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Abstract: Information aggregation in distributed sensor networks has received significant attention
from researchers in various disciplines. Distributed consensus algorithms are broadly developed to
accelerate the convergence to consensus under different communication and/or energy limitations.
Non-Bayesian social learning strategies are representative algorithms for distributed agents to learn
progressively an underlying state of nature by information communications and evolutions. This
work designs a new non-Bayesian social learning strategy named the hypergraph social learning by
introducing the higher-order topology as the underlying communication network structure, with its
convergence as well as the convergence rate theoretically analyzed. Extensive numerical examples
are provided to demonstrate the effectiveness of the framework and reveal its superior performance
when applying to sensor networks in tasks such as cooperative positioning. The designed framework
can assist sensor network designers to develop more efficient communication topology, which can
better resist environmental obstructions, and also has theoretical and applied values in broad areas
such as distributed parameter estimation, dispersed information aggregation and social networks.

Keywords: distributed consensus algorithm; sensor network; higher-order topology; non-Bayesian
social learning

1. Introduction

Sensor networks are widely deployed in environment for data gathering and moni-
toring purposes [1,2]. Originally motivated in military surveillance and then popularized
to mobile and wireless communication, a large number of low-cost radars, endowed with
communication capability, are distributedly located to fulfill tasks such as cooperative posi-
tioning and target recognition [3–7]. In typical applications, sensors collaborate to reach a
consensus that accurately represents the correct classification of an event or the underlying
true state of nature through a predefined communication network that is usually described
by a connected graph and suffers from communication constraints [8]. Information pro-
cessing in sensor networks has thus received significant attention from various disciplines
such as computer science, signal processing and control theory [9,10].

The fusion-centric approaches assume each sensor has a communication link to a data
fusion center, which is relatively energy consuming in large-scale networks [11]. Distributed
consensus algorithms are then broadly developed to accelerate the convergence to con-
sensus under different communication and/or energy limitations [12,13]. Social learning
strategies, originating from social networks, are representative algorithms for distributed
agents to learn progressively an underlying state of nature by information communications
and evolutions [14]. Seminally, Banerjee [15] and Bikhchandani et al. [16] formulate the
social learning paradigm in a fully Bayesian manner, which is further comprehensively
analyzed and developed by Smith and Sørensen [17]. However, the Bayesian learning
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framework has a stringent requirement for a priori information and a high computational
burden, preventing its usage even in simple networks [18]. Non-Bayesian algorithms are
then introduced into social learning [19–22]; they have been flourishingly developing since
the pioneering work of Jadbabaie et al. [14,23,24]. The non-Bayesian social learning frame-
work consists of a belief aggregation step and a Bayesian update step, dealing with external
communication and internal belief updating, respectively. In [25], the original model is
extended using logarithmic aggregation, with its convergence and asymptotic normality
being proved. Kar et al. [26] design a set of distributed parameter estimation algorithms by
combining a consensus step and an innovation step in the update rule and apply them in
sensor networks. The non-Bayesian social learning algorithms are subsequently general-
ized to various network structures. For example, Nedić et al. [27,28] analyze the learning
rule for time-varying graphs, and the convergence result of a non-Bayesian learning al-
gorithm for fixed graphs is provided in [29]. Authors in [30] consider the learning rules
on weakly connected graphs, and social learning with time-varying weights is studied
in [31]. Recently, a novel adaptive social learning strategy has been proposed by Bordignon
et al. [32] to address the poor performance under nonstationary conditions. Sui et al. design
a parametric social learning framework, introducing an agent stubbornness parameter
to trade off the significance between its internal belief and external communication [33].
Notice that consensus networks, also known as opinion dynamics, have been extensively
studied for many years [34,35]. Only paying attention to interpersonal communication,
opinion dynamics focus on the formation, evolution and convergence of beliefs within a
group [36,37]. Plentiful methods are proposed to judge/guarantee convergence in such
networks. For example, a negative spectral gap is necessary to guarantee the convergence
in the Influence Network (I-net) [38]. However, social learning frameworks proceed fur-
ther than consensus networks by considering external communication and internal belief
updating simultaneously, since they are more aligned with the reality of social networks.
The difference also lies in the fact that social learning strategy converges to one of the
preconceived hypotheses, while opinion dynamics converge to a certain consensus value.

Undoubtedly, the underlying network structure plays a key role in determining the
convergence as well as its rate of the non-Bayesian social learning algorithms [39]. Practi-
cally, most sensors are physically restricted by their limited communication bandwidth,
in which case they can only communicate with their local neighbors [8]. Moreover, re-
liability and connectivity are also constraints that the distributed consensus algorithms
should address. In certain scenarios, a part of sensors is obstructed or misguided due to
environmental factors. These drawbacks call for advanced design of the learning algo-
rithms addressing more realistic circumstances. Real-world complex networks, including
ecological networks [40], co-authorship networks [41] and communication networks [42],
are proved to contain many-body interactions instead of merely pairwise interactions.
In fact, a sum of two-body interactions is not able to capture the difference between the
communication of three agents and three separate pairwise communications [43], where the
former requires a smaller number of mutual interactions but with similar communication
efficiency. For a real-world example in biochemistry, three proteins always interact with
each other simultaneously and form a heterotrimer, which functions as a whole [44], and
this can not be represented by traditional graphs. Hypergraph structure is then introduced
into the non-Bayesian social learning strategies in this work, which extends the existing
algorithms to more general situations and exhibits advantages not only in sensor networks,
but also in other applications such as social networks.

In this work, we propose new non-Bayesian social learning algorithms based on
higher-order topology called hypergraph social learning (HSL), whose convergence as
well as the convergence rate are theoretically analyzed. Extensive numerical examples
are provided to validate the effectiveness of the algorithms and unveil insights into the
relationship between the consensus and hypergraph connectivity/structure. A practical
technique for accelerating the convergence is designed and verified. We apply the proposed
algorithms to a collective target location problem in sensor networks and analyze the
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difference with underlying graph and hypergraph structures. The remaining part of this
paper is organized as follows: Section 2 provides a full description of the problem settings,
reviewing necessary algorithms and proposing our HSL strategies. Section 3 presents
sufficient assumptions/lemma and proves the convergence of the proposed algorithms.
Section 4 provides extensive numerical examples illustrating the theoretical results and
applies the algorithms in sensor networks. The findings are discussed and concluded in
Section 5 with possible future work directions.

2. Preliminaries and Models
2.1. Problem Formulation

We consider a scenario where a group of n sensors or agents collaborate in order
to arrive at a consensus that accurately represents the correct classification of an event
or the underlying true state of nature, denoted as θ∗, from a finite set of hypotheses
Θ = {θ1, θ2, · · · , θp}. Each agent i receives an observation si,t of an environmental random
process at each discrete time step t = 1, 2, · · · , where st = (s1,t, s2,t, · · · , sn,t)> is generated
according to a given likelihood function `(·|θ∗). The corresponding random variable of
agent i’s observation at time t is denoted as Si,t and St = (S1,t, · · · , Sn,t)>. Here, each Si,t
has its individual observation space Si and is independently and identically distributed
with respect to t.

The signal structure of agent i for state θ is described by probability distribution `i(·|θ).
In these settings, `i(si,t|θ) characterizes the probability that signal si,t can be observed by
agent i at time t when it believes θ is the true state. It is required that `i(·|θ∗) coincides
with the ith marginal distribution of `(·|θ∗), which thus also describes the probability
distribution of random variable Si,t.

Usually, the agents interact with each other in a networked fashion, which is con-
ventionally modelled by a directed graph describing pairwise interactions [45]. Due to
a limited communication bandwidth, reliability and connectivity in a realistic scenario,
most sensors are of the entailed constraint type to communicate with their local neighbors,
and only a small number of delegates are endowed with mediate communication capac-
ity. This brings in the need for higher-order topological structures that can capture the
essence of local multi-agent interactions and centralized mediate communications [46,47].
In this work, hypergraph structure is introduced into the non-Bayesian social learning
framework. The designed algorithms are demonstrated to significantly reduce the number
of mutual interactions among sensors. A hypergraph is represented as H = (V , E). The
set of vertices V = {1, 2, · · · , n} denotes the n agents, and E = {ej|j = 1, 2, · · · , m} is the
set of m hyperedges. Unlike a graph, a hyperedge may connect more than two nodes,
leading to a different aggregation mechanism. We denote A = (aji)m×n as the weight
matrix with its row vector representing the weights of nodes in a single hyperedge. More-
over, B = (bij)n×m denotes the weight matrix characterizing the weights of each node
with respect to every hyperedge that it belongs to. Both A and B are assumed to be row

stochastic, i.e.,
n
∑

i=1
aji = 1, ∀j = 1, · · · , m, and aji > 0 if i ∈ ej,

m
∑

j=1
bij = 1, ∀i = 1, · · · , n, and

bij > 0 if i ∈ ej.
The belief of agent i at time t is denoted as µi,t, which is a probability distribution

over the set of possible states Θ, i.e.,
p
∑

k=1
µi,t(θk) = 1, ∀i = 1, · · · , n, ∀t = 0, 1, · · · . Here, µi,0

represents the initial belief of agent i. We further define the belief of hyperedge ej at time t as
νj,t to record the belief aggregation from nodes to hyperedges, which is described detailedly
in the following section.

2.2. Hypergraph Social Learning

Traditional social learning generally consists of two key procedures at each time step
for agents to update their beliefs, i.e., the Bayesian update step and the step of aggregating
neighbor beliefs. Taking different orders of these two steps leads to the two basic social
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learning strategies called the LoAB (Logarithmic Aggregation and then Bayesian update)
and the BLoA (Bayesian update and then Logarithmic Aggregation), respectively [48].
Notice that the hypergraph structure broadens the concept of neighbors, inducing the
following new belief aggregation approaches.

At time step t + 1, the purpose of the Bayesian update step is to update each agent i’s
prior belief µi,t using environmental observation si,t+1 and obtain its posterior belief µ̃i,t+1.
This process can also be described as solving an optimization problem as follows:

µ̃i,t+1 = arg min
f∈P(Θ)

{DKL( f ‖ µi,t)− ∑
θ∈Θ

f (θ) log(`i(si,t+1|θ))}, (1)

where DKL(· ‖ ·) is the Kullback–Leibler divergence (KL divergence) between two prob-
ability distributions. For instance, the first term on r.h.s. of (1) is DKL( f ‖ µi,t) =

∑
θ∈Θ

f (θ) log f (θ)
µi,t(θ)

, describing the difference between the prior belief and the posterior

belief. The second term on r.h.s. of (1) describes the maximum likelihood estimation
given the latest observation si,t+1. By directly solving the optimization problem (1) with
the Lagrange multiplier method, we obtain the update formula for the posterior belief
as follows:

µ̃i,t+1(θ) =
µi,t(θ)`i(si,t+1|θ)

∑
θ′∈Θ

µi,t(θ′)`i(si,t+1|θ′)
. (2)

Inspired by the aggregation mechanism which is always used in Hypergraph Neural
Networks (HGNN) [49,50], two steps are needed to achieve belief aggregation in hyper-
graph structures. The first step called Node-to-Edge is performed to aggregate the beliefs of
all nodes in each hyperedge to form the defined belief of the hyperedge νj,t+1. Then, the
beliefs of hyperedges are aggregated to the nodes that are contained in their intersections,
according to the weights in B, and this procedure is called Edge-to-Node. This two-step
aggregation mechanism is consistent with the real-world prototype. For example, in a
scenario of group discussions, participants exchange opinions to reach consensus within the
group. If a person participates in multiple group meetings, they then update the personal
belief by aggregating multiple consensus from different groups.

Practically, only performing a Bayesian update is not always feasible due to the
identifiable problem that the agents encounter. This issue arises when the agents cannot
differentiate between certain states based on their individual knowledge. Conversely,
relying solely on the aggregation procedure poses a hindrance to agents in obtaining
environmental information, consequently impeding their ability to reach consensus on the
true state. By combining the Bayesian update step and the aggregation steps in hypergraphs
in different orders, we derive two new hypergraph social learning algorithms, i.e.,

(a) HSL-NEB (Hypergraph Social Learning: Node-to-Edge, Edge-to-Node and then
Bayesian update):

Step 1 (Node-to-Edge).

νj,t+1(θ) =

exp(
n
∑

i=1
aji log µi,t(θ))

∑
θ′∈Θ

exp(
n
∑

i=1
aji log µi,t(θ′))

, ∀θ ∈ Θ; (3)

Step 2 (Edge-to-Node).

µ̃i,t+1(θ) =

exp(
m
∑

j=1
bij log νj,t+1(θ))

∑
θ′∈Θ

exp(
m
∑

j=1
bij log νj,t+1(θ′))

, ∀θ ∈ Θ; (4)

Step 3 (Bayesian update).
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µi,t+1(θ) =
µ̃i,t+1(θ)`i(si,t+1|θ)

∑
θ′∈Θ

µ̃i,t+1(θ′)`i(si,t+1|θ′)
, ∀θ ∈ Θ. (5)

(b) HSL-BNE (Hypergraph Social Learning: Bayesian update, Node-to-Edge and then
Edge-to-Node):

Step 1 (Bayesian update).

µ̃i,t+1(θ) =
µi,t(θ)`i(si,t+1|θ)

∑
θ′∈Θ

µi,t(θ′)`i(si,t+1|θ′)
, ∀θ ∈ Θ; (6)

Step 2 (Node-to-Edge).

νj,t+1(θ) =

exp(
n
∑

i=1
aji log µ̃i,t+1(θ))

∑
θ′∈Θ

exp(
n
∑

i=1
aji log µ̃i,t+1(θ′))

, ∀θ ∈ Θ; (7)

Step 3 (Edge-to-Node).

µi,t+1(θ) =

exp(
m
∑

j=1
bij log νj,t+1(θ))

∑
θ′∈Θ

exp(
m
∑

j=1
bij log νj,t+1(θ′))

, ∀θ ∈ Θ. (8)

3. Assumptions and Results

As widely discussed in previous works of social learning, we care about the conver-
gence of the algorithms as well as the rate of convergence. The following assumptions are
required to ensure the convergence of our HSL strategies:

Assumption 1 (Communication network). Denote C = (cij)n×n = BA, where A = (aji)m×n
and B = (bij)n×m. The matrix C satisfies that it is the transition matrix of an irreducible, aperiodic
Markov chain of finite states.

To satisfy the assumption, hypergraphH should be a connected hypergraph without
isolated vertices (a hypergraph is connected if for any pair of vertices, there is a path which
connects these vertices; see Appendix A for detailed explanations). We recall the following
lemma [51]:

Lemma 1. If a Markov chain of finite states is irreducible, then it has a unique stationary distribu-
tion π. Let C be the transition matrix of the Markov chain and further suppose it is aperiodic; then,
we have lim

k→∞
[Ck]ij = πj, for 1 6 i, j 6 n.

The stationary distribution π can be interpreted as the normalized left eigenvector of C
with respect to eigenvalue 1, which is known as the eigenvector centrality in related literatures.
The Perron–Frobenius theorem ensures that all components of π are strictly positive.

Assumption 2 (Belief and signal structure). For all agents i = 1, 2, · · · , n,
(a) they have positive initial beliefs on all states, i.e., µi,0(θ) > 0 for all θ ∈ Θ;
(b) they have positive signal structures, i.e., `i(si|θ) > 0 for all si ∈ Si and θ ∈ Θ.

Notice that if the initial belief of agent i on state θ is zero, following our HSL algorithms,
its belief remains at zero all the time. In this case, θ is meaningless for agent i, and we
thus eliminate the situation by imposing Assumption 2a. For the signal structures and
Assumption 2b, the same explanation can be applied.
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Two states, θj and θk, are called observationally equivalent for agent i if
`i(si|θj) = `i(si|θk), ∀si ∈ Si, in which case agent i is not able to distinguish these states
only with its own information. Moreover, the true state is called globally identifiable if the set

Θ∗ =
n⋂

i=1
Θ∗i has only one element θ∗, where Θ∗i = {θ ∈ Θ|`i(si|θ) = `i(si|θ∗), ∀si ∈ Si}.

This concept can be intuitively explained. If state θ̂ is observationally equivalent to θ∗ for
all agents, i.e., Θ∗ = {θ∗, θ̂}, then the two states are exactly the same from the view of
all agents and they cannot identify the true state progressively and collectively, which, in
addition, induces

Assumption 3 (Globally identifiable). The true state θ∗ is globally identifiable.

Under this assumption, for all θ 6= θ∗, there exists at least agent i satisfying the fact
that DKL(`i(·|θ∗) ‖ `i(·|θ)) is strictly positive.

In the following, we denote Ki(θ
∗, θ) = DKL(`i(·|θ∗) ‖ `i(·|θ)) and define a probability

triple (Ω,F ,P∗), where Ω = {ω|ω = (s1, s2, · · · )}, F is the σ-algebra generated by the

observations, and P∗ is the probability measure induced by paths in Ω, i.e., P∗ =
∞
∏

t=1
`(·|θ∗).

E∗[·] is used to denote the expectation operator associated with probability measure P∗.
Now, we can state the main results describing the convergence of the HSL strategies.

Theorem 1. Under Assumptions 1–3, the update rules (3)–(5) and (6)–(8) satisfy the
following properties:

lim
t→∞

1
t

log
µi,t(θ)

µi,t(θ∗)
= −

n

∑
j=1

πjKj(θ
∗, θ), ∀θ 6= θ∗ (9)

and
lim
t→∞

µi,t(θ
∗) = 1, P∗−a.s., ∀i = 1, · · · , n. (10)

Proof. We consider the update rule (3)–(5) first. For each agent i and θ 6= θ∗, we have

log
µi,t+1(θ)

µi,t+1(θ∗)
= log

µ̃i,t+1(θ)

µ̃i,t+1(θ∗)
+ log

`i(si,t+1|θ)
`i(si,t+1|θ∗)

=
m

∑
j=1

bij

n

∑
k=1

ajk log
µk,t(θ)

µk,t(θ∗)
+ log

`i(si,t+1|θ)
`i(si,t+1|θ∗)

.

By denoting ϕi,t+1(θ) = log µi,t+1(θ)
µi,t+1(θ∗)

and Li,t+1(θ) = log `i(si,t+1|θ)
`i(si,t+1|θ∗)

, the above equation
simplifies to

ϕi,t+1(θ) =
m

∑
j=1

bij

n

∑
k=1

ajk ϕk,t(θ) + Li,t+1(θ). (11)

We rewrite (11) in the matrix form:

ϕt+1(θ) = BAϕt(θ) + Lt+1(θ).

Then, it follows that

1
t
ϕt+1(θ) =

1
t

BAϕt(θ) +
1
t

Lt+1(θ)

=
1
t

BA(BAϕt−1(θ) + Lt(θ)) +
1
t

Lt+1(θ) = · · ·

=
1
t
(BA)t+1ϕ0(θ) +

1
t

t

∑
k=1

(BA)kLt+1−k(θ) +
1
t

Lt+1(θ).
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Using the notation in Assumption 1, the above equation can be written as

1
t
ϕt+1(θ) =

1
t

Ct+1ϕ0(θ) +
1
t

t

∑
k=1

CkLt+1−k(θ) +
1
t

Lt+1(θ), (12)

where C is an n× n matrix. The assumptions admit that the first and the third terms on the
right hand side of (12) converge to zero as t→ ∞. And the second term can be deformed as

1
t

t

∑
k=1

CkLt+1−k(θ) =
1
t

t

∑
k=1

(Ck − 1nπ)Lt+1−k(θ)

+
1
t

t

∑
k=1

1nπ(Lt+1−k(θ) + K(θ∗, θ))− 1
t

t

∑
k=1

1nπK(θ∗, θ),

(13)

where 1n is an n-dimensional column vector of ones. From Lemma 1, we know that
lim
k→∞

Ck = 1nπ. Noticing that all elements of Ck(k = 1, 2, · · · ) are bounded, the first term

on the right hand side of (13) converges to zero as t→ ∞. Moreover,

E∗[Li,t(θ)] = E∗[log
`i(si,t|θ)
`i(si,t|θ∗)

] =
∫

s∈Si

`i(s|θ∗) log
`i(s|θ)
`i(s|θ∗)

ds

= −DKL(`i(·|θ∗) ‖ `i(·|θ)) = −Ki(θ
∗, θ).

Using the Kolmogorov’s strong law of large numbers, it follows that

1
t

t

∑
k=1

Lt+1−k(θ)−
1
t

t

∑
k=1

E∗[Lt+1−k(θ)]→ 0, P∗−a.s.,

as t→ ∞, which leads to

lim
t→∞

1
t

t

∑
k=1

1nπ(Lt+1−k(θ) + K(θ∗, θ)) = 0, P∗−a.s..

Now, (13) provides

lim
t→∞

1
t

t

∑
k=1

CkLt+1−k(θ) = −1nπK(θ∗, θ), P∗−a.s.. (14)

Therefore, property (9) holds, which can be directly induced from (12) and (14). Moreover,
it follows that with probability one, for any ε > 0, there exists an integer T such that ∀t > T
and ∀θ 6= θ∗, ∣∣∣∣∣1t log

µi,t(θ)

µi,t(θ∗)
+

n

∑
j=1

πjKj(θ
∗, θ)

∣∣∣∣∣ < ε.

Noticing that ∑
θ 6=θ∗

µi,t(θ) = 1− µi,t(θ
∗), we have

1

1 + ∑
θ 6=θ∗

exp

((
ε−

n
∑

j=1
πjKj(θ∗, θ)

)
t

) < µi,t(θ
∗) 6 1.

Letting t→ ∞, property (10) is then proved because of the arbitrary selection of ε.
For update rules (6)–(8), we can reach the same conclusions (9) and (10) via

similar analysis.
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Theorem 1 indicates that all agents interacting in the hypergraph structure eventually
learn the underlying true state as long as the assumptions are satisfied. We provide
extensive examples to validate the theoretical analyses and unveil more insights in the next
section. Moreover, the following corollary describing the convergence rate can be obtained
directly from Theorem 1:

Corollary 1. Under Assumptions 1–3, the update rules (3)–(5) and (6)–(8) satisfy that for all
i = 1, 2, · · · , n and all θ 6= θ∗,

lim
t→∞

µi,t(θ) 6 exp(−αθt), P∗−a.s.,

where αθ =
n
∑

j=1
πjKj(θ

∗, θ).

In the following, the set of hyperedges where node i resides is denoted as di. We use∣∣ej
∣∣ to denote the number of nodes being connected in the jth hyperedge and use |di| to

denote the number of hyperedges where the i-th node resides. According to Assumption 1
and Lemma 1, C = BA has a unique stationary distribution π = (π1, π2, · · · , πn), i.e.,
πC = π. Under specific settings of the weight matrices A and B, we have further results
summarized in the following remark:

Remark 1. If we consider a special case of A and B as follows,

aji =

{
1
|ej| , i ∈ ej,

0, otherwise,
bij =

{
1
|di |

, i ∈ ej,
0, otherwise,

we have πi =
|di |

∑n
l=1 |dl |

.

Proof. From the definitions, it is obvious that A and B are both row-stochastic matrices. It
follows that C = BA is also row stochastic, i.e.,

n

∑
j=1

cij = 1, ∀i = 1, · · · , n.

The above equation can be rewritten as

n

∑
j=1

∑
ek∈di∩dj

bikakj =
n

∑
j=1

∑
ek∈di∩dj

1
|di|

1
|ek|

= 1, ∀i = 1, · · · , n. (15)

Denoting π′ = πC = πBA, it follows that

π′k =
n

∑
i=1

πicik =
n

∑
i=1

πi

m

∑
j=1

bijajk =
n

∑
i=1

πi ∑
ej∈di∩dk

1
|di|

1∣∣ej
∣∣ . (16)

Substituting πi =
|di |

∑n
l=1 |dl |

into the above equation provides

π′k =
1

n
∑

l=1
|dl |

n

∑
i=1
|di| ∑

ej∈di∩dk

1
|di|

1∣∣ej
∣∣ = 1

∑n
l=1|dl |

n

∑
i=1

∑
ej∈di∩dk

1∣∣ej
∣∣ . (17)
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From (15) and (17) and the uniqueness of the stationary distribution, we obtain

π′k =
|dk|

∑n
l=1 |dl |

= πk. (18)

Remark 1 indicates that increasing the degree |di| of the ith node also raises the
value of πi, demonstrating a greater importance of the role of node i. This mechanism
provides us with viable solutions to accelerate the convergence rate by adjusting the
hypergraph structure on nodes that have high eigenvector centrality, which is shown in the
following examples.

4. Numerical Examples and Applications

Here, we provide several numerical examples demonstrating the above theoretical
analyses and apply the HSL algorithms in sensor networks.

4.1. Hypergraph Connectivity vs. Convergence

We first demonstrate the effectiveness of the HSL algorithms in reaching distributed
consensus and the relationship with the underlying hypergraph connectivity. The struc-
ture of an unconnected hypergraph consisting of seven vertices and three hyperedges
is depicted in Figure 1a. The non-zero values in the weight matrices A and B are ran-
domly generated from (0, 1) and then normalized to satisfy the row-stochastic assump-
tion. We assume there are three possible states Θ = {θ1, θ2, θ3}, with θ1 being the true
state. The initial beliefs are also uniformly generated from interval (0, 1) and subject to

3
∑

k=1
µi,0(θk) = 1, ∀i = 1, · · · , 7. Signals are assumed to be generated at each time from set

{H, T} and according to the probability distribution of `(H|θ∗) = 0.2 and `(T|θ∗) = 0.8.
Moreover, signal structures are set as `i(H|θ1) = `i(H|θ2) = 0.2, `i(T|θ1) = `i(T|θ2) = 0.8,
`i(H|θ3) = 0.6, and `i(T|θ3) = 0.4, for i = 1, 2, 3. And for i = 4, 5, 6, 7, we assume that
`i(H|θ2) = 0.7, `i(T|θ2) = 0.3, `i(H|θ1) = `i(H|θ3) = 0.2, and `i(T|θ1) = `i(T|θ3) = 0.8.
To be clear, we denote the discrete probability distribution that agents 1–3 follow as

L1−3 =

[
0.2 0.2 0.6
0.8 0.8 0.4

]
, while agents 4–7 follow discrete probability distribution

L4−7 =

[
0.2 0.7 0.2
0.8 0.3 0.8

]
. In this example, successful learning is considered to be reached if

7
∑

i=1
|µi,t(θ

∗)− 1| 6 10−3. If the collective consensus is not reached after 100 iterations, the

learning ends on its own. Results in Figure 1b,c illustrate that an unconnected hypergraph
structure may finally result in inconsistent learning results, which means the HSL strate-
gies may not converge in such a case. This phenomenon accords with the intuition that
completely separate groups may not reach a consensus.

1

2

3

4

5 6

7

1

2

3

4

5 6

7

1

43

2 1

43

2

1 2

3

45

6

1 2

3

45

6

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

Figure 1. Cont.
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(d) (e) (f)

Figure 1. (a,d) The unconnected and connected hypergraph structures used in this example. (b,c) The
evolution of beliefs on all possible states for agents interacting in structure of (a), with (b,c) denoting
the results of HSL-NEB and HSL-BNE, respectively. (e,f) The evolution of beliefs on all possible
states for agents interacting in structure of (d), with (e,f) denoting the results of HSL-NEB and
HSL-BNE, respectively.

However, by only adding a hyperedge linking Agent 1 and Agent 4—see Figure 1d—
the hypergraph becomes connected. HSL strategies soon converge after a few iterations—
see Figure 1e,f—validating the theoretical results in Theorem 1 and the effectiveness of the
proposed algorithms.

4.2. Hypergraph Structure vs. Convergence Rate

As indicated in Theorem 1 and Corollary 1, the convergence rate is closely related to
the eigenvector centrality of matrix C as well as the KL-divergence K(θ∗, θ). This offers
us the opportunity to increase the convergence rate via assigning a more important role,
i.e., a larger eigenvector centrality, to the agent that is more informative, i.e., more helpful
to distinguish between true and wrong states. We illustrate this idea by considering
two similar hypergraphs shown in Figure 2a,b with four agents and three hyperedges. We
define the weight matrices A and B in the same way as in Remark 1, i.e., for the hypergraph
in Figure 2a,

Al =

 1
3

1
3

1
3 0

1
3

1
3 0 1

3
1
3 0 1

3
1
3

, Bl =


1
3

1
3

1
3

1
2

1
2 0

1
2 0 1

2
0 1

2
1
2

,

and for the hypergraph in Figure 2b,

Ar =

 1
3

1
3 0 1

3
1
3 0 1

3
1
3

0 1
3

1
3

1
3

, Br =


1
2

1
2 0

1
2 0 1

2
0 1

2
1
2

1
3

1
3

1
3

.

Clearly, Agents 1 and 4 have the largest eigenvector centrality, respectively, for hypergraphs
in Figure 2a,b, demonstrating their important roles in the structures. We assume that there
are two possible states Θ = {θ1, θ2}, with θ1 being the true state. The initial beliefs are

uniformly generated from the interval (0, 1) and subject to
2
∑

k=1
µi,0(θk) = 1, ∀i = 1, · · · , 4.

At each time step t, signal st is randomly generated following normal distribution N (0, 1)
and observed by all agents. As θ1 is the underlying true state, from assumptions, we
have `i(·|θ1) = N (0, 1), ∀i = 1, · · · , 4. The likelihood functions of the other state are
assigned as `i(·|θ2) = N ( i

10 , 1), ∀i = 1, · · · , 4, while θ∗ = θ1 is globally identifiable. These
settings lead to K4(θ

∗, θ) > K3(θ
∗, θ) > K2(θ

∗, θ) > K1(θ
∗, θ) > 0, depicting that Agent 4

is the most informative agent and Agent 1 is the least informative one. We focus on the
number of iterations for update rules HSL-NEB and HSL-BNE to collectively learn the

true state, where successful learning is considered to be reached if
4
∑

i=1
|µi,t(θ

∗)− 1| 6 10−3.
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Results in Figure 2c,d illustrate that consensus can be significantly faster reached with the
structure in Figure 2b, where Agent 4 has both higher eigenvector centrality and is more
informative, showing consistency with the theoretical analyses. Moreover, from Lemma 1,
the convergence rate of the proposed algorithms and the convergence rate of transition
matrix C are related to the second largest eigenvalue of C. That is to say, the convergence
rate depends on the network sparsity (and the signal structures) instead of its size, which
means no scaling problem exists for very large networks. However, practically, due to
computational burden, we would like to accelerate the convergence rate to reach consensus.
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(c) (d)

Figure 2. (a,b) The two hypergraph structures used in this example. (c,d) The evolution of beliefs on
all possible states, with (c,d) denoting the results of HSL-NEB and HSL-BNE, respectively.

4.3. Hypergraph Structure vs. Graph Structure

Here, we provide a preliminary survey on the relationship between traditional social
learning on graphs and our HSL framework. As presented in Appendix A.2, every hyper-
graphH can be mapped to a corresponding graph G by connecting all pairs of nodes that
belong to each hyperedge. This method is called clique expansion in the field of hypergraph
representation learning [52]. We demonstrate the equivalence of a hypergraph and its
clique expansion when performing HSL and traditional social learning, respectively, on
them theoretically in Appendix A.2 and numerically as described further.

We consider a hypergraph with six vertices and three hyperedges; the structure is
depicted in Figure 3a. We define the weight matrices A and B in the same way as in
Remark 1, i.e.,

A =

 1
4

1
4

1
4

1
4 0 0

0 0 0 1
2

1
2 0

1
3 0 0 0 1

3
1
3

, B =



1
2 0 1

2
1 0 0
1 0 0
1
2

1
2 0

0 1
2

1
2

0 0 1

.
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In this way, the matrix C = AB can be written as

C =



7
24

1
8

1
8

1
8

1
6

1
6

1
4

1
4

1
4

1
4 0 0

1
4

1
4

1
4

1
4 0 0

1
8

1
8

1
8

3
8

1
4 0

1
6 0 0 1

4
5

12
1
6

1
3 0 0 0 1

3
1
3


.
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Figure 3. (a,b) The hypergraph and graph structures used in this example. (c,d) The evolution
of beliefs on all possible states for agents interacting in structures of (a,b), respectively, with the
HSL-NEB algorithm.

The structure of the clique expansion is shown in Figure 3b, and we assume the
weight matrix of this graph is identical to C. AWe asume there are four possible states
Θ = {θ1, θ2, θ3, θ4} with true state θ∗ = θ1. The initial beliefs are uniformly generated

from the interval (0, 1) and subject to
4
∑

k=1
µi,0(θk) = 1, ∀i = 1, · · · , 6. At each time step

t, signal st is randomly generated, following normal distribution N (0, 1) and observed
by all agents. As θ1 is the underlying true state, from assumptions, we have `i(·|θ1) =
N (0, 1), ∀i = 1, · · · , 6. Moreover, all agents in the network are assumed to be equivalently
informative to the true state, with `i(·|θk) = N ( k−1

5 , 1), ∀i = 1, · · · , 6 and ∀k = 2, 3, 4. For
the hypergraph, we use the proposed update rules HSL-NEB and HSL-BNE, while the
LoAB and BLoA algorithms are applied to the graph. In this example, we still regard

6
∑

i=1
|µi,t(θ

∗) − 1| 6 10−3, the same criterion as in the previous examples as the sign of

achieving successful social learning.
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Results in Figure 3c,d demonstrate that convergence to collective consensus are
reached within almost the same number of iterations for the two cases, i.e., equivalent con-
vergence rate. However, compared to the pairwise communications in graphs, which occur
many times in one iteration, HSL significantly reduces the number of mutual interactions
among agents and keeps the same convergence rate.

4.4. Application to Sensor Cooperative Positioning

In the following example, we demonstrate the applicability of our HSL algorithms
in a sensor cooperative positioning problem [29]. We consider a radar network with
six sensors located at (±1, 0, 0), (0,±1, 0) and (0, 0,±1). The sensors can communicate
according to three hyperedge connections, as depicted in Figure 4a, where the medi-
ately communicating sensor refers to the sensor belonging to multiple hyperedges, repre-
senting its role of communicating across hyperedges, and the locally communicating sensor
denotes the sensor only communicating in one hyperedge. With this setting, the non-zero
elements in the weight matrices A and B are randomly generated from the interval (0, 1)
and then normalized to satisfy the row-stochastic assumption. We assume each sensor
can sense the target’s location along one dimension only, whereas the target location is a
point in a three-dimensional space. Specifically, sensors located on the x-axis can sense
whether the x-coordinate of the target lies in the (−1, 0) or [0, 1) or (−∞,−1] ∪ [1, ∞) in-
terval. Similarly, sensors on the y-axis and the z-axis can each distinguish between three
distinct non-intersecting intervals on the corresponding axis. Therefore, the total number of
possible states is nine, i.e., Θ = {θ1, θ2, · · · , θ9}, where θ9 denotes the outside infinite region.

The goal is to ascertain the area of the target aircraft by the HSL algorithms. We set θ1
as the true position of the target. The initial beliefs are generated from the interval (0, 1) and

subject to
9
∑

k=1
µi,0(θk) = 1, ∀i = 1, · · · , 6. Signals are assumed to be generated at each time

from set {NEAR, MID, FAR}. Sensors are assumed to be more sensitive to near target, e.g.,

for sensor 5 on the positive z-axis. We set

`5(NEAR|θk)
`5(MID|θk)
`5(FAR|θk)

 =

 0.9
0.05
0.05

 for k = 1, 2, 3, 4, and

`5(NEAR|θk)
`5(MID|θk)
`5(FAR|θk)

 =

 0.1
0.85
0.05

 for k = 5, 6, 7, 8. Here, z-coordinates of θ1 ∼ θ4 lie in the interval

[0, 1), and (−1, 0) for θ5 ∼ θ8. We additionally set

`i(NEAR|θ9)
`i(MID|θ9)
`i(FAR|θ9)

 =

0.1
0.1
0.8

, ∀i = 1, 2, · · · , 6.

For other sensors, the signal structures are set up with the same logic. We further assume
that the signals are generated following the same probability distribution as the signal

structure of θ1. Successful learning is considered to be reached if
6
∑

i=1
|µi,t(θ

∗)− 1| 6 10−3.

Results in Figure 4b,c illustrate that the true collective consensus can be reached in
less than 20 iterations, showing that the sensor network completes the positioning task
efficiently and accurately by applying our HSL algorithms. In real scenarios, radar net-
works always suffer from resource waste due to redundant and repetitive communications
especially when using traditional graph-based social learning algorithms. However, in our
HSL framework, for example, in the sensor network considered here, the communication
can be further reduced to one hyperedge covering sensors on x, y and z-axes, which is
enough to guarantee successful positioning.
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Figure 4. (a) The radar network with hypergraph topology considered in this example.
(b,c) The evolution of beliefs on selected states, with (b,c) denoting the results of HSL-NEB
and HSL-BNE, respectively.

4.5. Application to Consensus in Social Network

We validate the effectiveness of our HSL algorithms in a large-scale real-world higher-
order social network, which is often used to model opinion formation [53]. Network
topology is determined from public dataset Hypertext2009 provided by the SocioPatterns
research collaboration (http://www.sociopatterns.org/). Three-body interactions are re-
constructed by Wang et al. [54]. This dataset describes the scenario in which 85 participants
exchange their views in a conference in order to form a consensus, e.g., to support or
oppose a bill. We assume environmental information can be received by all participants
and influences their beliefs. The network structure, consisting of 85 vertices and 225 hyper-
edges (192 edges + 33 triangles), are given in Figure 5a. The non-zero values in the weight
matrices A and B are randomly generated from (0, 1) and then normalized to satisfy the row-
stochastic assumption. We assume there are two possible states Θ = {θ1, θ2}, with θ1 being
the true state. The initial beliefs are also uniformly generated from the interval (0, 1) and
subject to µi,0(θ1) + µi,0(θ2) = 1, ∀i = 1, · · · , 85. Signals are assumed to be generated ran-
domly, following the Gaussian distribution N (0, 1) and observed by all agents. As θ1 is the
underlying true state, we have `i(·|θ1) = N (0, 1), ∀i = 1, · · · , 85. Moreover, the likelihood
functions of the other state are assigned as `i(·|θ2) = N ( i

1000 , 1), ∀i = 1, · · · , 85. We still

use
85
∑

i=1
|µi,t(θ

∗)− 1| 6 10−3 as the sign of successful social learning. Results in Figure 5b,c

illustrate that influenced by environmental signals and interpersonal communications, all
participants finally reach a consensus and make the right decision, demonstrating the broad
applicability of our HSL strategies.

http://www.sociopatterns.org/
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(a) (b) (c)

Figure 5. (a) Visualization of the real-world hypergraph network Hypertext2009. Shaded triangles
denote three-body interactions in the dataset. (b,c) The evolution of beliefs on all possible states, with
(b,c) denoting the results of HSL-NEB and HSL-BNE, respectively.

5. Discussion and Conclusions

Practically, in a sensor network, units may inevitably encounter sudden disconnection
due to obstruction, prolonged operations, environmental damages, etc. [55,56]. Here, we
discuss a scenario when a sensor loses its ability to sense environmental information.
Following the design of the hypergraph considered in Section 4.3, including the network
structure, weight matrices, possible states, signal structures, etc., we further assume one
of the sensors is blocked from external information and examine the convergence rate,
respectively. As shown in Figure 6, where node "0" represents the plain result with original
settings and others represent the results with the corresponding node being blocked, the
numbers of iterations to reaching consensus all increase when one sensor loses sensing
ability. Interestingly, the sensors exhibit different roles in the network; the blocking of
Sensors 1, 4 and 5 located at a mediate position across the hyperedges has significantly
higher numbers of iterations than the blocking of Sensors 2, 3 and 6 lying only in one
hyperedge. This phenomenon reveals that the mediately communicating sensors are
more sensitive to environmental obstruction and should be providently cared. In future
works, we will comprehensively discuss the relationship between network structure and
convergence efficiency.

Figure 6. The histogram showing the number of iterations to reaching consensus when the corre-
sponding node is blocked from sensing external information. Here, node "0" represents the plain
result with original settings. Error bars denote the standard deviations over 1000 realizations. Notice
that blocking the sensors located at mediate position across hyperedges has significantly higher
numbers of iterations than blocking sensors lying only in one hyperedge.

In real-world scenarios, communication constraints seriously influence sensor net-
works. Based on the radar network considered in Section 4.4, we further introduce band-
width limitation to the example. We assume that the unit of bandwidth is bits per hypothesis
per unit time (we call it bits for short in the following), and the belief on each hypoth-
esis θk (k = 1, 2, · · · , 9) is of size I bits. Therefore, by adjusting the value of I, we can
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investigate the effect of bandwidth limitation on HSL algorithms. Moreover, to simulate a
highly disturbed environment, we choose the signal structures for Sensor 5 on the positive

z-axis to be

`5(NEAR|θk)
`5(MID|θk)
`5(FAR|θk)

 =

0.36
0.32
0.32

 for k = 1, 2, 3, 4 and

`5(NEAR|θk)
`5(MID|θk)
`5(FAR|θk)

 =

0.33
0.35
0.32

 for

k = 5, 6, 7, 8. We additionally set

`i(NEAR|θ9)
`i(MID|θ9)
`i(FAR|θ9)

 =

0.33
0.33
0.34

, ∀i = 1, 2, · · · , 6. For other

sensors, the signal structures are recomposed with the same logic. Results in Figure 7a,b
illustrate that wrong consensus (θ5 in this example) is finally reached when limiting the
bandwidth to 6 bits. When raising the bandwidth to 8 bits, as shown in Figure 7c,d, our
algorithms can converge to the true collective consensus (θ1 in this example). These results
show that HSL algorithms have strong robustness; however, they inevitably make mistakes
when the sensor networks suffer from severe interference and limited communication.
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Figure 7. (a,b) The evolution of beliefs on selected states under bandwidth limit of 6 bits, with
(a,b) denoting the results of HSL-NEB and HSL-BNE, respectively. (c,d) The evolution of beliefs
on selected states under bandwidth limit of 8 bits, with (c,d) denoting the results of HSL-NEB and
HSL-BNE, respectively.

There are practically numerous scenarios in which agents demonstrate intentional
misbehavior or function in a faulty manner. Extensive studies have been conducted on
the robustness of graph-based social learning against Byzantine attacks, wherein adver-
saries are capable of deviating the system from the prescribed protocol in an arbitrary
fashion [57,58]. Nevertheless, the Byzantine attacks on higher-order-based social learn-
ing remain unexplored. Our subsequent study will encompass the examination of this
particular case.

To conclude, we proposed a new non-Bayesian social learning strategy named the
hypergraph social learning by introducing the higher-order topology as the underlying
network structure, with its convergence as well as the convergence rate theoretically an-
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alyzed. Several numerical examples were provided to demonstrate the effectiveness of
the HSL framework and reveal its superior performance when applying it to sensor net-
works in tasks such as cooperative positioning. Insights regarding the relationship between
convergence rate and different positions in the network were given. This work can as-
sist sensor network designers to develop more efficient communication topology, which
can better resist environmental obstructions. The HSL framework also has theoretical
and applied values in broad areas such as distributed parameter estimation, dispersed
information aggregation and social networks. Future works include extending the frame-
work to more complex topologies, such as multi-layer structures, and considering more
realistic difficulties in sensor networks such as energy limitations, connectivity loss and
inadequate coverage.
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Appendix A. Properties of the Matrix C

We prove here that the matrix C is the transition matrix of an aperiodic and irreducible
Markov chain of finite states under the assumption that hypergraphH is connected without
any isolated vertex.

Appendix A.1. Aperiodicity

From the definition in Assumption 1, cii = ∑m
j=1 bijaji, ∀i = 1, · · · , n. It is clear that if

i ∈ ej (or ej ∈ di), we have bij 6= 0 and aji 6= 0, and vice versa. Therefore, unless ∃i such
that di = ∅, we have ∑m

j=1 bijaji = ∑ej∈di
bijaji > 0. The assumption that no isolated vertex

exists inH guarantees that di 6= ∅, ∀i = 1, · · · , n, which leads to cii > 0, ∀i = 1, · · · , n and
the Markov chain is aperiodic.

Appendix A.2. Irreducibility

For cij = ∑m
k=1 bikakj, where i 6= j, we have cij = ∑ek∈di∩dj

bikakj > 0 unless ∃i 6=
j such that di ∩ dj = ∅. We define graph G = (V , E ′), where V = {1, 2, · · · , n} and
E ′ = {(i, j)|di ∩ dj 6= ∅} and M = (mij)n×n is the transition matrix corresponding to G.
Clearly, mij > 0 is equivalent to di ∩ dj 6= ∅. Therefore, the connectivity ofH induces the
connectivity of G, which further ensures that C is irreducible.
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