S + K, we only need to estimate one of S and K. In the variational framework, the structural
component S is generally obtained by changing the feature metric of the fully variational
model, such as in references [21–23], where i represents the pixel intensity at the point and
is a balance coefficient, and the subscripts m and n represent the function space of the two
terms. In Formula (1), the first term is the fidelity term, which mainly makes the structural
layer S infinitely close to the input image I. The second term is the regularization term,
which is mainly used to remove the edges in the structural layer diagram.

In order to better decompose the image structural layer and detail layer, considering
the anisotropy of image gradients, structural metrics [24] and textural metrics [24] are used
to optimize the total variational function.
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The structural measurement formula is as follows:

Gs(i) = AJ(i)
‖ ∇f(i) ‖1

R
, (2)

where AJ(i) represents the degree of anisotropy in the local area of point i, j represents the
positive definite matrix, and a larger value of A indicates that the degree of anisotropy and
structural strength at that point is stronger. On the contrary, a smaller value of A indicates a
smaller degree of anisotropy and stronger texture details at that point. ‖ ∇f(i) ‖1 represents
the L1 norm of the gradient of the image at point i, and R represents the maximum value.

The texture measurement formula is as follows:

Gt(i) =
1

{C(i)} ∗∑j∈{C(i)}cos θij ∗ e(−Φ(hj,hi)), (3)

where {C(i)} represents the set of domain pixels of point i, j represents the domain position
of pixel point i, and −Φ

(
hj, hi

)
represents the cross-entropy. cos θij represents the edge

direction positions of pixel points i and j. When i and j are on the same edge, the included
angle is 90 degrees. Conversely, when the included angle is 0, it has no effect on the texture
measurement. The range of values for Gt is [0, 1].

Therefore, the objective function we utilized is as follows:

S = argmin
s

∑i

(
‖ u(i)− I(i) ‖2

1 + D(i) ‖ ∇u(i) ‖1

)
, (4)

D(i) = [βs(1−Gs(i)) + βtGt(i)], (5)

where S represents the decomposed structural layer, I represents the original input image,
‖ u(i)− I(i) ‖2

1 refers to the difference between the input image and the output structural
layer image, D(i) refers to the i-point structural and textural metrics, ∇u(i) is the gradient
of the structural components at the i-point, and ‖‖2

1 is the Lp norm. Gs is a structural metric
responsible for filtering out structural edges. When the structural metric value of point
i is large, that is, Gs approaches 1, and 1- Gs approaches 0, the gradient regularization
term also approaches 0. Therefore, the structural edges of point i can be retained. In this
case, the influence of the second term should be reduced; on the contrary, when the texture
measurement value of point i is large, that is, Gt tends to 1, and the gradient regularization
term is large, the texture edge at point i can be separated from the structure component. At
this point, the second main function is to effectively remove textural edges. βs and βt are
the equilibrium coefficients of Gs and Gt.

We defined the loss function as the objective function (4) and (5) and trained the neural
network. The fully variational loss function Formula (6) is as follows:

loss = ∑i

(
‖ u(i)− I(i) ‖2

1 + D(i) ‖ ∇u(i) ‖1

)
, (6)

Because we do not have the label of the structural layer image, the unknown parame-
ters in the loss function are adjusted with the input image.

The structural layer images and detail layer images obtained using the decomposition
module are shown in Figure 3.
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2.3.2. Unsupervised Loss Function

This enhancement method can avoid the uncertainty of paired data sets, and we used
the unsupervised loss function [15] to achieve this purpose.

Lun = γ1Lf + γ2Ls, (7)

where Lf and Ls represent the fidelity loss and smoothing loss. γ1 and γ2 are two positive
equilibrium parameters.

The fidelity loss function ensures that the estimated illumination is consistent with the
pixel level between the inputs of each stage. The specific formula is as follows:

Lf = ∑T
t=1‖ xt −

(
y + st−1

)
‖

2
, (8)

where T represents the total number of stages. In fact, the fidelity loss function uses the
redefined input to constrain the output lighting rather than the live scene or normal low-
light input photographed artificially. X represents the generated illumination estimation, y
represents the low-illumination image to be processed, and s represents the adjustment
parameters.

The formula of the illumination smoothing loss function is as follows:

Ls = ∑N
i=1 ∑

j∈N(i)
wi,j

∣∣∣xt
i − xt

j

∣∣∣ (9)

where N represents the total number of pixels. I is the i-th pixel. N (i) represents point 5 of
i × adjacent pixels in the range of 5. X represents the generated illumination estimation
image, and Wi,j represents the weight between pixels i and j, which is used to measure the
similarity between pixels i and j.

3. Experimental Results and Analysis

To verify the effectiveness of the proposed method, our low-illumination image en-
hancement method based on structural and detail layers was compared with existing
classic algorithms as a comparative experiment, and validation analysis was conducted
based on two aspects: subjective visual effects and objective evaluation indicators. In
order to verify the generalization of the network, this article used the publicly available
LOL dataset and MEF dataset as training datasets. The LOL dataset contains 485 pairs
of low-light/normal-light training images and 15 low-light test images. The MEF dataset
contains 84 low-light test images.
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In the pre-training process of the decomposition module, data preprocessing is per-
formed first. The color space of the source image is transformed from RGB to HSV, and
the V-component image is extracted. Then, structural and textural metrics are calculated
separately for each V-component image, and the experimental results are saved. Afterward,
the network is used for pre-training. The structural metric and detail metric of each training
image remain unchanged, and the balance coefficient in the loss function formula is 3.0. A
total of 30 iterations are conducted in the pre-training stage. At this time, the network is
considered to converge, and the pre-training is complete.

There are two parts to the enhancement module: pre-training and fine-tuning. The
structural layers obtained from the decomposition module are pre-trained with 1000 it-
erations and a learning rate of 0.0003. After approximately 396 iterations, the network
converges, and the pre-training ends.

3.1. Subjective Evaluation

In terms of subjective visual effects, as shown in Figure 4, six groups of images are
selected, including indoor scenes and natural landscapes. From left to right, there are
enhancement images of low-illumination images, the Retinex-Net algorithm, URetinex-Net
algorithm, LIME algorithm, Zero DCE++ algorithm, Kind++ algorithm, and the algorithm
presented in this article.
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As shown in Figures 4 and 5, it can be seen that the enhanced images of the Retinex-
Net algorithm exhibit significant color distortion, with some images exhibiting a noticeable
ink sensation. The URetinex-Net algorithm [25] enhances the overall image and has certain
defects in image color retention. Many objects tend to have obvious fading phenomena.
The LIME algorithm has an excessive enhancement effect on local regions. Zero DCE++ [26]
has a poor noise suppression effect and is prone to detail loss. The KinD++ algorithm [27]
significantly improves the brightness, but the brightness of the enhanced image cannot
maintain the same brightness distribution characteristics as the original image, and there is
obvious color distortion. The proposed method in this article has a more reliable enhance-
ment effect, which can work well under different types of lighting conditions, effectively
avoiding situations where the overall vision is too high or the enhancement is insufficient.
The final enhancement effect is also more natural and realistic.
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The details of Figures 4 and 5 are enlarged in Figures 6 and 7. In the figures, it can be
seen that the results obtained with the Retinex-Net algorithm show color distortion and
excessive detail enhancement in some areas, such as the bookcase area and cliff area in the
image, which are biased toward ink and have artifacts. The URetinex-Net algorithm shows
a significant color bias toward white in the enlarged area of the flowerpot and clothing. The
LIME algorithm clearly shows the presence of a large amount of noise in the enlarged area
of streetlights and swimming pools. The Zero-DCE++ algorithm shows that the contrast
enhancement is not sufficient in the enlarged area, resulting in a dim overall color sense in
the image and an obvious problem of detail loss. The KinD++ algorithm has the problem
of overexposure in the magnified area of the natural landscape. The magnified area of the
indoor scene recovers the color distortion, and the brightness recovery is unstable. The
proposed method in this article utilizes the advantages of the HSV color space compared
with the other methods. While maintaining the structure, it preserves most of the original
information of the images and enriches the details of the objects, avoiding color distortion
to the greatest extent. At the same time, it can effectively suppress the generation of noise
and avoid the presence of artifacts.
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3.2. Objective Evaluation Indicators

In order to better evaluate image quality, this article used the natural image quality
evaluator (NIQE) [28], structural similarity index (SSIM), peak signal-to-noise ratio (PSNR),
and learned perceptual image patch similarity [29] (LPIPS) to evaluate the resulting images.
As an evaluation indicator, the higher the values of the SSIM and PSNR, the better the
image quality we will obtain; on the contrary, smaller NIQE and LPIPS values indicate
better image quality. BIQI is an image evaluation index without reference images, with
values ranging from zero to one. The closer the value is to one, the better the image quality.
The EMEE evaluation indicator is used to measure image edge information, especially for
images with clear edges. The EMEE value is small, and vice versa. SDME is an image
evaluation indicator used to measure the degree of edge change in images. A larger value
indicates a more significant edge change in the image. BRISQUE is a five-reference image
quality evaluation indicator, with values typically ranging from 50 to 100. The larger the
value, the better the image quality. The AME evaluation indicator is suitable for measuring
the quality of image edges, and the value is usually positive. Images with clear edges have
a higher AME value, while the opposite is true. Visibility is an indicator of image visibility,
with larger values indicating clearer targets or details in the image, and vice versa.

The enhanced results of the test datasets are shown in Table 1. ↑ the larger the value,
the better the enhancement effect. On the contrary, ↓ the smaller the numerical value, the
better the enhancement effect. As shown in the table, our method is better than the other
methods in the NIQE, SSIM, PSNR, BIQI, EMEE, BRISQUE, AME, and visibility metrics,
except that it performs slightly worse than URetinexNet and LIME in LPIPS and SDME. In
summary, we have achieved an effective solution to the existing problems, and the results
are excellent.

Table 1. Objective evaluation indicators of different algorithms.

Comparison
Algorithm

NIQE
↓

SSIM
↑

PSNR
↑

LPIPS
↓

BIQI
↑

EMEE
↑

SDME
↑

BRISQUE
↓

AME
↑

Visibility
↑

Retinex-Net 7.1888 0.6449 13.7448 2.3146 0.4075 9.1803 89.1120 93.0386 78.9014 1.4980

URetinex-Net 4.7599 0.8238 21.3282 1.3234 0.2692 8.8664 72.2450 94.4427 43.9180 1.3153

SIRE 6.2109 0.4937 10.9447 1.8563 0.3428 8.4146 52.3258 93.3717 37.7913 1.5000

LIME 6.4282 0.7410 16.2744 2.0601 0.3436 7.9899 114.8789 94.8650 83.0246 1.3913

Zero-DCE++ 4.3693 0.5479 14.3098 1.8905 0.3604 7.8689 69.8208 94.3531 52.4144 1.4879

KinD++ 4.8106 0.7962 15.2666 1.4899 0.3652 8.5482 97.2805 93.3560 73.7956 1.4440

SNR-Aware [30] 5.7982 0.7834 17.3118 1.6384 0.3073 8.6534 68.6665 96.2248 58.0088 1.2607

RUAS [31] 6.2769 0.6075 12.9109 1.9274 0.2815 9.8992 65.1625 95.7833 50.9025 1.4222

OURS 4.3195 0.8321 21.4243 1.3882 0.4394 10.9775 110.7982 92.1687 83.1254 1.5169

3.3. Ablation Experiment

The loss function variable in the decomposition module, the brightness enhancement
module, and the adjustment module in the enhancement module of the network model in
this paper were ablated. The specific experimental results are shown in the following figure.

As shown in Figure 8, in the ablation experiment for the loss function variables,
which was mainly to verify the importance of structural metrics and textural metrics for
the generation of structural layers, clarity was used as the key to measure the effects of
the variables. Clarity refers to the details and boundaries in an image, and higher values
represent more detailed information contained in the image. For the structural layer, the less
detailed information we have, the better our final enhancement effect. Therefore, we need
to choose variables with smaller clarity values. The red color in the histogram indicates
that the loss function variables include both structural metrics and textural metrics; yellow
indicates that the loss function variable only contains textural metrics; blue indicates that
the loss function variable contains only structural measures. As can be seen in Figure 8,
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only the loss function containing structural metrics and textural metrics obtains the best
structural layer effect.
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Figure 9 shows the module ablation experiment for the second part of the network
structure enhancement module, mainly comparing the basic module, the removed adjust-
ment module, and the removed enhancement module. The peak signal-to-noise ratio is
used as the key to measuring the experimental structure. The higher the peak signal-to-
noise ratio, the stronger the enhancement effect. Therefore, we need to choose a module
with a higher peak signal-to-noise ratio value. As shown in Figure 6, red represents the
basic module, yellow represents the removal of the brightness adjustment module, and
blue represents the removal of the enhancement module. It can be clearly seen that only
the enhancement module and brightness adjustment module coexist, and the network has
the best enhancement effect.
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4. Conclusions

This paper proposed a low-illumination enhancement method based on structural
and detail layers. Firstly, we designed an SRetinnex-Net model. The network is mainly
divided into two parts: a decomposition module and an enhancement module. Second, the
decomposition module mainly adopts the SU-Net structure, and the network decomposes
the input image into a structural layer image and detail layer image. Afterward, the
enhancement module mainly adopts the SDE-Net structure, which is divided into two
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branches: the SDE-S branch and the SDE-D branch. The SDE-S branch mainly enhances
and adjusts the brightness of the structural layer image through the Ehnet module and
the Adnet module, to prevent insufficient or overexposed brightness enhancement in
the image. The SDE-D branch is mainly denoised and enhanced with textural details
through a denoising module. This network structure can greatly reduce computational
costs. Moreover, we also improved the total variation optimization model as a mixed loss
function and added structural metrics and textural metrics as variables on the basis of
the original loss function, which can well separate the structure edge and texture edge.
Numerous experiments have shown that the algorithm proposed in this paper outperforms
Retinex-Net, SIRE, LIME, Zero-DCE++, Kind++, RUAS, and other algorithms in evaluation
metrics such as the SSIM, PSNR, and NIQE. The algorithm proposed in this article not only
improves the brightness of low-illumination images but also has significant advantages
in enhancing textural details and color restoration. In the future, the decomposition and
enhancement of the entire network play an important role in enhancing low-illumination
images, and optimizing the network structure is also a focus of our future research direction.
And for low-illumination images without a control group, how to ensure image brightness
enhancement without losing image details is a major challenge for us to continue studying
low-illumination image enhancement.
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